1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/PseudoSourceValue.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/Analysis/DebugInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision
;
65 static cl::opt
<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67 cl::desc("Generate low-precision inline sequences "
68 "for some float libcalls"),
69 cl::location(LimitFloatPrecision
),
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains
= 64;
88 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, DebugLoc DL
,
89 const SDValue
*Parts
, unsigned NumParts
,
90 EVT PartVT
, EVT ValueVT
);
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent. If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
97 static SDValue
getCopyFromParts(SelectionDAG
&DAG
, DebugLoc DL
,
99 unsigned NumParts
, EVT PartVT
, EVT ValueVT
,
100 ISD::NodeType AssertOp
= ISD::DELETED_NODE
) {
101 if (ValueVT
.isVector())
102 return getCopyFromPartsVector(DAG
, DL
, Parts
, NumParts
, PartVT
, ValueVT
);
104 assert(NumParts
> 0 && "No parts to assemble!");
105 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
106 SDValue Val
= Parts
[0];
109 // Assemble the value from multiple parts.
110 if (ValueVT
.isInteger()) {
111 unsigned PartBits
= PartVT
.getSizeInBits();
112 unsigned ValueBits
= ValueVT
.getSizeInBits();
114 // Assemble the power of 2 part.
115 unsigned RoundParts
= NumParts
& (NumParts
- 1) ?
116 1 << Log2_32(NumParts
) : NumParts
;
117 unsigned RoundBits
= PartBits
* RoundParts
;
118 EVT RoundVT
= RoundBits
== ValueBits
?
119 ValueVT
: EVT::getIntegerVT(*DAG
.getContext(), RoundBits
);
122 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundBits
/2);
124 if (RoundParts
> 2) {
125 Lo
= getCopyFromParts(DAG
, DL
, Parts
, RoundParts
/ 2,
127 Hi
= getCopyFromParts(DAG
, DL
, Parts
+ RoundParts
/ 2,
128 RoundParts
/ 2, PartVT
, HalfVT
);
130 Lo
= DAG
.getNode(ISD::BITCAST
, DL
, HalfVT
, Parts
[0]);
131 Hi
= DAG
.getNode(ISD::BITCAST
, DL
, HalfVT
, Parts
[1]);
134 if (TLI
.isBigEndian())
137 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, RoundVT
, Lo
, Hi
);
139 if (RoundParts
< NumParts
) {
140 // Assemble the trailing non-power-of-2 part.
141 unsigned OddParts
= NumParts
- RoundParts
;
142 EVT OddVT
= EVT::getIntegerVT(*DAG
.getContext(), OddParts
* PartBits
);
143 Hi
= getCopyFromParts(DAG
, DL
,
144 Parts
+ RoundParts
, OddParts
, PartVT
, OddVT
);
146 // Combine the round and odd parts.
148 if (TLI
.isBigEndian())
150 EVT TotalVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
151 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, TotalVT
, Hi
);
152 Hi
= DAG
.getNode(ISD::SHL
, DL
, TotalVT
, Hi
,
153 DAG
.getConstant(Lo
.getValueType().getSizeInBits(),
154 TLI
.getPointerTy()));
155 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TotalVT
, Lo
);
156 Val
= DAG
.getNode(ISD::OR
, DL
, TotalVT
, Lo
, Hi
);
158 } else if (PartVT
.isFloatingPoint()) {
159 // FP split into multiple FP parts (for ppcf128)
160 assert(ValueVT
== EVT(MVT::ppcf128
) && PartVT
== EVT(MVT::f64
) &&
163 Lo
= DAG
.getNode(ISD::BITCAST
, DL
, EVT(MVT::f64
), Parts
[0]);
164 Hi
= DAG
.getNode(ISD::BITCAST
, DL
, EVT(MVT::f64
), Parts
[1]);
165 if (TLI
.isBigEndian())
167 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, ValueVT
, Lo
, Hi
);
169 // FP split into integer parts (soft fp)
170 assert(ValueVT
.isFloatingPoint() && PartVT
.isInteger() &&
171 !PartVT
.isVector() && "Unexpected split");
172 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
173 Val
= getCopyFromParts(DAG
, DL
, Parts
, NumParts
, PartVT
, IntVT
);
177 // There is now one part, held in Val. Correct it to match ValueVT.
178 PartVT
= Val
.getValueType();
180 if (PartVT
== ValueVT
)
183 if (PartVT
.isInteger() && ValueVT
.isInteger()) {
184 if (ValueVT
.bitsLT(PartVT
)) {
185 // For a truncate, see if we have any information to
186 // indicate whether the truncated bits will always be
187 // zero or sign-extension.
188 if (AssertOp
!= ISD::DELETED_NODE
)
189 Val
= DAG
.getNode(AssertOp
, DL
, PartVT
, Val
,
190 DAG
.getValueType(ValueVT
));
191 return DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
193 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, ValueVT
, Val
);
196 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
197 // FP_ROUND's are always exact here.
198 if (ValueVT
.bitsLT(Val
.getValueType()))
199 return DAG
.getNode(ISD::FP_ROUND
, DL
, ValueVT
, Val
,
200 DAG
.getIntPtrConstant(1));
202 return DAG
.getNode(ISD::FP_EXTEND
, DL
, ValueVT
, Val
);
205 if (PartVT
.getSizeInBits() == ValueVT
.getSizeInBits())
206 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
208 llvm_unreachable("Unknown mismatch!");
212 /// getCopyFromParts - Create a value that contains the specified legal parts
213 /// combined into the value they represent. If the parts combine to a type
214 /// larger then ValueVT then AssertOp can be used to specify whether the extra
215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216 /// (ISD::AssertSext).
217 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, DebugLoc DL
,
218 const SDValue
*Parts
, unsigned NumParts
,
219 EVT PartVT
, EVT ValueVT
) {
220 assert(ValueVT
.isVector() && "Not a vector value");
221 assert(NumParts
> 0 && "No parts to assemble!");
222 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
223 SDValue Val
= Parts
[0];
225 // Handle a multi-element vector.
227 EVT IntermediateVT
, RegisterVT
;
228 unsigned NumIntermediates
;
230 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
231 NumIntermediates
, RegisterVT
);
232 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
233 NumParts
= NumRegs
; // Silence a compiler warning.
234 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
235 assert(RegisterVT
== Parts
[0].getValueType() &&
236 "Part type doesn't match part!");
238 // Assemble the parts into intermediate operands.
239 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
240 if (NumIntermediates
== NumParts
) {
241 // If the register was not expanded, truncate or copy the value,
243 for (unsigned i
= 0; i
!= NumParts
; ++i
)
244 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
], 1,
245 PartVT
, IntermediateVT
);
246 } else if (NumParts
> 0) {
247 // If the intermediate type was expanded, build the intermediate
248 // operands from the parts.
249 assert(NumParts
% NumIntermediates
== 0 &&
250 "Must expand into a divisible number of parts!");
251 unsigned Factor
= NumParts
/ NumIntermediates
;
252 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
253 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
* Factor
], Factor
,
254 PartVT
, IntermediateVT
);
257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258 // intermediate operands.
259 Val
= DAG
.getNode(IntermediateVT
.isVector() ?
260 ISD::CONCAT_VECTORS
: ISD::BUILD_VECTOR
, DL
,
261 ValueVT
, &Ops
[0], NumIntermediates
);
264 // There is now one part, held in Val. Correct it to match ValueVT.
265 PartVT
= Val
.getValueType();
267 if (PartVT
== ValueVT
)
270 if (PartVT
.isVector()) {
271 // If the element type of the source/dest vectors are the same, but the
272 // parts vector has more elements than the value vector, then we have a
273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
275 if (PartVT
.getVectorElementType() == ValueVT
.getVectorElementType()) {
276 assert(PartVT
.getVectorNumElements() > ValueVT
.getVectorNumElements() &&
277 "Cannot narrow, it would be a lossy transformation");
278 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, ValueVT
, Val
,
279 DAG
.getIntPtrConstant(0));
282 // Vector/Vector bitcast.
283 if (ValueVT
.getSizeInBits() == PartVT
.getSizeInBits())
284 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
286 assert(PartVT
.getVectorNumElements() == ValueVT
.getVectorNumElements() &&
287 "Cannot handle this kind of promotion");
288 // Promoted vector extract
289 bool Smaller
= ValueVT
.bitsLE(PartVT
);
290 return DAG
.getNode((Smaller
? ISD::TRUNCATE
: ISD::ANY_EXTEND
),
295 // Trivial bitcast if the types are the same size and the destination
296 // vector type is legal.
297 if (PartVT
.getSizeInBits() == ValueVT
.getSizeInBits() &&
298 TLI
.isTypeLegal(ValueVT
))
299 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
301 // Handle cases such as i8 -> <1 x i1>
302 assert(ValueVT
.getVectorNumElements() == 1 &&
303 "Only trivial scalar-to-vector conversions should get here!");
305 if (ValueVT
.getVectorNumElements() == 1 &&
306 ValueVT
.getVectorElementType() != PartVT
) {
307 bool Smaller
= ValueVT
.bitsLE(PartVT
);
308 Val
= DAG
.getNode((Smaller
? ISD::TRUNCATE
: ISD::ANY_EXTEND
),
309 DL
, ValueVT
.getScalarType(), Val
);
312 return DAG
.getNode(ISD::BUILD_VECTOR
, DL
, ValueVT
, Val
);
318 static void getCopyToPartsVector(SelectionDAG
&DAG
, DebugLoc dl
,
319 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
322 /// getCopyToParts - Create a series of nodes that contain the specified value
323 /// split into legal parts. If the parts contain more bits than Val, then, for
324 /// integers, ExtendKind can be used to specify how to generate the extra bits.
325 static void getCopyToParts(SelectionDAG
&DAG
, DebugLoc DL
,
326 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
328 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
) {
329 EVT ValueVT
= Val
.getValueType();
331 // Handle the vector case separately.
332 if (ValueVT
.isVector())
333 return getCopyToPartsVector(DAG
, DL
, Val
, Parts
, NumParts
, PartVT
);
335 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
336 unsigned PartBits
= PartVT
.getSizeInBits();
337 unsigned OrigNumParts
= NumParts
;
338 assert(TLI
.isTypeLegal(PartVT
) && "Copying to an illegal type!");
343 assert(!ValueVT
.isVector() && "Vector case handled elsewhere");
344 if (PartVT
== ValueVT
) {
345 assert(NumParts
== 1 && "No-op copy with multiple parts!");
350 if (NumParts
* PartBits
> ValueVT
.getSizeInBits()) {
351 // If the parts cover more bits than the value has, promote the value.
352 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
353 assert(NumParts
== 1 && "Do not know what to promote to!");
354 Val
= DAG
.getNode(ISD::FP_EXTEND
, DL
, PartVT
, Val
);
356 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
357 "Unknown mismatch!");
358 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
359 Val
= DAG
.getNode(ExtendKind
, DL
, ValueVT
, Val
);
361 } else if (PartBits
== ValueVT
.getSizeInBits()) {
362 // Different types of the same size.
363 assert(NumParts
== 1 && PartVT
!= ValueVT
);
364 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
365 } else if (NumParts
* PartBits
< ValueVT
.getSizeInBits()) {
366 // If the parts cover less bits than value has, truncate the value.
367 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
368 "Unknown mismatch!");
369 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
370 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
373 // The value may have changed - recompute ValueVT.
374 ValueVT
= Val
.getValueType();
375 assert(NumParts
* PartBits
== ValueVT
.getSizeInBits() &&
376 "Failed to tile the value with PartVT!");
379 assert(PartVT
== ValueVT
&& "Type conversion failed!");
384 // Expand the value into multiple parts.
385 if (NumParts
& (NumParts
- 1)) {
386 // The number of parts is not a power of 2. Split off and copy the tail.
387 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
388 "Do not know what to expand to!");
389 unsigned RoundParts
= 1 << Log2_32(NumParts
);
390 unsigned RoundBits
= RoundParts
* PartBits
;
391 unsigned OddParts
= NumParts
- RoundParts
;
392 SDValue OddVal
= DAG
.getNode(ISD::SRL
, DL
, ValueVT
, Val
,
393 DAG
.getIntPtrConstant(RoundBits
));
394 getCopyToParts(DAG
, DL
, OddVal
, Parts
+ RoundParts
, OddParts
, PartVT
);
396 if (TLI
.isBigEndian())
397 // The odd parts were reversed by getCopyToParts - unreverse them.
398 std::reverse(Parts
+ RoundParts
, Parts
+ NumParts
);
400 NumParts
= RoundParts
;
401 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
402 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
405 // The number of parts is a power of 2. Repeatedly bisect the value using
407 Parts
[0] = DAG
.getNode(ISD::BITCAST
, DL
,
408 EVT::getIntegerVT(*DAG
.getContext(),
409 ValueVT
.getSizeInBits()),
412 for (unsigned StepSize
= NumParts
; StepSize
> 1; StepSize
/= 2) {
413 for (unsigned i
= 0; i
< NumParts
; i
+= StepSize
) {
414 unsigned ThisBits
= StepSize
* PartBits
/ 2;
415 EVT ThisVT
= EVT::getIntegerVT(*DAG
.getContext(), ThisBits
);
416 SDValue
&Part0
= Parts
[i
];
417 SDValue
&Part1
= Parts
[i
+StepSize
/2];
419 Part1
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
420 ThisVT
, Part0
, DAG
.getIntPtrConstant(1));
421 Part0
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
422 ThisVT
, Part0
, DAG
.getIntPtrConstant(0));
424 if (ThisBits
== PartBits
&& ThisVT
!= PartVT
) {
425 Part0
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Part0
);
426 Part1
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Part1
);
431 if (TLI
.isBigEndian())
432 std::reverse(Parts
, Parts
+ OrigNumParts
);
436 /// getCopyToPartsVector - Create a series of nodes that contain the specified
437 /// value split into legal parts.
438 static void getCopyToPartsVector(SelectionDAG
&DAG
, DebugLoc DL
,
439 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
441 EVT ValueVT
= Val
.getValueType();
442 assert(ValueVT
.isVector() && "Not a vector");
443 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
446 if (PartVT
== ValueVT
) {
448 } else if (PartVT
.getSizeInBits() == ValueVT
.getSizeInBits()) {
449 // Bitconvert vector->vector case.
450 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
451 } else if (PartVT
.isVector() &&
452 PartVT
.getVectorElementType() == ValueVT
.getVectorElementType() &&
453 PartVT
.getVectorNumElements() > ValueVT
.getVectorNumElements()) {
454 EVT ElementVT
= PartVT
.getVectorElementType();
455 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
457 SmallVector
<SDValue
, 16> Ops
;
458 for (unsigned i
= 0, e
= ValueVT
.getVectorNumElements(); i
!= e
; ++i
)
459 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
460 ElementVT
, Val
, DAG
.getIntPtrConstant(i
)));
462 for (unsigned i
= ValueVT
.getVectorNumElements(),
463 e
= PartVT
.getVectorNumElements(); i
!= e
; ++i
)
464 Ops
.push_back(DAG
.getUNDEF(ElementVT
));
466 Val
= DAG
.getNode(ISD::BUILD_VECTOR
, DL
, PartVT
, &Ops
[0], Ops
.size());
468 // FIXME: Use CONCAT for 2x -> 4x.
470 //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472 } else if (PartVT
.isVector() &&
473 PartVT
.getVectorElementType().bitsGE(
474 ValueVT
.getVectorElementType()) &&
475 PartVT
.getVectorNumElements() == ValueVT
.getVectorNumElements()) {
477 // Promoted vector extract
478 bool Smaller
= PartVT
.bitsLE(ValueVT
);
479 Val
= DAG
.getNode((Smaller
? ISD::TRUNCATE
: ISD::ANY_EXTEND
),
482 // Vector -> scalar conversion.
483 assert(ValueVT
.getVectorNumElements() == 1 &&
484 "Only trivial vector-to-scalar conversions should get here!");
485 Val
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
486 PartVT
, Val
, DAG
.getIntPtrConstant(0));
488 bool Smaller
= ValueVT
.bitsLE(PartVT
);
489 Val
= DAG
.getNode((Smaller
? ISD::TRUNCATE
: ISD::ANY_EXTEND
),
497 // Handle a multi-element vector.
498 EVT IntermediateVT
, RegisterVT
;
499 unsigned NumIntermediates
;
500 unsigned NumRegs
= TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
,
502 NumIntermediates
, RegisterVT
);
503 unsigned NumElements
= ValueVT
.getVectorNumElements();
505 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
506 NumParts
= NumRegs
; // Silence a compiler warning.
507 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
509 // Split the vector into intermediate operands.
510 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
511 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
) {
512 if (IntermediateVT
.isVector())
513 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
,
515 DAG
.getIntPtrConstant(i
* (NumElements
/ NumIntermediates
)));
517 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
518 IntermediateVT
, Val
, DAG
.getIntPtrConstant(i
));
521 // Split the intermediate operands into legal parts.
522 if (NumParts
== NumIntermediates
) {
523 // If the register was not expanded, promote or copy the value,
525 for (unsigned i
= 0; i
!= NumParts
; ++i
)
526 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
], 1, PartVT
);
527 } else if (NumParts
> 0) {
528 // If the intermediate type was expanded, split each the value into
530 assert(NumParts
% NumIntermediates
== 0 &&
531 "Must expand into a divisible number of parts!");
532 unsigned Factor
= NumParts
/ NumIntermediates
;
533 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
534 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
*Factor
], Factor
, PartVT
);
542 /// RegsForValue - This struct represents the registers (physical or virtual)
543 /// that a particular set of values is assigned, and the type information
544 /// about the value. The most common situation is to represent one value at a
545 /// time, but struct or array values are handled element-wise as multiple
546 /// values. The splitting of aggregates is performed recursively, so that we
547 /// never have aggregate-typed registers. The values at this point do not
548 /// necessarily have legal types, so each value may require one or more
549 /// registers of some legal type.
551 struct RegsForValue
{
552 /// ValueVTs - The value types of the values, which may not be legal, and
553 /// may need be promoted or synthesized from one or more registers.
555 SmallVector
<EVT
, 4> ValueVTs
;
557 /// RegVTs - The value types of the registers. This is the same size as
558 /// ValueVTs and it records, for each value, what the type of the assigned
559 /// register or registers are. (Individual values are never synthesized
560 /// from more than one type of register.)
562 /// With virtual registers, the contents of RegVTs is redundant with TLI's
563 /// getRegisterType member function, however when with physical registers
564 /// it is necessary to have a separate record of the types.
566 SmallVector
<EVT
, 4> RegVTs
;
568 /// Regs - This list holds the registers assigned to the values.
569 /// Each legal or promoted value requires one register, and each
570 /// expanded value requires multiple registers.
572 SmallVector
<unsigned, 4> Regs
;
576 RegsForValue(const SmallVector
<unsigned, 4> ®s
,
577 EVT regvt
, EVT valuevt
)
578 : ValueVTs(1, valuevt
), RegVTs(1, regvt
), Regs(regs
) {}
580 RegsForValue(LLVMContext
&Context
, const TargetLowering
&tli
,
581 unsigned Reg
, const Type
*Ty
) {
582 ComputeValueVTs(tli
, Ty
, ValueVTs
);
584 for (unsigned Value
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
585 EVT ValueVT
= ValueVTs
[Value
];
586 unsigned NumRegs
= tli
.getNumRegisters(Context
, ValueVT
);
587 EVT RegisterVT
= tli
.getRegisterType(Context
, ValueVT
);
588 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
589 Regs
.push_back(Reg
+ i
);
590 RegVTs
.push_back(RegisterVT
);
595 /// areValueTypesLegal - Return true if types of all the values are legal.
596 bool areValueTypesLegal(const TargetLowering
&TLI
) {
597 for (unsigned Value
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
598 EVT RegisterVT
= RegVTs
[Value
];
599 if (!TLI
.isTypeLegal(RegisterVT
))
605 /// append - Add the specified values to this one.
606 void append(const RegsForValue
&RHS
) {
607 ValueVTs
.append(RHS
.ValueVTs
.begin(), RHS
.ValueVTs
.end());
608 RegVTs
.append(RHS
.RegVTs
.begin(), RHS
.RegVTs
.end());
609 Regs
.append(RHS
.Regs
.begin(), RHS
.Regs
.end());
612 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613 /// this value and returns the result as a ValueVTs value. This uses
614 /// Chain/Flag as the input and updates them for the output Chain/Flag.
615 /// If the Flag pointer is NULL, no flag is used.
616 SDValue
getCopyFromRegs(SelectionDAG
&DAG
, FunctionLoweringInfo
&FuncInfo
,
618 SDValue
&Chain
, SDValue
*Flag
) const;
620 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621 /// specified value into the registers specified by this object. This uses
622 /// Chain/Flag as the input and updates them for the output Chain/Flag.
623 /// If the Flag pointer is NULL, no flag is used.
624 void getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
, DebugLoc dl
,
625 SDValue
&Chain
, SDValue
*Flag
) const;
627 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628 /// operand list. This adds the code marker, matching input operand index
629 /// (if applicable), and includes the number of values added into it.
630 void AddInlineAsmOperands(unsigned Kind
,
631 bool HasMatching
, unsigned MatchingIdx
,
633 std::vector
<SDValue
> &Ops
) const;
637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638 /// this value and returns the result as a ValueVT value. This uses
639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
640 /// If the Flag pointer is NULL, no flag is used.
641 SDValue
RegsForValue::getCopyFromRegs(SelectionDAG
&DAG
,
642 FunctionLoweringInfo
&FuncInfo
,
644 SDValue
&Chain
, SDValue
*Flag
) const {
645 // A Value with type {} or [0 x %t] needs no registers.
646 if (ValueVTs
.empty())
649 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
651 // Assemble the legal parts into the final values.
652 SmallVector
<SDValue
, 4> Values(ValueVTs
.size());
653 SmallVector
<SDValue
, 8> Parts
;
654 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
655 // Copy the legal parts from the registers.
656 EVT ValueVT
= ValueVTs
[Value
];
657 unsigned NumRegs
= TLI
.getNumRegisters(*DAG
.getContext(), ValueVT
);
658 EVT RegisterVT
= RegVTs
[Value
];
660 Parts
.resize(NumRegs
);
661 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
664 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
);
666 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
, *Flag
);
667 *Flag
= P
.getValue(2);
670 Chain
= P
.getValue(1);
673 // If the source register was virtual and if we know something about it,
674 // add an assert node.
675 if (!TargetRegisterInfo::isVirtualRegister(Regs
[Part
+i
]) ||
676 !RegisterVT
.isInteger() || RegisterVT
.isVector())
679 const FunctionLoweringInfo::LiveOutInfo
*LOI
=
680 FuncInfo
.GetLiveOutRegInfo(Regs
[Part
+i
]);
684 unsigned RegSize
= RegisterVT
.getSizeInBits();
685 unsigned NumSignBits
= LOI
->NumSignBits
;
686 unsigned NumZeroBits
= LOI
->KnownZero
.countLeadingOnes();
688 // FIXME: We capture more information than the dag can represent. For
689 // now, just use the tightest assertzext/assertsext possible.
691 EVT
FromVT(MVT::Other
);
692 if (NumSignBits
== RegSize
)
693 isSExt
= true, FromVT
= MVT::i1
; // ASSERT SEXT 1
694 else if (NumZeroBits
>= RegSize
-1)
695 isSExt
= false, FromVT
= MVT::i1
; // ASSERT ZEXT 1
696 else if (NumSignBits
> RegSize
-8)
697 isSExt
= true, FromVT
= MVT::i8
; // ASSERT SEXT 8
698 else if (NumZeroBits
>= RegSize
-8)
699 isSExt
= false, FromVT
= MVT::i8
; // ASSERT ZEXT 8
700 else if (NumSignBits
> RegSize
-16)
701 isSExt
= true, FromVT
= MVT::i16
; // ASSERT SEXT 16
702 else if (NumZeroBits
>= RegSize
-16)
703 isSExt
= false, FromVT
= MVT::i16
; // ASSERT ZEXT 16
704 else if (NumSignBits
> RegSize
-32)
705 isSExt
= true, FromVT
= MVT::i32
; // ASSERT SEXT 32
706 else if (NumZeroBits
>= RegSize
-32)
707 isSExt
= false, FromVT
= MVT::i32
; // ASSERT ZEXT 32
711 // Add an assertion node.
712 assert(FromVT
!= MVT::Other
);
713 Parts
[i
] = DAG
.getNode(isSExt
? ISD::AssertSext
: ISD::AssertZext
, dl
,
714 RegisterVT
, P
, DAG
.getValueType(FromVT
));
717 Values
[Value
] = getCopyFromParts(DAG
, dl
, Parts
.begin(),
718 NumRegs
, RegisterVT
, ValueVT
);
723 return DAG
.getNode(ISD::MERGE_VALUES
, dl
,
724 DAG
.getVTList(&ValueVTs
[0], ValueVTs
.size()),
725 &Values
[0], ValueVTs
.size());
728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729 /// specified value into the registers specified by this object. This uses
730 /// Chain/Flag as the input and updates them for the output Chain/Flag.
731 /// If the Flag pointer is NULL, no flag is used.
732 void RegsForValue::getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
, DebugLoc dl
,
733 SDValue
&Chain
, SDValue
*Flag
) const {
734 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
736 // Get the list of the values's legal parts.
737 unsigned NumRegs
= Regs
.size();
738 SmallVector
<SDValue
, 8> Parts(NumRegs
);
739 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
740 EVT ValueVT
= ValueVTs
[Value
];
741 unsigned NumParts
= TLI
.getNumRegisters(*DAG
.getContext(), ValueVT
);
742 EVT RegisterVT
= RegVTs
[Value
];
744 getCopyToParts(DAG
, dl
, Val
.getValue(Val
.getResNo() + Value
),
745 &Parts
[Part
], NumParts
, RegisterVT
);
749 // Copy the parts into the registers.
750 SmallVector
<SDValue
, 8> Chains(NumRegs
);
751 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
754 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
]);
756 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
], *Flag
);
757 *Flag
= Part
.getValue(1);
760 Chains
[i
] = Part
.getValue(0);
763 if (NumRegs
== 1 || Flag
)
764 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765 // flagged to it. That is the CopyToReg nodes and the user are considered
766 // a single scheduling unit. If we create a TokenFactor and return it as
767 // chain, then the TokenFactor is both a predecessor (operand) of the
768 // user as well as a successor (the TF operands are flagged to the user).
769 // c1, f1 = CopyToReg
770 // c2, f2 = CopyToReg
771 // c3 = TokenFactor c1, c2
774 Chain
= Chains
[NumRegs
-1];
776 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, &Chains
[0], NumRegs
);
779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
780 /// operand list. This adds the code marker and includes the number of
781 /// values added into it.
782 void RegsForValue::AddInlineAsmOperands(unsigned Code
, bool HasMatching
,
783 unsigned MatchingIdx
,
785 std::vector
<SDValue
> &Ops
) const {
786 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
788 unsigned Flag
= InlineAsm::getFlagWord(Code
, Regs
.size());
790 Flag
= InlineAsm::getFlagWordForMatchingOp(Flag
, MatchingIdx
);
791 SDValue Res
= DAG
.getTargetConstant(Flag
, MVT::i32
);
794 for (unsigned Value
= 0, Reg
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
795 unsigned NumRegs
= TLI
.getNumRegisters(*DAG
.getContext(), ValueVTs
[Value
]);
796 EVT RegisterVT
= RegVTs
[Value
];
797 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
798 assert(Reg
< Regs
.size() && "Mismatch in # registers expected");
799 Ops
.push_back(DAG
.getRegister(Regs
[Reg
++], RegisterVT
));
804 void SelectionDAGBuilder::init(GCFunctionInfo
*gfi
, AliasAnalysis
&aa
) {
807 TD
= DAG
.getTarget().getTargetData();
810 /// clear - Clear out the current SelectionDAG and the associated
811 /// state and prepare this SelectionDAGBuilder object to be used
812 /// for a new block. This doesn't clear out information about
813 /// additional blocks that are needed to complete switch lowering
814 /// or PHI node updating; that information is cleared out as it is
816 void SelectionDAGBuilder::clear() {
818 UnusedArgNodeMap
.clear();
819 PendingLoads
.clear();
820 PendingExports
.clear();
821 CurDebugLoc
= DebugLoc();
825 /// clearDanglingDebugInfo - Clear the dangling debug information
826 /// map. This function is seperated from the clear so that debug
827 /// information that is dangling in a basic block can be properly
828 /// resolved in a different basic block. This allows the
829 /// SelectionDAG to resolve dangling debug information attached
831 void SelectionDAGBuilder::clearDanglingDebugInfo() {
832 DanglingDebugInfoMap
.clear();
835 /// getRoot - Return the current virtual root of the Selection DAG,
836 /// flushing any PendingLoad items. This must be done before emitting
837 /// a store or any other node that may need to be ordered after any
838 /// prior load instructions.
840 SDValue
SelectionDAGBuilder::getRoot() {
841 if (PendingLoads
.empty())
842 return DAG
.getRoot();
844 if (PendingLoads
.size() == 1) {
845 SDValue Root
= PendingLoads
[0];
847 PendingLoads
.clear();
851 // Otherwise, we have to make a token factor node.
852 SDValue Root
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
853 &PendingLoads
[0], PendingLoads
.size());
854 PendingLoads
.clear();
859 /// getControlRoot - Similar to getRoot, but instead of flushing all the
860 /// PendingLoad items, flush all the PendingExports items. It is necessary
861 /// to do this before emitting a terminator instruction.
863 SDValue
SelectionDAGBuilder::getControlRoot() {
864 SDValue Root
= DAG
.getRoot();
866 if (PendingExports
.empty())
869 // Turn all of the CopyToReg chains into one factored node.
870 if (Root
.getOpcode() != ISD::EntryToken
) {
871 unsigned i
= 0, e
= PendingExports
.size();
872 for (; i
!= e
; ++i
) {
873 assert(PendingExports
[i
].getNode()->getNumOperands() > 1);
874 if (PendingExports
[i
].getNode()->getOperand(0) == Root
)
875 break; // Don't add the root if we already indirectly depend on it.
879 PendingExports
.push_back(Root
);
882 Root
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
884 PendingExports
.size());
885 PendingExports
.clear();
890 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode
*Node
) {
891 if (DAG
.GetOrdering(Node
) != 0) return; // Already has ordering.
892 DAG
.AssignOrdering(Node
, SDNodeOrder
);
894 for (unsigned I
= 0, E
= Node
->getNumOperands(); I
!= E
; ++I
)
895 AssignOrderingToNode(Node
->getOperand(I
).getNode());
898 void SelectionDAGBuilder::visit(const Instruction
&I
) {
899 // Set up outgoing PHI node register values before emitting the terminator.
900 if (isa
<TerminatorInst
>(&I
))
901 HandlePHINodesInSuccessorBlocks(I
.getParent());
903 CurDebugLoc
= I
.getDebugLoc();
905 visit(I
.getOpcode(), I
);
907 if (!isa
<TerminatorInst
>(&I
) && !HasTailCall
)
908 CopyToExportRegsIfNeeded(&I
);
910 CurDebugLoc
= DebugLoc();
913 void SelectionDAGBuilder::visitPHI(const PHINode
&) {
914 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
917 void SelectionDAGBuilder::visit(unsigned Opcode
, const User
&I
) {
918 // Note: this doesn't use InstVisitor, because it has to work with
919 // ConstantExpr's in addition to instructions.
921 default: llvm_unreachable("Unknown instruction type encountered!");
922 // Build the switch statement using the Instruction.def file.
923 #define HANDLE_INST(NUM, OPCODE, CLASS) \
924 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925 #include "llvm/Instruction.def"
928 // Assign the ordering to the freshly created DAG nodes.
929 if (NodeMap
.count(&I
)) {
931 AssignOrderingToNode(getValue(&I
).getNode());
935 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936 // generate the debug data structures now that we've seen its definition.
937 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value
*V
,
939 DanglingDebugInfo
&DDI
= DanglingDebugInfoMap
[V
];
941 const DbgValueInst
*DI
= DDI
.getDI();
942 DebugLoc dl
= DDI
.getdl();
943 unsigned DbgSDNodeOrder
= DDI
.getSDNodeOrder();
944 MDNode
*Variable
= DI
->getVariable();
945 uint64_t Offset
= DI
->getOffset();
948 if (!EmitFuncArgumentDbgValue(V
, Variable
, Offset
, Val
)) {
949 SDV
= DAG
.getDbgValue(Variable
, Val
.getNode(),
950 Val
.getResNo(), Offset
, dl
, DbgSDNodeOrder
);
951 DAG
.AddDbgValue(SDV
, Val
.getNode(), false);
954 DEBUG(dbgs() << "Dropping debug info for " << DI
);
955 DanglingDebugInfoMap
[V
] = DanglingDebugInfo();
959 // getValue - Return an SDValue for the given Value.
960 SDValue
SelectionDAGBuilder::getValue(const Value
*V
) {
961 // If we already have an SDValue for this value, use it. It's important
962 // to do this first, so that we don't create a CopyFromReg if we already
963 // have a regular SDValue.
964 SDValue
&N
= NodeMap
[V
];
965 if (N
.getNode()) return N
;
967 // If there's a virtual register allocated and initialized for this
969 DenseMap
<const Value
*, unsigned>::iterator It
= FuncInfo
.ValueMap
.find(V
);
970 if (It
!= FuncInfo
.ValueMap
.end()) {
971 unsigned InReg
= It
->second
;
972 RegsForValue
RFV(*DAG
.getContext(), TLI
, InReg
, V
->getType());
973 SDValue Chain
= DAG
.getEntryNode();
974 N
= RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurDebugLoc(), Chain
,NULL
);
975 resolveDanglingDebugInfo(V
, N
);
979 // Otherwise create a new SDValue and remember it.
980 SDValue Val
= getValueImpl(V
);
982 resolveDanglingDebugInfo(V
, Val
);
986 /// getNonRegisterValue - Return an SDValue for the given Value, but
987 /// don't look in FuncInfo.ValueMap for a virtual register.
988 SDValue
SelectionDAGBuilder::getNonRegisterValue(const Value
*V
) {
989 // If we already have an SDValue for this value, use it.
990 SDValue
&N
= NodeMap
[V
];
991 if (N
.getNode()) return N
;
993 // Otherwise create a new SDValue and remember it.
994 SDValue Val
= getValueImpl(V
);
996 resolveDanglingDebugInfo(V
, Val
);
1000 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001 /// Create an SDValue for the given value.
1002 SDValue
SelectionDAGBuilder::getValueImpl(const Value
*V
) {
1003 if (const Constant
*C
= dyn_cast
<Constant
>(V
)) {
1004 EVT VT
= TLI
.getValueType(V
->getType(), true);
1006 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
1007 return DAG
.getConstant(*CI
, VT
);
1009 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
1010 return DAG
.getGlobalAddress(GV
, getCurDebugLoc(), VT
);
1012 if (isa
<ConstantPointerNull
>(C
))
1013 return DAG
.getConstant(0, TLI
.getPointerTy());
1015 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
1016 return DAG
.getConstantFP(*CFP
, VT
);
1018 if (isa
<UndefValue
>(C
) && !V
->getType()->isAggregateType())
1019 return DAG
.getUNDEF(VT
);
1021 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
1022 visit(CE
->getOpcode(), *CE
);
1023 SDValue N1
= NodeMap
[V
];
1024 assert(N1
.getNode() && "visit didn't populate the NodeMap!");
1028 if (isa
<ConstantStruct
>(C
) || isa
<ConstantArray
>(C
)) {
1029 SmallVector
<SDValue
, 4> Constants
;
1030 for (User::const_op_iterator OI
= C
->op_begin(), OE
= C
->op_end();
1032 SDNode
*Val
= getValue(*OI
).getNode();
1033 // If the operand is an empty aggregate, there are no values.
1035 // Add each leaf value from the operand to the Constants list
1036 // to form a flattened list of all the values.
1037 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
1038 Constants
.push_back(SDValue(Val
, i
));
1041 return DAG
.getMergeValues(&Constants
[0], Constants
.size(),
1045 if (C
->getType()->isStructTy() || C
->getType()->isArrayTy()) {
1046 assert((isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
)) &&
1047 "Unknown struct or array constant!");
1049 SmallVector
<EVT
, 4> ValueVTs
;
1050 ComputeValueVTs(TLI
, C
->getType(), ValueVTs
);
1051 unsigned NumElts
= ValueVTs
.size();
1053 return SDValue(); // empty struct
1054 SmallVector
<SDValue
, 4> Constants(NumElts
);
1055 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1056 EVT EltVT
= ValueVTs
[i
];
1057 if (isa
<UndefValue
>(C
))
1058 Constants
[i
] = DAG
.getUNDEF(EltVT
);
1059 else if (EltVT
.isFloatingPoint())
1060 Constants
[i
] = DAG
.getConstantFP(0, EltVT
);
1062 Constants
[i
] = DAG
.getConstant(0, EltVT
);
1065 return DAG
.getMergeValues(&Constants
[0], NumElts
,
1069 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
))
1070 return DAG
.getBlockAddress(BA
, VT
);
1072 const VectorType
*VecTy
= cast
<VectorType
>(V
->getType());
1073 unsigned NumElements
= VecTy
->getNumElements();
1075 // Now that we know the number and type of the elements, get that number of
1076 // elements into the Ops array based on what kind of constant it is.
1077 SmallVector
<SDValue
, 16> Ops
;
1078 if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(C
)) {
1079 for (unsigned i
= 0; i
!= NumElements
; ++i
)
1080 Ops
.push_back(getValue(CP
->getOperand(i
)));
1082 assert(isa
<ConstantAggregateZero
>(C
) && "Unknown vector constant!");
1083 EVT EltVT
= TLI
.getValueType(VecTy
->getElementType());
1086 if (EltVT
.isFloatingPoint())
1087 Op
= DAG
.getConstantFP(0, EltVT
);
1089 Op
= DAG
.getConstant(0, EltVT
);
1090 Ops
.assign(NumElements
, Op
);
1093 // Create a BUILD_VECTOR node.
1094 return NodeMap
[V
] = DAG
.getNode(ISD::BUILD_VECTOR
, getCurDebugLoc(),
1095 VT
, &Ops
[0], Ops
.size());
1098 // If this is a static alloca, generate it as the frameindex instead of
1100 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1101 DenseMap
<const AllocaInst
*, int>::iterator SI
=
1102 FuncInfo
.StaticAllocaMap
.find(AI
);
1103 if (SI
!= FuncInfo
.StaticAllocaMap
.end())
1104 return DAG
.getFrameIndex(SI
->second
, TLI
.getPointerTy());
1107 // If this is an instruction which fast-isel has deferred, select it now.
1108 if (const Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
1109 unsigned InReg
= FuncInfo
.InitializeRegForValue(Inst
);
1110 RegsForValue
RFV(*DAG
.getContext(), TLI
, InReg
, Inst
->getType());
1111 SDValue Chain
= DAG
.getEntryNode();
1112 return RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurDebugLoc(), Chain
, NULL
);
1115 llvm_unreachable("Can't get register for value!");
1119 void SelectionDAGBuilder::visitRet(const ReturnInst
&I
) {
1120 SDValue Chain
= getControlRoot();
1121 SmallVector
<ISD::OutputArg
, 8> Outs
;
1122 SmallVector
<SDValue
, 8> OutVals
;
1124 if (!FuncInfo
.CanLowerReturn
) {
1125 unsigned DemoteReg
= FuncInfo
.DemoteRegister
;
1126 const Function
*F
= I
.getParent()->getParent();
1128 // Emit a store of the return value through the virtual register.
1129 // Leave Outs empty so that LowerReturn won't try to load return
1130 // registers the usual way.
1131 SmallVector
<EVT
, 1> PtrValueVTs
;
1132 ComputeValueVTs(TLI
, PointerType::getUnqual(F
->getReturnType()),
1135 SDValue RetPtr
= DAG
.getRegister(DemoteReg
, PtrValueVTs
[0]);
1136 SDValue RetOp
= getValue(I
.getOperand(0));
1138 SmallVector
<EVT
, 4> ValueVTs
;
1139 SmallVector
<uint64_t, 4> Offsets
;
1140 ComputeValueVTs(TLI
, I
.getOperand(0)->getType(), ValueVTs
, &Offsets
);
1141 unsigned NumValues
= ValueVTs
.size();
1143 SmallVector
<SDValue
, 4> Chains(NumValues
);
1144 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
1145 SDValue Add
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
1146 RetPtr
.getValueType(), RetPtr
,
1147 DAG
.getIntPtrConstant(Offsets
[i
]));
1149 DAG
.getStore(Chain
, getCurDebugLoc(),
1150 SDValue(RetOp
.getNode(), RetOp
.getResNo() + i
),
1151 // FIXME: better loc info would be nice.
1152 Add
, MachinePointerInfo(), false, false, 0);
1155 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
1156 MVT::Other
, &Chains
[0], NumValues
);
1157 } else if (I
.getNumOperands() != 0) {
1158 SmallVector
<EVT
, 4> ValueVTs
;
1159 ComputeValueVTs(TLI
, I
.getOperand(0)->getType(), ValueVTs
);
1160 unsigned NumValues
= ValueVTs
.size();
1162 SDValue RetOp
= getValue(I
.getOperand(0));
1163 for (unsigned j
= 0, f
= NumValues
; j
!= f
; ++j
) {
1164 EVT VT
= ValueVTs
[j
];
1166 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
1168 const Function
*F
= I
.getParent()->getParent();
1169 if (F
->paramHasAttr(0, Attribute::SExt
))
1170 ExtendKind
= ISD::SIGN_EXTEND
;
1171 else if (F
->paramHasAttr(0, Attribute::ZExt
))
1172 ExtendKind
= ISD::ZERO_EXTEND
;
1174 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger())
1175 VT
= TLI
.getTypeForExtArgOrReturn(*DAG
.getContext(), VT
, ExtendKind
);
1177 unsigned NumParts
= TLI
.getNumRegisters(*DAG
.getContext(), VT
);
1178 EVT PartVT
= TLI
.getRegisterType(*DAG
.getContext(), VT
);
1179 SmallVector
<SDValue
, 4> Parts(NumParts
);
1180 getCopyToParts(DAG
, getCurDebugLoc(),
1181 SDValue(RetOp
.getNode(), RetOp
.getResNo() + j
),
1182 &Parts
[0], NumParts
, PartVT
, ExtendKind
);
1184 // 'inreg' on function refers to return value
1185 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1186 if (F
->paramHasAttr(0, Attribute::InReg
))
1189 // Propagate extension type if any
1190 if (ExtendKind
== ISD::SIGN_EXTEND
)
1192 else if (ExtendKind
== ISD::ZERO_EXTEND
)
1195 for (unsigned i
= 0; i
< NumParts
; ++i
) {
1196 Outs
.push_back(ISD::OutputArg(Flags
, Parts
[i
].getValueType(),
1198 OutVals
.push_back(Parts
[i
]);
1204 bool isVarArg
= DAG
.getMachineFunction().getFunction()->isVarArg();
1205 CallingConv::ID CallConv
=
1206 DAG
.getMachineFunction().getFunction()->getCallingConv();
1207 Chain
= TLI
.LowerReturn(Chain
, CallConv
, isVarArg
,
1208 Outs
, OutVals
, getCurDebugLoc(), DAG
);
1210 // Verify that the target's LowerReturn behaved as expected.
1211 assert(Chain
.getNode() && Chain
.getValueType() == MVT::Other
&&
1212 "LowerReturn didn't return a valid chain!");
1214 // Update the DAG with the new chain value resulting from return lowering.
1218 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219 /// created for it, emit nodes to copy the value into the virtual
1221 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value
*V
) {
1223 if (V
->getType()->isEmptyTy())
1226 DenseMap
<const Value
*, unsigned>::iterator VMI
= FuncInfo
.ValueMap
.find(V
);
1227 if (VMI
!= FuncInfo
.ValueMap
.end()) {
1228 assert(!V
->use_empty() && "Unused value assigned virtual registers!");
1229 CopyValueToVirtualRegister(V
, VMI
->second
);
1233 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234 /// the current basic block, add it to ValueMap now so that we'll get a
1236 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value
*V
) {
1237 // No need to export constants.
1238 if (!isa
<Instruction
>(V
) && !isa
<Argument
>(V
)) return;
1240 // Already exported?
1241 if (FuncInfo
.isExportedInst(V
)) return;
1243 unsigned Reg
= FuncInfo
.InitializeRegForValue(V
);
1244 CopyValueToVirtualRegister(V
, Reg
);
1247 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value
*V
,
1248 const BasicBlock
*FromBB
) {
1249 // The operands of the setcc have to be in this block. We don't know
1250 // how to export them from some other block.
1251 if (const Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
1252 // Can export from current BB.
1253 if (VI
->getParent() == FromBB
)
1256 // Is already exported, noop.
1257 return FuncInfo
.isExportedInst(V
);
1260 // If this is an argument, we can export it if the BB is the entry block or
1261 // if it is already exported.
1262 if (isa
<Argument
>(V
)) {
1263 if (FromBB
== &FromBB
->getParent()->getEntryBlock())
1266 // Otherwise, can only export this if it is already exported.
1267 return FuncInfo
.isExportedInst(V
);
1270 // Otherwise, constants can always be exported.
1274 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock
*Src
,
1276 MachineBasicBlock
*Dst
) {
1277 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1280 BasicBlock
*SrcBB
= const_cast<BasicBlock
*>(Src
->getBasicBlock());
1281 BasicBlock
*DstBB
= const_cast<BasicBlock
*>(Dst
->getBasicBlock());
1282 return BPI
->getEdgeWeight(SrcBB
, DstBB
);
1285 void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock
*Src
,
1286 MachineBasicBlock
*Dst
) {
1287 uint32_t weight
= getEdgeWeight(Src
, Dst
);
1288 Src
->addSuccessor(Dst
, weight
);
1292 static bool InBlock(const Value
*V
, const BasicBlock
*BB
) {
1293 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
1294 return I
->getParent() == BB
;
1298 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1299 /// This function emits a branch and is used at the leaves of an OR or an
1300 /// AND operator tree.
1303 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value
*Cond
,
1304 MachineBasicBlock
*TBB
,
1305 MachineBasicBlock
*FBB
,
1306 MachineBasicBlock
*CurBB
,
1307 MachineBasicBlock
*SwitchBB
) {
1308 const BasicBlock
*BB
= CurBB
->getBasicBlock();
1310 // If the leaf of the tree is a comparison, merge the condition into
1312 if (const CmpInst
*BOp
= dyn_cast
<CmpInst
>(Cond
)) {
1313 // The operands of the cmp have to be in this block. We don't know
1314 // how to export them from some other block. If this is the first block
1315 // of the sequence, no exporting is needed.
1316 if (CurBB
== SwitchBB
||
1317 (isExportableFromCurrentBlock(BOp
->getOperand(0), BB
) &&
1318 isExportableFromCurrentBlock(BOp
->getOperand(1), BB
))) {
1319 ISD::CondCode Condition
;
1320 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(Cond
)) {
1321 Condition
= getICmpCondCode(IC
->getPredicate());
1322 } else if (const FCmpInst
*FC
= dyn_cast
<FCmpInst
>(Cond
)) {
1323 Condition
= getFCmpCondCode(FC
->getPredicate());
1325 Condition
= ISD::SETEQ
; // silence warning.
1326 llvm_unreachable("Unknown compare instruction");
1329 CaseBlock
CB(Condition
, BOp
->getOperand(0),
1330 BOp
->getOperand(1), NULL
, TBB
, FBB
, CurBB
);
1331 SwitchCases
.push_back(CB
);
1336 // Create a CaseBlock record representing this branch.
1337 CaseBlock
CB(ISD::SETEQ
, Cond
, ConstantInt::getTrue(*DAG
.getContext()),
1338 NULL
, TBB
, FBB
, CurBB
);
1339 SwitchCases
.push_back(CB
);
1342 /// FindMergedConditions - If Cond is an expression like
1343 void SelectionDAGBuilder::FindMergedConditions(const Value
*Cond
,
1344 MachineBasicBlock
*TBB
,
1345 MachineBasicBlock
*FBB
,
1346 MachineBasicBlock
*CurBB
,
1347 MachineBasicBlock
*SwitchBB
,
1349 // If this node is not part of the or/and tree, emit it as a branch.
1350 const Instruction
*BOp
= dyn_cast
<Instruction
>(Cond
);
1351 if (!BOp
|| !(isa
<BinaryOperator
>(BOp
) || isa
<CmpInst
>(BOp
)) ||
1352 (unsigned)BOp
->getOpcode() != Opc
|| !BOp
->hasOneUse() ||
1353 BOp
->getParent() != CurBB
->getBasicBlock() ||
1354 !InBlock(BOp
->getOperand(0), CurBB
->getBasicBlock()) ||
1355 !InBlock(BOp
->getOperand(1), CurBB
->getBasicBlock())) {
1356 EmitBranchForMergedCondition(Cond
, TBB
, FBB
, CurBB
, SwitchBB
);
1360 // Create TmpBB after CurBB.
1361 MachineFunction::iterator BBI
= CurBB
;
1362 MachineFunction
&MF
= DAG
.getMachineFunction();
1363 MachineBasicBlock
*TmpBB
= MF
.CreateMachineBasicBlock(CurBB
->getBasicBlock());
1364 CurBB
->getParent()->insert(++BBI
, TmpBB
);
1366 if (Opc
== Instruction::Or
) {
1367 // Codegen X | Y as:
1375 // Emit the LHS condition.
1376 FindMergedConditions(BOp
->getOperand(0), TBB
, TmpBB
, CurBB
, SwitchBB
, Opc
);
1378 // Emit the RHS condition into TmpBB.
1379 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, SwitchBB
, Opc
);
1381 assert(Opc
== Instruction::And
&& "Unknown merge op!");
1382 // Codegen X & Y as:
1389 // This requires creation of TmpBB after CurBB.
1391 // Emit the LHS condition.
1392 FindMergedConditions(BOp
->getOperand(0), TmpBB
, FBB
, CurBB
, SwitchBB
, Opc
);
1394 // Emit the RHS condition into TmpBB.
1395 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, SwitchBB
, Opc
);
1399 /// If the set of cases should be emitted as a series of branches, return true.
1400 /// If we should emit this as a bunch of and/or'd together conditions, return
1403 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector
<CaseBlock
> &Cases
){
1404 if (Cases
.size() != 2) return true;
1406 // If this is two comparisons of the same values or'd or and'd together, they
1407 // will get folded into a single comparison, so don't emit two blocks.
1408 if ((Cases
[0].CmpLHS
== Cases
[1].CmpLHS
&&
1409 Cases
[0].CmpRHS
== Cases
[1].CmpRHS
) ||
1410 (Cases
[0].CmpRHS
== Cases
[1].CmpLHS
&&
1411 Cases
[0].CmpLHS
== Cases
[1].CmpRHS
)) {
1415 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1416 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1417 if (Cases
[0].CmpRHS
== Cases
[1].CmpRHS
&&
1418 Cases
[0].CC
== Cases
[1].CC
&&
1419 isa
<Constant
>(Cases
[0].CmpRHS
) &&
1420 cast
<Constant
>(Cases
[0].CmpRHS
)->isNullValue()) {
1421 if (Cases
[0].CC
== ISD::SETEQ
&& Cases
[0].TrueBB
== Cases
[1].ThisBB
)
1423 if (Cases
[0].CC
== ISD::SETNE
&& Cases
[0].FalseBB
== Cases
[1].ThisBB
)
1430 void SelectionDAGBuilder::visitBr(const BranchInst
&I
) {
1431 MachineBasicBlock
*BrMBB
= FuncInfo
.MBB
;
1433 // Update machine-CFG edges.
1434 MachineBasicBlock
*Succ0MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
1436 // Figure out which block is immediately after the current one.
1437 MachineBasicBlock
*NextBlock
= 0;
1438 MachineFunction::iterator BBI
= BrMBB
;
1439 if (++BBI
!= FuncInfo
.MF
->end())
1442 if (I
.isUnconditional()) {
1443 // Update machine-CFG edges.
1444 BrMBB
->addSuccessor(Succ0MBB
);
1446 // If this is not a fall-through branch, emit the branch.
1447 if (Succ0MBB
!= NextBlock
)
1448 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
1449 MVT::Other
, getControlRoot(),
1450 DAG
.getBasicBlock(Succ0MBB
)));
1455 // If this condition is one of the special cases we handle, do special stuff
1457 const Value
*CondVal
= I
.getCondition();
1458 MachineBasicBlock
*Succ1MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
1460 // If this is a series of conditions that are or'd or and'd together, emit
1461 // this as a sequence of branches instead of setcc's with and/or operations.
1462 // As long as jumps are not expensive, this should improve performance.
1463 // For example, instead of something like:
1476 if (const BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(CondVal
)) {
1477 if (!TLI
.isJumpExpensive() &&
1479 (BOp
->getOpcode() == Instruction::And
||
1480 BOp
->getOpcode() == Instruction::Or
)) {
1481 FindMergedConditions(BOp
, Succ0MBB
, Succ1MBB
, BrMBB
, BrMBB
,
1483 // If the compares in later blocks need to use values not currently
1484 // exported from this block, export them now. This block should always
1485 // be the first entry.
1486 assert(SwitchCases
[0].ThisBB
== BrMBB
&& "Unexpected lowering!");
1488 // Allow some cases to be rejected.
1489 if (ShouldEmitAsBranches(SwitchCases
)) {
1490 for (unsigned i
= 1, e
= SwitchCases
.size(); i
!= e
; ++i
) {
1491 ExportFromCurrentBlock(SwitchCases
[i
].CmpLHS
);
1492 ExportFromCurrentBlock(SwitchCases
[i
].CmpRHS
);
1495 // Emit the branch for this block.
1496 visitSwitchCase(SwitchCases
[0], BrMBB
);
1497 SwitchCases
.erase(SwitchCases
.begin());
1501 // Okay, we decided not to do this, remove any inserted MBB's and clear
1503 for (unsigned i
= 1, e
= SwitchCases
.size(); i
!= e
; ++i
)
1504 FuncInfo
.MF
->erase(SwitchCases
[i
].ThisBB
);
1506 SwitchCases
.clear();
1510 // Create a CaseBlock record representing this branch.
1511 CaseBlock
CB(ISD::SETEQ
, CondVal
, ConstantInt::getTrue(*DAG
.getContext()),
1512 NULL
, Succ0MBB
, Succ1MBB
, BrMBB
);
1514 // Use visitSwitchCase to actually insert the fast branch sequence for this
1516 visitSwitchCase(CB
, BrMBB
);
1519 /// visitSwitchCase - Emits the necessary code to represent a single node in
1520 /// the binary search tree resulting from lowering a switch instruction.
1521 void SelectionDAGBuilder::visitSwitchCase(CaseBlock
&CB
,
1522 MachineBasicBlock
*SwitchBB
) {
1524 SDValue CondLHS
= getValue(CB
.CmpLHS
);
1525 DebugLoc dl
= getCurDebugLoc();
1527 // Build the setcc now.
1528 if (CB
.CmpMHS
== NULL
) {
1529 // Fold "(X == true)" to X and "(X == false)" to !X to
1530 // handle common cases produced by branch lowering.
1531 if (CB
.CmpRHS
== ConstantInt::getTrue(*DAG
.getContext()) &&
1532 CB
.CC
== ISD::SETEQ
)
1534 else if (CB
.CmpRHS
== ConstantInt::getFalse(*DAG
.getContext()) &&
1535 CB
.CC
== ISD::SETEQ
) {
1536 SDValue True
= DAG
.getConstant(1, CondLHS
.getValueType());
1537 Cond
= DAG
.getNode(ISD::XOR
, dl
, CondLHS
.getValueType(), CondLHS
, True
);
1539 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CondLHS
, getValue(CB
.CmpRHS
), CB
.CC
);
1541 assert(CB
.CC
== ISD::SETLE
&& "Can handle only LE ranges now");
1543 const APInt
& Low
= cast
<ConstantInt
>(CB
.CmpLHS
)->getValue();
1544 const APInt
& High
= cast
<ConstantInt
>(CB
.CmpRHS
)->getValue();
1546 SDValue CmpOp
= getValue(CB
.CmpMHS
);
1547 EVT VT
= CmpOp
.getValueType();
1549 if (cast
<ConstantInt
>(CB
.CmpLHS
)->isMinValue(true)) {
1550 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CmpOp
, DAG
.getConstant(High
, VT
),
1553 SDValue SUB
= DAG
.getNode(ISD::SUB
, dl
,
1554 VT
, CmpOp
, DAG
.getConstant(Low
, VT
));
1555 Cond
= DAG
.getSetCC(dl
, MVT::i1
, SUB
,
1556 DAG
.getConstant(High
-Low
, VT
), ISD::SETULE
);
1560 // Update successor info
1561 addSuccessorWithWeight(SwitchBB
, CB
.TrueBB
);
1562 addSuccessorWithWeight(SwitchBB
, CB
.FalseBB
);
1564 // Set NextBlock to be the MBB immediately after the current one, if any.
1565 // This is used to avoid emitting unnecessary branches to the next block.
1566 MachineBasicBlock
*NextBlock
= 0;
1567 MachineFunction::iterator BBI
= SwitchBB
;
1568 if (++BBI
!= FuncInfo
.MF
->end())
1571 // If the lhs block is the next block, invert the condition so that we can
1572 // fall through to the lhs instead of the rhs block.
1573 if (CB
.TrueBB
== NextBlock
) {
1574 std::swap(CB
.TrueBB
, CB
.FalseBB
);
1575 SDValue True
= DAG
.getConstant(1, Cond
.getValueType());
1576 Cond
= DAG
.getNode(ISD::XOR
, dl
, Cond
.getValueType(), Cond
, True
);
1579 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
1580 MVT::Other
, getControlRoot(), Cond
,
1581 DAG
.getBasicBlock(CB
.TrueBB
));
1583 // Insert the false branch. Do this even if it's a fall through branch,
1584 // this makes it easier to do DAG optimizations which require inverting
1585 // the branch condition.
1586 BrCond
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
1587 DAG
.getBasicBlock(CB
.FalseBB
));
1589 DAG
.setRoot(BrCond
);
1592 /// visitJumpTable - Emit JumpTable node in the current MBB
1593 void SelectionDAGBuilder::visitJumpTable(JumpTable
&JT
) {
1594 // Emit the code for the jump table
1595 assert(JT
.Reg
!= -1U && "Should lower JT Header first!");
1596 EVT PTy
= TLI
.getPointerTy();
1597 SDValue Index
= DAG
.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1599 SDValue Table
= DAG
.getJumpTable(JT
.JTI
, PTy
);
1600 SDValue BrJumpTable
= DAG
.getNode(ISD::BR_JT
, getCurDebugLoc(),
1601 MVT::Other
, Index
.getValue(1),
1603 DAG
.setRoot(BrJumpTable
);
1606 /// visitJumpTableHeader - This function emits necessary code to produce index
1607 /// in the JumpTable from switch case.
1608 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable
&JT
,
1609 JumpTableHeader
&JTH
,
1610 MachineBasicBlock
*SwitchBB
) {
1611 // Subtract the lowest switch case value from the value being switched on and
1612 // conditional branch to default mbb if the result is greater than the
1613 // difference between smallest and largest cases.
1614 SDValue SwitchOp
= getValue(JTH
.SValue
);
1615 EVT VT
= SwitchOp
.getValueType();
1616 SDValue Sub
= DAG
.getNode(ISD::SUB
, getCurDebugLoc(), VT
, SwitchOp
,
1617 DAG
.getConstant(JTH
.First
, VT
));
1619 // The SDNode we just created, which holds the value being switched on minus
1620 // the smallest case value, needs to be copied to a virtual register so it
1621 // can be used as an index into the jump table in a subsequent basic block.
1622 // This value may be smaller or larger than the target's pointer type, and
1623 // therefore require extension or truncating.
1624 SwitchOp
= DAG
.getZExtOrTrunc(Sub
, getCurDebugLoc(), TLI
.getPointerTy());
1626 unsigned JumpTableReg
= FuncInfo
.CreateReg(TLI
.getPointerTy());
1627 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1628 JumpTableReg
, SwitchOp
);
1629 JT
.Reg
= JumpTableReg
;
1631 // Emit the range check for the jump table, and branch to the default block
1632 // for the switch statement if the value being switched on exceeds the largest
1633 // case in the switch.
1634 SDValue CMP
= DAG
.getSetCC(getCurDebugLoc(),
1635 TLI
.getSetCCResultType(Sub
.getValueType()), Sub
,
1636 DAG
.getConstant(JTH
.Last
-JTH
.First
,VT
),
1639 // Set NextBlock to be the MBB immediately after the current one, if any.
1640 // This is used to avoid emitting unnecessary branches to the next block.
1641 MachineBasicBlock
*NextBlock
= 0;
1642 MachineFunction::iterator BBI
= SwitchBB
;
1644 if (++BBI
!= FuncInfo
.MF
->end())
1647 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1648 MVT::Other
, CopyTo
, CMP
,
1649 DAG
.getBasicBlock(JT
.Default
));
1651 if (JT
.MBB
!= NextBlock
)
1652 BrCond
= DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, BrCond
,
1653 DAG
.getBasicBlock(JT
.MBB
));
1655 DAG
.setRoot(BrCond
);
1658 /// visitBitTestHeader - This function emits necessary code to produce value
1659 /// suitable for "bit tests"
1660 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock
&B
,
1661 MachineBasicBlock
*SwitchBB
) {
1662 // Subtract the minimum value
1663 SDValue SwitchOp
= getValue(B
.SValue
);
1664 EVT VT
= SwitchOp
.getValueType();
1665 SDValue Sub
= DAG
.getNode(ISD::SUB
, getCurDebugLoc(), VT
, SwitchOp
,
1666 DAG
.getConstant(B
.First
, VT
));
1669 SDValue RangeCmp
= DAG
.getSetCC(getCurDebugLoc(),
1670 TLI
.getSetCCResultType(Sub
.getValueType()),
1671 Sub
, DAG
.getConstant(B
.Range
, VT
),
1674 // Determine the type of the test operands.
1675 bool UsePtrType
= false;
1676 if (!TLI
.isTypeLegal(VT
))
1679 for (unsigned i
= 0, e
= B
.Cases
.size(); i
!= e
; ++i
)
1680 if ((uint64_t)((int64_t)B
.Cases
[i
].Mask
>> VT
.getSizeInBits()) + 1 >= 2) {
1681 // Switch table case range are encoded into series of masks.
1682 // Just use pointer type, it's guaranteed to fit.
1688 VT
= TLI
.getPointerTy();
1689 Sub
= DAG
.getZExtOrTrunc(Sub
, getCurDebugLoc(), VT
);
1693 B
.Reg
= FuncInfo
.CreateReg(VT
);
1694 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1697 // Set NextBlock to be the MBB immediately after the current one, if any.
1698 // This is used to avoid emitting unnecessary branches to the next block.
1699 MachineBasicBlock
*NextBlock
= 0;
1700 MachineFunction::iterator BBI
= SwitchBB
;
1701 if (++BBI
!= FuncInfo
.MF
->end())
1704 MachineBasicBlock
* MBB
= B
.Cases
[0].ThisBB
;
1706 addSuccessorWithWeight(SwitchBB
, B
.Default
);
1707 addSuccessorWithWeight(SwitchBB
, MBB
);
1709 SDValue BrRange
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1710 MVT::Other
, CopyTo
, RangeCmp
,
1711 DAG
.getBasicBlock(B
.Default
));
1713 if (MBB
!= NextBlock
)
1714 BrRange
= DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, CopyTo
,
1715 DAG
.getBasicBlock(MBB
));
1717 DAG
.setRoot(BrRange
);
1720 /// visitBitTestCase - this function produces one "bit test"
1721 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock
&BB
,
1722 MachineBasicBlock
* NextMBB
,
1725 MachineBasicBlock
*SwitchBB
) {
1727 SDValue ShiftOp
= DAG
.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1730 if (CountPopulation_64(B
.Mask
) == 1) {
1731 // Testing for a single bit; just compare the shift count with what it
1732 // would need to be to shift a 1 bit in that position.
1733 Cmp
= DAG
.getSetCC(getCurDebugLoc(),
1734 TLI
.getSetCCResultType(VT
),
1736 DAG
.getConstant(CountTrailingZeros_64(B
.Mask
), VT
),
1739 // Make desired shift
1740 SDValue SwitchVal
= DAG
.getNode(ISD::SHL
, getCurDebugLoc(), VT
,
1741 DAG
.getConstant(1, VT
), ShiftOp
);
1743 // Emit bit tests and jumps
1744 SDValue AndOp
= DAG
.getNode(ISD::AND
, getCurDebugLoc(),
1745 VT
, SwitchVal
, DAG
.getConstant(B
.Mask
, VT
));
1746 Cmp
= DAG
.getSetCC(getCurDebugLoc(),
1747 TLI
.getSetCCResultType(VT
),
1748 AndOp
, DAG
.getConstant(0, VT
),
1752 addSuccessorWithWeight(SwitchBB
, B
.TargetBB
);
1753 addSuccessorWithWeight(SwitchBB
, NextMBB
);
1755 SDValue BrAnd
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1756 MVT::Other
, getControlRoot(),
1757 Cmp
, DAG
.getBasicBlock(B
.TargetBB
));
1759 // Set NextBlock to be the MBB immediately after the current one, if any.
1760 // This is used to avoid emitting unnecessary branches to the next block.
1761 MachineBasicBlock
*NextBlock
= 0;
1762 MachineFunction::iterator BBI
= SwitchBB
;
1763 if (++BBI
!= FuncInfo
.MF
->end())
1766 if (NextMBB
!= NextBlock
)
1767 BrAnd
= DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, BrAnd
,
1768 DAG
.getBasicBlock(NextMBB
));
1773 void SelectionDAGBuilder::visitInvoke(const InvokeInst
&I
) {
1774 MachineBasicBlock
*InvokeMBB
= FuncInfo
.MBB
;
1776 // Retrieve successors.
1777 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
1778 MachineBasicBlock
*LandingPad
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
1780 const Value
*Callee(I
.getCalledValue());
1781 if (isa
<InlineAsm
>(Callee
))
1784 LowerCallTo(&I
, getValue(Callee
), false, LandingPad
);
1786 // If the value of the invoke is used outside of its defining block, make it
1787 // available as a virtual register.
1788 CopyToExportRegsIfNeeded(&I
);
1790 // Update successor info
1791 InvokeMBB
->addSuccessor(Return
);
1792 InvokeMBB
->addSuccessor(LandingPad
);
1794 // Drop into normal successor.
1795 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
1796 MVT::Other
, getControlRoot(),
1797 DAG
.getBasicBlock(Return
)));
1800 void SelectionDAGBuilder::visitUnwind(const UnwindInst
&I
) {
1803 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1804 /// small case ranges).
1805 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec
& CR
,
1806 CaseRecVector
& WorkList
,
1808 MachineBasicBlock
*Default
,
1809 MachineBasicBlock
*SwitchBB
) {
1810 Case
& BackCase
= *(CR
.Range
.second
-1);
1812 // Size is the number of Cases represented by this range.
1813 size_t Size
= CR
.Range
.second
- CR
.Range
.first
;
1817 // Get the MachineFunction which holds the current MBB. This is used when
1818 // inserting any additional MBBs necessary to represent the switch.
1819 MachineFunction
*CurMF
= FuncInfo
.MF
;
1821 // Figure out which block is immediately after the current one.
1822 MachineBasicBlock
*NextBlock
= 0;
1823 MachineFunction::iterator BBI
= CR
.CaseBB
;
1825 if (++BBI
!= FuncInfo
.MF
->end())
1828 // If any two of the cases has the same destination, and if one value
1829 // is the same as the other, but has one bit unset that the other has set,
1830 // use bit manipulation to do two compares at once. For example:
1831 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1832 // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1833 // TODO: Handle cases where CR.CaseBB != SwitchBB.
1834 if (Size
== 2 && CR
.CaseBB
== SwitchBB
) {
1835 Case
&Small
= *CR
.Range
.first
;
1836 Case
&Big
= *(CR
.Range
.second
-1);
1838 if (Small
.Low
== Small
.High
&& Big
.Low
== Big
.High
&& Small
.BB
== Big
.BB
) {
1839 const APInt
& SmallValue
= cast
<ConstantInt
>(Small
.Low
)->getValue();
1840 const APInt
& BigValue
= cast
<ConstantInt
>(Big
.Low
)->getValue();
1842 // Check that there is only one bit different.
1843 if (BigValue
.countPopulation() == SmallValue
.countPopulation() + 1 &&
1844 (SmallValue
| BigValue
) == BigValue
) {
1845 // Isolate the common bit.
1846 APInt CommonBit
= BigValue
& ~SmallValue
;
1847 assert((SmallValue
| CommonBit
) == BigValue
&&
1848 CommonBit
.countPopulation() == 1 && "Not a common bit?");
1850 SDValue CondLHS
= getValue(SV
);
1851 EVT VT
= CondLHS
.getValueType();
1852 DebugLoc DL
= getCurDebugLoc();
1854 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, CondLHS
,
1855 DAG
.getConstant(CommonBit
, VT
));
1856 SDValue Cond
= DAG
.getSetCC(DL
, MVT::i1
,
1857 Or
, DAG
.getConstant(BigValue
, VT
),
1860 // Update successor info.
1861 SwitchBB
->addSuccessor(Small
.BB
);
1862 SwitchBB
->addSuccessor(Default
);
1864 // Insert the true branch.
1865 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, DL
, MVT::Other
,
1866 getControlRoot(), Cond
,
1867 DAG
.getBasicBlock(Small
.BB
));
1869 // Insert the false branch.
1870 BrCond
= DAG
.getNode(ISD::BR
, DL
, MVT::Other
, BrCond
,
1871 DAG
.getBasicBlock(Default
));
1873 DAG
.setRoot(BrCond
);
1879 // Rearrange the case blocks so that the last one falls through if possible.
1880 if (NextBlock
&& Default
!= NextBlock
&& BackCase
.BB
!= NextBlock
) {
1881 // The last case block won't fall through into 'NextBlock' if we emit the
1882 // branches in this order. See if rearranging a case value would help.
1883 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
-1; I
!= E
; ++I
) {
1884 if (I
->BB
== NextBlock
) {
1885 std::swap(*I
, BackCase
);
1891 // Create a CaseBlock record representing a conditional branch to
1892 // the Case's target mbb if the value being switched on SV is equal
1894 MachineBasicBlock
*CurBlock
= CR
.CaseBB
;
1895 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!= E
; ++I
) {
1896 MachineBasicBlock
*FallThrough
;
1898 FallThrough
= CurMF
->CreateMachineBasicBlock(CurBlock
->getBasicBlock());
1899 CurMF
->insert(BBI
, FallThrough
);
1901 // Put SV in a virtual register to make it available from the new blocks.
1902 ExportFromCurrentBlock(SV
);
1904 // If the last case doesn't match, go to the default block.
1905 FallThrough
= Default
;
1908 const Value
*RHS
, *LHS
, *MHS
;
1910 if (I
->High
== I
->Low
) {
1911 // This is just small small case range :) containing exactly 1 case
1913 LHS
= SV
; RHS
= I
->High
; MHS
= NULL
;
1916 LHS
= I
->Low
; MHS
= SV
; RHS
= I
->High
;
1918 CaseBlock
CB(CC
, LHS
, RHS
, MHS
, I
->BB
, FallThrough
, CurBlock
);
1920 // If emitting the first comparison, just call visitSwitchCase to emit the
1921 // code into the current block. Otherwise, push the CaseBlock onto the
1922 // vector to be later processed by SDISel, and insert the node's MBB
1923 // before the next MBB.
1924 if (CurBlock
== SwitchBB
)
1925 visitSwitchCase(CB
, SwitchBB
);
1927 SwitchCases
.push_back(CB
);
1929 CurBlock
= FallThrough
;
1935 static inline bool areJTsAllowed(const TargetLowering
&TLI
) {
1936 return !DisableJumpTables
&&
1937 (TLI
.isOperationLegalOrCustom(ISD::BR_JT
, MVT::Other
) ||
1938 TLI
.isOperationLegalOrCustom(ISD::BRIND
, MVT::Other
));
1941 static APInt
ComputeRange(const APInt
&First
, const APInt
&Last
) {
1942 uint32_t BitWidth
= std::max(Last
.getBitWidth(), First
.getBitWidth()) + 1;
1943 APInt LastExt
= Last
.sext(BitWidth
), FirstExt
= First
.sext(BitWidth
);
1944 return (LastExt
- FirstExt
+ 1ULL);
1947 /// handleJTSwitchCase - Emit jumptable for current switch case range
1948 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec
& CR
,
1949 CaseRecVector
& WorkList
,
1951 MachineBasicBlock
* Default
,
1952 MachineBasicBlock
*SwitchBB
) {
1953 Case
& FrontCase
= *CR
.Range
.first
;
1954 Case
& BackCase
= *(CR
.Range
.second
-1);
1956 const APInt
&First
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
1957 const APInt
&Last
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
1959 APInt
TSize(First
.getBitWidth(), 0);
1960 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
1964 if (!areJTsAllowed(TLI
) || TSize
.ult(4))
1967 APInt Range
= ComputeRange(First
, Last
);
1968 double Density
= TSize
.roundToDouble() / Range
.roundToDouble();
1972 DEBUG(dbgs() << "Lowering jump table\n"
1973 << "First entry: " << First
<< ". Last entry: " << Last
<< '\n'
1974 << "Range: " << Range
1975 << ". Size: " << TSize
<< ". Density: " << Density
<< "\n\n");
1977 // Get the MachineFunction which holds the current MBB. This is used when
1978 // inserting any additional MBBs necessary to represent the switch.
1979 MachineFunction
*CurMF
= FuncInfo
.MF
;
1981 // Figure out which block is immediately after the current one.
1982 MachineFunction::iterator BBI
= CR
.CaseBB
;
1985 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
1987 // Create a new basic block to hold the code for loading the address
1988 // of the jump table, and jumping to it. Update successor information;
1989 // we will either branch to the default case for the switch, or the jump
1991 MachineBasicBlock
*JumpTableBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
1992 CurMF
->insert(BBI
, JumpTableBB
);
1994 addSuccessorWithWeight(CR
.CaseBB
, Default
);
1995 addSuccessorWithWeight(CR
.CaseBB
, JumpTableBB
);
1997 // Build a vector of destination BBs, corresponding to each target
1998 // of the jump table. If the value of the jump table slot corresponds to
1999 // a case statement, push the case's BB onto the vector, otherwise, push
2001 std::vector
<MachineBasicBlock
*> DestBBs
;
2003 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!= E
; ++TEI
) {
2004 const APInt
&Low
= cast
<ConstantInt
>(I
->Low
)->getValue();
2005 const APInt
&High
= cast
<ConstantInt
>(I
->High
)->getValue();
2007 if (Low
.sle(TEI
) && TEI
.sle(High
)) {
2008 DestBBs
.push_back(I
->BB
);
2012 DestBBs
.push_back(Default
);
2016 // Update successor info. Add one edge to each unique successor.
2017 BitVector
SuccsHandled(CR
.CaseBB
->getParent()->getNumBlockIDs());
2018 for (std::vector
<MachineBasicBlock
*>::iterator I
= DestBBs
.begin(),
2019 E
= DestBBs
.end(); I
!= E
; ++I
) {
2020 if (!SuccsHandled
[(*I
)->getNumber()]) {
2021 SuccsHandled
[(*I
)->getNumber()] = true;
2022 addSuccessorWithWeight(JumpTableBB
, *I
);
2026 // Create a jump table index for this jump table.
2027 unsigned JTEncoding
= TLI
.getJumpTableEncoding();
2028 unsigned JTI
= CurMF
->getOrCreateJumpTableInfo(JTEncoding
)
2029 ->createJumpTableIndex(DestBBs
);
2031 // Set the jump table information so that we can codegen it as a second
2032 // MachineBasicBlock
2033 JumpTable
JT(-1U, JTI
, JumpTableBB
, Default
);
2034 JumpTableHeader
JTH(First
, Last
, SV
, CR
.CaseBB
, (CR
.CaseBB
== SwitchBB
));
2035 if (CR
.CaseBB
== SwitchBB
)
2036 visitJumpTableHeader(JT
, JTH
, SwitchBB
);
2038 JTCases
.push_back(JumpTableBlock(JTH
, JT
));
2043 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2045 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec
& CR
,
2046 CaseRecVector
& WorkList
,
2048 MachineBasicBlock
*Default
,
2049 MachineBasicBlock
*SwitchBB
) {
2050 // Get the MachineFunction which holds the current MBB. This is used when
2051 // inserting any additional MBBs necessary to represent the switch.
2052 MachineFunction
*CurMF
= FuncInfo
.MF
;
2054 // Figure out which block is immediately after the current one.
2055 MachineFunction::iterator BBI
= CR
.CaseBB
;
2058 Case
& FrontCase
= *CR
.Range
.first
;
2059 Case
& BackCase
= *(CR
.Range
.second
-1);
2060 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
2062 // Size is the number of Cases represented by this range.
2063 unsigned Size
= CR
.Range
.second
- CR
.Range
.first
;
2065 const APInt
&First
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
2066 const APInt
&Last
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
2068 CaseItr Pivot
= CR
.Range
.first
+ Size
/2;
2070 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2071 // (heuristically) allow us to emit JumpTable's later.
2072 APInt
TSize(First
.getBitWidth(), 0);
2073 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
2077 APInt LSize
= FrontCase
.size();
2078 APInt RSize
= TSize
-LSize
;
2079 DEBUG(dbgs() << "Selecting best pivot: \n"
2080 << "First: " << First
<< ", Last: " << Last
<<'\n'
2081 << "LSize: " << LSize
<< ", RSize: " << RSize
<< '\n');
2082 for (CaseItr I
= CR
.Range
.first
, J
=I
+1, E
= CR
.Range
.second
;
2084 const APInt
&LEnd
= cast
<ConstantInt
>(I
->High
)->getValue();
2085 const APInt
&RBegin
= cast
<ConstantInt
>(J
->Low
)->getValue();
2086 APInt Range
= ComputeRange(LEnd
, RBegin
);
2087 assert((Range
- 2ULL).isNonNegative() &&
2088 "Invalid case distance");
2089 // Use volatile double here to avoid excess precision issues on some hosts,
2090 // e.g. that use 80-bit X87 registers.
2091 volatile double LDensity
=
2092 (double)LSize
.roundToDouble() /
2093 (LEnd
- First
+ 1ULL).roundToDouble();
2094 volatile double RDensity
=
2095 (double)RSize
.roundToDouble() /
2096 (Last
- RBegin
+ 1ULL).roundToDouble();
2097 double Metric
= Range
.logBase2()*(LDensity
+RDensity
);
2098 // Should always split in some non-trivial place
2099 DEBUG(dbgs() <<"=>Step\n"
2100 << "LEnd: " << LEnd
<< ", RBegin: " << RBegin
<< '\n'
2101 << "LDensity: " << LDensity
2102 << ", RDensity: " << RDensity
<< '\n'
2103 << "Metric: " << Metric
<< '\n');
2104 if (FMetric
< Metric
) {
2107 DEBUG(dbgs() << "Current metric set to: " << FMetric
<< '\n');
2113 if (areJTsAllowed(TLI
)) {
2114 // If our case is dense we *really* should handle it earlier!
2115 assert((FMetric
> 0) && "Should handle dense range earlier!");
2117 Pivot
= CR
.Range
.first
+ Size
/2;
2120 CaseRange
LHSR(CR
.Range
.first
, Pivot
);
2121 CaseRange
RHSR(Pivot
, CR
.Range
.second
);
2122 Constant
*C
= Pivot
->Low
;
2123 MachineBasicBlock
*FalseBB
= 0, *TrueBB
= 0;
2125 // We know that we branch to the LHS if the Value being switched on is
2126 // less than the Pivot value, C. We use this to optimize our binary
2127 // tree a bit, by recognizing that if SV is greater than or equal to the
2128 // LHS's Case Value, and that Case Value is exactly one less than the
2129 // Pivot's Value, then we can branch directly to the LHS's Target,
2130 // rather than creating a leaf node for it.
2131 if ((LHSR
.second
- LHSR
.first
) == 1 &&
2132 LHSR
.first
->High
== CR
.GE
&&
2133 cast
<ConstantInt
>(C
)->getValue() ==
2134 (cast
<ConstantInt
>(CR
.GE
)->getValue() + 1LL)) {
2135 TrueBB
= LHSR
.first
->BB
;
2137 TrueBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
2138 CurMF
->insert(BBI
, TrueBB
);
2139 WorkList
.push_back(CaseRec(TrueBB
, C
, CR
.GE
, LHSR
));
2141 // Put SV in a virtual register to make it available from the new blocks.
2142 ExportFromCurrentBlock(SV
);
2145 // Similar to the optimization above, if the Value being switched on is
2146 // known to be less than the Constant CR.LT, and the current Case Value
2147 // is CR.LT - 1, then we can branch directly to the target block for
2148 // the current Case Value, rather than emitting a RHS leaf node for it.
2149 if ((RHSR
.second
- RHSR
.first
) == 1 && CR
.LT
&&
2150 cast
<ConstantInt
>(RHSR
.first
->Low
)->getValue() ==
2151 (cast
<ConstantInt
>(CR
.LT
)->getValue() - 1LL)) {
2152 FalseBB
= RHSR
.first
->BB
;
2154 FalseBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
2155 CurMF
->insert(BBI
, FalseBB
);
2156 WorkList
.push_back(CaseRec(FalseBB
,CR
.LT
,C
,RHSR
));
2158 // Put SV in a virtual register to make it available from the new blocks.
2159 ExportFromCurrentBlock(SV
);
2162 // Create a CaseBlock record representing a conditional branch to
2163 // the LHS node if the value being switched on SV is less than C.
2164 // Otherwise, branch to LHS.
2165 CaseBlock
CB(ISD::SETLT
, SV
, C
, NULL
, TrueBB
, FalseBB
, CR
.CaseBB
);
2167 if (CR
.CaseBB
== SwitchBB
)
2168 visitSwitchCase(CB
, SwitchBB
);
2170 SwitchCases
.push_back(CB
);
2175 /// handleBitTestsSwitchCase - if current case range has few destination and
2176 /// range span less, than machine word bitwidth, encode case range into series
2177 /// of masks and emit bit tests with these masks.
2178 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec
& CR
,
2179 CaseRecVector
& WorkList
,
2181 MachineBasicBlock
* Default
,
2182 MachineBasicBlock
*SwitchBB
){
2183 EVT PTy
= TLI
.getPointerTy();
2184 unsigned IntPtrBits
= PTy
.getSizeInBits();
2186 Case
& FrontCase
= *CR
.Range
.first
;
2187 Case
& BackCase
= *(CR
.Range
.second
-1);
2189 // Get the MachineFunction which holds the current MBB. This is used when
2190 // inserting any additional MBBs necessary to represent the switch.
2191 MachineFunction
*CurMF
= FuncInfo
.MF
;
2193 // If target does not have legal shift left, do not emit bit tests at all.
2194 if (!TLI
.isOperationLegal(ISD::SHL
, TLI
.getPointerTy()))
2198 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
2200 // Single case counts one, case range - two.
2201 numCmps
+= (I
->Low
== I
->High
? 1 : 2);
2204 // Count unique destinations
2205 SmallSet
<MachineBasicBlock
*, 4> Dests
;
2206 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!=E
; ++I
) {
2207 Dests
.insert(I
->BB
);
2208 if (Dests
.size() > 3)
2209 // Don't bother the code below, if there are too much unique destinations
2212 DEBUG(dbgs() << "Total number of unique destinations: "
2213 << Dests
.size() << '\n'
2214 << "Total number of comparisons: " << numCmps
<< '\n');
2216 // Compute span of values.
2217 const APInt
& minValue
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
2218 const APInt
& maxValue
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
2219 APInt cmpRange
= maxValue
- minValue
;
2221 DEBUG(dbgs() << "Compare range: " << cmpRange
<< '\n'
2222 << "Low bound: " << minValue
<< '\n'
2223 << "High bound: " << maxValue
<< '\n');
2225 if (cmpRange
.uge(IntPtrBits
) ||
2226 (!(Dests
.size() == 1 && numCmps
>= 3) &&
2227 !(Dests
.size() == 2 && numCmps
>= 5) &&
2228 !(Dests
.size() >= 3 && numCmps
>= 6)))
2231 DEBUG(dbgs() << "Emitting bit tests\n");
2232 APInt lowBound
= APInt::getNullValue(cmpRange
.getBitWidth());
2234 // Optimize the case where all the case values fit in a
2235 // word without having to subtract minValue. In this case,
2236 // we can optimize away the subtraction.
2237 if (minValue
.isNonNegative() && maxValue
.slt(IntPtrBits
)) {
2238 cmpRange
= maxValue
;
2240 lowBound
= minValue
;
2243 CaseBitsVector CasesBits
;
2244 unsigned i
, count
= 0;
2246 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!=E
; ++I
) {
2247 MachineBasicBlock
* Dest
= I
->BB
;
2248 for (i
= 0; i
< count
; ++i
)
2249 if (Dest
== CasesBits
[i
].BB
)
2253 assert((count
< 3) && "Too much destinations to test!");
2254 CasesBits
.push_back(CaseBits(0, Dest
, 0));
2258 const APInt
& lowValue
= cast
<ConstantInt
>(I
->Low
)->getValue();
2259 const APInt
& highValue
= cast
<ConstantInt
>(I
->High
)->getValue();
2261 uint64_t lo
= (lowValue
- lowBound
).getZExtValue();
2262 uint64_t hi
= (highValue
- lowBound
).getZExtValue();
2264 for (uint64_t j
= lo
; j
<= hi
; j
++) {
2265 CasesBits
[i
].Mask
|= 1ULL << j
;
2266 CasesBits
[i
].Bits
++;
2270 std::sort(CasesBits
.begin(), CasesBits
.end(), CaseBitsCmp());
2274 // Figure out which block is immediately after the current one.
2275 MachineFunction::iterator BBI
= CR
.CaseBB
;
2278 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
2280 DEBUG(dbgs() << "Cases:\n");
2281 for (unsigned i
= 0, e
= CasesBits
.size(); i
!=e
; ++i
) {
2282 DEBUG(dbgs() << "Mask: " << CasesBits
[i
].Mask
2283 << ", Bits: " << CasesBits
[i
].Bits
2284 << ", BB: " << CasesBits
[i
].BB
<< '\n');
2286 MachineBasicBlock
*CaseBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
2287 CurMF
->insert(BBI
, CaseBB
);
2288 BTC
.push_back(BitTestCase(CasesBits
[i
].Mask
,
2292 // Put SV in a virtual register to make it available from the new blocks.
2293 ExportFromCurrentBlock(SV
);
2296 BitTestBlock
BTB(lowBound
, cmpRange
, SV
,
2297 -1U, MVT::Other
, (CR
.CaseBB
== SwitchBB
),
2298 CR
.CaseBB
, Default
, BTC
);
2300 if (CR
.CaseBB
== SwitchBB
)
2301 visitBitTestHeader(BTB
, SwitchBB
);
2303 BitTestCases
.push_back(BTB
);
2308 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2309 size_t SelectionDAGBuilder::Clusterify(CaseVector
& Cases
,
2310 const SwitchInst
& SI
) {
2313 // Start with "simple" cases
2314 for (size_t i
= 1; i
< SI
.getNumSuccessors(); ++i
) {
2315 MachineBasicBlock
*SMBB
= FuncInfo
.MBBMap
[SI
.getSuccessor(i
)];
2316 Cases
.push_back(Case(SI
.getSuccessorValue(i
),
2317 SI
.getSuccessorValue(i
),
2320 std::sort(Cases
.begin(), Cases
.end(), CaseCmp());
2322 // Merge case into clusters
2323 if (Cases
.size() >= 2)
2324 // Must recompute end() each iteration because it may be
2325 // invalidated by erase if we hold on to it
2326 for (CaseItr I
= Cases
.begin(), J
= llvm::next(Cases
.begin());
2327 J
!= Cases
.end(); ) {
2328 const APInt
& nextValue
= cast
<ConstantInt
>(J
->Low
)->getValue();
2329 const APInt
& currentValue
= cast
<ConstantInt
>(I
->High
)->getValue();
2330 MachineBasicBlock
* nextBB
= J
->BB
;
2331 MachineBasicBlock
* currentBB
= I
->BB
;
2333 // If the two neighboring cases go to the same destination, merge them
2334 // into a single case.
2335 if ((nextValue
- currentValue
== 1) && (currentBB
== nextBB
)) {
2343 for (CaseItr I
=Cases
.begin(), E
=Cases
.end(); I
!=E
; ++I
, ++numCmps
) {
2344 if (I
->Low
!= I
->High
)
2345 // A range counts double, since it requires two compares.
2352 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock
*First
,
2353 MachineBasicBlock
*Last
) {
2355 for (unsigned i
= 0, e
= JTCases
.size(); i
!= e
; ++i
)
2356 if (JTCases
[i
].first
.HeaderBB
== First
)
2357 JTCases
[i
].first
.HeaderBB
= Last
;
2359 // Update BitTestCases.
2360 for (unsigned i
= 0, e
= BitTestCases
.size(); i
!= e
; ++i
)
2361 if (BitTestCases
[i
].Parent
== First
)
2362 BitTestCases
[i
].Parent
= Last
;
2365 void SelectionDAGBuilder::visitSwitch(const SwitchInst
&SI
) {
2366 MachineBasicBlock
*SwitchMBB
= FuncInfo
.MBB
;
2368 // Figure out which block is immediately after the current one.
2369 MachineBasicBlock
*NextBlock
= 0;
2370 MachineBasicBlock
*Default
= FuncInfo
.MBBMap
[SI
.getDefaultDest()];
2372 // If there is only the default destination, branch to it if it is not the
2373 // next basic block. Otherwise, just fall through.
2374 if (SI
.getNumOperands() == 2) {
2375 // Update machine-CFG edges.
2377 // If this is not a fall-through branch, emit the branch.
2378 SwitchMBB
->addSuccessor(Default
);
2379 if (Default
!= NextBlock
)
2380 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
2381 MVT::Other
, getControlRoot(),
2382 DAG
.getBasicBlock(Default
)));
2387 // If there are any non-default case statements, create a vector of Cases
2388 // representing each one, and sort the vector so that we can efficiently
2389 // create a binary search tree from them.
2391 size_t numCmps
= Clusterify(Cases
, SI
);
2392 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases
.size()
2393 << ". Total compares: " << numCmps
<< '\n');
2396 // Get the Value to be switched on and default basic blocks, which will be
2397 // inserted into CaseBlock records, representing basic blocks in the binary
2399 const Value
*SV
= SI
.getOperand(0);
2401 // Push the initial CaseRec onto the worklist
2402 CaseRecVector WorkList
;
2403 WorkList
.push_back(CaseRec(SwitchMBB
,0,0,
2404 CaseRange(Cases
.begin(),Cases
.end())));
2406 while (!WorkList
.empty()) {
2407 // Grab a record representing a case range to process off the worklist
2408 CaseRec CR
= WorkList
.back();
2409 WorkList
.pop_back();
2411 if (handleBitTestsSwitchCase(CR
, WorkList
, SV
, Default
, SwitchMBB
))
2414 // If the range has few cases (two or less) emit a series of specific
2416 if (handleSmallSwitchRange(CR
, WorkList
, SV
, Default
, SwitchMBB
))
2419 // If the switch has more than 5 blocks, and at least 40% dense, and the
2420 // target supports indirect branches, then emit a jump table rather than
2421 // lowering the switch to a binary tree of conditional branches.
2422 if (handleJTSwitchCase(CR
, WorkList
, SV
, Default
, SwitchMBB
))
2425 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2426 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2427 handleBTSplitSwitchCase(CR
, WorkList
, SV
, Default
, SwitchMBB
);
2431 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst
&I
) {
2432 MachineBasicBlock
*IndirectBrMBB
= FuncInfo
.MBB
;
2434 // Update machine-CFG edges with unique successors.
2435 SmallVector
<BasicBlock
*, 32> succs
;
2436 succs
.reserve(I
.getNumSuccessors());
2437 for (unsigned i
= 0, e
= I
.getNumSuccessors(); i
!= e
; ++i
)
2438 succs
.push_back(I
.getSuccessor(i
));
2439 array_pod_sort(succs
.begin(), succs
.end());
2440 succs
.erase(std::unique(succs
.begin(), succs
.end()), succs
.end());
2441 for (unsigned i
= 0, e
= succs
.size(); i
!= e
; ++i
) {
2442 MachineBasicBlock
*Succ
= FuncInfo
.MBBMap
[succs
[i
]];
2443 addSuccessorWithWeight(IndirectBrMBB
, Succ
);
2446 DAG
.setRoot(DAG
.getNode(ISD::BRIND
, getCurDebugLoc(),
2447 MVT::Other
, getControlRoot(),
2448 getValue(I
.getAddress())));
2451 void SelectionDAGBuilder::visitFSub(const User
&I
) {
2452 // -0.0 - X --> fneg
2453 const Type
*Ty
= I
.getType();
2454 if (isa
<Constant
>(I
.getOperand(0)) &&
2455 I
.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty
)) {
2456 SDValue Op2
= getValue(I
.getOperand(1));
2457 setValue(&I
, DAG
.getNode(ISD::FNEG
, getCurDebugLoc(),
2458 Op2
.getValueType(), Op2
));
2462 visitBinary(I
, ISD::FSUB
);
2465 void SelectionDAGBuilder::visitBinary(const User
&I
, unsigned OpCode
) {
2466 SDValue Op1
= getValue(I
.getOperand(0));
2467 SDValue Op2
= getValue(I
.getOperand(1));
2468 setValue(&I
, DAG
.getNode(OpCode
, getCurDebugLoc(),
2469 Op1
.getValueType(), Op1
, Op2
));
2472 void SelectionDAGBuilder::visitShift(const User
&I
, unsigned Opcode
) {
2473 SDValue Op1
= getValue(I
.getOperand(0));
2474 SDValue Op2
= getValue(I
.getOperand(1));
2476 MVT ShiftTy
= TLI
.getShiftAmountTy(Op2
.getValueType());
2478 // Coerce the shift amount to the right type if we can.
2479 if (!I
.getType()->isVectorTy() && Op2
.getValueType() != ShiftTy
) {
2480 unsigned ShiftSize
= ShiftTy
.getSizeInBits();
2481 unsigned Op2Size
= Op2
.getValueType().getSizeInBits();
2482 DebugLoc DL
= getCurDebugLoc();
2484 // If the operand is smaller than the shift count type, promote it.
2485 if (ShiftSize
> Op2Size
)
2486 Op2
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, ShiftTy
, Op2
);
2488 // If the operand is larger than the shift count type but the shift
2489 // count type has enough bits to represent any shift value, truncate
2490 // it now. This is a common case and it exposes the truncate to
2491 // optimization early.
2492 else if (ShiftSize
>= Log2_32_Ceil(Op2
.getValueType().getSizeInBits()))
2493 Op2
= DAG
.getNode(ISD::TRUNCATE
, DL
, ShiftTy
, Op2
);
2494 // Otherwise we'll need to temporarily settle for some other convenient
2495 // type. Type legalization will make adjustments once the shiftee is split.
2497 Op2
= DAG
.getZExtOrTrunc(Op2
, DL
, MVT::i32
);
2500 setValue(&I
, DAG
.getNode(Opcode
, getCurDebugLoc(),
2501 Op1
.getValueType(), Op1
, Op2
));
2504 void SelectionDAGBuilder::visitSDiv(const User
&I
) {
2505 SDValue Op1
= getValue(I
.getOperand(0));
2506 SDValue Op2
= getValue(I
.getOperand(1));
2508 // Turn exact SDivs into multiplications.
2509 // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2511 if (isa
<BinaryOperator
>(&I
) && cast
<BinaryOperator
>(&I
)->isExact() &&
2512 !isa
<ConstantSDNode
>(Op1
) &&
2513 isa
<ConstantSDNode
>(Op2
) && !cast
<ConstantSDNode
>(Op2
)->isNullValue())
2514 setValue(&I
, TLI
.BuildExactSDIV(Op1
, Op2
, getCurDebugLoc(), DAG
));
2516 setValue(&I
, DAG
.getNode(ISD::SDIV
, getCurDebugLoc(), Op1
.getValueType(),
2520 void SelectionDAGBuilder::visitICmp(const User
&I
) {
2521 ICmpInst::Predicate predicate
= ICmpInst::BAD_ICMP_PREDICATE
;
2522 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(&I
))
2523 predicate
= IC
->getPredicate();
2524 else if (const ConstantExpr
*IC
= dyn_cast
<ConstantExpr
>(&I
))
2525 predicate
= ICmpInst::Predicate(IC
->getPredicate());
2526 SDValue Op1
= getValue(I
.getOperand(0));
2527 SDValue Op2
= getValue(I
.getOperand(1));
2528 ISD::CondCode Opcode
= getICmpCondCode(predicate
);
2530 EVT DestVT
= TLI
.getValueType(I
.getType());
2531 setValue(&I
, DAG
.getSetCC(getCurDebugLoc(), DestVT
, Op1
, Op2
, Opcode
));
2534 void SelectionDAGBuilder::visitFCmp(const User
&I
) {
2535 FCmpInst::Predicate predicate
= FCmpInst::BAD_FCMP_PREDICATE
;
2536 if (const FCmpInst
*FC
= dyn_cast
<FCmpInst
>(&I
))
2537 predicate
= FC
->getPredicate();
2538 else if (const ConstantExpr
*FC
= dyn_cast
<ConstantExpr
>(&I
))
2539 predicate
= FCmpInst::Predicate(FC
->getPredicate());
2540 SDValue Op1
= getValue(I
.getOperand(0));
2541 SDValue Op2
= getValue(I
.getOperand(1));
2542 ISD::CondCode Condition
= getFCmpCondCode(predicate
);
2543 EVT DestVT
= TLI
.getValueType(I
.getType());
2544 setValue(&I
, DAG
.getSetCC(getCurDebugLoc(), DestVT
, Op1
, Op2
, Condition
));
2547 void SelectionDAGBuilder::visitSelect(const User
&I
) {
2548 SmallVector
<EVT
, 4> ValueVTs
;
2549 ComputeValueVTs(TLI
, I
.getType(), ValueVTs
);
2550 unsigned NumValues
= ValueVTs
.size();
2551 if (NumValues
== 0) return;
2553 SmallVector
<SDValue
, 4> Values(NumValues
);
2554 SDValue Cond
= getValue(I
.getOperand(0));
2555 SDValue TrueVal
= getValue(I
.getOperand(1));
2556 SDValue FalseVal
= getValue(I
.getOperand(2));
2558 for (unsigned i
= 0; i
!= NumValues
; ++i
)
2559 Values
[i
] = DAG
.getNode(ISD::SELECT
, getCurDebugLoc(),
2560 TrueVal
.getNode()->getValueType(TrueVal
.getResNo()+i
),
2562 SDValue(TrueVal
.getNode(),
2563 TrueVal
.getResNo() + i
),
2564 SDValue(FalseVal
.getNode(),
2565 FalseVal
.getResNo() + i
));
2567 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2568 DAG
.getVTList(&ValueVTs
[0], NumValues
),
2569 &Values
[0], NumValues
));
2572 void SelectionDAGBuilder::visitTrunc(const User
&I
) {
2573 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2574 SDValue N
= getValue(I
.getOperand(0));
2575 EVT DestVT
= TLI
.getValueType(I
.getType());
2576 setValue(&I
, DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), DestVT
, N
));
2579 void SelectionDAGBuilder::visitZExt(const User
&I
) {
2580 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2581 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2582 SDValue N
= getValue(I
.getOperand(0));
2583 EVT DestVT
= TLI
.getValueType(I
.getType());
2584 setValue(&I
, DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2587 void SelectionDAGBuilder::visitSExt(const User
&I
) {
2588 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2589 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2590 SDValue N
= getValue(I
.getOperand(0));
2591 EVT DestVT
= TLI
.getValueType(I
.getType());
2592 setValue(&I
, DAG
.getNode(ISD::SIGN_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2595 void SelectionDAGBuilder::visitFPTrunc(const User
&I
) {
2596 // FPTrunc is never a no-op cast, no need to check
2597 SDValue N
= getValue(I
.getOperand(0));
2598 EVT DestVT
= TLI
.getValueType(I
.getType());
2599 setValue(&I
, DAG
.getNode(ISD::FP_ROUND
, getCurDebugLoc(),
2600 DestVT
, N
, DAG
.getIntPtrConstant(0)));
2603 void SelectionDAGBuilder::visitFPExt(const User
&I
){
2604 // FPTrunc is never a no-op cast, no need to check
2605 SDValue N
= getValue(I
.getOperand(0));
2606 EVT DestVT
= TLI
.getValueType(I
.getType());
2607 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2610 void SelectionDAGBuilder::visitFPToUI(const User
&I
) {
2611 // FPToUI is never a no-op cast, no need to check
2612 SDValue N
= getValue(I
.getOperand(0));
2613 EVT DestVT
= TLI
.getValueType(I
.getType());
2614 setValue(&I
, DAG
.getNode(ISD::FP_TO_UINT
, getCurDebugLoc(), DestVT
, N
));
2617 void SelectionDAGBuilder::visitFPToSI(const User
&I
) {
2618 // FPToSI is never a no-op cast, no need to check
2619 SDValue N
= getValue(I
.getOperand(0));
2620 EVT DestVT
= TLI
.getValueType(I
.getType());
2621 setValue(&I
, DAG
.getNode(ISD::FP_TO_SINT
, getCurDebugLoc(), DestVT
, N
));
2624 void SelectionDAGBuilder::visitUIToFP(const User
&I
) {
2625 // UIToFP is never a no-op cast, no need to check
2626 SDValue N
= getValue(I
.getOperand(0));
2627 EVT DestVT
= TLI
.getValueType(I
.getType());
2628 setValue(&I
, DAG
.getNode(ISD::UINT_TO_FP
, getCurDebugLoc(), DestVT
, N
));
2631 void SelectionDAGBuilder::visitSIToFP(const User
&I
){
2632 // SIToFP is never a no-op cast, no need to check
2633 SDValue N
= getValue(I
.getOperand(0));
2634 EVT DestVT
= TLI
.getValueType(I
.getType());
2635 setValue(&I
, DAG
.getNode(ISD::SINT_TO_FP
, getCurDebugLoc(), DestVT
, N
));
2638 void SelectionDAGBuilder::visitPtrToInt(const User
&I
) {
2639 // What to do depends on the size of the integer and the size of the pointer.
2640 // We can either truncate, zero extend, or no-op, accordingly.
2641 SDValue N
= getValue(I
.getOperand(0));
2642 EVT DestVT
= TLI
.getValueType(I
.getType());
2643 setValue(&I
, DAG
.getZExtOrTrunc(N
, getCurDebugLoc(), DestVT
));
2646 void SelectionDAGBuilder::visitIntToPtr(const User
&I
) {
2647 // What to do depends on the size of the integer and the size of the pointer.
2648 // We can either truncate, zero extend, or no-op, accordingly.
2649 SDValue N
= getValue(I
.getOperand(0));
2650 EVT DestVT
= TLI
.getValueType(I
.getType());
2651 setValue(&I
, DAG
.getZExtOrTrunc(N
, getCurDebugLoc(), DestVT
));
2654 void SelectionDAGBuilder::visitBitCast(const User
&I
) {
2655 SDValue N
= getValue(I
.getOperand(0));
2656 EVT DestVT
= TLI
.getValueType(I
.getType());
2658 // BitCast assures us that source and destination are the same size so this is
2659 // either a BITCAST or a no-op.
2660 if (DestVT
!= N
.getValueType())
2661 setValue(&I
, DAG
.getNode(ISD::BITCAST
, getCurDebugLoc(),
2662 DestVT
, N
)); // convert types.
2664 setValue(&I
, N
); // noop cast.
2667 void SelectionDAGBuilder::visitInsertElement(const User
&I
) {
2668 SDValue InVec
= getValue(I
.getOperand(0));
2669 SDValue InVal
= getValue(I
.getOperand(1));
2670 SDValue InIdx
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2672 getValue(I
.getOperand(2)));
2673 setValue(&I
, DAG
.getNode(ISD::INSERT_VECTOR_ELT
, getCurDebugLoc(),
2674 TLI
.getValueType(I
.getType()),
2675 InVec
, InVal
, InIdx
));
2678 void SelectionDAGBuilder::visitExtractElement(const User
&I
) {
2679 SDValue InVec
= getValue(I
.getOperand(0));
2680 SDValue InIdx
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2682 getValue(I
.getOperand(1)));
2683 setValue(&I
, DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2684 TLI
.getValueType(I
.getType()), InVec
, InIdx
));
2687 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2688 // from SIndx and increasing to the element length (undefs are allowed).
2689 static bool SequentialMask(SmallVectorImpl
<int> &Mask
, unsigned SIndx
) {
2690 unsigned MaskNumElts
= Mask
.size();
2691 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
)
2692 if ((Mask
[i
] >= 0) && (Mask
[i
] != (int)(i
+ SIndx
)))
2697 void SelectionDAGBuilder::visitShuffleVector(const User
&I
) {
2698 SmallVector
<int, 8> Mask
;
2699 SDValue Src1
= getValue(I
.getOperand(0));
2700 SDValue Src2
= getValue(I
.getOperand(1));
2702 // Convert the ConstantVector mask operand into an array of ints, with -1
2703 // representing undef values.
2704 SmallVector
<Constant
*, 8> MaskElts
;
2705 cast
<Constant
>(I
.getOperand(2))->getVectorElements(MaskElts
);
2706 unsigned MaskNumElts
= MaskElts
.size();
2707 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2708 if (isa
<UndefValue
>(MaskElts
[i
]))
2711 Mask
.push_back(cast
<ConstantInt
>(MaskElts
[i
])->getSExtValue());
2714 EVT VT
= TLI
.getValueType(I
.getType());
2715 EVT SrcVT
= Src1
.getValueType();
2716 unsigned SrcNumElts
= SrcVT
.getVectorNumElements();
2718 if (SrcNumElts
== MaskNumElts
) {
2719 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2724 // Normalize the shuffle vector since mask and vector length don't match.
2725 if (SrcNumElts
< MaskNumElts
&& MaskNumElts
% SrcNumElts
== 0) {
2726 // Mask is longer than the source vectors and is a multiple of the source
2727 // vectors. We can use concatenate vector to make the mask and vectors
2729 if (SrcNumElts
*2 == MaskNumElts
&& SequentialMask(Mask
, 0)) {
2730 // The shuffle is concatenating two vectors together.
2731 setValue(&I
, DAG
.getNode(ISD::CONCAT_VECTORS
, getCurDebugLoc(),
2736 // Pad both vectors with undefs to make them the same length as the mask.
2737 unsigned NumConcat
= MaskNumElts
/ SrcNumElts
;
2738 bool Src1U
= Src1
.getOpcode() == ISD::UNDEF
;
2739 bool Src2U
= Src2
.getOpcode() == ISD::UNDEF
;
2740 SDValue UndefVal
= DAG
.getUNDEF(SrcVT
);
2742 SmallVector
<SDValue
, 8> MOps1(NumConcat
, UndefVal
);
2743 SmallVector
<SDValue
, 8> MOps2(NumConcat
, UndefVal
);
2747 Src1
= Src1U
? DAG
.getUNDEF(VT
) : DAG
.getNode(ISD::CONCAT_VECTORS
,
2748 getCurDebugLoc(), VT
,
2749 &MOps1
[0], NumConcat
);
2750 Src2
= Src2U
? DAG
.getUNDEF(VT
) : DAG
.getNode(ISD::CONCAT_VECTORS
,
2751 getCurDebugLoc(), VT
,
2752 &MOps2
[0], NumConcat
);
2754 // Readjust mask for new input vector length.
2755 SmallVector
<int, 8> MappedOps
;
2756 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2758 if (Idx
< (int)SrcNumElts
)
2759 MappedOps
.push_back(Idx
);
2761 MappedOps
.push_back(Idx
+ MaskNumElts
- SrcNumElts
);
2764 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2769 if (SrcNumElts
> MaskNumElts
) {
2770 // Analyze the access pattern of the vector to see if we can extract
2771 // two subvectors and do the shuffle. The analysis is done by calculating
2772 // the range of elements the mask access on both vectors.
2773 int MinRange
[2] = { SrcNumElts
+1, SrcNumElts
+1};
2774 int MaxRange
[2] = {-1, -1};
2776 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2782 if (Idx
>= (int)SrcNumElts
) {
2786 if (Idx
> MaxRange
[Input
])
2787 MaxRange
[Input
] = Idx
;
2788 if (Idx
< MinRange
[Input
])
2789 MinRange
[Input
] = Idx
;
2792 // Check if the access is smaller than the vector size and can we find
2793 // a reasonable extract index.
2794 int RangeUse
[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not
2796 int StartIdx
[2]; // StartIdx to extract from
2797 for (int Input
=0; Input
< 2; ++Input
) {
2798 if (MinRange
[Input
] == (int)(SrcNumElts
+1) && MaxRange
[Input
] == -1) {
2799 RangeUse
[Input
] = 0; // Unused
2800 StartIdx
[Input
] = 0;
2801 } else if (MaxRange
[Input
] - MinRange
[Input
] < (int)MaskNumElts
) {
2802 // Fits within range but we should see if we can find a good
2803 // start index that is a multiple of the mask length.
2804 if (MaxRange
[Input
] < (int)MaskNumElts
) {
2805 RangeUse
[Input
] = 1; // Extract from beginning of the vector
2806 StartIdx
[Input
] = 0;
2808 StartIdx
[Input
] = (MinRange
[Input
]/MaskNumElts
)*MaskNumElts
;
2809 if (MaxRange
[Input
] - StartIdx
[Input
] < (int)MaskNumElts
&&
2810 StartIdx
[Input
] + MaskNumElts
<= SrcNumElts
)
2811 RangeUse
[Input
] = 1; // Extract from a multiple of the mask length.
2816 if (RangeUse
[0] == 0 && RangeUse
[1] == 0) {
2817 setValue(&I
, DAG
.getUNDEF(VT
)); // Vectors are not used.
2820 else if (RangeUse
[0] < 2 && RangeUse
[1] < 2) {
2821 // Extract appropriate subvector and generate a vector shuffle
2822 for (int Input
=0; Input
< 2; ++Input
) {
2823 SDValue
&Src
= Input
== 0 ? Src1
: Src2
;
2824 if (RangeUse
[Input
] == 0)
2825 Src
= DAG
.getUNDEF(VT
);
2827 Src
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, getCurDebugLoc(), VT
,
2828 Src
, DAG
.getIntPtrConstant(StartIdx
[Input
]));
2831 // Calculate new mask.
2832 SmallVector
<int, 8> MappedOps
;
2833 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2836 MappedOps
.push_back(Idx
);
2837 else if (Idx
< (int)SrcNumElts
)
2838 MappedOps
.push_back(Idx
- StartIdx
[0]);
2840 MappedOps
.push_back(Idx
- SrcNumElts
- StartIdx
[1] + MaskNumElts
);
2843 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2849 // We can't use either concat vectors or extract subvectors so fall back to
2850 // replacing the shuffle with extract and build vector.
2851 // to insert and build vector.
2852 EVT EltVT
= VT
.getVectorElementType();
2853 EVT PtrVT
= TLI
.getPointerTy();
2854 SmallVector
<SDValue
,8> Ops
;
2855 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2857 Ops
.push_back(DAG
.getUNDEF(EltVT
));
2862 if (Idx
< (int)SrcNumElts
)
2863 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2864 EltVT
, Src1
, DAG
.getConstant(Idx
, PtrVT
));
2866 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2868 DAG
.getConstant(Idx
- SrcNumElts
, PtrVT
));
2874 setValue(&I
, DAG
.getNode(ISD::BUILD_VECTOR
, getCurDebugLoc(),
2875 VT
, &Ops
[0], Ops
.size()));
2878 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst
&I
) {
2879 const Value
*Op0
= I
.getOperand(0);
2880 const Value
*Op1
= I
.getOperand(1);
2881 const Type
*AggTy
= I
.getType();
2882 const Type
*ValTy
= Op1
->getType();
2883 bool IntoUndef
= isa
<UndefValue
>(Op0
);
2884 bool FromUndef
= isa
<UndefValue
>(Op1
);
2886 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, I
.idx_begin(), I
.idx_end());
2888 SmallVector
<EVT
, 4> AggValueVTs
;
2889 ComputeValueVTs(TLI
, AggTy
, AggValueVTs
);
2890 SmallVector
<EVT
, 4> ValValueVTs
;
2891 ComputeValueVTs(TLI
, ValTy
, ValValueVTs
);
2893 unsigned NumAggValues
= AggValueVTs
.size();
2894 unsigned NumValValues
= ValValueVTs
.size();
2895 SmallVector
<SDValue
, 4> Values(NumAggValues
);
2897 SDValue Agg
= getValue(Op0
);
2899 // Copy the beginning value(s) from the original aggregate.
2900 for (; i
!= LinearIndex
; ++i
)
2901 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2902 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2903 // Copy values from the inserted value(s).
2905 SDValue Val
= getValue(Op1
);
2906 for (; i
!= LinearIndex
+ NumValValues
; ++i
)
2907 Values
[i
] = FromUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2908 SDValue(Val
.getNode(), Val
.getResNo() + i
- LinearIndex
);
2910 // Copy remaining value(s) from the original aggregate.
2911 for (; i
!= NumAggValues
; ++i
)
2912 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2913 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2915 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2916 DAG
.getVTList(&AggValueVTs
[0], NumAggValues
),
2917 &Values
[0], NumAggValues
));
2920 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst
&I
) {
2921 const Value
*Op0
= I
.getOperand(0);
2922 const Type
*AggTy
= Op0
->getType();
2923 const Type
*ValTy
= I
.getType();
2924 bool OutOfUndef
= isa
<UndefValue
>(Op0
);
2926 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, I
.idx_begin(), I
.idx_end());
2928 SmallVector
<EVT
, 4> ValValueVTs
;
2929 ComputeValueVTs(TLI
, ValTy
, ValValueVTs
);
2931 unsigned NumValValues
= ValValueVTs
.size();
2933 // Ignore a extractvalue that produces an empty object
2934 if (!NumValValues
) {
2935 setValue(&I
, DAG
.getUNDEF(MVT(MVT::Other
)));
2939 SmallVector
<SDValue
, 4> Values(NumValValues
);
2941 SDValue Agg
= getValue(Op0
);
2942 // Copy out the selected value(s).
2943 for (unsigned i
= LinearIndex
; i
!= LinearIndex
+ NumValValues
; ++i
)
2944 Values
[i
- LinearIndex
] =
2946 DAG
.getUNDEF(Agg
.getNode()->getValueType(Agg
.getResNo() + i
)) :
2947 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2949 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2950 DAG
.getVTList(&ValValueVTs
[0], NumValValues
),
2951 &Values
[0], NumValValues
));
2954 void SelectionDAGBuilder::visitGetElementPtr(const User
&I
) {
2955 SDValue N
= getValue(I
.getOperand(0));
2956 const Type
*Ty
= I
.getOperand(0)->getType();
2958 for (GetElementPtrInst::const_op_iterator OI
= I
.op_begin()+1, E
= I
.op_end();
2960 const Value
*Idx
= *OI
;
2961 if (const StructType
*StTy
= dyn_cast
<StructType
>(Ty
)) {
2962 unsigned Field
= cast
<ConstantInt
>(Idx
)->getZExtValue();
2965 uint64_t Offset
= TD
->getStructLayout(StTy
)->getElementOffset(Field
);
2966 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(), N
.getValueType(), N
,
2967 DAG
.getIntPtrConstant(Offset
));
2970 Ty
= StTy
->getElementType(Field
);
2972 Ty
= cast
<SequentialType
>(Ty
)->getElementType();
2974 // If this is a constant subscript, handle it quickly.
2975 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
)) {
2976 if (CI
->isZero()) continue;
2978 TD
->getTypeAllocSize(Ty
)*cast
<ConstantInt
>(CI
)->getSExtValue();
2980 EVT PTy
= TLI
.getPointerTy();
2981 unsigned PtrBits
= PTy
.getSizeInBits();
2983 OffsVal
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2985 DAG
.getConstant(Offs
, MVT::i64
));
2987 OffsVal
= DAG
.getIntPtrConstant(Offs
);
2989 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(), N
.getValueType(), N
,
2994 // N = N + Idx * ElementSize;
2995 APInt ElementSize
= APInt(TLI
.getPointerTy().getSizeInBits(),
2996 TD
->getTypeAllocSize(Ty
));
2997 SDValue IdxN
= getValue(Idx
);
2999 // If the index is smaller or larger than intptr_t, truncate or extend
3001 IdxN
= DAG
.getSExtOrTrunc(IdxN
, getCurDebugLoc(), N
.getValueType());
3003 // If this is a multiply by a power of two, turn it into a shl
3004 // immediately. This is a very common case.
3005 if (ElementSize
!= 1) {
3006 if (ElementSize
.isPowerOf2()) {
3007 unsigned Amt
= ElementSize
.logBase2();
3008 IdxN
= DAG
.getNode(ISD::SHL
, getCurDebugLoc(),
3009 N
.getValueType(), IdxN
,
3010 DAG
.getConstant(Amt
, TLI
.getPointerTy()));
3012 SDValue Scale
= DAG
.getConstant(ElementSize
, TLI
.getPointerTy());
3013 IdxN
= DAG
.getNode(ISD::MUL
, getCurDebugLoc(),
3014 N
.getValueType(), IdxN
, Scale
);
3018 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
3019 N
.getValueType(), N
, IdxN
);
3026 void SelectionDAGBuilder::visitAlloca(const AllocaInst
&I
) {
3027 // If this is a fixed sized alloca in the entry block of the function,
3028 // allocate it statically on the stack.
3029 if (FuncInfo
.StaticAllocaMap
.count(&I
))
3030 return; // getValue will auto-populate this.
3032 const Type
*Ty
= I
.getAllocatedType();
3033 uint64_t TySize
= TLI
.getTargetData()->getTypeAllocSize(Ty
);
3035 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
),
3038 SDValue AllocSize
= getValue(I
.getArraySize());
3040 EVT IntPtr
= TLI
.getPointerTy();
3041 if (AllocSize
.getValueType() != IntPtr
)
3042 AllocSize
= DAG
.getZExtOrTrunc(AllocSize
, getCurDebugLoc(), IntPtr
);
3044 AllocSize
= DAG
.getNode(ISD::MUL
, getCurDebugLoc(), IntPtr
,
3046 DAG
.getConstant(TySize
, IntPtr
));
3048 // Handle alignment. If the requested alignment is less than or equal to
3049 // the stack alignment, ignore it. If the size is greater than or equal to
3050 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3051 unsigned StackAlign
= TM
.getFrameLowering()->getStackAlignment();
3052 if (Align
<= StackAlign
)
3055 // Round the size of the allocation up to the stack alignment size
3056 // by add SA-1 to the size.
3057 AllocSize
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
3058 AllocSize
.getValueType(), AllocSize
,
3059 DAG
.getIntPtrConstant(StackAlign
-1));
3061 // Mask out the low bits for alignment purposes.
3062 AllocSize
= DAG
.getNode(ISD::AND
, getCurDebugLoc(),
3063 AllocSize
.getValueType(), AllocSize
,
3064 DAG
.getIntPtrConstant(~(uint64_t)(StackAlign
-1)));
3066 SDValue Ops
[] = { getRoot(), AllocSize
, DAG
.getIntPtrConstant(Align
) };
3067 SDVTList VTs
= DAG
.getVTList(AllocSize
.getValueType(), MVT::Other
);
3068 SDValue DSA
= DAG
.getNode(ISD::DYNAMIC_STACKALLOC
, getCurDebugLoc(),
3071 DAG
.setRoot(DSA
.getValue(1));
3073 // Inform the Frame Information that we have just allocated a variable-sized
3075 FuncInfo
.MF
->getFrameInfo()->CreateVariableSizedObject(Align
? Align
: 1);
3078 void SelectionDAGBuilder::visitLoad(const LoadInst
&I
) {
3079 const Value
*SV
= I
.getOperand(0);
3080 SDValue Ptr
= getValue(SV
);
3082 const Type
*Ty
= I
.getType();
3084 bool isVolatile
= I
.isVolatile();
3085 bool isNonTemporal
= I
.getMetadata("nontemporal") != 0;
3086 unsigned Alignment
= I
.getAlignment();
3087 const MDNode
*TBAAInfo
= I
.getMetadata(LLVMContext::MD_tbaa
);
3089 SmallVector
<EVT
, 4> ValueVTs
;
3090 SmallVector
<uint64_t, 4> Offsets
;
3091 ComputeValueVTs(TLI
, Ty
, ValueVTs
, &Offsets
);
3092 unsigned NumValues
= ValueVTs
.size();
3097 bool ConstantMemory
= false;
3098 if (I
.isVolatile() || NumValues
> MaxParallelChains
)
3099 // Serialize volatile loads with other side effects.
3101 else if (AA
->pointsToConstantMemory(
3102 AliasAnalysis::Location(SV
, AA
->getTypeStoreSize(Ty
), TBAAInfo
))) {
3103 // Do not serialize (non-volatile) loads of constant memory with anything.
3104 Root
= DAG
.getEntryNode();
3105 ConstantMemory
= true;
3107 // Do not serialize non-volatile loads against each other.
3108 Root
= DAG
.getRoot();
3111 SmallVector
<SDValue
, 4> Values(NumValues
);
3112 SmallVector
<SDValue
, 4> Chains(std::min(unsigned(MaxParallelChains
),
3114 EVT PtrVT
= Ptr
.getValueType();
3115 unsigned ChainI
= 0;
3116 for (unsigned i
= 0; i
!= NumValues
; ++i
, ++ChainI
) {
3117 // Serializing loads here may result in excessive register pressure, and
3118 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3119 // could recover a bit by hoisting nodes upward in the chain by recognizing
3120 // they are side-effect free or do not alias. The optimizer should really
3121 // avoid this case by converting large object/array copies to llvm.memcpy
3122 // (MaxParallelChains should always remain as failsafe).
3123 if (ChainI
== MaxParallelChains
) {
3124 assert(PendingLoads
.empty() && "PendingLoads must be serialized first");
3125 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
3126 MVT::Other
, &Chains
[0], ChainI
);
3130 SDValue A
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
3132 DAG
.getConstant(Offsets
[i
], PtrVT
));
3133 SDValue L
= DAG
.getLoad(ValueVTs
[i
], getCurDebugLoc(), Root
,
3134 A
, MachinePointerInfo(SV
, Offsets
[i
]), isVolatile
,
3135 isNonTemporal
, Alignment
, TBAAInfo
);
3138 Chains
[ChainI
] = L
.getValue(1);
3141 if (!ConstantMemory
) {
3142 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
3143 MVT::Other
, &Chains
[0], ChainI
);
3147 PendingLoads
.push_back(Chain
);
3150 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
3151 DAG
.getVTList(&ValueVTs
[0], NumValues
),
3152 &Values
[0], NumValues
));
3155 void SelectionDAGBuilder::visitStore(const StoreInst
&I
) {
3156 const Value
*SrcV
= I
.getOperand(0);
3157 const Value
*PtrV
= I
.getOperand(1);
3159 SmallVector
<EVT
, 4> ValueVTs
;
3160 SmallVector
<uint64_t, 4> Offsets
;
3161 ComputeValueVTs(TLI
, SrcV
->getType(), ValueVTs
, &Offsets
);
3162 unsigned NumValues
= ValueVTs
.size();
3166 // Get the lowered operands. Note that we do this after
3167 // checking if NumResults is zero, because with zero results
3168 // the operands won't have values in the map.
3169 SDValue Src
= getValue(SrcV
);
3170 SDValue Ptr
= getValue(PtrV
);
3172 SDValue Root
= getRoot();
3173 SmallVector
<SDValue
, 4> Chains(std::min(unsigned(MaxParallelChains
),
3175 EVT PtrVT
= Ptr
.getValueType();
3176 bool isVolatile
= I
.isVolatile();
3177 bool isNonTemporal
= I
.getMetadata("nontemporal") != 0;
3178 unsigned Alignment
= I
.getAlignment();
3179 const MDNode
*TBAAInfo
= I
.getMetadata(LLVMContext::MD_tbaa
);
3181 unsigned ChainI
= 0;
3182 for (unsigned i
= 0; i
!= NumValues
; ++i
, ++ChainI
) {
3183 // See visitLoad comments.
3184 if (ChainI
== MaxParallelChains
) {
3185 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
3186 MVT::Other
, &Chains
[0], ChainI
);
3190 SDValue Add
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(), PtrVT
, Ptr
,
3191 DAG
.getConstant(Offsets
[i
], PtrVT
));
3192 SDValue St
= DAG
.getStore(Root
, getCurDebugLoc(),
3193 SDValue(Src
.getNode(), Src
.getResNo() + i
),
3194 Add
, MachinePointerInfo(PtrV
, Offsets
[i
]),
3195 isVolatile
, isNonTemporal
, Alignment
, TBAAInfo
);
3196 Chains
[ChainI
] = St
;
3199 SDValue StoreNode
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
3200 MVT::Other
, &Chains
[0], ChainI
);
3202 AssignOrderingToNode(StoreNode
.getNode());
3203 DAG
.setRoot(StoreNode
);
3206 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3208 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst
&I
,
3209 unsigned Intrinsic
) {
3210 bool HasChain
= !I
.doesNotAccessMemory();
3211 bool OnlyLoad
= HasChain
&& I
.onlyReadsMemory();
3213 // Build the operand list.
3214 SmallVector
<SDValue
, 8> Ops
;
3215 if (HasChain
) { // If this intrinsic has side-effects, chainify it.
3217 // We don't need to serialize loads against other loads.
3218 Ops
.push_back(DAG
.getRoot());
3220 Ops
.push_back(getRoot());
3224 // Info is set by getTgtMemInstrinsic
3225 TargetLowering::IntrinsicInfo Info
;
3226 bool IsTgtIntrinsic
= TLI
.getTgtMemIntrinsic(Info
, I
, Intrinsic
);
3228 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3229 if (!IsTgtIntrinsic
|| Info
.opc
== ISD::INTRINSIC_VOID
||
3230 Info
.opc
== ISD::INTRINSIC_W_CHAIN
)
3231 Ops
.push_back(DAG
.getConstant(Intrinsic
, TLI
.getPointerTy()));
3233 // Add all operands of the call to the operand list.
3234 for (unsigned i
= 0, e
= I
.getNumArgOperands(); i
!= e
; ++i
) {
3235 SDValue Op
= getValue(I
.getArgOperand(i
));
3236 assert(TLI
.isTypeLegal(Op
.getValueType()) &&
3237 "Intrinsic uses a non-legal type?");
3241 SmallVector
<EVT
, 4> ValueVTs
;
3242 ComputeValueVTs(TLI
, I
.getType(), ValueVTs
);
3244 for (unsigned Val
= 0, E
= ValueVTs
.size(); Val
!= E
; ++Val
) {
3245 assert(TLI
.isTypeLegal(ValueVTs
[Val
]) &&
3246 "Intrinsic uses a non-legal type?");
3251 ValueVTs
.push_back(MVT::Other
);
3253 SDVTList VTs
= DAG
.getVTList(ValueVTs
.data(), ValueVTs
.size());
3257 if (IsTgtIntrinsic
) {
3258 // This is target intrinsic that touches memory
3259 Result
= DAG
.getMemIntrinsicNode(Info
.opc
, getCurDebugLoc(),
3260 VTs
, &Ops
[0], Ops
.size(),
3262 MachinePointerInfo(Info
.ptrVal
, Info
.offset
),
3263 Info
.align
, Info
.vol
,
3264 Info
.readMem
, Info
.writeMem
);
3265 } else if (!HasChain
) {
3266 Result
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, getCurDebugLoc(),
3267 VTs
, &Ops
[0], Ops
.size());
3268 } else if (!I
.getType()->isVoidTy()) {
3269 Result
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, getCurDebugLoc(),
3270 VTs
, &Ops
[0], Ops
.size());
3272 Result
= DAG
.getNode(ISD::INTRINSIC_VOID
, getCurDebugLoc(),
3273 VTs
, &Ops
[0], Ops
.size());
3277 SDValue Chain
= Result
.getValue(Result
.getNode()->getNumValues()-1);
3279 PendingLoads
.push_back(Chain
);
3284 if (!I
.getType()->isVoidTy()) {
3285 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(I
.getType())) {
3286 EVT VT
= TLI
.getValueType(PTy
);
3287 Result
= DAG
.getNode(ISD::BITCAST
, getCurDebugLoc(), VT
, Result
);
3290 setValue(&I
, Result
);
3294 /// GetSignificand - Get the significand and build it into a floating-point
3295 /// number with exponent of 1:
3297 /// Op = (Op & 0x007fffff) | 0x3f800000;
3299 /// where Op is the hexidecimal representation of floating point value.
3301 GetSignificand(SelectionDAG
&DAG
, SDValue Op
, DebugLoc dl
) {
3302 SDValue t1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
3303 DAG
.getConstant(0x007fffff, MVT::i32
));
3304 SDValue t2
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, t1
,
3305 DAG
.getConstant(0x3f800000, MVT::i32
));
3306 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
, t2
);
3309 /// GetExponent - Get the exponent:
3311 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3313 /// where Op is the hexidecimal representation of floating point value.
3315 GetExponent(SelectionDAG
&DAG
, SDValue Op
, const TargetLowering
&TLI
,
3317 SDValue t0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
3318 DAG
.getConstant(0x7f800000, MVT::i32
));
3319 SDValue t1
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, t0
,
3320 DAG
.getConstant(23, TLI
.getPointerTy()));
3321 SDValue t2
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, t1
,
3322 DAG
.getConstant(127, MVT::i32
));
3323 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, t2
);
3326 /// getF32Constant - Get 32-bit floating point constant.
3328 getF32Constant(SelectionDAG
&DAG
, unsigned Flt
) {
3329 return DAG
.getConstantFP(APFloat(APInt(32, Flt
)), MVT::f32
);
3332 /// Inlined utility function to implement binary input atomic intrinsics for
3333 /// visitIntrinsicCall: I is a call instruction
3334 /// Op is the associated NodeType for I
3336 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst
& I
,
3338 SDValue Root
= getRoot();
3340 DAG
.getAtomic(Op
, getCurDebugLoc(),
3341 getValue(I
.getArgOperand(1)).getValueType().getSimpleVT(),
3343 getValue(I
.getArgOperand(0)),
3344 getValue(I
.getArgOperand(1)),
3345 I
.getArgOperand(0));
3347 DAG
.setRoot(L
.getValue(1));
3351 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3353 SelectionDAGBuilder::implVisitAluOverflow(const CallInst
&I
, ISD::NodeType Op
) {
3354 SDValue Op1
= getValue(I
.getArgOperand(0));
3355 SDValue Op2
= getValue(I
.getArgOperand(1));
3357 SDVTList VTs
= DAG
.getVTList(Op1
.getValueType(), MVT::i1
);
3358 setValue(&I
, DAG
.getNode(Op
, getCurDebugLoc(), VTs
, Op1
, Op2
));
3362 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3363 /// limited-precision mode.
3365 SelectionDAGBuilder::visitExp(const CallInst
&I
) {
3367 DebugLoc dl
= getCurDebugLoc();
3369 if (getValue(I
.getArgOperand(0)).getValueType() == MVT::f32
&&
3370 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3371 SDValue Op
= getValue(I
.getArgOperand(0));
3373 // Put the exponent in the right bit position for later addition to the
3376 // #define LOG2OFe 1.4426950f
3377 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3378 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
3379 getF32Constant(DAG
, 0x3fb8aa3b));
3380 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
3382 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3383 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3384 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
3386 // IntegerPartOfX <<= 23;
3387 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3388 DAG
.getConstant(23, TLI
.getPointerTy()));
3390 if (LimitFloatPrecision
<= 6) {
3391 // For floating-point precision of 6:
3393 // TwoToFractionalPartOfX =
3395 // (0.735607626f + 0.252464424f * x) * x;
3397 // error 0.0144103317, which is 6 bits
3398 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3399 getF32Constant(DAG
, 0x3e814304));
3400 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3401 getF32Constant(DAG
, 0x3f3c50c8));
3402 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3403 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3404 getF32Constant(DAG
, 0x3f7f5e7e));
3405 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BITCAST
, dl
,MVT::i32
, t5
);
3407 // Add the exponent into the result in integer domain.
3408 SDValue t6
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3409 TwoToFracPartOfX
, IntegerPartOfX
);
3411 result
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
, t6
);
3412 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3413 // For floating-point precision of 12:
3415 // TwoToFractionalPartOfX =
3418 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3420 // 0.000107046256 error, which is 13 to 14 bits
3421 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3422 getF32Constant(DAG
, 0x3da235e3));
3423 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3424 getF32Constant(DAG
, 0x3e65b8f3));
3425 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3426 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3427 getF32Constant(DAG
, 0x3f324b07));
3428 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3429 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3430 getF32Constant(DAG
, 0x3f7ff8fd));
3431 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BITCAST
, dl
,MVT::i32
, t7
);
3433 // Add the exponent into the result in integer domain.
3434 SDValue t8
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3435 TwoToFracPartOfX
, IntegerPartOfX
);
3437 result
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
, t8
);
3438 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3439 // For floating-point precision of 18:
3441 // TwoToFractionalPartOfX =
3445 // (0.554906021e-1f +
3446 // (0.961591928e-2f +
3447 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3449 // error 2.47208000*10^(-7), which is better than 18 bits
3450 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3451 getF32Constant(DAG
, 0x3924b03e));
3452 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3453 getF32Constant(DAG
, 0x3ab24b87));
3454 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3455 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3456 getF32Constant(DAG
, 0x3c1d8c17));
3457 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3458 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3459 getF32Constant(DAG
, 0x3d634a1d));
3460 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3461 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3462 getF32Constant(DAG
, 0x3e75fe14));
3463 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3464 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
3465 getF32Constant(DAG
, 0x3f317234));
3466 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
3467 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
3468 getF32Constant(DAG
, 0x3f800000));
3469 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BITCAST
, dl
,
3472 // Add the exponent into the result in integer domain.
3473 SDValue t14
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3474 TwoToFracPartOfX
, IntegerPartOfX
);
3476 result
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
, t14
);
3479 // No special expansion.
3480 result
= DAG
.getNode(ISD::FEXP
, dl
,
3481 getValue(I
.getArgOperand(0)).getValueType(),
3482 getValue(I
.getArgOperand(0)));
3485 setValue(&I
, result
);
3488 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3489 /// limited-precision mode.
3491 SelectionDAGBuilder::visitLog(const CallInst
&I
) {
3493 DebugLoc dl
= getCurDebugLoc();
3495 if (getValue(I
.getArgOperand(0)).getValueType() == MVT::f32
&&
3496 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3497 SDValue Op
= getValue(I
.getArgOperand(0));
3498 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
3500 // Scale the exponent by log(2) [0.69314718f].
3501 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
3502 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
3503 getF32Constant(DAG
, 0x3f317218));
3505 // Get the significand and build it into a floating-point number with
3507 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3509 if (LimitFloatPrecision
<= 6) {
3510 // For floating-point precision of 6:
3514 // (1.4034025f - 0.23903021f * x) * x;
3516 // error 0.0034276066, which is better than 8 bits
3517 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3518 getF32Constant(DAG
, 0xbe74c456));
3519 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3520 getF32Constant(DAG
, 0x3fb3a2b1));
3521 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3522 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3523 getF32Constant(DAG
, 0x3f949a29));
3525 result
= DAG
.getNode(ISD::FADD
, dl
,
3526 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3527 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3528 // For floating-point precision of 12:
3534 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3536 // error 0.000061011436, which is 14 bits
3537 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3538 getF32Constant(DAG
, 0xbd67b6d6));
3539 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3540 getF32Constant(DAG
, 0x3ee4f4b8));
3541 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3542 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3543 getF32Constant(DAG
, 0x3fbc278b));
3544 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3545 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3546 getF32Constant(DAG
, 0x40348e95));
3547 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3548 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3549 getF32Constant(DAG
, 0x3fdef31a));
3551 result
= DAG
.getNode(ISD::FADD
, dl
,
3552 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3553 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3554 // For floating-point precision of 18:
3562 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3564 // error 0.0000023660568, which is better than 18 bits
3565 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3566 getF32Constant(DAG
, 0xbc91e5ac));
3567 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3568 getF32Constant(DAG
, 0x3e4350aa));
3569 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3570 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3571 getF32Constant(DAG
, 0x3f60d3e3));
3572 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3573 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3574 getF32Constant(DAG
, 0x4011cdf0));
3575 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3576 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3577 getF32Constant(DAG
, 0x406cfd1c));
3578 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3579 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3580 getF32Constant(DAG
, 0x408797cb));
3581 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3582 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
3583 getF32Constant(DAG
, 0x4006dcab));
3585 result
= DAG
.getNode(ISD::FADD
, dl
,
3586 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3589 // No special expansion.
3590 result
= DAG
.getNode(ISD::FLOG
, dl
,
3591 getValue(I
.getArgOperand(0)).getValueType(),
3592 getValue(I
.getArgOperand(0)));
3595 setValue(&I
, result
);
3598 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3599 /// limited-precision mode.
3601 SelectionDAGBuilder::visitLog2(const CallInst
&I
) {
3603 DebugLoc dl
= getCurDebugLoc();
3605 if (getValue(I
.getArgOperand(0)).getValueType() == MVT::f32
&&
3606 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3607 SDValue Op
= getValue(I
.getArgOperand(0));
3608 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
3610 // Get the exponent.
3611 SDValue LogOfExponent
= GetExponent(DAG
, Op1
, TLI
, dl
);
3613 // Get the significand and build it into a floating-point number with
3615 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3617 // Different possible minimax approximations of significand in
3618 // floating-point for various degrees of accuracy over [1,2].
3619 if (LimitFloatPrecision
<= 6) {
3620 // For floating-point precision of 6:
3622 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3624 // error 0.0049451742, which is more than 7 bits
3625 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3626 getF32Constant(DAG
, 0xbeb08fe0));
3627 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3628 getF32Constant(DAG
, 0x40019463));
3629 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3630 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3631 getF32Constant(DAG
, 0x3fd6633d));
3633 result
= DAG
.getNode(ISD::FADD
, dl
,
3634 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3635 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3636 // For floating-point precision of 12:
3642 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3644 // error 0.0000876136000, which is better than 13 bits
3645 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3646 getF32Constant(DAG
, 0xbda7262e));
3647 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3648 getF32Constant(DAG
, 0x3f25280b));
3649 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3650 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3651 getF32Constant(DAG
, 0x4007b923));
3652 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3653 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3654 getF32Constant(DAG
, 0x40823e2f));
3655 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3656 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3657 getF32Constant(DAG
, 0x4020d29c));
3659 result
= DAG
.getNode(ISD::FADD
, dl
,
3660 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3661 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3662 // For floating-point precision of 18:
3671 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3673 // error 0.0000018516, which is better than 18 bits
3674 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3675 getF32Constant(DAG
, 0xbcd2769e));
3676 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3677 getF32Constant(DAG
, 0x3e8ce0b9));
3678 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3679 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3680 getF32Constant(DAG
, 0x3fa22ae7));
3681 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3682 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3683 getF32Constant(DAG
, 0x40525723));
3684 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3685 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3686 getF32Constant(DAG
, 0x40aaf200));
3687 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3688 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3689 getF32Constant(DAG
, 0x40c39dad));
3690 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3691 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
3692 getF32Constant(DAG
, 0x4042902c));
3694 result
= DAG
.getNode(ISD::FADD
, dl
,
3695 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3698 // No special expansion.
3699 result
= DAG
.getNode(ISD::FLOG2
, dl
,
3700 getValue(I
.getArgOperand(0)).getValueType(),
3701 getValue(I
.getArgOperand(0)));
3704 setValue(&I
, result
);
3707 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3708 /// limited-precision mode.
3710 SelectionDAGBuilder::visitLog10(const CallInst
&I
) {
3712 DebugLoc dl
= getCurDebugLoc();
3714 if (getValue(I
.getArgOperand(0)).getValueType() == MVT::f32
&&
3715 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3716 SDValue Op
= getValue(I
.getArgOperand(0));
3717 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
3719 // Scale the exponent by log10(2) [0.30102999f].
3720 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
3721 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
3722 getF32Constant(DAG
, 0x3e9a209a));
3724 // Get the significand and build it into a floating-point number with
3726 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3728 if (LimitFloatPrecision
<= 6) {
3729 // For floating-point precision of 6:
3731 // Log10ofMantissa =
3733 // (0.60948995f - 0.10380950f * x) * x;
3735 // error 0.0014886165, which is 6 bits
3736 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3737 getF32Constant(DAG
, 0xbdd49a13));
3738 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3739 getF32Constant(DAG
, 0x3f1c0789));
3740 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3741 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3742 getF32Constant(DAG
, 0x3f011300));
3744 result
= DAG
.getNode(ISD::FADD
, dl
,
3745 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3746 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3747 // For floating-point precision of 12:
3749 // Log10ofMantissa =
3752 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3754 // error 0.00019228036, which is better than 12 bits
3755 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3756 getF32Constant(DAG
, 0x3d431f31));
3757 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
3758 getF32Constant(DAG
, 0x3ea21fb2));
3759 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3760 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3761 getF32Constant(DAG
, 0x3f6ae232));
3762 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3763 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
3764 getF32Constant(DAG
, 0x3f25f7c3));
3766 result
= DAG
.getNode(ISD::FADD
, dl
,
3767 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3768 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3769 // For floating-point precision of 18:
3771 // Log10ofMantissa =
3776 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3778 // error 0.0000037995730, which is better than 18 bits
3779 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3780 getF32Constant(DAG
, 0x3c5d51ce));
3781 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
3782 getF32Constant(DAG
, 0x3e00685a));
3783 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3784 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3785 getF32Constant(DAG
, 0x3efb6798));
3786 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3787 SDValue t5
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
3788 getF32Constant(DAG
, 0x3f88d192));
3789 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3790 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3791 getF32Constant(DAG
, 0x3fc4316c));
3792 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3793 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t8
,
3794 getF32Constant(DAG
, 0x3f57ce70));
3796 result
= DAG
.getNode(ISD::FADD
, dl
,
3797 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3800 // No special expansion.
3801 result
= DAG
.getNode(ISD::FLOG10
, dl
,
3802 getValue(I
.getArgOperand(0)).getValueType(),
3803 getValue(I
.getArgOperand(0)));
3806 setValue(&I
, result
);
3809 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3810 /// limited-precision mode.
3812 SelectionDAGBuilder::visitExp2(const CallInst
&I
) {
3814 DebugLoc dl
= getCurDebugLoc();
3816 if (getValue(I
.getArgOperand(0)).getValueType() == MVT::f32
&&
3817 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3818 SDValue Op
= getValue(I
.getArgOperand(0));
3820 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, Op
);
3822 // FractionalPartOfX = x - (float)IntegerPartOfX;
3823 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3824 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, Op
, t1
);
3826 // IntegerPartOfX <<= 23;
3827 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3828 DAG
.getConstant(23, TLI
.getPointerTy()));
3830 if (LimitFloatPrecision
<= 6) {
3831 // For floating-point precision of 6:
3833 // TwoToFractionalPartOfX =
3835 // (0.735607626f + 0.252464424f * x) * x;
3837 // error 0.0144103317, which is 6 bits
3838 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3839 getF32Constant(DAG
, 0x3e814304));
3840 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3841 getF32Constant(DAG
, 0x3f3c50c8));
3842 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3843 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3844 getF32Constant(DAG
, 0x3f7f5e7e));
3845 SDValue t6
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, t5
);
3846 SDValue TwoToFractionalPartOfX
=
3847 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t6
, IntegerPartOfX
);
3849 result
= DAG
.getNode(ISD::BITCAST
, dl
,
3850 MVT::f32
, TwoToFractionalPartOfX
);
3851 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3852 // For floating-point precision of 12:
3854 // TwoToFractionalPartOfX =
3857 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3859 // error 0.000107046256, which is 13 to 14 bits
3860 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3861 getF32Constant(DAG
, 0x3da235e3));
3862 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3863 getF32Constant(DAG
, 0x3e65b8f3));
3864 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3865 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3866 getF32Constant(DAG
, 0x3f324b07));
3867 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3868 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3869 getF32Constant(DAG
, 0x3f7ff8fd));
3870 SDValue t8
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, t7
);
3871 SDValue TwoToFractionalPartOfX
=
3872 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t8
, IntegerPartOfX
);
3874 result
= DAG
.getNode(ISD::BITCAST
, dl
,
3875 MVT::f32
, TwoToFractionalPartOfX
);
3876 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3877 // For floating-point precision of 18:
3879 // TwoToFractionalPartOfX =
3883 // (0.554906021e-1f +
3884 // (0.961591928e-2f +
3885 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3886 // error 2.47208000*10^(-7), which is better than 18 bits
3887 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3888 getF32Constant(DAG
, 0x3924b03e));
3889 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3890 getF32Constant(DAG
, 0x3ab24b87));
3891 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3892 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3893 getF32Constant(DAG
, 0x3c1d8c17));
3894 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3895 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3896 getF32Constant(DAG
, 0x3d634a1d));
3897 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3898 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3899 getF32Constant(DAG
, 0x3e75fe14));
3900 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3901 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
3902 getF32Constant(DAG
, 0x3f317234));
3903 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
3904 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
3905 getF32Constant(DAG
, 0x3f800000));
3906 SDValue t14
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, t13
);
3907 SDValue TwoToFractionalPartOfX
=
3908 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t14
, IntegerPartOfX
);
3910 result
= DAG
.getNode(ISD::BITCAST
, dl
,
3911 MVT::f32
, TwoToFractionalPartOfX
);
3914 // No special expansion.
3915 result
= DAG
.getNode(ISD::FEXP2
, dl
,
3916 getValue(I
.getArgOperand(0)).getValueType(),
3917 getValue(I
.getArgOperand(0)));
3920 setValue(&I
, result
);
3923 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3924 /// limited-precision mode with x == 10.0f.
3926 SelectionDAGBuilder::visitPow(const CallInst
&I
) {
3928 const Value
*Val
= I
.getArgOperand(0);
3929 DebugLoc dl
= getCurDebugLoc();
3930 bool IsExp10
= false;
3932 if (getValue(Val
).getValueType() == MVT::f32
&&
3933 getValue(I
.getArgOperand(1)).getValueType() == MVT::f32
&&
3934 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3935 if (Constant
*C
= const_cast<Constant
*>(dyn_cast
<Constant
>(Val
))) {
3936 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
3938 IsExp10
= CFP
->getValueAPF().bitwiseIsEqual(Ten
);
3943 if (IsExp10
&& LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3944 SDValue Op
= getValue(I
.getArgOperand(1));
3946 // Put the exponent in the right bit position for later addition to the
3949 // #define LOG2OF10 3.3219281f
3950 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
3951 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
3952 getF32Constant(DAG
, 0x40549a78));
3953 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
3955 // FractionalPartOfX = x - (float)IntegerPartOfX;
3956 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3957 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
3959 // IntegerPartOfX <<= 23;
3960 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3961 DAG
.getConstant(23, TLI
.getPointerTy()));
3963 if (LimitFloatPrecision
<= 6) {
3964 // For floating-point precision of 6:
3966 // twoToFractionalPartOfX =
3968 // (0.735607626f + 0.252464424f * x) * x;
3970 // error 0.0144103317, which is 6 bits
3971 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3972 getF32Constant(DAG
, 0x3e814304));
3973 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3974 getF32Constant(DAG
, 0x3f3c50c8));
3975 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3976 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3977 getF32Constant(DAG
, 0x3f7f5e7e));
3978 SDValue t6
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, t5
);
3979 SDValue TwoToFractionalPartOfX
=
3980 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t6
, IntegerPartOfX
);
3982 result
= DAG
.getNode(ISD::BITCAST
, dl
,
3983 MVT::f32
, TwoToFractionalPartOfX
);
3984 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3985 // For floating-point precision of 12:
3987 // TwoToFractionalPartOfX =
3990 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3992 // error 0.000107046256, which is 13 to 14 bits
3993 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3994 getF32Constant(DAG
, 0x3da235e3));
3995 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3996 getF32Constant(DAG
, 0x3e65b8f3));
3997 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3998 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3999 getF32Constant(DAG
, 0x3f324b07));
4000 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4001 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
4002 getF32Constant(DAG
, 0x3f7ff8fd));
4003 SDValue t8
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, t7
);
4004 SDValue TwoToFractionalPartOfX
=
4005 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t8
, IntegerPartOfX
);
4007 result
= DAG
.getNode(ISD::BITCAST
, dl
,
4008 MVT::f32
, TwoToFractionalPartOfX
);
4009 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4010 // For floating-point precision of 18:
4012 // TwoToFractionalPartOfX =
4016 // (0.554906021e-1f +
4017 // (0.961591928e-2f +
4018 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4019 // error 2.47208000*10^(-7), which is better than 18 bits
4020 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4021 getF32Constant(DAG
, 0x3924b03e));
4022 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4023 getF32Constant(DAG
, 0x3ab24b87));
4024 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4025 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4026 getF32Constant(DAG
, 0x3c1d8c17));
4027 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4028 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
4029 getF32Constant(DAG
, 0x3d634a1d));
4030 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
4031 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
4032 getF32Constant(DAG
, 0x3e75fe14));
4033 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
4034 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
4035 getF32Constant(DAG
, 0x3f317234));
4036 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
4037 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
4038 getF32Constant(DAG
, 0x3f800000));
4039 SDValue t14
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, t13
);
4040 SDValue TwoToFractionalPartOfX
=
4041 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t14
, IntegerPartOfX
);
4043 result
= DAG
.getNode(ISD::BITCAST
, dl
,
4044 MVT::f32
, TwoToFractionalPartOfX
);
4047 // No special expansion.
4048 result
= DAG
.getNode(ISD::FPOW
, dl
,
4049 getValue(I
.getArgOperand(0)).getValueType(),
4050 getValue(I
.getArgOperand(0)),
4051 getValue(I
.getArgOperand(1)));
4054 setValue(&I
, result
);
4058 /// ExpandPowI - Expand a llvm.powi intrinsic.
4059 static SDValue
ExpandPowI(DebugLoc DL
, SDValue LHS
, SDValue RHS
,
4060 SelectionDAG
&DAG
) {
4061 // If RHS is a constant, we can expand this out to a multiplication tree,
4062 // otherwise we end up lowering to a call to __powidf2 (for example). When
4063 // optimizing for size, we only want to do this if the expansion would produce
4064 // a small number of multiplies, otherwise we do the full expansion.
4065 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
4066 // Get the exponent as a positive value.
4067 unsigned Val
= RHSC
->getSExtValue();
4068 if ((int)Val
< 0) Val
= -Val
;
4070 // powi(x, 0) -> 1.0
4072 return DAG
.getConstantFP(1.0, LHS
.getValueType());
4074 const Function
*F
= DAG
.getMachineFunction().getFunction();
4075 if (!F
->hasFnAttr(Attribute::OptimizeForSize
) ||
4076 // If optimizing for size, don't insert too many multiplies. This
4077 // inserts up to 5 multiplies.
4078 CountPopulation_32(Val
)+Log2_32(Val
) < 7) {
4079 // We use the simple binary decomposition method to generate the multiply
4080 // sequence. There are more optimal ways to do this (for example,
4081 // powi(x,15) generates one more multiply than it should), but this has
4082 // the benefit of being both really simple and much better than a libcall.
4083 SDValue Res
; // Logically starts equal to 1.0
4084 SDValue CurSquare
= LHS
;
4088 Res
= DAG
.getNode(ISD::FMUL
, DL
,Res
.getValueType(), Res
, CurSquare
);
4090 Res
= CurSquare
; // 1.0*CurSquare.
4093 CurSquare
= DAG
.getNode(ISD::FMUL
, DL
, CurSquare
.getValueType(),
4094 CurSquare
, CurSquare
);
4098 // If the original was negative, invert the result, producing 1/(x*x*x).
4099 if (RHSC
->getSExtValue() < 0)
4100 Res
= DAG
.getNode(ISD::FDIV
, DL
, LHS
.getValueType(),
4101 DAG
.getConstantFP(1.0, LHS
.getValueType()), Res
);
4106 // Otherwise, expand to a libcall.
4107 return DAG
.getNode(ISD::FPOWI
, DL
, LHS
.getValueType(), LHS
, RHS
);
4110 // getTruncatedArgReg - Find underlying register used for an truncated
4112 static unsigned getTruncatedArgReg(const SDValue
&N
) {
4113 if (N
.getOpcode() != ISD::TRUNCATE
)
4116 const SDValue
&Ext
= N
.getOperand(0);
4117 if (Ext
.getOpcode() == ISD::AssertZext
|| Ext
.getOpcode() == ISD::AssertSext
){
4118 const SDValue
&CFR
= Ext
.getOperand(0);
4119 if (CFR
.getOpcode() == ISD::CopyFromReg
)
4120 return cast
<RegisterSDNode
>(CFR
.getOperand(1))->getReg();
4122 if (CFR
.getOpcode() == ISD::TRUNCATE
)
4123 return getTruncatedArgReg(CFR
);
4128 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4129 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4130 /// At the end of instruction selection, they will be inserted to the entry BB.
4132 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value
*V
, MDNode
*Variable
,
4135 const Argument
*Arg
= dyn_cast
<Argument
>(V
);
4139 MachineFunction
&MF
= DAG
.getMachineFunction();
4140 const TargetInstrInfo
*TII
= DAG
.getTarget().getInstrInfo();
4141 const TargetRegisterInfo
*TRI
= DAG
.getTarget().getRegisterInfo();
4143 // Ignore inlined function arguments here.
4144 DIVariable
DV(Variable
);
4145 if (DV
.isInlinedFnArgument(MF
.getFunction()))
4149 if (Arg
->hasByValAttr()) {
4150 // Byval arguments' frame index is recorded during argument lowering.
4151 // Use this info directly.
4152 Reg
= TRI
->getFrameRegister(MF
);
4153 Offset
= FuncInfo
.getByValArgumentFrameIndex(Arg
);
4154 // If byval argument ofset is not recorded then ignore this.
4160 if (N
.getOpcode() == ISD::CopyFromReg
)
4161 Reg
= cast
<RegisterSDNode
>(N
.getOperand(1))->getReg();
4163 Reg
= getTruncatedArgReg(N
);
4164 if (Reg
&& TargetRegisterInfo::isVirtualRegister(Reg
)) {
4165 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
4166 unsigned PR
= RegInfo
.getLiveInPhysReg(Reg
);
4173 // Check if ValueMap has reg number.
4174 DenseMap
<const Value
*, unsigned>::iterator VMI
= FuncInfo
.ValueMap
.find(V
);
4175 if (VMI
!= FuncInfo
.ValueMap
.end())
4179 if (!Reg
&& N
.getNode()) {
4180 // Check if frame index is available.
4181 if (LoadSDNode
*LNode
= dyn_cast
<LoadSDNode
>(N
.getNode()))
4182 if (FrameIndexSDNode
*FINode
=
4183 dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode())) {
4184 Reg
= TRI
->getFrameRegister(MF
);
4185 Offset
= FINode
->getIndex();
4192 MachineInstrBuilder MIB
= BuildMI(MF
, getCurDebugLoc(),
4193 TII
->get(TargetOpcode::DBG_VALUE
))
4194 .addReg(Reg
, RegState::Debug
).addImm(Offset
).addMetadata(Variable
);
4195 FuncInfo
.ArgDbgValues
.push_back(&*MIB
);
4199 // VisualStudio defines setjmp as _setjmp
4200 #if defined(_MSC_VER) && defined(setjmp) && \
4201 !defined(setjmp_undefined_for_msvc)
4202 # pragma push_macro("setjmp")
4204 # define setjmp_undefined_for_msvc
4207 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
4208 /// we want to emit this as a call to a named external function, return the name
4209 /// otherwise lower it and return null.
4211 SelectionDAGBuilder::visitIntrinsicCall(const CallInst
&I
, unsigned Intrinsic
) {
4212 DebugLoc dl
= getCurDebugLoc();
4215 switch (Intrinsic
) {
4217 // By default, turn this into a target intrinsic node.
4218 visitTargetIntrinsic(I
, Intrinsic
);
4220 case Intrinsic::vastart
: visitVAStart(I
); return 0;
4221 case Intrinsic::vaend
: visitVAEnd(I
); return 0;
4222 case Intrinsic::vacopy
: visitVACopy(I
); return 0;
4223 case Intrinsic::returnaddress
:
4224 setValue(&I
, DAG
.getNode(ISD::RETURNADDR
, dl
, TLI
.getPointerTy(),
4225 getValue(I
.getArgOperand(0))));
4227 case Intrinsic::frameaddress
:
4228 setValue(&I
, DAG
.getNode(ISD::FRAMEADDR
, dl
, TLI
.getPointerTy(),
4229 getValue(I
.getArgOperand(0))));
4231 case Intrinsic::setjmp
:
4232 return "_setjmp"+!TLI
.usesUnderscoreSetJmp();
4233 case Intrinsic::longjmp
:
4234 return "_longjmp"+!TLI
.usesUnderscoreLongJmp();
4235 case Intrinsic::memcpy
: {
4236 // Assert for address < 256 since we support only user defined address
4238 assert(cast
<PointerType
>(I
.getArgOperand(0)->getType())->getAddressSpace()
4240 cast
<PointerType
>(I
.getArgOperand(1)->getType())->getAddressSpace()
4242 "Unknown address space");
4243 SDValue Op1
= getValue(I
.getArgOperand(0));
4244 SDValue Op2
= getValue(I
.getArgOperand(1));
4245 SDValue Op3
= getValue(I
.getArgOperand(2));
4246 unsigned Align
= cast
<ConstantInt
>(I
.getArgOperand(3))->getZExtValue();
4247 bool isVol
= cast
<ConstantInt
>(I
.getArgOperand(4))->getZExtValue();
4248 DAG
.setRoot(DAG
.getMemcpy(getRoot(), dl
, Op1
, Op2
, Op3
, Align
, isVol
, false,
4249 MachinePointerInfo(I
.getArgOperand(0)),
4250 MachinePointerInfo(I
.getArgOperand(1))));
4253 case Intrinsic::memset
: {
4254 // Assert for address < 256 since we support only user defined address
4256 assert(cast
<PointerType
>(I
.getArgOperand(0)->getType())->getAddressSpace()
4258 "Unknown address space");
4259 SDValue Op1
= getValue(I
.getArgOperand(0));
4260 SDValue Op2
= getValue(I
.getArgOperand(1));
4261 SDValue Op3
= getValue(I
.getArgOperand(2));
4262 unsigned Align
= cast
<ConstantInt
>(I
.getArgOperand(3))->getZExtValue();
4263 bool isVol
= cast
<ConstantInt
>(I
.getArgOperand(4))->getZExtValue();
4264 DAG
.setRoot(DAG
.getMemset(getRoot(), dl
, Op1
, Op2
, Op3
, Align
, isVol
,
4265 MachinePointerInfo(I
.getArgOperand(0))));
4268 case Intrinsic::memmove
: {
4269 // Assert for address < 256 since we support only user defined address
4271 assert(cast
<PointerType
>(I
.getArgOperand(0)->getType())->getAddressSpace()
4273 cast
<PointerType
>(I
.getArgOperand(1)->getType())->getAddressSpace()
4275 "Unknown address space");
4276 SDValue Op1
= getValue(I
.getArgOperand(0));
4277 SDValue Op2
= getValue(I
.getArgOperand(1));
4278 SDValue Op3
= getValue(I
.getArgOperand(2));
4279 unsigned Align
= cast
<ConstantInt
>(I
.getArgOperand(3))->getZExtValue();
4280 bool isVol
= cast
<ConstantInt
>(I
.getArgOperand(4))->getZExtValue();
4281 DAG
.setRoot(DAG
.getMemmove(getRoot(), dl
, Op1
, Op2
, Op3
, Align
, isVol
,
4282 MachinePointerInfo(I
.getArgOperand(0)),
4283 MachinePointerInfo(I
.getArgOperand(1))));
4286 case Intrinsic::dbg_declare
: {
4287 const DbgDeclareInst
&DI
= cast
<DbgDeclareInst
>(I
);
4288 MDNode
*Variable
= DI
.getVariable();
4289 const Value
*Address
= DI
.getAddress();
4290 if (!Address
|| !DIVariable(DI
.getVariable()).Verify())
4293 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
4294 // but do not always have a corresponding SDNode built. The SDNodeOrder
4295 // absolute, but not relative, values are different depending on whether
4296 // debug info exists.
4299 // Check if address has undef value.
4300 if (isa
<UndefValue
>(Address
) ||
4301 (Address
->use_empty() && !isa
<Argument
>(Address
))) {
4302 DEBUG(dbgs() << "Dropping debug info for " << DI
);
4306 SDValue
&N
= NodeMap
[Address
];
4307 if (!N
.getNode() && isa
<Argument
>(Address
))
4308 // Check unused arguments map.
4309 N
= UnusedArgNodeMap
[Address
];
4312 // Parameters are handled specially.
4314 DIVariable(Variable
).getTag() == dwarf::DW_TAG_arg_variable
;
4315 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
4316 Address
= BCI
->getOperand(0);
4317 const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Address
);
4319 if (isParameter
&& !AI
) {
4320 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(N
.getNode());
4322 // Byval parameter. We have a frame index at this point.
4323 SDV
= DAG
.getDbgValue(Variable
, FINode
->getIndex(),
4324 0, dl
, SDNodeOrder
);
4326 // Address is an argument, so try to emit its dbg value using
4327 // virtual register info from the FuncInfo.ValueMap.
4328 EmitFuncArgumentDbgValue(Address
, Variable
, 0, N
);
4332 SDV
= DAG
.getDbgValue(Variable
, N
.getNode(), N
.getResNo(),
4333 0, dl
, SDNodeOrder
);
4335 // Can't do anything with other non-AI cases yet.
4336 DEBUG(dbgs() << "Dropping debug info for " << DI
);
4339 DAG
.AddDbgValue(SDV
, N
.getNode(), isParameter
);
4341 // If Address is an argument then try to emit its dbg value using
4342 // virtual register info from the FuncInfo.ValueMap.
4343 if (!EmitFuncArgumentDbgValue(Address
, Variable
, 0, N
)) {
4344 // If variable is pinned by a alloca in dominating bb then
4345 // use StaticAllocaMap.
4346 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Address
)) {
4347 if (AI
->getParent() != DI
.getParent()) {
4348 DenseMap
<const AllocaInst
*, int>::iterator SI
=
4349 FuncInfo
.StaticAllocaMap
.find(AI
);
4350 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
4351 SDV
= DAG
.getDbgValue(Variable
, SI
->second
,
4352 0, dl
, SDNodeOrder
);
4353 DAG
.AddDbgValue(SDV
, 0, false);
4358 DEBUG(dbgs() << "Dropping debug info for " << DI
);
4363 case Intrinsic::dbg_value
: {
4364 const DbgValueInst
&DI
= cast
<DbgValueInst
>(I
);
4365 if (!DIVariable(DI
.getVariable()).Verify())
4368 MDNode
*Variable
= DI
.getVariable();
4369 uint64_t Offset
= DI
.getOffset();
4370 const Value
*V
= DI
.getValue();
4374 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
4375 // but do not always have a corresponding SDNode built. The SDNodeOrder
4376 // absolute, but not relative, values are different depending on whether
4377 // debug info exists.
4380 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
)) {
4381 SDV
= DAG
.getDbgValue(Variable
, V
, Offset
, dl
, SDNodeOrder
);
4382 DAG
.AddDbgValue(SDV
, 0, false);
4384 // Do not use getValue() in here; we don't want to generate code at
4385 // this point if it hasn't been done yet.
4386 SDValue N
= NodeMap
[V
];
4387 if (!N
.getNode() && isa
<Argument
>(V
))
4388 // Check unused arguments map.
4389 N
= UnusedArgNodeMap
[V
];
4391 if (!EmitFuncArgumentDbgValue(V
, Variable
, Offset
, N
)) {
4392 SDV
= DAG
.getDbgValue(Variable
, N
.getNode(),
4393 N
.getResNo(), Offset
, dl
, SDNodeOrder
);
4394 DAG
.AddDbgValue(SDV
, N
.getNode(), false);
4396 } else if (!V
->use_empty() ) {
4397 // Do not call getValue(V) yet, as we don't want to generate code.
4398 // Remember it for later.
4399 DanglingDebugInfo
DDI(&DI
, dl
, SDNodeOrder
);
4400 DanglingDebugInfoMap
[V
] = DDI
;
4402 // We may expand this to cover more cases. One case where we have no
4403 // data available is an unreferenced parameter.
4404 DEBUG(dbgs() << "Dropping debug info for " << DI
);
4408 // Build a debug info table entry.
4409 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(V
))
4410 V
= BCI
->getOperand(0);
4411 const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
);
4412 // Don't handle byval struct arguments or VLAs, for example.
4415 DenseMap
<const AllocaInst
*, int>::iterator SI
=
4416 FuncInfo
.StaticAllocaMap
.find(AI
);
4417 if (SI
== FuncInfo
.StaticAllocaMap
.end())
4419 int FI
= SI
->second
;
4421 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
4422 if (!DI
.getDebugLoc().isUnknown() && MMI
.hasDebugInfo())
4423 MMI
.setVariableDbgInfo(Variable
, FI
, DI
.getDebugLoc());
4426 case Intrinsic::eh_exception
: {
4427 // Insert the EXCEPTIONADDR instruction.
4428 assert(FuncInfo
.MBB
->isLandingPad() &&
4429 "Call to eh.exception not in landing pad!");
4430 SDVTList VTs
= DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
);
4432 Ops
[0] = DAG
.getRoot();
4433 SDValue Op
= DAG
.getNode(ISD::EXCEPTIONADDR
, dl
, VTs
, Ops
, 1);
4435 DAG
.setRoot(Op
.getValue(1));
4439 case Intrinsic::eh_selector
: {
4440 MachineBasicBlock
*CallMBB
= FuncInfo
.MBB
;
4441 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
4442 if (CallMBB
->isLandingPad())
4443 AddCatchInfo(I
, &MMI
, CallMBB
);
4446 FuncInfo
.CatchInfoLost
.insert(&I
);
4448 // FIXME: Mark exception selector register as live in. Hack for PR1508.
4449 unsigned Reg
= TLI
.getExceptionSelectorRegister();
4450 if (Reg
) FuncInfo
.MBB
->addLiveIn(Reg
);
4453 // Insert the EHSELECTION instruction.
4454 SDVTList VTs
= DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
);
4456 Ops
[0] = getValue(I
.getArgOperand(0));
4458 SDValue Op
= DAG
.getNode(ISD::EHSELECTION
, dl
, VTs
, Ops
, 2);
4459 DAG
.setRoot(Op
.getValue(1));
4460 setValue(&I
, DAG
.getSExtOrTrunc(Op
, dl
, MVT::i32
));
4464 case Intrinsic::eh_typeid_for
: {
4465 // Find the type id for the given typeinfo.
4466 GlobalVariable
*GV
= ExtractTypeInfo(I
.getArgOperand(0));
4467 unsigned TypeID
= DAG
.getMachineFunction().getMMI().getTypeIDFor(GV
);
4468 Res
= DAG
.getConstant(TypeID
, MVT::i32
);
4473 case Intrinsic::eh_return_i32
:
4474 case Intrinsic::eh_return_i64
:
4475 DAG
.getMachineFunction().getMMI().setCallsEHReturn(true);
4476 DAG
.setRoot(DAG
.getNode(ISD::EH_RETURN
, dl
,
4479 getValue(I
.getArgOperand(0)),
4480 getValue(I
.getArgOperand(1))));
4482 case Intrinsic::eh_unwind_init
:
4483 DAG
.getMachineFunction().getMMI().setCallsUnwindInit(true);
4485 case Intrinsic::eh_dwarf_cfa
: {
4486 SDValue CfaArg
= DAG
.getSExtOrTrunc(getValue(I
.getArgOperand(0)), dl
,
4487 TLI
.getPointerTy());
4488 SDValue Offset
= DAG
.getNode(ISD::ADD
, dl
,
4490 DAG
.getNode(ISD::FRAME_TO_ARGS_OFFSET
, dl
,
4491 TLI
.getPointerTy()),
4493 SDValue FA
= DAG
.getNode(ISD::FRAMEADDR
, dl
,
4495 DAG
.getConstant(0, TLI
.getPointerTy()));
4496 setValue(&I
, DAG
.getNode(ISD::ADD
, dl
, TLI
.getPointerTy(),
4500 case Intrinsic::eh_sjlj_callsite
: {
4501 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
4502 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(0));
4503 assert(CI
&& "Non-constant call site value in eh.sjlj.callsite!");
4504 assert(MMI
.getCurrentCallSite() == 0 && "Overlapping call sites!");
4506 MMI
.setCurrentCallSite(CI
->getZExtValue());
4509 case Intrinsic::eh_sjlj_setjmp
: {
4510 setValue(&I
, DAG
.getNode(ISD::EH_SJLJ_SETJMP
, dl
, MVT::i32
, getRoot(),
4511 getValue(I
.getArgOperand(0))));
4514 case Intrinsic::eh_sjlj_longjmp
: {
4515 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
,
4516 getRoot(), getValue(I
.getArgOperand(0))));
4519 case Intrinsic::eh_sjlj_dispatch_setup
: {
4520 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_DISPATCHSETUP
, dl
, MVT::Other
,
4521 getRoot(), getValue(I
.getArgOperand(0))));
4525 case Intrinsic::x86_mmx_pslli_w
:
4526 case Intrinsic::x86_mmx_pslli_d
:
4527 case Intrinsic::x86_mmx_pslli_q
:
4528 case Intrinsic::x86_mmx_psrli_w
:
4529 case Intrinsic::x86_mmx_psrli_d
:
4530 case Intrinsic::x86_mmx_psrli_q
:
4531 case Intrinsic::x86_mmx_psrai_w
:
4532 case Intrinsic::x86_mmx_psrai_d
: {
4533 SDValue ShAmt
= getValue(I
.getArgOperand(1));
4534 if (isa
<ConstantSDNode
>(ShAmt
)) {
4535 visitTargetIntrinsic(I
, Intrinsic
);
4538 unsigned NewIntrinsic
= 0;
4539 EVT ShAmtVT
= MVT::v2i32
;
4540 switch (Intrinsic
) {
4541 case Intrinsic::x86_mmx_pslli_w
:
4542 NewIntrinsic
= Intrinsic::x86_mmx_psll_w
;
4544 case Intrinsic::x86_mmx_pslli_d
:
4545 NewIntrinsic
= Intrinsic::x86_mmx_psll_d
;
4547 case Intrinsic::x86_mmx_pslli_q
:
4548 NewIntrinsic
= Intrinsic::x86_mmx_psll_q
;
4550 case Intrinsic::x86_mmx_psrli_w
:
4551 NewIntrinsic
= Intrinsic::x86_mmx_psrl_w
;
4553 case Intrinsic::x86_mmx_psrli_d
:
4554 NewIntrinsic
= Intrinsic::x86_mmx_psrl_d
;
4556 case Intrinsic::x86_mmx_psrli_q
:
4557 NewIntrinsic
= Intrinsic::x86_mmx_psrl_q
;
4559 case Intrinsic::x86_mmx_psrai_w
:
4560 NewIntrinsic
= Intrinsic::x86_mmx_psra_w
;
4562 case Intrinsic::x86_mmx_psrai_d
:
4563 NewIntrinsic
= Intrinsic::x86_mmx_psra_d
;
4565 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
4568 // The vector shift intrinsics with scalars uses 32b shift amounts but
4569 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4571 // We must do this early because v2i32 is not a legal type.
4572 DebugLoc dl
= getCurDebugLoc();
4575 ShOps
[1] = DAG
.getConstant(0, MVT::i32
);
4576 ShAmt
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, ShAmtVT
, &ShOps
[0], 2);
4577 EVT DestVT
= TLI
.getValueType(I
.getType());
4578 ShAmt
= DAG
.getNode(ISD::BITCAST
, dl
, DestVT
, ShAmt
);
4579 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, DestVT
,
4580 DAG
.getConstant(NewIntrinsic
, MVT::i32
),
4581 getValue(I
.getArgOperand(0)), ShAmt
);
4585 case Intrinsic::convertff
:
4586 case Intrinsic::convertfsi
:
4587 case Intrinsic::convertfui
:
4588 case Intrinsic::convertsif
:
4589 case Intrinsic::convertuif
:
4590 case Intrinsic::convertss
:
4591 case Intrinsic::convertsu
:
4592 case Intrinsic::convertus
:
4593 case Intrinsic::convertuu
: {
4594 ISD::CvtCode Code
= ISD::CVT_INVALID
;
4595 switch (Intrinsic
) {
4596 case Intrinsic::convertff
: Code
= ISD::CVT_FF
; break;
4597 case Intrinsic::convertfsi
: Code
= ISD::CVT_FS
; break;
4598 case Intrinsic::convertfui
: Code
= ISD::CVT_FU
; break;
4599 case Intrinsic::convertsif
: Code
= ISD::CVT_SF
; break;
4600 case Intrinsic::convertuif
: Code
= ISD::CVT_UF
; break;
4601 case Intrinsic::convertss
: Code
= ISD::CVT_SS
; break;
4602 case Intrinsic::convertsu
: Code
= ISD::CVT_SU
; break;
4603 case Intrinsic::convertus
: Code
= ISD::CVT_US
; break;
4604 case Intrinsic::convertuu
: Code
= ISD::CVT_UU
; break;
4606 EVT DestVT
= TLI
.getValueType(I
.getType());
4607 const Value
*Op1
= I
.getArgOperand(0);
4608 Res
= DAG
.getConvertRndSat(DestVT
, getCurDebugLoc(), getValue(Op1
),
4609 DAG
.getValueType(DestVT
),
4610 DAG
.getValueType(getValue(Op1
).getValueType()),
4611 getValue(I
.getArgOperand(1)),
4612 getValue(I
.getArgOperand(2)),
4617 case Intrinsic::sqrt
:
4618 setValue(&I
, DAG
.getNode(ISD::FSQRT
, dl
,
4619 getValue(I
.getArgOperand(0)).getValueType(),
4620 getValue(I
.getArgOperand(0))));
4622 case Intrinsic::powi
:
4623 setValue(&I
, ExpandPowI(dl
, getValue(I
.getArgOperand(0)),
4624 getValue(I
.getArgOperand(1)), DAG
));
4626 case Intrinsic::sin
:
4627 setValue(&I
, DAG
.getNode(ISD::FSIN
, dl
,
4628 getValue(I
.getArgOperand(0)).getValueType(),
4629 getValue(I
.getArgOperand(0))));
4631 case Intrinsic::cos
:
4632 setValue(&I
, DAG
.getNode(ISD::FCOS
, dl
,
4633 getValue(I
.getArgOperand(0)).getValueType(),
4634 getValue(I
.getArgOperand(0))));
4636 case Intrinsic::log
:
4639 case Intrinsic::log2
:
4642 case Intrinsic::log10
:
4645 case Intrinsic::exp
:
4648 case Intrinsic::exp2
:
4651 case Intrinsic::pow
:
4654 case Intrinsic::fma
:
4655 setValue(&I
, DAG
.getNode(ISD::FMA
, dl
,
4656 getValue(I
.getArgOperand(0)).getValueType(),
4657 getValue(I
.getArgOperand(0)),
4658 getValue(I
.getArgOperand(1)),
4659 getValue(I
.getArgOperand(2))));
4661 case Intrinsic::convert_to_fp16
:
4662 setValue(&I
, DAG
.getNode(ISD::FP32_TO_FP16
, dl
,
4663 MVT::i16
, getValue(I
.getArgOperand(0))));
4665 case Intrinsic::convert_from_fp16
:
4666 setValue(&I
, DAG
.getNode(ISD::FP16_TO_FP32
, dl
,
4667 MVT::f32
, getValue(I
.getArgOperand(0))));
4669 case Intrinsic::pcmarker
: {
4670 SDValue Tmp
= getValue(I
.getArgOperand(0));
4671 DAG
.setRoot(DAG
.getNode(ISD::PCMARKER
, dl
, MVT::Other
, getRoot(), Tmp
));
4674 case Intrinsic::readcyclecounter
: {
4675 SDValue Op
= getRoot();
4676 Res
= DAG
.getNode(ISD::READCYCLECOUNTER
, dl
,
4677 DAG
.getVTList(MVT::i64
, MVT::Other
),
4680 DAG
.setRoot(Res
.getValue(1));
4683 case Intrinsic::bswap
:
4684 setValue(&I
, DAG
.getNode(ISD::BSWAP
, dl
,
4685 getValue(I
.getArgOperand(0)).getValueType(),
4686 getValue(I
.getArgOperand(0))));
4688 case Intrinsic::cttz
: {
4689 SDValue Arg
= getValue(I
.getArgOperand(0));
4690 EVT Ty
= Arg
.getValueType();
4691 setValue(&I
, DAG
.getNode(ISD::CTTZ
, dl
, Ty
, Arg
));
4694 case Intrinsic::ctlz
: {
4695 SDValue Arg
= getValue(I
.getArgOperand(0));
4696 EVT Ty
= Arg
.getValueType();
4697 setValue(&I
, DAG
.getNode(ISD::CTLZ
, dl
, Ty
, Arg
));
4700 case Intrinsic::ctpop
: {
4701 SDValue Arg
= getValue(I
.getArgOperand(0));
4702 EVT Ty
= Arg
.getValueType();
4703 setValue(&I
, DAG
.getNode(ISD::CTPOP
, dl
, Ty
, Arg
));
4706 case Intrinsic::stacksave
: {
4707 SDValue Op
= getRoot();
4708 Res
= DAG
.getNode(ISD::STACKSAVE
, dl
,
4709 DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
), &Op
, 1);
4711 DAG
.setRoot(Res
.getValue(1));
4714 case Intrinsic::stackrestore
: {
4715 Res
= getValue(I
.getArgOperand(0));
4716 DAG
.setRoot(DAG
.getNode(ISD::STACKRESTORE
, dl
, MVT::Other
, getRoot(), Res
));
4719 case Intrinsic::stackprotector
: {
4720 // Emit code into the DAG to store the stack guard onto the stack.
4721 MachineFunction
&MF
= DAG
.getMachineFunction();
4722 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
4723 EVT PtrTy
= TLI
.getPointerTy();
4725 SDValue Src
= getValue(I
.getArgOperand(0)); // The guard's value.
4726 AllocaInst
*Slot
= cast
<AllocaInst
>(I
.getArgOperand(1));
4728 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
4729 MFI
->setStackProtectorIndex(FI
);
4731 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
4733 // Store the stack protector onto the stack.
4734 Res
= DAG
.getStore(getRoot(), getCurDebugLoc(), Src
, FIN
,
4735 MachinePointerInfo::getFixedStack(FI
),
4741 case Intrinsic::objectsize
: {
4742 // If we don't know by now, we're never going to know.
4743 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(1));
4745 assert(CI
&& "Non-constant type in __builtin_object_size?");
4747 SDValue Arg
= getValue(I
.getCalledValue());
4748 EVT Ty
= Arg
.getValueType();
4751 Res
= DAG
.getConstant(-1ULL, Ty
);
4753 Res
= DAG
.getConstant(0, Ty
);
4758 case Intrinsic::var_annotation
:
4759 // Discard annotate attributes
4762 case Intrinsic::init_trampoline
: {
4763 const Function
*F
= cast
<Function
>(I
.getArgOperand(1)->stripPointerCasts());
4767 Ops
[1] = getValue(I
.getArgOperand(0));
4768 Ops
[2] = getValue(I
.getArgOperand(1));
4769 Ops
[3] = getValue(I
.getArgOperand(2));
4770 Ops
[4] = DAG
.getSrcValue(I
.getArgOperand(0));
4771 Ops
[5] = DAG
.getSrcValue(F
);
4773 Res
= DAG
.getNode(ISD::TRAMPOLINE
, dl
,
4774 DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
),
4778 DAG
.setRoot(Res
.getValue(1));
4781 case Intrinsic::gcroot
:
4783 const Value
*Alloca
= I
.getArgOperand(0);
4784 const Constant
*TypeMap
= cast
<Constant
>(I
.getArgOperand(1));
4786 FrameIndexSDNode
*FI
= cast
<FrameIndexSDNode
>(getValue(Alloca
).getNode());
4787 GFI
->addStackRoot(FI
->getIndex(), TypeMap
);
4790 case Intrinsic::gcread
:
4791 case Intrinsic::gcwrite
:
4792 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4794 case Intrinsic::flt_rounds
:
4795 setValue(&I
, DAG
.getNode(ISD::FLT_ROUNDS_
, dl
, MVT::i32
));
4798 case Intrinsic::expect
: {
4799 // Just replace __builtin_expect(exp, c) with EXP.
4800 setValue(&I
, getValue(I
.getArgOperand(0)));
4804 case Intrinsic::trap
: {
4805 StringRef TrapFuncName
= getTrapFunctionName();
4806 if (TrapFuncName
.empty()) {
4807 DAG
.setRoot(DAG
.getNode(ISD::TRAP
, dl
,MVT::Other
, getRoot()));
4810 TargetLowering::ArgListTy Args
;
4811 std::pair
<SDValue
, SDValue
> Result
=
4812 TLI
.LowerCallTo(getRoot(), I
.getType(),
4813 false, false, false, false, 0, CallingConv::C
,
4814 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4815 DAG
.getExternalSymbol(TrapFuncName
.data(), TLI
.getPointerTy()),
4816 Args
, DAG
, getCurDebugLoc());
4817 DAG
.setRoot(Result
.second
);
4820 case Intrinsic::uadd_with_overflow
:
4821 return implVisitAluOverflow(I
, ISD::UADDO
);
4822 case Intrinsic::sadd_with_overflow
:
4823 return implVisitAluOverflow(I
, ISD::SADDO
);
4824 case Intrinsic::usub_with_overflow
:
4825 return implVisitAluOverflow(I
, ISD::USUBO
);
4826 case Intrinsic::ssub_with_overflow
:
4827 return implVisitAluOverflow(I
, ISD::SSUBO
);
4828 case Intrinsic::umul_with_overflow
:
4829 return implVisitAluOverflow(I
, ISD::UMULO
);
4830 case Intrinsic::smul_with_overflow
:
4831 return implVisitAluOverflow(I
, ISD::SMULO
);
4833 case Intrinsic::prefetch
: {
4835 unsigned rw
= cast
<ConstantInt
>(I
.getArgOperand(1))->getZExtValue();
4837 Ops
[1] = getValue(I
.getArgOperand(0));
4838 Ops
[2] = getValue(I
.getArgOperand(1));
4839 Ops
[3] = getValue(I
.getArgOperand(2));
4840 Ops
[4] = getValue(I
.getArgOperand(3));
4841 DAG
.setRoot(DAG
.getMemIntrinsicNode(ISD::PREFETCH
, dl
,
4842 DAG
.getVTList(MVT::Other
),
4844 EVT::getIntegerVT(*Context
, 8),
4845 MachinePointerInfo(I
.getArgOperand(0)),
4847 false, /* volatile */
4849 rw
==1)); /* write */
4852 case Intrinsic::memory_barrier
: {
4855 for (int x
= 1; x
< 6; ++x
)
4856 Ops
[x
] = getValue(I
.getArgOperand(x
- 1));
4858 DAG
.setRoot(DAG
.getNode(ISD::MEMBARRIER
, dl
, MVT::Other
, &Ops
[0], 6));
4861 case Intrinsic::atomic_cmp_swap
: {
4862 SDValue Root
= getRoot();
4864 DAG
.getAtomic(ISD::ATOMIC_CMP_SWAP
, getCurDebugLoc(),
4865 getValue(I
.getArgOperand(1)).getValueType().getSimpleVT(),
4867 getValue(I
.getArgOperand(0)),
4868 getValue(I
.getArgOperand(1)),
4869 getValue(I
.getArgOperand(2)),
4870 MachinePointerInfo(I
.getArgOperand(0)));
4872 DAG
.setRoot(L
.getValue(1));
4875 case Intrinsic::atomic_load_add
:
4876 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_ADD
);
4877 case Intrinsic::atomic_load_sub
:
4878 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_SUB
);
4879 case Intrinsic::atomic_load_or
:
4880 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_OR
);
4881 case Intrinsic::atomic_load_xor
:
4882 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_XOR
);
4883 case Intrinsic::atomic_load_and
:
4884 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_AND
);
4885 case Intrinsic::atomic_load_nand
:
4886 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_NAND
);
4887 case Intrinsic::atomic_load_max
:
4888 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_MAX
);
4889 case Intrinsic::atomic_load_min
:
4890 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_MIN
);
4891 case Intrinsic::atomic_load_umin
:
4892 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_UMIN
);
4893 case Intrinsic::atomic_load_umax
:
4894 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_UMAX
);
4895 case Intrinsic::atomic_swap
:
4896 return implVisitBinaryAtomic(I
, ISD::ATOMIC_SWAP
);
4898 case Intrinsic::invariant_start
:
4899 case Intrinsic::lifetime_start
:
4900 // Discard region information.
4901 setValue(&I
, DAG
.getUNDEF(TLI
.getPointerTy()));
4903 case Intrinsic::invariant_end
:
4904 case Intrinsic::lifetime_end
:
4905 // Discard region information.
4910 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS
, SDValue Callee
,
4912 MachineBasicBlock
*LandingPad
) {
4913 const PointerType
*PT
= cast
<PointerType
>(CS
.getCalledValue()->getType());
4914 const FunctionType
*FTy
= cast
<FunctionType
>(PT
->getElementType());
4915 const Type
*RetTy
= FTy
->getReturnType();
4916 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
4917 MCSymbol
*BeginLabel
= 0;
4919 TargetLowering::ArgListTy Args
;
4920 TargetLowering::ArgListEntry Entry
;
4921 Args
.reserve(CS
.arg_size());
4923 // Check whether the function can return without sret-demotion.
4924 SmallVector
<ISD::OutputArg
, 4> Outs
;
4925 SmallVector
<uint64_t, 4> Offsets
;
4926 GetReturnInfo(RetTy
, CS
.getAttributes().getRetAttributes(),
4927 Outs
, TLI
, &Offsets
);
4929 bool CanLowerReturn
= TLI
.CanLowerReturn(CS
.getCallingConv(),
4930 DAG
.getMachineFunction(),
4931 FTy
->isVarArg(), Outs
,
4934 SDValue DemoteStackSlot
;
4935 int DemoteStackIdx
= -100;
4937 if (!CanLowerReturn
) {
4938 uint64_t TySize
= TLI
.getTargetData()->getTypeAllocSize(
4939 FTy
->getReturnType());
4940 unsigned Align
= TLI
.getTargetData()->getPrefTypeAlignment(
4941 FTy
->getReturnType());
4942 MachineFunction
&MF
= DAG
.getMachineFunction();
4943 DemoteStackIdx
= MF
.getFrameInfo()->CreateStackObject(TySize
, Align
, false);
4944 const Type
*StackSlotPtrType
= PointerType::getUnqual(FTy
->getReturnType());
4946 DemoteStackSlot
= DAG
.getFrameIndex(DemoteStackIdx
, TLI
.getPointerTy());
4947 Entry
.Node
= DemoteStackSlot
;
4948 Entry
.Ty
= StackSlotPtrType
;
4949 Entry
.isSExt
= false;
4950 Entry
.isZExt
= false;
4951 Entry
.isInReg
= false;
4952 Entry
.isSRet
= true;
4953 Entry
.isNest
= false;
4954 Entry
.isByVal
= false;
4955 Entry
.Alignment
= Align
;
4956 Args
.push_back(Entry
);
4957 RetTy
= Type::getVoidTy(FTy
->getContext());
4960 for (ImmutableCallSite::arg_iterator i
= CS
.arg_begin(), e
= CS
.arg_end();
4962 const Value
*V
= *i
;
4965 if (V
->getType()->isEmptyTy())
4968 SDValue ArgNode
= getValue(V
);
4969 Entry
.Node
= ArgNode
; Entry
.Ty
= V
->getType();
4971 unsigned attrInd
= i
- CS
.arg_begin() + 1;
4972 Entry
.isSExt
= CS
.paramHasAttr(attrInd
, Attribute::SExt
);
4973 Entry
.isZExt
= CS
.paramHasAttr(attrInd
, Attribute::ZExt
);
4974 Entry
.isInReg
= CS
.paramHasAttr(attrInd
, Attribute::InReg
);
4975 Entry
.isSRet
= CS
.paramHasAttr(attrInd
, Attribute::StructRet
);
4976 Entry
.isNest
= CS
.paramHasAttr(attrInd
, Attribute::Nest
);
4977 Entry
.isByVal
= CS
.paramHasAttr(attrInd
, Attribute::ByVal
);
4978 Entry
.Alignment
= CS
.getParamAlignment(attrInd
);
4979 Args
.push_back(Entry
);
4983 // Insert a label before the invoke call to mark the try range. This can be
4984 // used to detect deletion of the invoke via the MachineModuleInfo.
4985 BeginLabel
= MMI
.getContext().CreateTempSymbol();
4987 // For SjLj, keep track of which landing pads go with which invokes
4988 // so as to maintain the ordering of pads in the LSDA.
4989 unsigned CallSiteIndex
= MMI
.getCurrentCallSite();
4990 if (CallSiteIndex
) {
4991 MMI
.setCallSiteBeginLabel(BeginLabel
, CallSiteIndex
);
4992 // Now that the call site is handled, stop tracking it.
4993 MMI
.setCurrentCallSite(0);
4996 // Both PendingLoads and PendingExports must be flushed here;
4997 // this call might not return.
4999 DAG
.setRoot(DAG
.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel
));
5002 // Check if target-independent constraints permit a tail call here.
5003 // Target-dependent constraints are checked within TLI.LowerCallTo.
5005 !isInTailCallPosition(CS
, CS
.getAttributes().getRetAttributes(), TLI
))
5008 // If there's a possibility that fast-isel has already selected some amount
5009 // of the current basic block, don't emit a tail call.
5010 if (isTailCall
&& EnableFastISel
)
5013 std::pair
<SDValue
,SDValue
> Result
=
5014 TLI
.LowerCallTo(getRoot(), RetTy
,
5015 CS
.paramHasAttr(0, Attribute::SExt
),
5016 CS
.paramHasAttr(0, Attribute::ZExt
), FTy
->isVarArg(),
5017 CS
.paramHasAttr(0, Attribute::InReg
), FTy
->getNumParams(),
5018 CS
.getCallingConv(),
5020 !CS
.getInstruction()->use_empty(),
5021 Callee
, Args
, DAG
, getCurDebugLoc());
5022 assert((isTailCall
|| Result
.second
.getNode()) &&
5023 "Non-null chain expected with non-tail call!");
5024 assert((Result
.second
.getNode() || !Result
.first
.getNode()) &&
5025 "Null value expected with tail call!");
5026 if (Result
.first
.getNode()) {
5027 setValue(CS
.getInstruction(), Result
.first
);
5028 } else if (!CanLowerReturn
&& Result
.second
.getNode()) {
5029 // The instruction result is the result of loading from the
5030 // hidden sret parameter.
5031 SmallVector
<EVT
, 1> PVTs
;
5032 const Type
*PtrRetTy
= PointerType::getUnqual(FTy
->getReturnType());
5034 ComputeValueVTs(TLI
, PtrRetTy
, PVTs
);
5035 assert(PVTs
.size() == 1 && "Pointers should fit in one register");
5036 EVT PtrVT
= PVTs
[0];
5037 unsigned NumValues
= Outs
.size();
5038 SmallVector
<SDValue
, 4> Values(NumValues
);
5039 SmallVector
<SDValue
, 4> Chains(NumValues
);
5041 for (unsigned i
= 0; i
< NumValues
; ++i
) {
5042 SDValue Add
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(), PtrVT
,
5044 DAG
.getConstant(Offsets
[i
], PtrVT
));
5045 SDValue L
= DAG
.getLoad(Outs
[i
].VT
, getCurDebugLoc(), Result
.second
,
5047 MachinePointerInfo::getFixedStack(DemoteStackIdx
, Offsets
[i
]),
5050 Chains
[i
] = L
.getValue(1);
5053 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
5054 MVT::Other
, &Chains
[0], NumValues
);
5055 PendingLoads
.push_back(Chain
);
5057 // Collect the legal value parts into potentially illegal values
5058 // that correspond to the original function's return values.
5059 SmallVector
<EVT
, 4> RetTys
;
5060 RetTy
= FTy
->getReturnType();
5061 ComputeValueVTs(TLI
, RetTy
, RetTys
);
5062 ISD::NodeType AssertOp
= ISD::DELETED_NODE
;
5063 SmallVector
<SDValue
, 4> ReturnValues
;
5064 unsigned CurReg
= 0;
5065 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
5067 EVT RegisterVT
= TLI
.getRegisterType(RetTy
->getContext(), VT
);
5068 unsigned NumRegs
= TLI
.getNumRegisters(RetTy
->getContext(), VT
);
5070 SDValue ReturnValue
=
5071 getCopyFromParts(DAG
, getCurDebugLoc(), &Values
[CurReg
], NumRegs
,
5072 RegisterVT
, VT
, AssertOp
);
5073 ReturnValues
.push_back(ReturnValue
);
5077 setValue(CS
.getInstruction(),
5078 DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
5079 DAG
.getVTList(&RetTys
[0], RetTys
.size()),
5080 &ReturnValues
[0], ReturnValues
.size()));
5083 // Assign order to nodes here. If the call does not produce a result, it won't
5084 // be mapped to a SDNode and visit() will not assign it an order number.
5085 if (!Result
.second
.getNode()) {
5086 // As a special case, a null chain means that a tail call has been emitted and
5087 // the DAG root is already updated.
5090 AssignOrderingToNode(DAG
.getRoot().getNode());
5092 DAG
.setRoot(Result
.second
);
5094 AssignOrderingToNode(Result
.second
.getNode());
5098 // Insert a label at the end of the invoke call to mark the try range. This
5099 // can be used to detect deletion of the invoke via the MachineModuleInfo.
5100 MCSymbol
*EndLabel
= MMI
.getContext().CreateTempSymbol();
5101 DAG
.setRoot(DAG
.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel
));
5103 // Inform MachineModuleInfo of range.
5104 MMI
.addInvoke(LandingPad
, BeginLabel
, EndLabel
);
5108 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5109 /// value is equal or not-equal to zero.
5110 static bool IsOnlyUsedInZeroEqualityComparison(const Value
*V
) {
5111 for (Value::const_use_iterator UI
= V
->use_begin(), E
= V
->use_end();
5113 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(*UI
))
5114 if (IC
->isEquality())
5115 if (const Constant
*C
= dyn_cast
<Constant
>(IC
->getOperand(1)))
5116 if (C
->isNullValue())
5118 // Unknown instruction.
5124 static SDValue
getMemCmpLoad(const Value
*PtrVal
, MVT LoadVT
,
5126 SelectionDAGBuilder
&Builder
) {
5128 // Check to see if this load can be trivially constant folded, e.g. if the
5129 // input is from a string literal.
5130 if (const Constant
*LoadInput
= dyn_cast
<Constant
>(PtrVal
)) {
5131 // Cast pointer to the type we really want to load.
5132 LoadInput
= ConstantExpr::getBitCast(const_cast<Constant
*>(LoadInput
),
5133 PointerType::getUnqual(LoadTy
));
5135 if (const Constant
*LoadCst
=
5136 ConstantFoldLoadFromConstPtr(const_cast<Constant
*>(LoadInput
),
5138 return Builder
.getValue(LoadCst
);
5141 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
5142 // still constant memory, the input chain can be the entry node.
5144 bool ConstantMemory
= false;
5146 // Do not serialize (non-volatile) loads of constant memory with anything.
5147 if (Builder
.AA
->pointsToConstantMemory(PtrVal
)) {
5148 Root
= Builder
.DAG
.getEntryNode();
5149 ConstantMemory
= true;
5151 // Do not serialize non-volatile loads against each other.
5152 Root
= Builder
.DAG
.getRoot();
5155 SDValue Ptr
= Builder
.getValue(PtrVal
);
5156 SDValue LoadVal
= Builder
.DAG
.getLoad(LoadVT
, Builder
.getCurDebugLoc(), Root
,
5157 Ptr
, MachinePointerInfo(PtrVal
),
5159 false /*nontemporal*/, 1 /* align=1 */);
5161 if (!ConstantMemory
)
5162 Builder
.PendingLoads
.push_back(LoadVal
.getValue(1));
5167 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5168 /// If so, return true and lower it, otherwise return false and it will be
5169 /// lowered like a normal call.
5170 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst
&I
) {
5171 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
5172 if (I
.getNumArgOperands() != 3)
5175 const Value
*LHS
= I
.getArgOperand(0), *RHS
= I
.getArgOperand(1);
5176 if (!LHS
->getType()->isPointerTy() || !RHS
->getType()->isPointerTy() ||
5177 !I
.getArgOperand(2)->getType()->isIntegerTy() ||
5178 !I
.getType()->isIntegerTy())
5181 const ConstantInt
*Size
= dyn_cast
<ConstantInt
>(I
.getArgOperand(2));
5183 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
5184 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
5185 if (Size
&& IsOnlyUsedInZeroEqualityComparison(&I
)) {
5186 bool ActuallyDoIt
= true;
5189 switch (Size
->getZExtValue()) {
5191 LoadVT
= MVT::Other
;
5193 ActuallyDoIt
= false;
5197 LoadTy
= Type::getInt16Ty(Size
->getContext());
5201 LoadTy
= Type::getInt32Ty(Size
->getContext());
5205 LoadTy
= Type::getInt64Ty(Size
->getContext());
5209 LoadVT = MVT::v4i32;
5210 LoadTy = Type::getInt32Ty(Size->getContext());
5211 LoadTy = VectorType::get(LoadTy, 4);
5216 // This turns into unaligned loads. We only do this if the target natively
5217 // supports the MVT we'll be loading or if it is small enough (<= 4) that
5218 // we'll only produce a small number of byte loads.
5220 // Require that we can find a legal MVT, and only do this if the target
5221 // supports unaligned loads of that type. Expanding into byte loads would
5223 if (ActuallyDoIt
&& Size
->getZExtValue() > 4) {
5224 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5225 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5226 if (!TLI
.isTypeLegal(LoadVT
) ||!TLI
.allowsUnalignedMemoryAccesses(LoadVT
))
5227 ActuallyDoIt
= false;
5231 SDValue LHSVal
= getMemCmpLoad(LHS
, LoadVT
, LoadTy
, *this);
5232 SDValue RHSVal
= getMemCmpLoad(RHS
, LoadVT
, LoadTy
, *this);
5234 SDValue Res
= DAG
.getSetCC(getCurDebugLoc(), MVT::i1
, LHSVal
, RHSVal
,
5236 EVT CallVT
= TLI
.getValueType(I
.getType(), true);
5237 setValue(&I
, DAG
.getZExtOrTrunc(Res
, getCurDebugLoc(), CallVT
));
5247 void SelectionDAGBuilder::visitCall(const CallInst
&I
) {
5248 // Handle inline assembly differently.
5249 if (isa
<InlineAsm
>(I
.getCalledValue())) {
5254 // See if any floating point values are being passed to this function. This is
5255 // used to emit an undefined reference to fltused on Windows.
5256 const FunctionType
*FT
=
5257 cast
<FunctionType
>(I
.getCalledValue()->getType()->getContainedType(0));
5258 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
5259 if (FT
->isVarArg() &&
5260 !MMI
.callsExternalVAFunctionWithFloatingPointArguments()) {
5261 for (unsigned i
= 0, e
= I
.getNumArgOperands(); i
!= e
; ++i
) {
5262 const Type
* T
= I
.getArgOperand(i
)->getType();
5263 for (po_iterator
<const Type
*> i
= po_begin(T
), e
= po_end(T
);
5265 if (!i
->isFloatingPointTy()) continue;
5266 MMI
.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5272 const char *RenameFn
= 0;
5273 if (Function
*F
= I
.getCalledFunction()) {
5274 if (F
->isDeclaration()) {
5275 if (const TargetIntrinsicInfo
*II
= TM
.getIntrinsicInfo()) {
5276 if (unsigned IID
= II
->getIntrinsicID(F
)) {
5277 RenameFn
= visitIntrinsicCall(I
, IID
);
5282 if (unsigned IID
= F
->getIntrinsicID()) {
5283 RenameFn
= visitIntrinsicCall(I
, IID
);
5289 // Check for well-known libc/libm calls. If the function is internal, it
5290 // can't be a library call.
5291 if (!F
->hasLocalLinkage() && F
->hasName()) {
5292 StringRef Name
= F
->getName();
5293 if (Name
== "copysign" || Name
== "copysignf" || Name
== "copysignl") {
5294 if (I
.getNumArgOperands() == 2 && // Basic sanity checks.
5295 I
.getArgOperand(0)->getType()->isFloatingPointTy() &&
5296 I
.getType() == I
.getArgOperand(0)->getType() &&
5297 I
.getType() == I
.getArgOperand(1)->getType()) {
5298 SDValue LHS
= getValue(I
.getArgOperand(0));
5299 SDValue RHS
= getValue(I
.getArgOperand(1));
5300 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, getCurDebugLoc(),
5301 LHS
.getValueType(), LHS
, RHS
));
5304 } else if (Name
== "fabs" || Name
== "fabsf" || Name
== "fabsl") {
5305 if (I
.getNumArgOperands() == 1 && // Basic sanity checks.
5306 I
.getArgOperand(0)->getType()->isFloatingPointTy() &&
5307 I
.getType() == I
.getArgOperand(0)->getType()) {
5308 SDValue Tmp
= getValue(I
.getArgOperand(0));
5309 setValue(&I
, DAG
.getNode(ISD::FABS
, getCurDebugLoc(),
5310 Tmp
.getValueType(), Tmp
));
5313 } else if (Name
== "sin" || Name
== "sinf" || Name
== "sinl") {
5314 if (I
.getNumArgOperands() == 1 && // Basic sanity checks.
5315 I
.getArgOperand(0)->getType()->isFloatingPointTy() &&
5316 I
.getType() == I
.getArgOperand(0)->getType() &&
5317 I
.onlyReadsMemory()) {
5318 SDValue Tmp
= getValue(I
.getArgOperand(0));
5319 setValue(&I
, DAG
.getNode(ISD::FSIN
, getCurDebugLoc(),
5320 Tmp
.getValueType(), Tmp
));
5323 } else if (Name
== "cos" || Name
== "cosf" || Name
== "cosl") {
5324 if (I
.getNumArgOperands() == 1 && // Basic sanity checks.
5325 I
.getArgOperand(0)->getType()->isFloatingPointTy() &&
5326 I
.getType() == I
.getArgOperand(0)->getType() &&
5327 I
.onlyReadsMemory()) {
5328 SDValue Tmp
= getValue(I
.getArgOperand(0));
5329 setValue(&I
, DAG
.getNode(ISD::FCOS
, getCurDebugLoc(),
5330 Tmp
.getValueType(), Tmp
));
5333 } else if (Name
== "sqrt" || Name
== "sqrtf" || Name
== "sqrtl") {
5334 if (I
.getNumArgOperands() == 1 && // Basic sanity checks.
5335 I
.getArgOperand(0)->getType()->isFloatingPointTy() &&
5336 I
.getType() == I
.getArgOperand(0)->getType() &&
5337 I
.onlyReadsMemory()) {
5338 SDValue Tmp
= getValue(I
.getArgOperand(0));
5339 setValue(&I
, DAG
.getNode(ISD::FSQRT
, getCurDebugLoc(),
5340 Tmp
.getValueType(), Tmp
));
5343 } else if (Name
== "memcmp") {
5344 if (visitMemCmpCall(I
))
5352 Callee
= getValue(I
.getCalledValue());
5354 Callee
= DAG
.getExternalSymbol(RenameFn
, TLI
.getPointerTy());
5356 // Check if we can potentially perform a tail call. More detailed checking is
5357 // be done within LowerCallTo, after more information about the call is known.
5358 LowerCallTo(&I
, Callee
, I
.isTailCall());
5363 /// AsmOperandInfo - This contains information for each constraint that we are
5365 class SDISelAsmOperandInfo
: public TargetLowering::AsmOperandInfo
{
5367 /// CallOperand - If this is the result output operand or a clobber
5368 /// this is null, otherwise it is the incoming operand to the CallInst.
5369 /// This gets modified as the asm is processed.
5370 SDValue CallOperand
;
5372 /// AssignedRegs - If this is a register or register class operand, this
5373 /// contains the set of register corresponding to the operand.
5374 RegsForValue AssignedRegs
;
5376 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo
&info
)
5377 : TargetLowering::AsmOperandInfo(info
), CallOperand(0,0) {
5380 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5381 /// busy in OutputRegs/InputRegs.
5382 void MarkAllocatedRegs(bool isOutReg
, bool isInReg
,
5383 std::set
<unsigned> &OutputRegs
,
5384 std::set
<unsigned> &InputRegs
,
5385 const TargetRegisterInfo
&TRI
) const {
5387 for (unsigned i
= 0, e
= AssignedRegs
.Regs
.size(); i
!= e
; ++i
)
5388 MarkRegAndAliases(AssignedRegs
.Regs
[i
], OutputRegs
, TRI
);
5391 for (unsigned i
= 0, e
= AssignedRegs
.Regs
.size(); i
!= e
; ++i
)
5392 MarkRegAndAliases(AssignedRegs
.Regs
[i
], InputRegs
, TRI
);
5396 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5397 /// corresponds to. If there is no Value* for this operand, it returns
5399 EVT
getCallOperandValEVT(LLVMContext
&Context
,
5400 const TargetLowering
&TLI
,
5401 const TargetData
*TD
) const {
5402 if (CallOperandVal
== 0) return MVT::Other
;
5404 if (isa
<BasicBlock
>(CallOperandVal
))
5405 return TLI
.getPointerTy();
5407 const llvm::Type
*OpTy
= CallOperandVal
->getType();
5409 // FIXME: code duplicated from TargetLowering::ParseConstraints().
5410 // If this is an indirect operand, the operand is a pointer to the
5413 const llvm::PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
5415 report_fatal_error("Indirect operand for inline asm not a pointer!");
5416 OpTy
= PtrTy
->getElementType();
5419 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5420 if (const StructType
*STy
= dyn_cast
<StructType
>(OpTy
))
5421 if (STy
->getNumElements() == 1)
5422 OpTy
= STy
->getElementType(0);
5424 // If OpTy is not a single value, it may be a struct/union that we
5425 // can tile with integers.
5426 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
5427 unsigned BitSize
= TD
->getTypeSizeInBits(OpTy
);
5436 OpTy
= IntegerType::get(Context
, BitSize
);
5441 return TLI
.getValueType(OpTy
, true);
5445 /// MarkRegAndAliases - Mark the specified register and all aliases in the
5447 static void MarkRegAndAliases(unsigned Reg
, std::set
<unsigned> &Regs
,
5448 const TargetRegisterInfo
&TRI
) {
5449 assert(TargetRegisterInfo::isPhysicalRegister(Reg
) && "Isn't a physreg");
5451 if (const unsigned *Aliases
= TRI
.getAliasSet(Reg
))
5452 for (; *Aliases
; ++Aliases
)
5453 Regs
.insert(*Aliases
);
5457 typedef SmallVector
<SDISelAsmOperandInfo
,16> SDISelAsmOperandInfoVector
;
5459 } // end anonymous namespace
5461 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5462 /// specified operand. We prefer to assign virtual registers, to allow the
5463 /// register allocator to handle the assignment process. However, if the asm
5464 /// uses features that we can't model on machineinstrs, we have SDISel do the
5465 /// allocation. This produces generally horrible, but correct, code.
5467 /// OpInfo describes the operand.
5468 /// Input and OutputRegs are the set of already allocated physical registers.
5470 static void GetRegistersForValue(SelectionDAG
&DAG
,
5471 const TargetLowering
&TLI
,
5473 SDISelAsmOperandInfo
&OpInfo
,
5474 std::set
<unsigned> &OutputRegs
,
5475 std::set
<unsigned> &InputRegs
) {
5476 LLVMContext
&Context
= *DAG
.getContext();
5478 // Compute whether this value requires an input register, an output register,
5480 bool isOutReg
= false;
5481 bool isInReg
= false;
5482 switch (OpInfo
.Type
) {
5483 case InlineAsm::isOutput
:
5486 // If there is an input constraint that matches this, we need to reserve
5487 // the input register so no other inputs allocate to it.
5488 isInReg
= OpInfo
.hasMatchingInput();
5490 case InlineAsm::isInput
:
5494 case InlineAsm::isClobber
:
5501 MachineFunction
&MF
= DAG
.getMachineFunction();
5502 SmallVector
<unsigned, 4> Regs
;
5504 // If this is a constraint for a single physreg, or a constraint for a
5505 // register class, find it.
5506 std::pair
<unsigned, const TargetRegisterClass
*> PhysReg
=
5507 TLI
.getRegForInlineAsmConstraint(OpInfo
.ConstraintCode
,
5508 OpInfo
.ConstraintVT
);
5510 unsigned NumRegs
= 1;
5511 if (OpInfo
.ConstraintVT
!= MVT::Other
) {
5512 // If this is a FP input in an integer register (or visa versa) insert a bit
5513 // cast of the input value. More generally, handle any case where the input
5514 // value disagrees with the register class we plan to stick this in.
5515 if (OpInfo
.Type
== InlineAsm::isInput
&&
5516 PhysReg
.second
&& !PhysReg
.second
->hasType(OpInfo
.ConstraintVT
)) {
5517 // Try to convert to the first EVT that the reg class contains. If the
5518 // types are identical size, use a bitcast to convert (e.g. two differing
5520 EVT RegVT
= *PhysReg
.second
->vt_begin();
5521 if (RegVT
.getSizeInBits() == OpInfo
.ConstraintVT
.getSizeInBits()) {
5522 OpInfo
.CallOperand
= DAG
.getNode(ISD::BITCAST
, DL
,
5523 RegVT
, OpInfo
.CallOperand
);
5524 OpInfo
.ConstraintVT
= RegVT
;
5525 } else if (RegVT
.isInteger() && OpInfo
.ConstraintVT
.isFloatingPoint()) {
5526 // If the input is a FP value and we want it in FP registers, do a
5527 // bitcast to the corresponding integer type. This turns an f64 value
5528 // into i64, which can be passed with two i32 values on a 32-bit
5530 RegVT
= EVT::getIntegerVT(Context
,
5531 OpInfo
.ConstraintVT
.getSizeInBits());
5532 OpInfo
.CallOperand
= DAG
.getNode(ISD::BITCAST
, DL
,
5533 RegVT
, OpInfo
.CallOperand
);
5534 OpInfo
.ConstraintVT
= RegVT
;
5538 NumRegs
= TLI
.getNumRegisters(Context
, OpInfo
.ConstraintVT
);
5542 EVT ValueVT
= OpInfo
.ConstraintVT
;
5544 // If this is a constraint for a specific physical register, like {r17},
5546 if (unsigned AssignedReg
= PhysReg
.first
) {
5547 const TargetRegisterClass
*RC
= PhysReg
.second
;
5548 if (OpInfo
.ConstraintVT
== MVT::Other
)
5549 ValueVT
= *RC
->vt_begin();
5551 // Get the actual register value type. This is important, because the user
5552 // may have asked for (e.g.) the AX register in i32 type. We need to
5553 // remember that AX is actually i16 to get the right extension.
5554 RegVT
= *RC
->vt_begin();
5556 // This is a explicit reference to a physical register.
5557 Regs
.push_back(AssignedReg
);
5559 // If this is an expanded reference, add the rest of the regs to Regs.
5561 TargetRegisterClass::iterator I
= RC
->begin();
5562 for (; *I
!= AssignedReg
; ++I
)
5563 assert(I
!= RC
->end() && "Didn't find reg!");
5565 // Already added the first reg.
5567 for (; NumRegs
; --NumRegs
, ++I
) {
5568 assert(I
!= RC
->end() && "Ran out of registers to allocate!");
5573 OpInfo
.AssignedRegs
= RegsForValue(Regs
, RegVT
, ValueVT
);
5574 const TargetRegisterInfo
*TRI
= DAG
.getTarget().getRegisterInfo();
5575 OpInfo
.MarkAllocatedRegs(isOutReg
, isInReg
, OutputRegs
, InputRegs
, *TRI
);
5579 // Otherwise, if this was a reference to an LLVM register class, create vregs
5580 // for this reference.
5581 if (const TargetRegisterClass
*RC
= PhysReg
.second
) {
5582 RegVT
= *RC
->vt_begin();
5583 if (OpInfo
.ConstraintVT
== MVT::Other
)
5586 // Create the appropriate number of virtual registers.
5587 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
5588 for (; NumRegs
; --NumRegs
)
5589 Regs
.push_back(RegInfo
.createVirtualRegister(RC
));
5591 OpInfo
.AssignedRegs
= RegsForValue(Regs
, RegVT
, ValueVT
);
5595 // Otherwise, we couldn't allocate enough registers for this.
5598 /// visitInlineAsm - Handle a call to an InlineAsm object.
5600 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS
) {
5601 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
5603 /// ConstraintOperands - Information about all of the constraints.
5604 SDISelAsmOperandInfoVector ConstraintOperands
;
5606 std::set
<unsigned> OutputRegs
, InputRegs
;
5608 TargetLowering::AsmOperandInfoVector
5609 TargetConstraints
= TLI
.ParseConstraints(CS
);
5611 bool hasMemory
= false;
5613 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
5614 unsigned ResNo
= 0; // ResNo - The result number of the next output.
5615 for (unsigned i
= 0, e
= TargetConstraints
.size(); i
!= e
; ++i
) {
5616 ConstraintOperands
.push_back(SDISelAsmOperandInfo(TargetConstraints
[i
]));
5617 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
5619 EVT OpVT
= MVT::Other
;
5621 // Compute the value type for each operand.
5622 switch (OpInfo
.Type
) {
5623 case InlineAsm::isOutput
:
5624 // Indirect outputs just consume an argument.
5625 if (OpInfo
.isIndirect
) {
5626 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
5630 // The return value of the call is this value. As such, there is no
5631 // corresponding argument.
5632 assert(!CS
.getType()->isVoidTy() &&
5634 if (const StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
5635 OpVT
= TLI
.getValueType(STy
->getElementType(ResNo
));
5637 assert(ResNo
== 0 && "Asm only has one result!");
5638 OpVT
= TLI
.getValueType(CS
.getType());
5642 case InlineAsm::isInput
:
5643 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
5645 case InlineAsm::isClobber
:
5650 // If this is an input or an indirect output, process the call argument.
5651 // BasicBlocks are labels, currently appearing only in asm's.
5652 if (OpInfo
.CallOperandVal
) {
5653 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(OpInfo
.CallOperandVal
)) {
5654 OpInfo
.CallOperand
= DAG
.getBasicBlock(FuncInfo
.MBBMap
[BB
]);
5656 OpInfo
.CallOperand
= getValue(OpInfo
.CallOperandVal
);
5659 OpVT
= OpInfo
.getCallOperandValEVT(*DAG
.getContext(), TLI
, TD
);
5662 OpInfo
.ConstraintVT
= OpVT
;
5664 // Indirect operand accesses access memory.
5665 if (OpInfo
.isIndirect
)
5668 for (unsigned j
= 0, ee
= OpInfo
.Codes
.size(); j
!= ee
; ++j
) {
5669 TargetLowering::ConstraintType
5670 CType
= TLI
.getConstraintType(OpInfo
.Codes
[j
]);
5671 if (CType
== TargetLowering::C_Memory
) {
5679 SDValue Chain
, Flag
;
5681 // We won't need to flush pending loads if this asm doesn't touch
5682 // memory and is nonvolatile.
5683 if (hasMemory
|| IA
->hasSideEffects())
5686 Chain
= DAG
.getRoot();
5688 // Second pass over the constraints: compute which constraint option to use
5689 // and assign registers to constraints that want a specific physreg.
5690 for (unsigned i
= 0, e
= ConstraintOperands
.size(); i
!= e
; ++i
) {
5691 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5693 // If this is an output operand with a matching input operand, look up the
5694 // matching input. If their types mismatch, e.g. one is an integer, the
5695 // other is floating point, or their sizes are different, flag it as an
5697 if (OpInfo
.hasMatchingInput()) {
5698 SDISelAsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
5700 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
5701 if ((OpInfo
.ConstraintVT
.isInteger() !=
5702 Input
.ConstraintVT
.isInteger()) ||
5703 (OpInfo
.ConstraintVT
.getSizeInBits() !=
5704 Input
.ConstraintVT
.getSizeInBits())) {
5705 report_fatal_error("Unsupported asm: input constraint"
5706 " with a matching output constraint of"
5707 " incompatible type!");
5709 Input
.ConstraintVT
= OpInfo
.ConstraintVT
;
5713 // Compute the constraint code and ConstraintType to use.
5714 TLI
.ComputeConstraintToUse(OpInfo
, OpInfo
.CallOperand
, &DAG
);
5716 // If this is a memory input, and if the operand is not indirect, do what we
5717 // need to to provide an address for the memory input.
5718 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
5719 !OpInfo
.isIndirect
) {
5720 assert((OpInfo
.isMultipleAlternative
||
5721 (OpInfo
.Type
== InlineAsm::isInput
)) &&
5722 "Can only indirectify direct input operands!");
5724 // Memory operands really want the address of the value. If we don't have
5725 // an indirect input, put it in the constpool if we can, otherwise spill
5726 // it to a stack slot.
5727 // TODO: This isn't quite right. We need to handle these according to
5728 // the addressing mode that the constraint wants. Also, this may take
5729 // an additional register for the computation and we don't want that
5732 // If the operand is a float, integer, or vector constant, spill to a
5733 // constant pool entry to get its address.
5734 const Value
*OpVal
= OpInfo
.CallOperandVal
;
5735 if (isa
<ConstantFP
>(OpVal
) || isa
<ConstantInt
>(OpVal
) ||
5736 isa
<ConstantVector
>(OpVal
)) {
5737 OpInfo
.CallOperand
= DAG
.getConstantPool(cast
<Constant
>(OpVal
),
5738 TLI
.getPointerTy());
5740 // Otherwise, create a stack slot and emit a store to it before the
5742 const Type
*Ty
= OpVal
->getType();
5743 uint64_t TySize
= TLI
.getTargetData()->getTypeAllocSize(Ty
);
5744 unsigned Align
= TLI
.getTargetData()->getPrefTypeAlignment(Ty
);
5745 MachineFunction
&MF
= DAG
.getMachineFunction();
5746 int SSFI
= MF
.getFrameInfo()->CreateStackObject(TySize
, Align
, false);
5747 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, TLI
.getPointerTy());
5748 Chain
= DAG
.getStore(Chain
, getCurDebugLoc(),
5749 OpInfo
.CallOperand
, StackSlot
,
5750 MachinePointerInfo::getFixedStack(SSFI
),
5752 OpInfo
.CallOperand
= StackSlot
;
5755 // There is no longer a Value* corresponding to this operand.
5756 OpInfo
.CallOperandVal
= 0;
5758 // It is now an indirect operand.
5759 OpInfo
.isIndirect
= true;
5762 // If this constraint is for a specific register, allocate it before
5764 if (OpInfo
.ConstraintType
== TargetLowering::C_Register
)
5765 GetRegistersForValue(DAG
, TLI
, getCurDebugLoc(), OpInfo
, OutputRegs
,
5769 // Second pass - Loop over all of the operands, assigning virtual or physregs
5770 // to register class operands.
5771 for (unsigned i
= 0, e
= ConstraintOperands
.size(); i
!= e
; ++i
) {
5772 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5774 // C_Register operands have already been allocated, Other/Memory don't need
5776 if (OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
)
5777 GetRegistersForValue(DAG
, TLI
, getCurDebugLoc(), OpInfo
, OutputRegs
,
5781 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5782 std::vector
<SDValue
> AsmNodeOperands
;
5783 AsmNodeOperands
.push_back(SDValue()); // reserve space for input chain
5784 AsmNodeOperands
.push_back(
5785 DAG
.getTargetExternalSymbol(IA
->getAsmString().c_str(),
5786 TLI
.getPointerTy()));
5788 // If we have a !srcloc metadata node associated with it, we want to attach
5789 // this to the ultimately generated inline asm machineinstr. To do this, we
5790 // pass in the third operand as this (potentially null) inline asm MDNode.
5791 const MDNode
*SrcLoc
= CS
.getInstruction()->getMetadata("srcloc");
5792 AsmNodeOperands
.push_back(DAG
.getMDNode(SrcLoc
));
5794 // Remember the HasSideEffect and AlignStack bits as operand 3.
5795 unsigned ExtraInfo
= 0;
5796 if (IA
->hasSideEffects())
5797 ExtraInfo
|= InlineAsm::Extra_HasSideEffects
;
5798 if (IA
->isAlignStack())
5799 ExtraInfo
|= InlineAsm::Extra_IsAlignStack
;
5800 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ExtraInfo
,
5801 TLI
.getPointerTy()));
5803 // Loop over all of the inputs, copying the operand values into the
5804 // appropriate registers and processing the output regs.
5805 RegsForValue RetValRegs
;
5807 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5808 std::vector
<std::pair
<RegsForValue
, Value
*> > IndirectStoresToEmit
;
5810 for (unsigned i
= 0, e
= ConstraintOperands
.size(); i
!= e
; ++i
) {
5811 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5813 switch (OpInfo
.Type
) {
5814 case InlineAsm::isOutput
: {
5815 if (OpInfo
.ConstraintType
!= TargetLowering::C_RegisterClass
&&
5816 OpInfo
.ConstraintType
!= TargetLowering::C_Register
) {
5817 // Memory output, or 'other' output (e.g. 'X' constraint).
5818 assert(OpInfo
.isIndirect
&& "Memory output must be indirect operand");
5820 // Add information to the INLINEASM node to know about this output.
5821 unsigned OpFlags
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
5822 AsmNodeOperands
.push_back(DAG
.getTargetConstant(OpFlags
,
5823 TLI
.getPointerTy()));
5824 AsmNodeOperands
.push_back(OpInfo
.CallOperand
);
5828 // Otherwise, this is a register or register class output.
5830 // Copy the output from the appropriate register. Find a register that
5832 if (OpInfo
.AssignedRegs
.Regs
.empty())
5833 report_fatal_error("Couldn't allocate output reg for constraint '" +
5834 Twine(OpInfo
.ConstraintCode
) + "'!");
5836 // If this is an indirect operand, store through the pointer after the
5838 if (OpInfo
.isIndirect
) {
5839 IndirectStoresToEmit
.push_back(std::make_pair(OpInfo
.AssignedRegs
,
5840 OpInfo
.CallOperandVal
));
5842 // This is the result value of the call.
5843 assert(!CS
.getType()->isVoidTy() && "Bad inline asm!");
5844 // Concatenate this output onto the outputs list.
5845 RetValRegs
.append(OpInfo
.AssignedRegs
);
5848 // Add information to the INLINEASM node to know that this register is
5850 OpInfo
.AssignedRegs
.AddInlineAsmOperands(OpInfo
.isEarlyClobber
?
5851 InlineAsm::Kind_RegDefEarlyClobber
:
5852 InlineAsm::Kind_RegDef
,
5859 case InlineAsm::isInput
: {
5860 SDValue InOperandVal
= OpInfo
.CallOperand
;
5862 if (OpInfo
.isMatchingInputConstraint()) { // Matching constraint?
5863 // If this is required to match an output register we have already set,
5864 // just use its register.
5865 unsigned OperandNo
= OpInfo
.getMatchedOperand();
5867 // Scan until we find the definition we already emitted of this operand.
5868 // When we find it, create a RegsForValue operand.
5869 unsigned CurOp
= InlineAsm::Op_FirstOperand
;
5870 for (; OperandNo
; --OperandNo
) {
5871 // Advance to the next operand.
5873 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
5874 assert((InlineAsm::isRegDefKind(OpFlag
) ||
5875 InlineAsm::isRegDefEarlyClobberKind(OpFlag
) ||
5876 InlineAsm::isMemKind(OpFlag
)) && "Skipped past definitions?");
5877 CurOp
+= InlineAsm::getNumOperandRegisters(OpFlag
)+1;
5881 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
5882 if (InlineAsm::isRegDefKind(OpFlag
) ||
5883 InlineAsm::isRegDefEarlyClobberKind(OpFlag
)) {
5884 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5885 if (OpInfo
.isIndirect
) {
5886 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5887 LLVMContext
&Ctx
= *DAG
.getContext();
5888 Ctx
.emitError(CS
.getInstruction(), "inline asm not supported yet:"
5889 " don't know how to handle tied "
5890 "indirect register inputs");
5893 RegsForValue MatchedRegs
;
5894 MatchedRegs
.ValueVTs
.push_back(InOperandVal
.getValueType());
5895 EVT RegVT
= AsmNodeOperands
[CurOp
+1].getValueType();
5896 MatchedRegs
.RegVTs
.push_back(RegVT
);
5897 MachineRegisterInfo
&RegInfo
= DAG
.getMachineFunction().getRegInfo();
5898 for (unsigned i
= 0, e
= InlineAsm::getNumOperandRegisters(OpFlag
);
5900 MatchedRegs
.Regs
.push_back
5901 (RegInfo
.createVirtualRegister(TLI
.getRegClassFor(RegVT
)));
5903 // Use the produced MatchedRegs object to
5904 MatchedRegs
.getCopyToRegs(InOperandVal
, DAG
, getCurDebugLoc(),
5906 MatchedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
,
5907 true, OpInfo
.getMatchedOperand(),
5908 DAG
, AsmNodeOperands
);
5912 assert(InlineAsm::isMemKind(OpFlag
) && "Unknown matching constraint!");
5913 assert(InlineAsm::getNumOperandRegisters(OpFlag
) == 1 &&
5914 "Unexpected number of operands");
5915 // Add information to the INLINEASM node to know about this input.
5916 // See InlineAsm.h isUseOperandTiedToDef.
5917 OpFlag
= InlineAsm::getFlagWordForMatchingOp(OpFlag
,
5918 OpInfo
.getMatchedOperand());
5919 AsmNodeOperands
.push_back(DAG
.getTargetConstant(OpFlag
,
5920 TLI
.getPointerTy()));
5921 AsmNodeOperands
.push_back(AsmNodeOperands
[CurOp
+1]);
5925 // Treat indirect 'X' constraint as memory.
5926 if (OpInfo
.ConstraintType
== TargetLowering::C_Other
&&
5928 OpInfo
.ConstraintType
= TargetLowering::C_Memory
;
5930 if (OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
5931 std::vector
<SDValue
> Ops
;
5932 TLI
.LowerAsmOperandForConstraint(InOperandVal
, OpInfo
.ConstraintCode
,
5935 report_fatal_error("Invalid operand for inline asm constraint '" +
5936 Twine(OpInfo
.ConstraintCode
) + "'!");
5938 // Add information to the INLINEASM node to know about this input.
5939 unsigned ResOpType
=
5940 InlineAsm::getFlagWord(InlineAsm::Kind_Imm
, Ops
.size());
5941 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
5942 TLI
.getPointerTy()));
5943 AsmNodeOperands
.insert(AsmNodeOperands
.end(), Ops
.begin(), Ops
.end());
5947 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
) {
5948 assert(OpInfo
.isIndirect
&& "Operand must be indirect to be a mem!");
5949 assert(InOperandVal
.getValueType() == TLI
.getPointerTy() &&
5950 "Memory operands expect pointer values");
5952 // Add information to the INLINEASM node to know about this input.
5953 unsigned ResOpType
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
5954 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
5955 TLI
.getPointerTy()));
5956 AsmNodeOperands
.push_back(InOperandVal
);
5960 assert((OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
||
5961 OpInfo
.ConstraintType
== TargetLowering::C_Register
) &&
5962 "Unknown constraint type!");
5963 assert(!OpInfo
.isIndirect
&&
5964 "Don't know how to handle indirect register inputs yet!");
5966 // Copy the input into the appropriate registers.
5967 if (OpInfo
.AssignedRegs
.Regs
.empty() ||
5968 !OpInfo
.AssignedRegs
.areValueTypesLegal(TLI
))
5969 report_fatal_error("Couldn't allocate input reg for constraint '" +
5970 Twine(OpInfo
.ConstraintCode
) + "'!");
5972 OpInfo
.AssignedRegs
.getCopyToRegs(InOperandVal
, DAG
, getCurDebugLoc(),
5975 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
, false, 0,
5976 DAG
, AsmNodeOperands
);
5979 case InlineAsm::isClobber
: {
5980 // Add the clobbered value to the operand list, so that the register
5981 // allocator is aware that the physreg got clobbered.
5982 if (!OpInfo
.AssignedRegs
.Regs
.empty())
5983 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_Clobber
,
5991 // Finish up input operands. Set the input chain and add the flag last.
5992 AsmNodeOperands
[InlineAsm::Op_InputChain
] = Chain
;
5993 if (Flag
.getNode()) AsmNodeOperands
.push_back(Flag
);
5995 Chain
= DAG
.getNode(ISD::INLINEASM
, getCurDebugLoc(),
5996 DAG
.getVTList(MVT::Other
, MVT::Glue
),
5997 &AsmNodeOperands
[0], AsmNodeOperands
.size());
5998 Flag
= Chain
.getValue(1);
6000 // If this asm returns a register value, copy the result from that register
6001 // and set it as the value of the call.
6002 if (!RetValRegs
.Regs
.empty()) {
6003 SDValue Val
= RetValRegs
.getCopyFromRegs(DAG
, FuncInfo
, getCurDebugLoc(),
6006 // FIXME: Why don't we do this for inline asms with MRVs?
6007 if (CS
.getType()->isSingleValueType() && CS
.getType()->isSized()) {
6008 EVT ResultType
= TLI
.getValueType(CS
.getType());
6010 // If any of the results of the inline asm is a vector, it may have the
6011 // wrong width/num elts. This can happen for register classes that can
6012 // contain multiple different value types. The preg or vreg allocated may
6013 // not have the same VT as was expected. Convert it to the right type
6014 // with bit_convert.
6015 if (ResultType
!= Val
.getValueType() && Val
.getValueType().isVector()) {
6016 Val
= DAG
.getNode(ISD::BITCAST
, getCurDebugLoc(),
6019 } else if (ResultType
!= Val
.getValueType() &&
6020 ResultType
.isInteger() && Val
.getValueType().isInteger()) {
6021 // If a result value was tied to an input value, the computed result may
6022 // have a wider width than the expected result. Extract the relevant
6024 Val
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), ResultType
, Val
);
6027 assert(ResultType
== Val
.getValueType() && "Asm result value mismatch!");
6030 setValue(CS
.getInstruction(), Val
);
6031 // Don't need to use this as a chain in this case.
6032 if (!IA
->hasSideEffects() && !hasMemory
&& IndirectStoresToEmit
.empty())
6036 std::vector
<std::pair
<SDValue
, const Value
*> > StoresToEmit
;
6038 // Process indirect outputs, first output all of the flagged copies out of
6040 for (unsigned i
= 0, e
= IndirectStoresToEmit
.size(); i
!= e
; ++i
) {
6041 RegsForValue
&OutRegs
= IndirectStoresToEmit
[i
].first
;
6042 const Value
*Ptr
= IndirectStoresToEmit
[i
].second
;
6043 SDValue OutVal
= OutRegs
.getCopyFromRegs(DAG
, FuncInfo
, getCurDebugLoc(),
6045 StoresToEmit
.push_back(std::make_pair(OutVal
, Ptr
));
6048 // Emit the non-flagged stores from the physregs.
6049 SmallVector
<SDValue
, 8> OutChains
;
6050 for (unsigned i
= 0, e
= StoresToEmit
.size(); i
!= e
; ++i
) {
6051 SDValue Val
= DAG
.getStore(Chain
, getCurDebugLoc(),
6052 StoresToEmit
[i
].first
,
6053 getValue(StoresToEmit
[i
].second
),
6054 MachinePointerInfo(StoresToEmit
[i
].second
),
6056 OutChains
.push_back(Val
);
6059 if (!OutChains
.empty())
6060 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
6061 &OutChains
[0], OutChains
.size());
6066 void SelectionDAGBuilder::visitVAStart(const CallInst
&I
) {
6067 DAG
.setRoot(DAG
.getNode(ISD::VASTART
, getCurDebugLoc(),
6068 MVT::Other
, getRoot(),
6069 getValue(I
.getArgOperand(0)),
6070 DAG
.getSrcValue(I
.getArgOperand(0))));
6073 void SelectionDAGBuilder::visitVAArg(const VAArgInst
&I
) {
6074 const TargetData
&TD
= *TLI
.getTargetData();
6075 SDValue V
= DAG
.getVAArg(TLI
.getValueType(I
.getType()), getCurDebugLoc(),
6076 getRoot(), getValue(I
.getOperand(0)),
6077 DAG
.getSrcValue(I
.getOperand(0)),
6078 TD
.getABITypeAlignment(I
.getType()));
6080 DAG
.setRoot(V
.getValue(1));
6083 void SelectionDAGBuilder::visitVAEnd(const CallInst
&I
) {
6084 DAG
.setRoot(DAG
.getNode(ISD::VAEND
, getCurDebugLoc(),
6085 MVT::Other
, getRoot(),
6086 getValue(I
.getArgOperand(0)),
6087 DAG
.getSrcValue(I
.getArgOperand(0))));
6090 void SelectionDAGBuilder::visitVACopy(const CallInst
&I
) {
6091 DAG
.setRoot(DAG
.getNode(ISD::VACOPY
, getCurDebugLoc(),
6092 MVT::Other
, getRoot(),
6093 getValue(I
.getArgOperand(0)),
6094 getValue(I
.getArgOperand(1)),
6095 DAG
.getSrcValue(I
.getArgOperand(0)),
6096 DAG
.getSrcValue(I
.getArgOperand(1))));
6099 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6100 /// implementation, which just calls LowerCall.
6101 /// FIXME: When all targets are
6102 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6103 std::pair
<SDValue
, SDValue
>
6104 TargetLowering::LowerCallTo(SDValue Chain
, const Type
*RetTy
,
6105 bool RetSExt
, bool RetZExt
, bool isVarArg
,
6106 bool isInreg
, unsigned NumFixedArgs
,
6107 CallingConv::ID CallConv
, bool isTailCall
,
6108 bool isReturnValueUsed
,
6110 ArgListTy
&Args
, SelectionDAG
&DAG
,
6111 DebugLoc dl
) const {
6112 // Handle all of the outgoing arguments.
6113 SmallVector
<ISD::OutputArg
, 32> Outs
;
6114 SmallVector
<SDValue
, 32> OutVals
;
6115 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
6116 SmallVector
<EVT
, 4> ValueVTs
;
6117 ComputeValueVTs(*this, Args
[i
].Ty
, ValueVTs
);
6118 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
6119 Value
!= NumValues
; ++Value
) {
6120 EVT VT
= ValueVTs
[Value
];
6121 const Type
*ArgTy
= VT
.getTypeForEVT(RetTy
->getContext());
6122 SDValue Op
= SDValue(Args
[i
].Node
.getNode(),
6123 Args
[i
].Node
.getResNo() + Value
);
6124 ISD::ArgFlagsTy Flags
;
6125 unsigned OriginalAlignment
=
6126 getTargetData()->getABITypeAlignment(ArgTy
);
6132 if (Args
[i
].isInReg
)
6136 if (Args
[i
].isByVal
) {
6138 const PointerType
*Ty
= cast
<PointerType
>(Args
[i
].Ty
);
6139 const Type
*ElementTy
= Ty
->getElementType();
6140 Flags
.setByValSize(getTargetData()->getTypeAllocSize(ElementTy
));
6141 // For ByVal, alignment should come from FE. BE will guess if this
6142 // info is not there but there are cases it cannot get right.
6143 unsigned FrameAlign
;
6144 if (Args
[i
].Alignment
)
6145 FrameAlign
= Args
[i
].Alignment
;
6147 FrameAlign
= getByValTypeAlignment(ElementTy
);
6148 Flags
.setByValAlign(FrameAlign
);
6152 Flags
.setOrigAlign(OriginalAlignment
);
6154 EVT PartVT
= getRegisterType(RetTy
->getContext(), VT
);
6155 unsigned NumParts
= getNumRegisters(RetTy
->getContext(), VT
);
6156 SmallVector
<SDValue
, 4> Parts(NumParts
);
6157 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
6160 ExtendKind
= ISD::SIGN_EXTEND
;
6161 else if (Args
[i
].isZExt
)
6162 ExtendKind
= ISD::ZERO_EXTEND
;
6164 getCopyToParts(DAG
, dl
, Op
, &Parts
[0], NumParts
,
6165 PartVT
, ExtendKind
);
6167 for (unsigned j
= 0; j
!= NumParts
; ++j
) {
6168 // if it isn't first piece, alignment must be 1
6169 ISD::OutputArg
MyFlags(Flags
, Parts
[j
].getValueType(),
6171 if (NumParts
> 1 && j
== 0)
6172 MyFlags
.Flags
.setSplit();
6174 MyFlags
.Flags
.setOrigAlign(1);
6176 Outs
.push_back(MyFlags
);
6177 OutVals
.push_back(Parts
[j
]);
6182 // Handle the incoming return values from the call.
6183 SmallVector
<ISD::InputArg
, 32> Ins
;
6184 SmallVector
<EVT
, 4> RetTys
;
6185 ComputeValueVTs(*this, RetTy
, RetTys
);
6186 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
6188 EVT RegisterVT
= getRegisterType(RetTy
->getContext(), VT
);
6189 unsigned NumRegs
= getNumRegisters(RetTy
->getContext(), VT
);
6190 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
6191 ISD::InputArg MyFlags
;
6192 MyFlags
.VT
= RegisterVT
.getSimpleVT();
6193 MyFlags
.Used
= isReturnValueUsed
;
6195 MyFlags
.Flags
.setSExt();
6197 MyFlags
.Flags
.setZExt();
6199 MyFlags
.Flags
.setInReg();
6200 Ins
.push_back(MyFlags
);
6204 SmallVector
<SDValue
, 4> InVals
;
6205 Chain
= LowerCall(Chain
, Callee
, CallConv
, isVarArg
, isTailCall
,
6206 Outs
, OutVals
, Ins
, dl
, DAG
, InVals
);
6208 // Verify that the target's LowerCall behaved as expected.
6209 assert(Chain
.getNode() && Chain
.getValueType() == MVT::Other
&&
6210 "LowerCall didn't return a valid chain!");
6211 assert((!isTailCall
|| InVals
.empty()) &&
6212 "LowerCall emitted a return value for a tail call!");
6213 assert((isTailCall
|| InVals
.size() == Ins
.size()) &&
6214 "LowerCall didn't emit the correct number of values!");
6216 // For a tail call, the return value is merely live-out and there aren't
6217 // any nodes in the DAG representing it. Return a special value to
6218 // indicate that a tail call has been emitted and no more Instructions
6219 // should be processed in the current block.
6222 return std::make_pair(SDValue(), SDValue());
6225 DEBUG(for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
6226 assert(InVals
[i
].getNode() &&
6227 "LowerCall emitted a null value!");
6228 assert(EVT(Ins
[i
].VT
) == InVals
[i
].getValueType() &&
6229 "LowerCall emitted a value with the wrong type!");
6232 // Collect the legal value parts into potentially illegal values
6233 // that correspond to the original function's return values.
6234 ISD::NodeType AssertOp
= ISD::DELETED_NODE
;
6236 AssertOp
= ISD::AssertSext
;
6238 AssertOp
= ISD::AssertZext
;
6239 SmallVector
<SDValue
, 4> ReturnValues
;
6240 unsigned CurReg
= 0;
6241 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
6243 EVT RegisterVT
= getRegisterType(RetTy
->getContext(), VT
);
6244 unsigned NumRegs
= getNumRegisters(RetTy
->getContext(), VT
);
6246 ReturnValues
.push_back(getCopyFromParts(DAG
, dl
, &InVals
[CurReg
],
6247 NumRegs
, RegisterVT
, VT
,
6252 // For a function returning void, there is no return value. We can't create
6253 // such a node, so we just return a null return value in that case. In
6254 // that case, nothing will actually look at the value.
6255 if (ReturnValues
.empty())
6256 return std::make_pair(SDValue(), Chain
);
6258 SDValue Res
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
6259 DAG
.getVTList(&RetTys
[0], RetTys
.size()),
6260 &ReturnValues
[0], ReturnValues
.size());
6261 return std::make_pair(Res
, Chain
);
6264 void TargetLowering::LowerOperationWrapper(SDNode
*N
,
6265 SmallVectorImpl
<SDValue
> &Results
,
6266 SelectionDAG
&DAG
) const {
6267 SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
);
6269 Results
.push_back(Res
);
6272 SDValue
TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
6273 llvm_unreachable("LowerOperation not implemented for this target!");
6278 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value
*V
, unsigned Reg
) {
6279 SDValue Op
= getNonRegisterValue(V
);
6280 assert((Op
.getOpcode() != ISD::CopyFromReg
||
6281 cast
<RegisterSDNode
>(Op
.getOperand(1))->getReg() != Reg
) &&
6282 "Copy from a reg to the same reg!");
6283 assert(!TargetRegisterInfo::isPhysicalRegister(Reg
) && "Is a physreg");
6285 RegsForValue
RFV(V
->getContext(), TLI
, Reg
, V
->getType());
6286 SDValue Chain
= DAG
.getEntryNode();
6287 RFV
.getCopyToRegs(Op
, DAG
, getCurDebugLoc(), Chain
, 0);
6288 PendingExports
.push_back(Chain
);
6291 #include "llvm/CodeGen/SelectionDAGISel.h"
6293 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6294 /// entry block, return true. This includes arguments used by switches, since
6295 /// the switch may expand into multiple basic blocks.
6296 static bool isOnlyUsedInEntryBlock(const Argument
*A
) {
6297 // With FastISel active, we may be splitting blocks, so force creation
6298 // of virtual registers for all non-dead arguments.
6300 return A
->use_empty();
6302 const BasicBlock
*Entry
= A
->getParent()->begin();
6303 for (Value::const_use_iterator UI
= A
->use_begin(), E
= A
->use_end();
6305 const User
*U
= *UI
;
6306 if (cast
<Instruction
>(U
)->getParent() != Entry
|| isa
<SwitchInst
>(U
))
6307 return false; // Use not in entry block.
6312 void SelectionDAGISel::LowerArguments(const BasicBlock
*LLVMBB
) {
6313 // If this is the entry block, emit arguments.
6314 const Function
&F
= *LLVMBB
->getParent();
6315 SelectionDAG
&DAG
= SDB
->DAG
;
6316 DebugLoc dl
= SDB
->getCurDebugLoc();
6317 const TargetData
*TD
= TLI
.getTargetData();
6318 SmallVector
<ISD::InputArg
, 16> Ins
;
6320 // Check whether the function can return without sret-demotion.
6321 SmallVector
<ISD::OutputArg
, 4> Outs
;
6322 GetReturnInfo(F
.getReturnType(), F
.getAttributes().getRetAttributes(),
6325 if (!FuncInfo
->CanLowerReturn
) {
6326 // Put in an sret pointer parameter before all the other parameters.
6327 SmallVector
<EVT
, 1> ValueVTs
;
6328 ComputeValueVTs(TLI
, PointerType::getUnqual(F
.getReturnType()), ValueVTs
);
6330 // NOTE: Assuming that a pointer will never break down to more than one VT
6332 ISD::ArgFlagsTy Flags
;
6334 EVT RegisterVT
= TLI
.getRegisterType(*DAG
.getContext(), ValueVTs
[0]);
6335 ISD::InputArg
RetArg(Flags
, RegisterVT
, true);
6336 Ins
.push_back(RetArg
);
6339 // Set up the incoming argument description vector.
6341 for (Function::const_arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
6342 I
!= E
; ++I
, ++Idx
) {
6343 SmallVector
<EVT
, 4> ValueVTs
;
6344 ComputeValueVTs(TLI
, I
->getType(), ValueVTs
);
6345 bool isArgValueUsed
= !I
->use_empty();
6346 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
6347 Value
!= NumValues
; ++Value
) {
6348 EVT VT
= ValueVTs
[Value
];
6349 const Type
*ArgTy
= VT
.getTypeForEVT(*DAG
.getContext());
6350 ISD::ArgFlagsTy Flags
;
6351 unsigned OriginalAlignment
=
6352 TD
->getABITypeAlignment(ArgTy
);
6354 if (F
.paramHasAttr(Idx
, Attribute::ZExt
))
6356 if (F
.paramHasAttr(Idx
, Attribute::SExt
))
6358 if (F
.paramHasAttr(Idx
, Attribute::InReg
))
6360 if (F
.paramHasAttr(Idx
, Attribute::StructRet
))
6362 if (F
.paramHasAttr(Idx
, Attribute::ByVal
)) {
6364 const PointerType
*Ty
= cast
<PointerType
>(I
->getType());
6365 const Type
*ElementTy
= Ty
->getElementType();
6366 Flags
.setByValSize(TD
->getTypeAllocSize(ElementTy
));
6367 // For ByVal, alignment should be passed from FE. BE will guess if
6368 // this info is not there but there are cases it cannot get right.
6369 unsigned FrameAlign
;
6370 if (F
.getParamAlignment(Idx
))
6371 FrameAlign
= F
.getParamAlignment(Idx
);
6373 FrameAlign
= TLI
.getByValTypeAlignment(ElementTy
);
6374 Flags
.setByValAlign(FrameAlign
);
6376 if (F
.paramHasAttr(Idx
, Attribute::Nest
))
6378 Flags
.setOrigAlign(OriginalAlignment
);
6380 EVT RegisterVT
= TLI
.getRegisterType(*CurDAG
->getContext(), VT
);
6381 unsigned NumRegs
= TLI
.getNumRegisters(*CurDAG
->getContext(), VT
);
6382 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
6383 ISD::InputArg
MyFlags(Flags
, RegisterVT
, isArgValueUsed
);
6384 if (NumRegs
> 1 && i
== 0)
6385 MyFlags
.Flags
.setSplit();
6386 // if it isn't first piece, alignment must be 1
6388 MyFlags
.Flags
.setOrigAlign(1);
6389 Ins
.push_back(MyFlags
);
6394 // Call the target to set up the argument values.
6395 SmallVector
<SDValue
, 8> InVals
;
6396 SDValue NewRoot
= TLI
.LowerFormalArguments(DAG
.getRoot(), F
.getCallingConv(),
6400 // Verify that the target's LowerFormalArguments behaved as expected.
6401 assert(NewRoot
.getNode() && NewRoot
.getValueType() == MVT::Other
&&
6402 "LowerFormalArguments didn't return a valid chain!");
6403 assert(InVals
.size() == Ins
.size() &&
6404 "LowerFormalArguments didn't emit the correct number of values!");
6406 for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
6407 assert(InVals
[i
].getNode() &&
6408 "LowerFormalArguments emitted a null value!");
6409 assert(EVT(Ins
[i
].VT
) == InVals
[i
].getValueType() &&
6410 "LowerFormalArguments emitted a value with the wrong type!");
6414 // Update the DAG with the new chain value resulting from argument lowering.
6415 DAG
.setRoot(NewRoot
);
6417 // Set up the argument values.
6420 if (!FuncInfo
->CanLowerReturn
) {
6421 // Create a virtual register for the sret pointer, and put in a copy
6422 // from the sret argument into it.
6423 SmallVector
<EVT
, 1> ValueVTs
;
6424 ComputeValueVTs(TLI
, PointerType::getUnqual(F
.getReturnType()), ValueVTs
);
6425 EVT VT
= ValueVTs
[0];
6426 EVT RegVT
= TLI
.getRegisterType(*CurDAG
->getContext(), VT
);
6427 ISD::NodeType AssertOp
= ISD::DELETED_NODE
;
6428 SDValue ArgValue
= getCopyFromParts(DAG
, dl
, &InVals
[0], 1,
6429 RegVT
, VT
, AssertOp
);
6431 MachineFunction
& MF
= SDB
->DAG
.getMachineFunction();
6432 MachineRegisterInfo
& RegInfo
= MF
.getRegInfo();
6433 unsigned SRetReg
= RegInfo
.createVirtualRegister(TLI
.getRegClassFor(RegVT
));
6434 FuncInfo
->DemoteRegister
= SRetReg
;
6435 NewRoot
= SDB
->DAG
.getCopyToReg(NewRoot
, SDB
->getCurDebugLoc(),
6437 DAG
.setRoot(NewRoot
);
6439 // i indexes lowered arguments. Bump it past the hidden sret argument.
6440 // Idx indexes LLVM arguments. Don't touch it.
6444 for (Function::const_arg_iterator I
= F
.arg_begin(), E
= F
.arg_end(); I
!= E
;
6446 SmallVector
<SDValue
, 4> ArgValues
;
6447 SmallVector
<EVT
, 4> ValueVTs
;
6448 ComputeValueVTs(TLI
, I
->getType(), ValueVTs
);
6449 unsigned NumValues
= ValueVTs
.size();
6451 // If this argument is unused then remember its value. It is used to generate
6452 // debugging information.
6453 if (I
->use_empty() && NumValues
)
6454 SDB
->setUnusedArgValue(I
, InVals
[i
]);
6456 for (unsigned Val
= 0; Val
!= NumValues
; ++Val
) {
6457 EVT VT
= ValueVTs
[Val
];
6458 EVT PartVT
= TLI
.getRegisterType(*CurDAG
->getContext(), VT
);
6459 unsigned NumParts
= TLI
.getNumRegisters(*CurDAG
->getContext(), VT
);
6461 if (!I
->use_empty()) {
6462 ISD::NodeType AssertOp
= ISD::DELETED_NODE
;
6463 if (F
.paramHasAttr(Idx
, Attribute::SExt
))
6464 AssertOp
= ISD::AssertSext
;
6465 else if (F
.paramHasAttr(Idx
, Attribute::ZExt
))
6466 AssertOp
= ISD::AssertZext
;
6468 ArgValues
.push_back(getCopyFromParts(DAG
, dl
, &InVals
[i
],
6469 NumParts
, PartVT
, VT
,
6476 // We don't need to do anything else for unused arguments.
6477 if (ArgValues
.empty())
6480 // Note down frame index for byval arguments.
6481 if (I
->hasByValAttr())
6482 if (FrameIndexSDNode
*FI
=
6483 dyn_cast
<FrameIndexSDNode
>(ArgValues
[0].getNode()))
6484 FuncInfo
->setByValArgumentFrameIndex(I
, FI
->getIndex());
6486 SDValue Res
= DAG
.getMergeValues(&ArgValues
[0], NumValues
,
6487 SDB
->getCurDebugLoc());
6488 SDB
->setValue(I
, Res
);
6490 // If this argument is live outside of the entry block, insert a copy from
6491 // wherever we got it to the vreg that other BB's will reference it as.
6492 if (!EnableFastISel
&& Res
.getOpcode() == ISD::CopyFromReg
) {
6493 // If we can, though, try to skip creating an unnecessary vreg.
6494 // FIXME: This isn't very clean... it would be nice to make this more
6495 // general. It's also subtly incompatible with the hacks FastISel
6497 unsigned Reg
= cast
<RegisterSDNode
>(Res
.getOperand(1))->getReg();
6498 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
6499 FuncInfo
->ValueMap
[I
] = Reg
;
6503 if (!isOnlyUsedInEntryBlock(I
)) {
6504 FuncInfo
->InitializeRegForValue(I
);
6505 SDB
->CopyToExportRegsIfNeeded(I
);
6509 assert(i
== InVals
.size() && "Argument register count mismatch!");
6511 // Finally, if the target has anything special to do, allow it to do so.
6512 // FIXME: this should insert code into the DAG!
6513 EmitFunctionEntryCode();
6516 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
6517 /// ensure constants are generated when needed. Remember the virtual registers
6518 /// that need to be added to the Machine PHI nodes as input. We cannot just
6519 /// directly add them, because expansion might result in multiple MBB's for one
6520 /// BB. As such, the start of the BB might correspond to a different MBB than
6524 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock
*LLVMBB
) {
6525 const TerminatorInst
*TI
= LLVMBB
->getTerminator();
6527 SmallPtrSet
<MachineBasicBlock
*, 4> SuccsHandled
;
6529 // Check successor nodes' PHI nodes that expect a constant to be available
6531 for (unsigned succ
= 0, e
= TI
->getNumSuccessors(); succ
!= e
; ++succ
) {
6532 const BasicBlock
*SuccBB
= TI
->getSuccessor(succ
);
6533 if (!isa
<PHINode
>(SuccBB
->begin())) continue;
6534 MachineBasicBlock
*SuccMBB
= FuncInfo
.MBBMap
[SuccBB
];
6536 // If this terminator has multiple identical successors (common for
6537 // switches), only handle each succ once.
6538 if (!SuccsHandled
.insert(SuccMBB
)) continue;
6540 MachineBasicBlock::iterator MBBI
= SuccMBB
->begin();
6542 // At this point we know that there is a 1-1 correspondence between LLVM PHI
6543 // nodes and Machine PHI nodes, but the incoming operands have not been
6545 for (BasicBlock::const_iterator I
= SuccBB
->begin();
6546 const PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
) {
6547 // Ignore dead phi's.
6548 if (PN
->use_empty()) continue;
6551 if (PN
->getType()->isEmptyTy())
6555 const Value
*PHIOp
= PN
->getIncomingValueForBlock(LLVMBB
);
6557 if (const Constant
*C
= dyn_cast
<Constant
>(PHIOp
)) {
6558 unsigned &RegOut
= ConstantsOut
[C
];
6560 RegOut
= FuncInfo
.CreateRegs(C
->getType());
6561 CopyValueToVirtualRegister(C
, RegOut
);
6565 DenseMap
<const Value
*, unsigned>::iterator I
=
6566 FuncInfo
.ValueMap
.find(PHIOp
);
6567 if (I
!= FuncInfo
.ValueMap
.end())
6570 assert(isa
<AllocaInst
>(PHIOp
) &&
6571 FuncInfo
.StaticAllocaMap
.count(cast
<AllocaInst
>(PHIOp
)) &&
6572 "Didn't codegen value into a register!??");
6573 Reg
= FuncInfo
.CreateRegs(PHIOp
->getType());
6574 CopyValueToVirtualRegister(PHIOp
, Reg
);
6578 // Remember that this register needs to added to the machine PHI node as
6579 // the input for this MBB.
6580 SmallVector
<EVT
, 4> ValueVTs
;
6581 ComputeValueVTs(TLI
, PN
->getType(), ValueVTs
);
6582 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
6583 EVT VT
= ValueVTs
[vti
];
6584 unsigned NumRegisters
= TLI
.getNumRegisters(*DAG
.getContext(), VT
);
6585 for (unsigned i
= 0, e
= NumRegisters
; i
!= e
; ++i
)
6586 FuncInfo
.PHINodesToUpdate
.push_back(std::make_pair(MBBI
++, Reg
+i
));
6587 Reg
+= NumRegisters
;
6591 ConstantsOut
.clear();