Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.cpp
blob3c8b04fe89f4b97e406df9f76b670559b2492ff3
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/PseudoSourceValue.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/Analysis/DebugInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67 cl::desc("Generate low-precision inline sequences "
68 "for some float libcalls"),
69 cl::location(LimitFloatPrecision),
70 cl::init(0));
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains = 64;
88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89 const SDValue *Parts, unsigned NumParts,
90 EVT PartVT, EVT ValueVT);
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent. If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98 const SDValue *Parts,
99 unsigned NumParts, EVT PartVT, EVT ValueVT,
100 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101 if (ValueVT.isVector())
102 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
104 assert(NumParts > 0 && "No parts to assemble!");
105 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106 SDValue Val = Parts[0];
108 if (NumParts > 1) {
109 // Assemble the value from multiple parts.
110 if (ValueVT.isInteger()) {
111 unsigned PartBits = PartVT.getSizeInBits();
112 unsigned ValueBits = ValueVT.getSizeInBits();
114 // Assemble the power of 2 part.
115 unsigned RoundParts = NumParts & (NumParts - 1) ?
116 1 << Log2_32(NumParts) : NumParts;
117 unsigned RoundBits = PartBits * RoundParts;
118 EVT RoundVT = RoundBits == ValueBits ?
119 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120 SDValue Lo, Hi;
122 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
124 if (RoundParts > 2) {
125 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126 PartVT, HalfVT);
127 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128 RoundParts / 2, PartVT, HalfVT);
129 } else {
130 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
134 if (TLI.isBigEndian())
135 std::swap(Lo, Hi);
137 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
139 if (RoundParts < NumParts) {
140 // Assemble the trailing non-power-of-2 part.
141 unsigned OddParts = NumParts - RoundParts;
142 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143 Hi = getCopyFromParts(DAG, DL,
144 Parts + RoundParts, OddParts, PartVT, OddVT);
146 // Combine the round and odd parts.
147 Lo = Val;
148 if (TLI.isBigEndian())
149 std::swap(Lo, Hi);
150 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153 DAG.getConstant(Lo.getValueType().getSizeInBits(),
154 TLI.getPointerTy()));
155 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
158 } else if (PartVT.isFloatingPoint()) {
159 // FP split into multiple FP parts (for ppcf128)
160 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161 "Unexpected split");
162 SDValue Lo, Hi;
163 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165 if (TLI.isBigEndian())
166 std::swap(Lo, Hi);
167 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168 } else {
169 // FP split into integer parts (soft fp)
170 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171 !PartVT.isVector() && "Unexpected split");
172 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
177 // There is now one part, held in Val. Correct it to match ValueVT.
178 PartVT = Val.getValueType();
180 if (PartVT == ValueVT)
181 return Val;
183 if (PartVT.isInteger() && ValueVT.isInteger()) {
184 if (ValueVT.bitsLT(PartVT)) {
185 // For a truncate, see if we have any information to
186 // indicate whether the truncated bits will always be
187 // zero or sign-extension.
188 if (AssertOp != ISD::DELETED_NODE)
189 Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190 DAG.getValueType(ValueVT));
191 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
193 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
196 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197 // FP_ROUND's are always exact here.
198 if (ValueVT.bitsLT(Val.getValueType()))
199 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200 DAG.getIntPtrConstant(1));
202 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
205 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
208 llvm_unreachable("Unknown mismatch!");
209 return SDValue();
212 /// getCopyFromParts - Create a value that contains the specified legal parts
213 /// combined into the value they represent. If the parts combine to a type
214 /// larger then ValueVT then AssertOp can be used to specify whether the extra
215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216 /// (ISD::AssertSext).
217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218 const SDValue *Parts, unsigned NumParts,
219 EVT PartVT, EVT ValueVT) {
220 assert(ValueVT.isVector() && "Not a vector value");
221 assert(NumParts > 0 && "No parts to assemble!");
222 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223 SDValue Val = Parts[0];
225 // Handle a multi-element vector.
226 if (NumParts > 1) {
227 EVT IntermediateVT, RegisterVT;
228 unsigned NumIntermediates;
229 unsigned NumRegs =
230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231 NumIntermediates, RegisterVT);
232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233 NumParts = NumRegs; // Silence a compiler warning.
234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235 assert(RegisterVT == Parts[0].getValueType() &&
236 "Part type doesn't match part!");
238 // Assemble the parts into intermediate operands.
239 SmallVector<SDValue, 8> Ops(NumIntermediates);
240 if (NumIntermediates == NumParts) {
241 // If the register was not expanded, truncate or copy the value,
242 // as appropriate.
243 for (unsigned i = 0; i != NumParts; ++i)
244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245 PartVT, IntermediateVT);
246 } else if (NumParts > 0) {
247 // If the intermediate type was expanded, build the intermediate
248 // operands from the parts.
249 assert(NumParts % NumIntermediates == 0 &&
250 "Must expand into a divisible number of parts!");
251 unsigned Factor = NumParts / NumIntermediates;
252 for (unsigned i = 0; i != NumIntermediates; ++i)
253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254 PartVT, IntermediateVT);
257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258 // intermediate operands.
259 Val = DAG.getNode(IntermediateVT.isVector() ?
260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261 ValueVT, &Ops[0], NumIntermediates);
264 // There is now one part, held in Val. Correct it to match ValueVT.
265 PartVT = Val.getValueType();
267 if (PartVT == ValueVT)
268 return Val;
270 if (PartVT.isVector()) {
271 // If the element type of the source/dest vectors are the same, but the
272 // parts vector has more elements than the value vector, then we have a
273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
274 // elements we want.
275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277 "Cannot narrow, it would be a lossy transformation");
278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279 DAG.getIntPtrConstant(0));
282 // Vector/Vector bitcast.
283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287 "Cannot handle this kind of promotion");
288 // Promoted vector extract
289 bool Smaller = ValueVT.bitsLE(PartVT);
290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291 DL, ValueVT, Val);
295 // Trivial bitcast if the types are the same size and the destination
296 // vector type is legal.
297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298 TLI.isTypeLegal(ValueVT))
299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
301 // Handle cases such as i8 -> <1 x i1>
302 assert(ValueVT.getVectorNumElements() == 1 &&
303 "Only trivial scalar-to-vector conversions should get here!");
305 if (ValueVT.getVectorNumElements() == 1 &&
306 ValueVT.getVectorElementType() != PartVT) {
307 bool Smaller = ValueVT.bitsLE(PartVT);
308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309 DL, ValueVT.getScalarType(), Val);
312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319 SDValue Val, SDValue *Parts, unsigned NumParts,
320 EVT PartVT);
322 /// getCopyToParts - Create a series of nodes that contain the specified value
323 /// split into legal parts. If the parts contain more bits than Val, then, for
324 /// integers, ExtendKind can be used to specify how to generate the extra bits.
325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326 SDValue Val, SDValue *Parts, unsigned NumParts,
327 EVT PartVT,
328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329 EVT ValueVT = Val.getValueType();
331 // Handle the vector case separately.
332 if (ValueVT.isVector())
333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
335 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336 unsigned PartBits = PartVT.getSizeInBits();
337 unsigned OrigNumParts = NumParts;
338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
340 if (NumParts == 0)
341 return;
343 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344 if (PartVT == ValueVT) {
345 assert(NumParts == 1 && "No-op copy with multiple parts!");
346 Parts[0] = Val;
347 return;
350 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351 // If the parts cover more bits than the value has, promote the value.
352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353 assert(NumParts == 1 && "Do not know what to promote to!");
354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355 } else {
356 assert(PartVT.isInteger() && ValueVT.isInteger() &&
357 "Unknown mismatch!");
358 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
361 } else if (PartBits == ValueVT.getSizeInBits()) {
362 // Different types of the same size.
363 assert(NumParts == 1 && PartVT != ValueVT);
364 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366 // If the parts cover less bits than value has, truncate the value.
367 assert(PartVT.isInteger() && ValueVT.isInteger() &&
368 "Unknown mismatch!");
369 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
373 // The value may have changed - recompute ValueVT.
374 ValueVT = Val.getValueType();
375 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376 "Failed to tile the value with PartVT!");
378 if (NumParts == 1) {
379 assert(PartVT == ValueVT && "Type conversion failed!");
380 Parts[0] = Val;
381 return;
384 // Expand the value into multiple parts.
385 if (NumParts & (NumParts - 1)) {
386 // The number of parts is not a power of 2. Split off and copy the tail.
387 assert(PartVT.isInteger() && ValueVT.isInteger() &&
388 "Do not know what to expand to!");
389 unsigned RoundParts = 1 << Log2_32(NumParts);
390 unsigned RoundBits = RoundParts * PartBits;
391 unsigned OddParts = NumParts - RoundParts;
392 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393 DAG.getIntPtrConstant(RoundBits));
394 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
396 if (TLI.isBigEndian())
397 // The odd parts were reversed by getCopyToParts - unreverse them.
398 std::reverse(Parts + RoundParts, Parts + NumParts);
400 NumParts = RoundParts;
401 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
405 // The number of parts is a power of 2. Repeatedly bisect the value using
406 // EXTRACT_ELEMENT.
407 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408 EVT::getIntegerVT(*DAG.getContext(),
409 ValueVT.getSizeInBits()),
410 Val);
412 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413 for (unsigned i = 0; i < NumParts; i += StepSize) {
414 unsigned ThisBits = StepSize * PartBits / 2;
415 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416 SDValue &Part0 = Parts[i];
417 SDValue &Part1 = Parts[i+StepSize/2];
419 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420 ThisVT, Part0, DAG.getIntPtrConstant(1));
421 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422 ThisVT, Part0, DAG.getIntPtrConstant(0));
424 if (ThisBits == PartBits && ThisVT != PartVT) {
425 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
431 if (TLI.isBigEndian())
432 std::reverse(Parts, Parts + OrigNumParts);
436 /// getCopyToPartsVector - Create a series of nodes that contain the specified
437 /// value split into legal parts.
438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439 SDValue Val, SDValue *Parts, unsigned NumParts,
440 EVT PartVT) {
441 EVT ValueVT = Val.getValueType();
442 assert(ValueVT.isVector() && "Not a vector");
443 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
445 if (NumParts == 1) {
446 if (PartVT == ValueVT) {
447 // Nothing to do.
448 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449 // Bitconvert vector->vector case.
450 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451 } else if (PartVT.isVector() &&
452 PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454 EVT ElementVT = PartVT.getVectorElementType();
455 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
456 // undef elements.
457 SmallVector<SDValue, 16> Ops;
458 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460 ElementVT, Val, DAG.getIntPtrConstant(i)));
462 for (unsigned i = ValueVT.getVectorNumElements(),
463 e = PartVT.getVectorNumElements(); i != e; ++i)
464 Ops.push_back(DAG.getUNDEF(ElementVT));
466 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
468 // FIXME: Use CONCAT for 2x -> 4x.
470 //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472 } else if (PartVT.isVector() &&
473 PartVT.getVectorElementType().bitsGE(
474 ValueVT.getVectorElementType()) &&
475 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
477 // Promoted vector extract
478 bool Smaller = PartVT.bitsLE(ValueVT);
479 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480 DL, PartVT, Val);
481 } else{
482 // Vector -> scalar conversion.
483 assert(ValueVT.getVectorNumElements() == 1 &&
484 "Only trivial vector-to-scalar conversions should get here!");
485 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486 PartVT, Val, DAG.getIntPtrConstant(0));
488 bool Smaller = ValueVT.bitsLE(PartVT);
489 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490 DL, PartVT, Val);
493 Parts[0] = Val;
494 return;
497 // Handle a multi-element vector.
498 EVT IntermediateVT, RegisterVT;
499 unsigned NumIntermediates;
500 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501 IntermediateVT,
502 NumIntermediates, RegisterVT);
503 unsigned NumElements = ValueVT.getVectorNumElements();
505 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506 NumParts = NumRegs; // Silence a compiler warning.
507 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
509 // Split the vector into intermediate operands.
510 SmallVector<SDValue, 8> Ops(NumIntermediates);
511 for (unsigned i = 0; i != NumIntermediates; ++i) {
512 if (IntermediateVT.isVector())
513 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514 IntermediateVT, Val,
515 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516 else
517 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518 IntermediateVT, Val, DAG.getIntPtrConstant(i));
521 // Split the intermediate operands into legal parts.
522 if (NumParts == NumIntermediates) {
523 // If the register was not expanded, promote or copy the value,
524 // as appropriate.
525 for (unsigned i = 0; i != NumParts; ++i)
526 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527 } else if (NumParts > 0) {
528 // If the intermediate type was expanded, split each the value into
529 // legal parts.
530 assert(NumParts % NumIntermediates == 0 &&
531 "Must expand into a divisible number of parts!");
532 unsigned Factor = NumParts / NumIntermediates;
533 for (unsigned i = 0; i != NumIntermediates; ++i)
534 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
541 namespace {
542 /// RegsForValue - This struct represents the registers (physical or virtual)
543 /// that a particular set of values is assigned, and the type information
544 /// about the value. The most common situation is to represent one value at a
545 /// time, but struct or array values are handled element-wise as multiple
546 /// values. The splitting of aggregates is performed recursively, so that we
547 /// never have aggregate-typed registers. The values at this point do not
548 /// necessarily have legal types, so each value may require one or more
549 /// registers of some legal type.
551 struct RegsForValue {
552 /// ValueVTs - The value types of the values, which may not be legal, and
553 /// may need be promoted or synthesized from one or more registers.
555 SmallVector<EVT, 4> ValueVTs;
557 /// RegVTs - The value types of the registers. This is the same size as
558 /// ValueVTs and it records, for each value, what the type of the assigned
559 /// register or registers are. (Individual values are never synthesized
560 /// from more than one type of register.)
562 /// With virtual registers, the contents of RegVTs is redundant with TLI's
563 /// getRegisterType member function, however when with physical registers
564 /// it is necessary to have a separate record of the types.
566 SmallVector<EVT, 4> RegVTs;
568 /// Regs - This list holds the registers assigned to the values.
569 /// Each legal or promoted value requires one register, and each
570 /// expanded value requires multiple registers.
572 SmallVector<unsigned, 4> Regs;
574 RegsForValue() {}
576 RegsForValue(const SmallVector<unsigned, 4> &regs,
577 EVT regvt, EVT valuevt)
578 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
580 RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581 unsigned Reg, const Type *Ty) {
582 ComputeValueVTs(tli, Ty, ValueVTs);
584 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585 EVT ValueVT = ValueVTs[Value];
586 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587 EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588 for (unsigned i = 0; i != NumRegs; ++i)
589 Regs.push_back(Reg + i);
590 RegVTs.push_back(RegisterVT);
591 Reg += NumRegs;
595 /// areValueTypesLegal - Return true if types of all the values are legal.
596 bool areValueTypesLegal(const TargetLowering &TLI) {
597 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598 EVT RegisterVT = RegVTs[Value];
599 if (!TLI.isTypeLegal(RegisterVT))
600 return false;
602 return true;
605 /// append - Add the specified values to this one.
606 void append(const RegsForValue &RHS) {
607 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609 Regs.append(RHS.Regs.begin(), RHS.Regs.end());
612 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613 /// this value and returns the result as a ValueVTs value. This uses
614 /// Chain/Flag as the input and updates them for the output Chain/Flag.
615 /// If the Flag pointer is NULL, no flag is used.
616 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617 DebugLoc dl,
618 SDValue &Chain, SDValue *Flag) const;
620 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621 /// specified value into the registers specified by this object. This uses
622 /// Chain/Flag as the input and updates them for the output Chain/Flag.
623 /// If the Flag pointer is NULL, no flag is used.
624 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625 SDValue &Chain, SDValue *Flag) const;
627 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628 /// operand list. This adds the code marker, matching input operand index
629 /// (if applicable), and includes the number of values added into it.
630 void AddInlineAsmOperands(unsigned Kind,
631 bool HasMatching, unsigned MatchingIdx,
632 SelectionDAG &DAG,
633 std::vector<SDValue> &Ops) const;
637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638 /// this value and returns the result as a ValueVT value. This uses
639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
640 /// If the Flag pointer is NULL, no flag is used.
641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642 FunctionLoweringInfo &FuncInfo,
643 DebugLoc dl,
644 SDValue &Chain, SDValue *Flag) const {
645 // A Value with type {} or [0 x %t] needs no registers.
646 if (ValueVTs.empty())
647 return SDValue();
649 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
651 // Assemble the legal parts into the final values.
652 SmallVector<SDValue, 4> Values(ValueVTs.size());
653 SmallVector<SDValue, 8> Parts;
654 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655 // Copy the legal parts from the registers.
656 EVT ValueVT = ValueVTs[Value];
657 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658 EVT RegisterVT = RegVTs[Value];
660 Parts.resize(NumRegs);
661 for (unsigned i = 0; i != NumRegs; ++i) {
662 SDValue P;
663 if (Flag == 0) {
664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665 } else {
666 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667 *Flag = P.getValue(2);
670 Chain = P.getValue(1);
671 Parts[i] = P;
673 // If the source register was virtual and if we know something about it,
674 // add an assert node.
675 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676 !RegisterVT.isInteger() || RegisterVT.isVector())
677 continue;
679 const FunctionLoweringInfo::LiveOutInfo *LOI =
680 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681 if (!LOI)
682 continue;
684 unsigned RegSize = RegisterVT.getSizeInBits();
685 unsigned NumSignBits = LOI->NumSignBits;
686 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
688 // FIXME: We capture more information than the dag can represent. For
689 // now, just use the tightest assertzext/assertsext possible.
690 bool isSExt = true;
691 EVT FromVT(MVT::Other);
692 if (NumSignBits == RegSize)
693 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
694 else if (NumZeroBits >= RegSize-1)
695 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
696 else if (NumSignBits > RegSize-8)
697 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
698 else if (NumZeroBits >= RegSize-8)
699 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
700 else if (NumSignBits > RegSize-16)
701 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
702 else if (NumZeroBits >= RegSize-16)
703 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704 else if (NumSignBits > RegSize-32)
705 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
706 else if (NumZeroBits >= RegSize-32)
707 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708 else
709 continue;
711 // Add an assertion node.
712 assert(FromVT != MVT::Other);
713 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714 RegisterVT, P, DAG.getValueType(FromVT));
717 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718 NumRegs, RegisterVT, ValueVT);
719 Part += NumRegs;
720 Parts.clear();
723 return DAG.getNode(ISD::MERGE_VALUES, dl,
724 DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725 &Values[0], ValueVTs.size());
728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729 /// specified value into the registers specified by this object. This uses
730 /// Chain/Flag as the input and updates them for the output Chain/Flag.
731 /// If the Flag pointer is NULL, no flag is used.
732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733 SDValue &Chain, SDValue *Flag) const {
734 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
736 // Get the list of the values's legal parts.
737 unsigned NumRegs = Regs.size();
738 SmallVector<SDValue, 8> Parts(NumRegs);
739 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740 EVT ValueVT = ValueVTs[Value];
741 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742 EVT RegisterVT = RegVTs[Value];
744 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745 &Parts[Part], NumParts, RegisterVT);
746 Part += NumParts;
749 // Copy the parts into the registers.
750 SmallVector<SDValue, 8> Chains(NumRegs);
751 for (unsigned i = 0; i != NumRegs; ++i) {
752 SDValue Part;
753 if (Flag == 0) {
754 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755 } else {
756 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757 *Flag = Part.getValue(1);
760 Chains[i] = Part.getValue(0);
763 if (NumRegs == 1 || Flag)
764 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765 // flagged to it. That is the CopyToReg nodes and the user are considered
766 // a single scheduling unit. If we create a TokenFactor and return it as
767 // chain, then the TokenFactor is both a predecessor (operand) of the
768 // user as well as a successor (the TF operands are flagged to the user).
769 // c1, f1 = CopyToReg
770 // c2, f2 = CopyToReg
771 // c3 = TokenFactor c1, c2
772 // ...
773 // = op c3, ..., f2
774 Chain = Chains[NumRegs-1];
775 else
776 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
780 /// operand list. This adds the code marker and includes the number of
781 /// values added into it.
782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783 unsigned MatchingIdx,
784 SelectionDAG &DAG,
785 std::vector<SDValue> &Ops) const {
786 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
788 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789 if (HasMatching)
790 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792 Ops.push_back(Res);
794 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796 EVT RegisterVT = RegVTs[Value];
797 for (unsigned i = 0; i != NumRegs; ++i) {
798 assert(Reg < Regs.size() && "Mismatch in # registers expected");
799 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805 AA = &aa;
806 GFI = gfi;
807 TD = DAG.getTarget().getTargetData();
810 /// clear - Clear out the current SelectionDAG and the associated
811 /// state and prepare this SelectionDAGBuilder object to be used
812 /// for a new block. This doesn't clear out information about
813 /// additional blocks that are needed to complete switch lowering
814 /// or PHI node updating; that information is cleared out as it is
815 /// consumed.
816 void SelectionDAGBuilder::clear() {
817 NodeMap.clear();
818 UnusedArgNodeMap.clear();
819 PendingLoads.clear();
820 PendingExports.clear();
821 CurDebugLoc = DebugLoc();
822 HasTailCall = false;
825 /// clearDanglingDebugInfo - Clear the dangling debug information
826 /// map. This function is seperated from the clear so that debug
827 /// information that is dangling in a basic block can be properly
828 /// resolved in a different basic block. This allows the
829 /// SelectionDAG to resolve dangling debug information attached
830 /// to PHI nodes.
831 void SelectionDAGBuilder::clearDanglingDebugInfo() {
832 DanglingDebugInfoMap.clear();
835 /// getRoot - Return the current virtual root of the Selection DAG,
836 /// flushing any PendingLoad items. This must be done before emitting
837 /// a store or any other node that may need to be ordered after any
838 /// prior load instructions.
840 SDValue SelectionDAGBuilder::getRoot() {
841 if (PendingLoads.empty())
842 return DAG.getRoot();
844 if (PendingLoads.size() == 1) {
845 SDValue Root = PendingLoads[0];
846 DAG.setRoot(Root);
847 PendingLoads.clear();
848 return Root;
851 // Otherwise, we have to make a token factor node.
852 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853 &PendingLoads[0], PendingLoads.size());
854 PendingLoads.clear();
855 DAG.setRoot(Root);
856 return Root;
859 /// getControlRoot - Similar to getRoot, but instead of flushing all the
860 /// PendingLoad items, flush all the PendingExports items. It is necessary
861 /// to do this before emitting a terminator instruction.
863 SDValue SelectionDAGBuilder::getControlRoot() {
864 SDValue Root = DAG.getRoot();
866 if (PendingExports.empty())
867 return Root;
869 // Turn all of the CopyToReg chains into one factored node.
870 if (Root.getOpcode() != ISD::EntryToken) {
871 unsigned i = 0, e = PendingExports.size();
872 for (; i != e; ++i) {
873 assert(PendingExports[i].getNode()->getNumOperands() > 1);
874 if (PendingExports[i].getNode()->getOperand(0) == Root)
875 break; // Don't add the root if we already indirectly depend on it.
878 if (i == e)
879 PendingExports.push_back(Root);
882 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883 &PendingExports[0],
884 PendingExports.size());
885 PendingExports.clear();
886 DAG.setRoot(Root);
887 return Root;
890 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892 DAG.AssignOrdering(Node, SDNodeOrder);
894 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895 AssignOrderingToNode(Node->getOperand(I).getNode());
898 void SelectionDAGBuilder::visit(const Instruction &I) {
899 // Set up outgoing PHI node register values before emitting the terminator.
900 if (isa<TerminatorInst>(&I))
901 HandlePHINodesInSuccessorBlocks(I.getParent());
903 CurDebugLoc = I.getDebugLoc();
905 visit(I.getOpcode(), I);
907 if (!isa<TerminatorInst>(&I) && !HasTailCall)
908 CopyToExportRegsIfNeeded(&I);
910 CurDebugLoc = DebugLoc();
913 void SelectionDAGBuilder::visitPHI(const PHINode &) {
914 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
917 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918 // Note: this doesn't use InstVisitor, because it has to work with
919 // ConstantExpr's in addition to instructions.
920 switch (Opcode) {
921 default: llvm_unreachable("Unknown instruction type encountered!");
922 // Build the switch statement using the Instruction.def file.
923 #define HANDLE_INST(NUM, OPCODE, CLASS) \
924 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925 #include "llvm/Instruction.def"
928 // Assign the ordering to the freshly created DAG nodes.
929 if (NodeMap.count(&I)) {
930 ++SDNodeOrder;
931 AssignOrderingToNode(getValue(&I).getNode());
935 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936 // generate the debug data structures now that we've seen its definition.
937 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938 SDValue Val) {
939 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940 if (DDI.getDI()) {
941 const DbgValueInst *DI = DDI.getDI();
942 DebugLoc dl = DDI.getdl();
943 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944 MDNode *Variable = DI->getVariable();
945 uint64_t Offset = DI->getOffset();
946 SDDbgValue *SDV;
947 if (Val.getNode()) {
948 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949 SDV = DAG.getDbgValue(Variable, Val.getNode(),
950 Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951 DAG.AddDbgValue(SDV, Val.getNode(), false);
953 } else
954 DEBUG(dbgs() << "Dropping debug info for " << DI);
955 DanglingDebugInfoMap[V] = DanglingDebugInfo();
959 // getValue - Return an SDValue for the given Value.
960 SDValue SelectionDAGBuilder::getValue(const Value *V) {
961 // If we already have an SDValue for this value, use it. It's important
962 // to do this first, so that we don't create a CopyFromReg if we already
963 // have a regular SDValue.
964 SDValue &N = NodeMap[V];
965 if (N.getNode()) return N;
967 // If there's a virtual register allocated and initialized for this
968 // value, use it.
969 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970 if (It != FuncInfo.ValueMap.end()) {
971 unsigned InReg = It->second;
972 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973 SDValue Chain = DAG.getEntryNode();
974 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975 resolveDanglingDebugInfo(V, N);
976 return N;
979 // Otherwise create a new SDValue and remember it.
980 SDValue Val = getValueImpl(V);
981 NodeMap[V] = Val;
982 resolveDanglingDebugInfo(V, Val);
983 return Val;
986 /// getNonRegisterValue - Return an SDValue for the given Value, but
987 /// don't look in FuncInfo.ValueMap for a virtual register.
988 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989 // If we already have an SDValue for this value, use it.
990 SDValue &N = NodeMap[V];
991 if (N.getNode()) return N;
993 // Otherwise create a new SDValue and remember it.
994 SDValue Val = getValueImpl(V);
995 NodeMap[V] = Val;
996 resolveDanglingDebugInfo(V, Val);
997 return Val;
1000 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001 /// Create an SDValue for the given value.
1002 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003 if (const Constant *C = dyn_cast<Constant>(V)) {
1004 EVT VT = TLI.getValueType(V->getType(), true);
1006 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007 return DAG.getConstant(*CI, VT);
1009 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1012 if (isa<ConstantPointerNull>(C))
1013 return DAG.getConstant(0, TLI.getPointerTy());
1015 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016 return DAG.getConstantFP(*CFP, VT);
1018 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019 return DAG.getUNDEF(VT);
1021 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022 visit(CE->getOpcode(), *CE);
1023 SDValue N1 = NodeMap[V];
1024 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025 return N1;
1028 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029 SmallVector<SDValue, 4> Constants;
1030 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031 OI != OE; ++OI) {
1032 SDNode *Val = getValue(*OI).getNode();
1033 // If the operand is an empty aggregate, there are no values.
1034 if (!Val) continue;
1035 // Add each leaf value from the operand to the Constants list
1036 // to form a flattened list of all the values.
1037 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038 Constants.push_back(SDValue(Val, i));
1041 return DAG.getMergeValues(&Constants[0], Constants.size(),
1042 getCurDebugLoc());
1045 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047 "Unknown struct or array constant!");
1049 SmallVector<EVT, 4> ValueVTs;
1050 ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051 unsigned NumElts = ValueVTs.size();
1052 if (NumElts == 0)
1053 return SDValue(); // empty struct
1054 SmallVector<SDValue, 4> Constants(NumElts);
1055 for (unsigned i = 0; i != NumElts; ++i) {
1056 EVT EltVT = ValueVTs[i];
1057 if (isa<UndefValue>(C))
1058 Constants[i] = DAG.getUNDEF(EltVT);
1059 else if (EltVT.isFloatingPoint())
1060 Constants[i] = DAG.getConstantFP(0, EltVT);
1061 else
1062 Constants[i] = DAG.getConstant(0, EltVT);
1065 return DAG.getMergeValues(&Constants[0], NumElts,
1066 getCurDebugLoc());
1069 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070 return DAG.getBlockAddress(BA, VT);
1072 const VectorType *VecTy = cast<VectorType>(V->getType());
1073 unsigned NumElements = VecTy->getNumElements();
1075 // Now that we know the number and type of the elements, get that number of
1076 // elements into the Ops array based on what kind of constant it is.
1077 SmallVector<SDValue, 16> Ops;
1078 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079 for (unsigned i = 0; i != NumElements; ++i)
1080 Ops.push_back(getValue(CP->getOperand(i)));
1081 } else {
1082 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083 EVT EltVT = TLI.getValueType(VecTy->getElementType());
1085 SDValue Op;
1086 if (EltVT.isFloatingPoint())
1087 Op = DAG.getConstantFP(0, EltVT);
1088 else
1089 Op = DAG.getConstant(0, EltVT);
1090 Ops.assign(NumElements, Op);
1093 // Create a BUILD_VECTOR node.
1094 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095 VT, &Ops[0], Ops.size());
1098 // If this is a static alloca, generate it as the frameindex instead of
1099 // computation.
1100 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101 DenseMap<const AllocaInst*, int>::iterator SI =
1102 FuncInfo.StaticAllocaMap.find(AI);
1103 if (SI != FuncInfo.StaticAllocaMap.end())
1104 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1107 // If this is an instruction which fast-isel has deferred, select it now.
1108 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111 SDValue Chain = DAG.getEntryNode();
1112 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1115 llvm_unreachable("Can't get register for value!");
1116 return SDValue();
1119 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120 SDValue Chain = getControlRoot();
1121 SmallVector<ISD::OutputArg, 8> Outs;
1122 SmallVector<SDValue, 8> OutVals;
1124 if (!FuncInfo.CanLowerReturn) {
1125 unsigned DemoteReg = FuncInfo.DemoteRegister;
1126 const Function *F = I.getParent()->getParent();
1128 // Emit a store of the return value through the virtual register.
1129 // Leave Outs empty so that LowerReturn won't try to load return
1130 // registers the usual way.
1131 SmallVector<EVT, 1> PtrValueVTs;
1132 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133 PtrValueVTs);
1135 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136 SDValue RetOp = getValue(I.getOperand(0));
1138 SmallVector<EVT, 4> ValueVTs;
1139 SmallVector<uint64_t, 4> Offsets;
1140 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141 unsigned NumValues = ValueVTs.size();
1143 SmallVector<SDValue, 4> Chains(NumValues);
1144 for (unsigned i = 0; i != NumValues; ++i) {
1145 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146 RetPtr.getValueType(), RetPtr,
1147 DAG.getIntPtrConstant(Offsets[i]));
1148 Chains[i] =
1149 DAG.getStore(Chain, getCurDebugLoc(),
1150 SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151 // FIXME: better loc info would be nice.
1152 Add, MachinePointerInfo(), false, false, 0);
1155 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156 MVT::Other, &Chains[0], NumValues);
1157 } else if (I.getNumOperands() != 0) {
1158 SmallVector<EVT, 4> ValueVTs;
1159 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160 unsigned NumValues = ValueVTs.size();
1161 if (NumValues) {
1162 SDValue RetOp = getValue(I.getOperand(0));
1163 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164 EVT VT = ValueVTs[j];
1166 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1168 const Function *F = I.getParent()->getParent();
1169 if (F->paramHasAttr(0, Attribute::SExt))
1170 ExtendKind = ISD::SIGN_EXTEND;
1171 else if (F->paramHasAttr(0, Attribute::ZExt))
1172 ExtendKind = ISD::ZERO_EXTEND;
1174 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1177 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179 SmallVector<SDValue, 4> Parts(NumParts);
1180 getCopyToParts(DAG, getCurDebugLoc(),
1181 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182 &Parts[0], NumParts, PartVT, ExtendKind);
1184 // 'inreg' on function refers to return value
1185 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186 if (F->paramHasAttr(0, Attribute::InReg))
1187 Flags.setInReg();
1189 // Propagate extension type if any
1190 if (ExtendKind == ISD::SIGN_EXTEND)
1191 Flags.setSExt();
1192 else if (ExtendKind == ISD::ZERO_EXTEND)
1193 Flags.setZExt();
1195 for (unsigned i = 0; i < NumParts; ++i) {
1196 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197 /*isfixed=*/true));
1198 OutVals.push_back(Parts[i]);
1204 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205 CallingConv::ID CallConv =
1206 DAG.getMachineFunction().getFunction()->getCallingConv();
1207 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208 Outs, OutVals, getCurDebugLoc(), DAG);
1210 // Verify that the target's LowerReturn behaved as expected.
1211 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212 "LowerReturn didn't return a valid chain!");
1214 // Update the DAG with the new chain value resulting from return lowering.
1215 DAG.setRoot(Chain);
1218 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219 /// created for it, emit nodes to copy the value into the virtual
1220 /// registers.
1221 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222 // Skip empty types
1223 if (V->getType()->isEmptyTy())
1224 return;
1226 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227 if (VMI != FuncInfo.ValueMap.end()) {
1228 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229 CopyValueToVirtualRegister(V, VMI->second);
1233 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234 /// the current basic block, add it to ValueMap now so that we'll get a
1235 /// CopyTo/FromReg.
1236 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237 // No need to export constants.
1238 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1240 // Already exported?
1241 if (FuncInfo.isExportedInst(V)) return;
1243 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244 CopyValueToVirtualRegister(V, Reg);
1247 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248 const BasicBlock *FromBB) {
1249 // The operands of the setcc have to be in this block. We don't know
1250 // how to export them from some other block.
1251 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252 // Can export from current BB.
1253 if (VI->getParent() == FromBB)
1254 return true;
1256 // Is already exported, noop.
1257 return FuncInfo.isExportedInst(V);
1260 // If this is an argument, we can export it if the BB is the entry block or
1261 // if it is already exported.
1262 if (isa<Argument>(V)) {
1263 if (FromBB == &FromBB->getParent()->getEntryBlock())
1264 return true;
1266 // Otherwise, can only export this if it is already exported.
1267 return FuncInfo.isExportedInst(V);
1270 // Otherwise, constants can always be exported.
1271 return true;
1274 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276 MachineBasicBlock *Dst) {
1277 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278 if (!BPI)
1279 return 0;
1280 BasicBlock *SrcBB = const_cast<BasicBlock*>(Src->getBasicBlock());
1281 BasicBlock *DstBB = const_cast<BasicBlock*>(Dst->getBasicBlock());
1282 return BPI->getEdgeWeight(SrcBB, DstBB);
1285 void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock *Src,
1286 MachineBasicBlock *Dst) {
1287 uint32_t weight = getEdgeWeight(Src, Dst);
1288 Src->addSuccessor(Dst, weight);
1292 static bool InBlock(const Value *V, const BasicBlock *BB) {
1293 if (const Instruction *I = dyn_cast<Instruction>(V))
1294 return I->getParent() == BB;
1295 return true;
1298 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1299 /// This function emits a branch and is used at the leaves of an OR or an
1300 /// AND operator tree.
1302 void
1303 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1304 MachineBasicBlock *TBB,
1305 MachineBasicBlock *FBB,
1306 MachineBasicBlock *CurBB,
1307 MachineBasicBlock *SwitchBB) {
1308 const BasicBlock *BB = CurBB->getBasicBlock();
1310 // If the leaf of the tree is a comparison, merge the condition into
1311 // the caseblock.
1312 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1313 // The operands of the cmp have to be in this block. We don't know
1314 // how to export them from some other block. If this is the first block
1315 // of the sequence, no exporting is needed.
1316 if (CurBB == SwitchBB ||
1317 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1318 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1319 ISD::CondCode Condition;
1320 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1321 Condition = getICmpCondCode(IC->getPredicate());
1322 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1323 Condition = getFCmpCondCode(FC->getPredicate());
1324 } else {
1325 Condition = ISD::SETEQ; // silence warning.
1326 llvm_unreachable("Unknown compare instruction");
1329 CaseBlock CB(Condition, BOp->getOperand(0),
1330 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1331 SwitchCases.push_back(CB);
1332 return;
1336 // Create a CaseBlock record representing this branch.
1337 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1338 NULL, TBB, FBB, CurBB);
1339 SwitchCases.push_back(CB);
1342 /// FindMergedConditions - If Cond is an expression like
1343 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1344 MachineBasicBlock *TBB,
1345 MachineBasicBlock *FBB,
1346 MachineBasicBlock *CurBB,
1347 MachineBasicBlock *SwitchBB,
1348 unsigned Opc) {
1349 // If this node is not part of the or/and tree, emit it as a branch.
1350 const Instruction *BOp = dyn_cast<Instruction>(Cond);
1351 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1352 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1353 BOp->getParent() != CurBB->getBasicBlock() ||
1354 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1355 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1356 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1357 return;
1360 // Create TmpBB after CurBB.
1361 MachineFunction::iterator BBI = CurBB;
1362 MachineFunction &MF = DAG.getMachineFunction();
1363 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1364 CurBB->getParent()->insert(++BBI, TmpBB);
1366 if (Opc == Instruction::Or) {
1367 // Codegen X | Y as:
1368 // jmp_if_X TBB
1369 // jmp TmpBB
1370 // TmpBB:
1371 // jmp_if_Y TBB
1372 // jmp FBB
1375 // Emit the LHS condition.
1376 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1378 // Emit the RHS condition into TmpBB.
1379 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1380 } else {
1381 assert(Opc == Instruction::And && "Unknown merge op!");
1382 // Codegen X & Y as:
1383 // jmp_if_X TmpBB
1384 // jmp FBB
1385 // TmpBB:
1386 // jmp_if_Y TBB
1387 // jmp FBB
1389 // This requires creation of TmpBB after CurBB.
1391 // Emit the LHS condition.
1392 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1394 // Emit the RHS condition into TmpBB.
1395 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1399 /// If the set of cases should be emitted as a series of branches, return true.
1400 /// If we should emit this as a bunch of and/or'd together conditions, return
1401 /// false.
1402 bool
1403 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1404 if (Cases.size() != 2) return true;
1406 // If this is two comparisons of the same values or'd or and'd together, they
1407 // will get folded into a single comparison, so don't emit two blocks.
1408 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1409 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1410 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1411 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1412 return false;
1415 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1416 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1417 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1418 Cases[0].CC == Cases[1].CC &&
1419 isa<Constant>(Cases[0].CmpRHS) &&
1420 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1421 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1422 return false;
1423 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1424 return false;
1427 return true;
1430 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1431 MachineBasicBlock *BrMBB = FuncInfo.MBB;
1433 // Update machine-CFG edges.
1434 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1436 // Figure out which block is immediately after the current one.
1437 MachineBasicBlock *NextBlock = 0;
1438 MachineFunction::iterator BBI = BrMBB;
1439 if (++BBI != FuncInfo.MF->end())
1440 NextBlock = BBI;
1442 if (I.isUnconditional()) {
1443 // Update machine-CFG edges.
1444 BrMBB->addSuccessor(Succ0MBB);
1446 // If this is not a fall-through branch, emit the branch.
1447 if (Succ0MBB != NextBlock)
1448 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1449 MVT::Other, getControlRoot(),
1450 DAG.getBasicBlock(Succ0MBB)));
1452 return;
1455 // If this condition is one of the special cases we handle, do special stuff
1456 // now.
1457 const Value *CondVal = I.getCondition();
1458 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1460 // If this is a series of conditions that are or'd or and'd together, emit
1461 // this as a sequence of branches instead of setcc's with and/or operations.
1462 // As long as jumps are not expensive, this should improve performance.
1463 // For example, instead of something like:
1464 // cmp A, B
1465 // C = seteq
1466 // cmp D, E
1467 // F = setle
1468 // or C, F
1469 // jnz foo
1470 // Emit:
1471 // cmp A, B
1472 // je foo
1473 // cmp D, E
1474 // jle foo
1476 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1477 if (!TLI.isJumpExpensive() &&
1478 BOp->hasOneUse() &&
1479 (BOp->getOpcode() == Instruction::And ||
1480 BOp->getOpcode() == Instruction::Or)) {
1481 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1482 BOp->getOpcode());
1483 // If the compares in later blocks need to use values not currently
1484 // exported from this block, export them now. This block should always
1485 // be the first entry.
1486 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1488 // Allow some cases to be rejected.
1489 if (ShouldEmitAsBranches(SwitchCases)) {
1490 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1491 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1492 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1495 // Emit the branch for this block.
1496 visitSwitchCase(SwitchCases[0], BrMBB);
1497 SwitchCases.erase(SwitchCases.begin());
1498 return;
1501 // Okay, we decided not to do this, remove any inserted MBB's and clear
1502 // SwitchCases.
1503 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1504 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1506 SwitchCases.clear();
1510 // Create a CaseBlock record representing this branch.
1511 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1512 NULL, Succ0MBB, Succ1MBB, BrMBB);
1514 // Use visitSwitchCase to actually insert the fast branch sequence for this
1515 // cond branch.
1516 visitSwitchCase(CB, BrMBB);
1519 /// visitSwitchCase - Emits the necessary code to represent a single node in
1520 /// the binary search tree resulting from lowering a switch instruction.
1521 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1522 MachineBasicBlock *SwitchBB) {
1523 SDValue Cond;
1524 SDValue CondLHS = getValue(CB.CmpLHS);
1525 DebugLoc dl = getCurDebugLoc();
1527 // Build the setcc now.
1528 if (CB.CmpMHS == NULL) {
1529 // Fold "(X == true)" to X and "(X == false)" to !X to
1530 // handle common cases produced by branch lowering.
1531 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1532 CB.CC == ISD::SETEQ)
1533 Cond = CondLHS;
1534 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1535 CB.CC == ISD::SETEQ) {
1536 SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1537 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1538 } else
1539 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1540 } else {
1541 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1543 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1544 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1546 SDValue CmpOp = getValue(CB.CmpMHS);
1547 EVT VT = CmpOp.getValueType();
1549 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1550 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1551 ISD::SETLE);
1552 } else {
1553 SDValue SUB = DAG.getNode(ISD::SUB, dl,
1554 VT, CmpOp, DAG.getConstant(Low, VT));
1555 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1556 DAG.getConstant(High-Low, VT), ISD::SETULE);
1560 // Update successor info
1561 addSuccessorWithWeight(SwitchBB, CB.TrueBB);
1562 addSuccessorWithWeight(SwitchBB, CB.FalseBB);
1564 // Set NextBlock to be the MBB immediately after the current one, if any.
1565 // This is used to avoid emitting unnecessary branches to the next block.
1566 MachineBasicBlock *NextBlock = 0;
1567 MachineFunction::iterator BBI = SwitchBB;
1568 if (++BBI != FuncInfo.MF->end())
1569 NextBlock = BBI;
1571 // If the lhs block is the next block, invert the condition so that we can
1572 // fall through to the lhs instead of the rhs block.
1573 if (CB.TrueBB == NextBlock) {
1574 std::swap(CB.TrueBB, CB.FalseBB);
1575 SDValue True = DAG.getConstant(1, Cond.getValueType());
1576 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1579 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1580 MVT::Other, getControlRoot(), Cond,
1581 DAG.getBasicBlock(CB.TrueBB));
1583 // Insert the false branch. Do this even if it's a fall through branch,
1584 // this makes it easier to do DAG optimizations which require inverting
1585 // the branch condition.
1586 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1587 DAG.getBasicBlock(CB.FalseBB));
1589 DAG.setRoot(BrCond);
1592 /// visitJumpTable - Emit JumpTable node in the current MBB
1593 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1594 // Emit the code for the jump table
1595 assert(JT.Reg != -1U && "Should lower JT Header first!");
1596 EVT PTy = TLI.getPointerTy();
1597 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1598 JT.Reg, PTy);
1599 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1600 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1601 MVT::Other, Index.getValue(1),
1602 Table, Index);
1603 DAG.setRoot(BrJumpTable);
1606 /// visitJumpTableHeader - This function emits necessary code to produce index
1607 /// in the JumpTable from switch case.
1608 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1609 JumpTableHeader &JTH,
1610 MachineBasicBlock *SwitchBB) {
1611 // Subtract the lowest switch case value from the value being switched on and
1612 // conditional branch to default mbb if the result is greater than the
1613 // difference between smallest and largest cases.
1614 SDValue SwitchOp = getValue(JTH.SValue);
1615 EVT VT = SwitchOp.getValueType();
1616 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1617 DAG.getConstant(JTH.First, VT));
1619 // The SDNode we just created, which holds the value being switched on minus
1620 // the smallest case value, needs to be copied to a virtual register so it
1621 // can be used as an index into the jump table in a subsequent basic block.
1622 // This value may be smaller or larger than the target's pointer type, and
1623 // therefore require extension or truncating.
1624 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1626 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1627 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1628 JumpTableReg, SwitchOp);
1629 JT.Reg = JumpTableReg;
1631 // Emit the range check for the jump table, and branch to the default block
1632 // for the switch statement if the value being switched on exceeds the largest
1633 // case in the switch.
1634 SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1635 TLI.getSetCCResultType(Sub.getValueType()), Sub,
1636 DAG.getConstant(JTH.Last-JTH.First,VT),
1637 ISD::SETUGT);
1639 // Set NextBlock to be the MBB immediately after the current one, if any.
1640 // This is used to avoid emitting unnecessary branches to the next block.
1641 MachineBasicBlock *NextBlock = 0;
1642 MachineFunction::iterator BBI = SwitchBB;
1644 if (++BBI != FuncInfo.MF->end())
1645 NextBlock = BBI;
1647 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1648 MVT::Other, CopyTo, CMP,
1649 DAG.getBasicBlock(JT.Default));
1651 if (JT.MBB != NextBlock)
1652 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1653 DAG.getBasicBlock(JT.MBB));
1655 DAG.setRoot(BrCond);
1658 /// visitBitTestHeader - This function emits necessary code to produce value
1659 /// suitable for "bit tests"
1660 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1661 MachineBasicBlock *SwitchBB) {
1662 // Subtract the minimum value
1663 SDValue SwitchOp = getValue(B.SValue);
1664 EVT VT = SwitchOp.getValueType();
1665 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1666 DAG.getConstant(B.First, VT));
1668 // Check range
1669 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1670 TLI.getSetCCResultType(Sub.getValueType()),
1671 Sub, DAG.getConstant(B.Range, VT),
1672 ISD::SETUGT);
1674 // Determine the type of the test operands.
1675 bool UsePtrType = false;
1676 if (!TLI.isTypeLegal(VT))
1677 UsePtrType = true;
1678 else {
1679 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1680 if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1681 // Switch table case range are encoded into series of masks.
1682 // Just use pointer type, it's guaranteed to fit.
1683 UsePtrType = true;
1684 break;
1687 if (UsePtrType) {
1688 VT = TLI.getPointerTy();
1689 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1692 B.RegVT = VT;
1693 B.Reg = FuncInfo.CreateReg(VT);
1694 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1695 B.Reg, Sub);
1697 // Set NextBlock to be the MBB immediately after the current one, if any.
1698 // This is used to avoid emitting unnecessary branches to the next block.
1699 MachineBasicBlock *NextBlock = 0;
1700 MachineFunction::iterator BBI = SwitchBB;
1701 if (++BBI != FuncInfo.MF->end())
1702 NextBlock = BBI;
1704 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1706 addSuccessorWithWeight(SwitchBB, B.Default);
1707 addSuccessorWithWeight(SwitchBB, MBB);
1709 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1710 MVT::Other, CopyTo, RangeCmp,
1711 DAG.getBasicBlock(B.Default));
1713 if (MBB != NextBlock)
1714 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1715 DAG.getBasicBlock(MBB));
1717 DAG.setRoot(BrRange);
1720 /// visitBitTestCase - this function produces one "bit test"
1721 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1722 MachineBasicBlock* NextMBB,
1723 unsigned Reg,
1724 BitTestCase &B,
1725 MachineBasicBlock *SwitchBB) {
1726 EVT VT = BB.RegVT;
1727 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1728 Reg, VT);
1729 SDValue Cmp;
1730 if (CountPopulation_64(B.Mask) == 1) {
1731 // Testing for a single bit; just compare the shift count with what it
1732 // would need to be to shift a 1 bit in that position.
1733 Cmp = DAG.getSetCC(getCurDebugLoc(),
1734 TLI.getSetCCResultType(VT),
1735 ShiftOp,
1736 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1737 ISD::SETEQ);
1738 } else {
1739 // Make desired shift
1740 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1741 DAG.getConstant(1, VT), ShiftOp);
1743 // Emit bit tests and jumps
1744 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1745 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1746 Cmp = DAG.getSetCC(getCurDebugLoc(),
1747 TLI.getSetCCResultType(VT),
1748 AndOp, DAG.getConstant(0, VT),
1749 ISD::SETNE);
1752 addSuccessorWithWeight(SwitchBB, B.TargetBB);
1753 addSuccessorWithWeight(SwitchBB, NextMBB);
1755 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1756 MVT::Other, getControlRoot(),
1757 Cmp, DAG.getBasicBlock(B.TargetBB));
1759 // Set NextBlock to be the MBB immediately after the current one, if any.
1760 // This is used to avoid emitting unnecessary branches to the next block.
1761 MachineBasicBlock *NextBlock = 0;
1762 MachineFunction::iterator BBI = SwitchBB;
1763 if (++BBI != FuncInfo.MF->end())
1764 NextBlock = BBI;
1766 if (NextMBB != NextBlock)
1767 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1768 DAG.getBasicBlock(NextMBB));
1770 DAG.setRoot(BrAnd);
1773 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1774 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1776 // Retrieve successors.
1777 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1778 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1780 const Value *Callee(I.getCalledValue());
1781 if (isa<InlineAsm>(Callee))
1782 visitInlineAsm(&I);
1783 else
1784 LowerCallTo(&I, getValue(Callee), false, LandingPad);
1786 // If the value of the invoke is used outside of its defining block, make it
1787 // available as a virtual register.
1788 CopyToExportRegsIfNeeded(&I);
1790 // Update successor info
1791 InvokeMBB->addSuccessor(Return);
1792 InvokeMBB->addSuccessor(LandingPad);
1794 // Drop into normal successor.
1795 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1796 MVT::Other, getControlRoot(),
1797 DAG.getBasicBlock(Return)));
1800 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1803 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1804 /// small case ranges).
1805 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1806 CaseRecVector& WorkList,
1807 const Value* SV,
1808 MachineBasicBlock *Default,
1809 MachineBasicBlock *SwitchBB) {
1810 Case& BackCase = *(CR.Range.second-1);
1812 // Size is the number of Cases represented by this range.
1813 size_t Size = CR.Range.second - CR.Range.first;
1814 if (Size > 3)
1815 return false;
1817 // Get the MachineFunction which holds the current MBB. This is used when
1818 // inserting any additional MBBs necessary to represent the switch.
1819 MachineFunction *CurMF = FuncInfo.MF;
1821 // Figure out which block is immediately after the current one.
1822 MachineBasicBlock *NextBlock = 0;
1823 MachineFunction::iterator BBI = CR.CaseBB;
1825 if (++BBI != FuncInfo.MF->end())
1826 NextBlock = BBI;
1828 // If any two of the cases has the same destination, and if one value
1829 // is the same as the other, but has one bit unset that the other has set,
1830 // use bit manipulation to do two compares at once. For example:
1831 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1832 // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1833 // TODO: Handle cases where CR.CaseBB != SwitchBB.
1834 if (Size == 2 && CR.CaseBB == SwitchBB) {
1835 Case &Small = *CR.Range.first;
1836 Case &Big = *(CR.Range.second-1);
1838 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1839 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1840 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1842 // Check that there is only one bit different.
1843 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1844 (SmallValue | BigValue) == BigValue) {
1845 // Isolate the common bit.
1846 APInt CommonBit = BigValue & ~SmallValue;
1847 assert((SmallValue | CommonBit) == BigValue &&
1848 CommonBit.countPopulation() == 1 && "Not a common bit?");
1850 SDValue CondLHS = getValue(SV);
1851 EVT VT = CondLHS.getValueType();
1852 DebugLoc DL = getCurDebugLoc();
1854 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1855 DAG.getConstant(CommonBit, VT));
1856 SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1857 Or, DAG.getConstant(BigValue, VT),
1858 ISD::SETEQ);
1860 // Update successor info.
1861 SwitchBB->addSuccessor(Small.BB);
1862 SwitchBB->addSuccessor(Default);
1864 // Insert the true branch.
1865 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1866 getControlRoot(), Cond,
1867 DAG.getBasicBlock(Small.BB));
1869 // Insert the false branch.
1870 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1871 DAG.getBasicBlock(Default));
1873 DAG.setRoot(BrCond);
1874 return true;
1879 // Rearrange the case blocks so that the last one falls through if possible.
1880 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1881 // The last case block won't fall through into 'NextBlock' if we emit the
1882 // branches in this order. See if rearranging a case value would help.
1883 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1884 if (I->BB == NextBlock) {
1885 std::swap(*I, BackCase);
1886 break;
1891 // Create a CaseBlock record representing a conditional branch to
1892 // the Case's target mbb if the value being switched on SV is equal
1893 // to C.
1894 MachineBasicBlock *CurBlock = CR.CaseBB;
1895 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1896 MachineBasicBlock *FallThrough;
1897 if (I != E-1) {
1898 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1899 CurMF->insert(BBI, FallThrough);
1901 // Put SV in a virtual register to make it available from the new blocks.
1902 ExportFromCurrentBlock(SV);
1903 } else {
1904 // If the last case doesn't match, go to the default block.
1905 FallThrough = Default;
1908 const Value *RHS, *LHS, *MHS;
1909 ISD::CondCode CC;
1910 if (I->High == I->Low) {
1911 // This is just small small case range :) containing exactly 1 case
1912 CC = ISD::SETEQ;
1913 LHS = SV; RHS = I->High; MHS = NULL;
1914 } else {
1915 CC = ISD::SETLE;
1916 LHS = I->Low; MHS = SV; RHS = I->High;
1918 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1920 // If emitting the first comparison, just call visitSwitchCase to emit the
1921 // code into the current block. Otherwise, push the CaseBlock onto the
1922 // vector to be later processed by SDISel, and insert the node's MBB
1923 // before the next MBB.
1924 if (CurBlock == SwitchBB)
1925 visitSwitchCase(CB, SwitchBB);
1926 else
1927 SwitchCases.push_back(CB);
1929 CurBlock = FallThrough;
1932 return true;
1935 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1936 return !DisableJumpTables &&
1937 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1938 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1941 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1942 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1943 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1944 return (LastExt - FirstExt + 1ULL);
1947 /// handleJTSwitchCase - Emit jumptable for current switch case range
1948 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1949 CaseRecVector& WorkList,
1950 const Value* SV,
1951 MachineBasicBlock* Default,
1952 MachineBasicBlock *SwitchBB) {
1953 Case& FrontCase = *CR.Range.first;
1954 Case& BackCase = *(CR.Range.second-1);
1956 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1957 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
1959 APInt TSize(First.getBitWidth(), 0);
1960 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1961 I!=E; ++I)
1962 TSize += I->size();
1964 if (!areJTsAllowed(TLI) || TSize.ult(4))
1965 return false;
1967 APInt Range = ComputeRange(First, Last);
1968 double Density = TSize.roundToDouble() / Range.roundToDouble();
1969 if (Density < 0.4)
1970 return false;
1972 DEBUG(dbgs() << "Lowering jump table\n"
1973 << "First entry: " << First << ". Last entry: " << Last << '\n'
1974 << "Range: " << Range
1975 << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1977 // Get the MachineFunction which holds the current MBB. This is used when
1978 // inserting any additional MBBs necessary to represent the switch.
1979 MachineFunction *CurMF = FuncInfo.MF;
1981 // Figure out which block is immediately after the current one.
1982 MachineFunction::iterator BBI = CR.CaseBB;
1983 ++BBI;
1985 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1987 // Create a new basic block to hold the code for loading the address
1988 // of the jump table, and jumping to it. Update successor information;
1989 // we will either branch to the default case for the switch, or the jump
1990 // table.
1991 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1992 CurMF->insert(BBI, JumpTableBB);
1994 addSuccessorWithWeight(CR.CaseBB, Default);
1995 addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
1997 // Build a vector of destination BBs, corresponding to each target
1998 // of the jump table. If the value of the jump table slot corresponds to
1999 // a case statement, push the case's BB onto the vector, otherwise, push
2000 // the default BB.
2001 std::vector<MachineBasicBlock*> DestBBs;
2002 APInt TEI = First;
2003 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2004 const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2005 const APInt &High = cast<ConstantInt>(I->High)->getValue();
2007 if (Low.sle(TEI) && TEI.sle(High)) {
2008 DestBBs.push_back(I->BB);
2009 if (TEI==High)
2010 ++I;
2011 } else {
2012 DestBBs.push_back(Default);
2016 // Update successor info. Add one edge to each unique successor.
2017 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2018 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2019 E = DestBBs.end(); I != E; ++I) {
2020 if (!SuccsHandled[(*I)->getNumber()]) {
2021 SuccsHandled[(*I)->getNumber()] = true;
2022 addSuccessorWithWeight(JumpTableBB, *I);
2026 // Create a jump table index for this jump table.
2027 unsigned JTEncoding = TLI.getJumpTableEncoding();
2028 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2029 ->createJumpTableIndex(DestBBs);
2031 // Set the jump table information so that we can codegen it as a second
2032 // MachineBasicBlock
2033 JumpTable JT(-1U, JTI, JumpTableBB, Default);
2034 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2035 if (CR.CaseBB == SwitchBB)
2036 visitJumpTableHeader(JT, JTH, SwitchBB);
2038 JTCases.push_back(JumpTableBlock(JTH, JT));
2040 return true;
2043 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2044 /// 2 subtrees.
2045 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2046 CaseRecVector& WorkList,
2047 const Value* SV,
2048 MachineBasicBlock *Default,
2049 MachineBasicBlock *SwitchBB) {
2050 // Get the MachineFunction which holds the current MBB. This is used when
2051 // inserting any additional MBBs necessary to represent the switch.
2052 MachineFunction *CurMF = FuncInfo.MF;
2054 // Figure out which block is immediately after the current one.
2055 MachineFunction::iterator BBI = CR.CaseBB;
2056 ++BBI;
2058 Case& FrontCase = *CR.Range.first;
2059 Case& BackCase = *(CR.Range.second-1);
2060 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2062 // Size is the number of Cases represented by this range.
2063 unsigned Size = CR.Range.second - CR.Range.first;
2065 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2066 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
2067 double FMetric = 0;
2068 CaseItr Pivot = CR.Range.first + Size/2;
2070 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2071 // (heuristically) allow us to emit JumpTable's later.
2072 APInt TSize(First.getBitWidth(), 0);
2073 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2074 I!=E; ++I)
2075 TSize += I->size();
2077 APInt LSize = FrontCase.size();
2078 APInt RSize = TSize-LSize;
2079 DEBUG(dbgs() << "Selecting best pivot: \n"
2080 << "First: " << First << ", Last: " << Last <<'\n'
2081 << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2082 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2083 J!=E; ++I, ++J) {
2084 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2085 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2086 APInt Range = ComputeRange(LEnd, RBegin);
2087 assert((Range - 2ULL).isNonNegative() &&
2088 "Invalid case distance");
2089 // Use volatile double here to avoid excess precision issues on some hosts,
2090 // e.g. that use 80-bit X87 registers.
2091 volatile double LDensity =
2092 (double)LSize.roundToDouble() /
2093 (LEnd - First + 1ULL).roundToDouble();
2094 volatile double RDensity =
2095 (double)RSize.roundToDouble() /
2096 (Last - RBegin + 1ULL).roundToDouble();
2097 double Metric = Range.logBase2()*(LDensity+RDensity);
2098 // Should always split in some non-trivial place
2099 DEBUG(dbgs() <<"=>Step\n"
2100 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2101 << "LDensity: " << LDensity
2102 << ", RDensity: " << RDensity << '\n'
2103 << "Metric: " << Metric << '\n');
2104 if (FMetric < Metric) {
2105 Pivot = J;
2106 FMetric = Metric;
2107 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2110 LSize += J->size();
2111 RSize -= J->size();
2113 if (areJTsAllowed(TLI)) {
2114 // If our case is dense we *really* should handle it earlier!
2115 assert((FMetric > 0) && "Should handle dense range earlier!");
2116 } else {
2117 Pivot = CR.Range.first + Size/2;
2120 CaseRange LHSR(CR.Range.first, Pivot);
2121 CaseRange RHSR(Pivot, CR.Range.second);
2122 Constant *C = Pivot->Low;
2123 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2125 // We know that we branch to the LHS if the Value being switched on is
2126 // less than the Pivot value, C. We use this to optimize our binary
2127 // tree a bit, by recognizing that if SV is greater than or equal to the
2128 // LHS's Case Value, and that Case Value is exactly one less than the
2129 // Pivot's Value, then we can branch directly to the LHS's Target,
2130 // rather than creating a leaf node for it.
2131 if ((LHSR.second - LHSR.first) == 1 &&
2132 LHSR.first->High == CR.GE &&
2133 cast<ConstantInt>(C)->getValue() ==
2134 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2135 TrueBB = LHSR.first->BB;
2136 } else {
2137 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2138 CurMF->insert(BBI, TrueBB);
2139 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2141 // Put SV in a virtual register to make it available from the new blocks.
2142 ExportFromCurrentBlock(SV);
2145 // Similar to the optimization above, if the Value being switched on is
2146 // known to be less than the Constant CR.LT, and the current Case Value
2147 // is CR.LT - 1, then we can branch directly to the target block for
2148 // the current Case Value, rather than emitting a RHS leaf node for it.
2149 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2150 cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2151 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2152 FalseBB = RHSR.first->BB;
2153 } else {
2154 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2155 CurMF->insert(BBI, FalseBB);
2156 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2158 // Put SV in a virtual register to make it available from the new blocks.
2159 ExportFromCurrentBlock(SV);
2162 // Create a CaseBlock record representing a conditional branch to
2163 // the LHS node if the value being switched on SV is less than C.
2164 // Otherwise, branch to LHS.
2165 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2167 if (CR.CaseBB == SwitchBB)
2168 visitSwitchCase(CB, SwitchBB);
2169 else
2170 SwitchCases.push_back(CB);
2172 return true;
2175 /// handleBitTestsSwitchCase - if current case range has few destination and
2176 /// range span less, than machine word bitwidth, encode case range into series
2177 /// of masks and emit bit tests with these masks.
2178 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2179 CaseRecVector& WorkList,
2180 const Value* SV,
2181 MachineBasicBlock* Default,
2182 MachineBasicBlock *SwitchBB){
2183 EVT PTy = TLI.getPointerTy();
2184 unsigned IntPtrBits = PTy.getSizeInBits();
2186 Case& FrontCase = *CR.Range.first;
2187 Case& BackCase = *(CR.Range.second-1);
2189 // Get the MachineFunction which holds the current MBB. This is used when
2190 // inserting any additional MBBs necessary to represent the switch.
2191 MachineFunction *CurMF = FuncInfo.MF;
2193 // If target does not have legal shift left, do not emit bit tests at all.
2194 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2195 return false;
2197 size_t numCmps = 0;
2198 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2199 I!=E; ++I) {
2200 // Single case counts one, case range - two.
2201 numCmps += (I->Low == I->High ? 1 : 2);
2204 // Count unique destinations
2205 SmallSet<MachineBasicBlock*, 4> Dests;
2206 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2207 Dests.insert(I->BB);
2208 if (Dests.size() > 3)
2209 // Don't bother the code below, if there are too much unique destinations
2210 return false;
2212 DEBUG(dbgs() << "Total number of unique destinations: "
2213 << Dests.size() << '\n'
2214 << "Total number of comparisons: " << numCmps << '\n');
2216 // Compute span of values.
2217 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2218 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2219 APInt cmpRange = maxValue - minValue;
2221 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2222 << "Low bound: " << minValue << '\n'
2223 << "High bound: " << maxValue << '\n');
2225 if (cmpRange.uge(IntPtrBits) ||
2226 (!(Dests.size() == 1 && numCmps >= 3) &&
2227 !(Dests.size() == 2 && numCmps >= 5) &&
2228 !(Dests.size() >= 3 && numCmps >= 6)))
2229 return false;
2231 DEBUG(dbgs() << "Emitting bit tests\n");
2232 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2234 // Optimize the case where all the case values fit in a
2235 // word without having to subtract minValue. In this case,
2236 // we can optimize away the subtraction.
2237 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2238 cmpRange = maxValue;
2239 } else {
2240 lowBound = minValue;
2243 CaseBitsVector CasesBits;
2244 unsigned i, count = 0;
2246 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2247 MachineBasicBlock* Dest = I->BB;
2248 for (i = 0; i < count; ++i)
2249 if (Dest == CasesBits[i].BB)
2250 break;
2252 if (i == count) {
2253 assert((count < 3) && "Too much destinations to test!");
2254 CasesBits.push_back(CaseBits(0, Dest, 0));
2255 count++;
2258 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2259 const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2261 uint64_t lo = (lowValue - lowBound).getZExtValue();
2262 uint64_t hi = (highValue - lowBound).getZExtValue();
2264 for (uint64_t j = lo; j <= hi; j++) {
2265 CasesBits[i].Mask |= 1ULL << j;
2266 CasesBits[i].Bits++;
2270 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2272 BitTestInfo BTC;
2274 // Figure out which block is immediately after the current one.
2275 MachineFunction::iterator BBI = CR.CaseBB;
2276 ++BBI;
2278 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2280 DEBUG(dbgs() << "Cases:\n");
2281 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2282 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2283 << ", Bits: " << CasesBits[i].Bits
2284 << ", BB: " << CasesBits[i].BB << '\n');
2286 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2287 CurMF->insert(BBI, CaseBB);
2288 BTC.push_back(BitTestCase(CasesBits[i].Mask,
2289 CaseBB,
2290 CasesBits[i].BB));
2292 // Put SV in a virtual register to make it available from the new blocks.
2293 ExportFromCurrentBlock(SV);
2296 BitTestBlock BTB(lowBound, cmpRange, SV,
2297 -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2298 CR.CaseBB, Default, BTC);
2300 if (CR.CaseBB == SwitchBB)
2301 visitBitTestHeader(BTB, SwitchBB);
2303 BitTestCases.push_back(BTB);
2305 return true;
2308 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2309 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2310 const SwitchInst& SI) {
2311 size_t numCmps = 0;
2313 // Start with "simple" cases
2314 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2315 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2316 Cases.push_back(Case(SI.getSuccessorValue(i),
2317 SI.getSuccessorValue(i),
2318 SMBB));
2320 std::sort(Cases.begin(), Cases.end(), CaseCmp());
2322 // Merge case into clusters
2323 if (Cases.size() >= 2)
2324 // Must recompute end() each iteration because it may be
2325 // invalidated by erase if we hold on to it
2326 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2327 J != Cases.end(); ) {
2328 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2329 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2330 MachineBasicBlock* nextBB = J->BB;
2331 MachineBasicBlock* currentBB = I->BB;
2333 // If the two neighboring cases go to the same destination, merge them
2334 // into a single case.
2335 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2336 I->High = J->High;
2337 J = Cases.erase(J);
2338 } else {
2339 I = J++;
2343 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2344 if (I->Low != I->High)
2345 // A range counts double, since it requires two compares.
2346 ++numCmps;
2349 return numCmps;
2352 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2353 MachineBasicBlock *Last) {
2354 // Update JTCases.
2355 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2356 if (JTCases[i].first.HeaderBB == First)
2357 JTCases[i].first.HeaderBB = Last;
2359 // Update BitTestCases.
2360 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2361 if (BitTestCases[i].Parent == First)
2362 BitTestCases[i].Parent = Last;
2365 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2366 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2368 // Figure out which block is immediately after the current one.
2369 MachineBasicBlock *NextBlock = 0;
2370 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2372 // If there is only the default destination, branch to it if it is not the
2373 // next basic block. Otherwise, just fall through.
2374 if (SI.getNumOperands() == 2) {
2375 // Update machine-CFG edges.
2377 // If this is not a fall-through branch, emit the branch.
2378 SwitchMBB->addSuccessor(Default);
2379 if (Default != NextBlock)
2380 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2381 MVT::Other, getControlRoot(),
2382 DAG.getBasicBlock(Default)));
2384 return;
2387 // If there are any non-default case statements, create a vector of Cases
2388 // representing each one, and sort the vector so that we can efficiently
2389 // create a binary search tree from them.
2390 CaseVector Cases;
2391 size_t numCmps = Clusterify(Cases, SI);
2392 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2393 << ". Total compares: " << numCmps << '\n');
2394 numCmps = 0;
2396 // Get the Value to be switched on and default basic blocks, which will be
2397 // inserted into CaseBlock records, representing basic blocks in the binary
2398 // search tree.
2399 const Value *SV = SI.getOperand(0);
2401 // Push the initial CaseRec onto the worklist
2402 CaseRecVector WorkList;
2403 WorkList.push_back(CaseRec(SwitchMBB,0,0,
2404 CaseRange(Cases.begin(),Cases.end())));
2406 while (!WorkList.empty()) {
2407 // Grab a record representing a case range to process off the worklist
2408 CaseRec CR = WorkList.back();
2409 WorkList.pop_back();
2411 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2412 continue;
2414 // If the range has few cases (two or less) emit a series of specific
2415 // tests.
2416 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2417 continue;
2419 // If the switch has more than 5 blocks, and at least 40% dense, and the
2420 // target supports indirect branches, then emit a jump table rather than
2421 // lowering the switch to a binary tree of conditional branches.
2422 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2423 continue;
2425 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2426 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2427 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2431 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2432 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2434 // Update machine-CFG edges with unique successors.
2435 SmallVector<BasicBlock*, 32> succs;
2436 succs.reserve(I.getNumSuccessors());
2437 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2438 succs.push_back(I.getSuccessor(i));
2439 array_pod_sort(succs.begin(), succs.end());
2440 succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2441 for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2442 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2443 addSuccessorWithWeight(IndirectBrMBB, Succ);
2446 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2447 MVT::Other, getControlRoot(),
2448 getValue(I.getAddress())));
2451 void SelectionDAGBuilder::visitFSub(const User &I) {
2452 // -0.0 - X --> fneg
2453 const Type *Ty = I.getType();
2454 if (isa<Constant>(I.getOperand(0)) &&
2455 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2456 SDValue Op2 = getValue(I.getOperand(1));
2457 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2458 Op2.getValueType(), Op2));
2459 return;
2462 visitBinary(I, ISD::FSUB);
2465 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2466 SDValue Op1 = getValue(I.getOperand(0));
2467 SDValue Op2 = getValue(I.getOperand(1));
2468 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2469 Op1.getValueType(), Op1, Op2));
2472 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2473 SDValue Op1 = getValue(I.getOperand(0));
2474 SDValue Op2 = getValue(I.getOperand(1));
2476 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2478 // Coerce the shift amount to the right type if we can.
2479 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2480 unsigned ShiftSize = ShiftTy.getSizeInBits();
2481 unsigned Op2Size = Op2.getValueType().getSizeInBits();
2482 DebugLoc DL = getCurDebugLoc();
2484 // If the operand is smaller than the shift count type, promote it.
2485 if (ShiftSize > Op2Size)
2486 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2488 // If the operand is larger than the shift count type but the shift
2489 // count type has enough bits to represent any shift value, truncate
2490 // it now. This is a common case and it exposes the truncate to
2491 // optimization early.
2492 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2493 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2494 // Otherwise we'll need to temporarily settle for some other convenient
2495 // type. Type legalization will make adjustments once the shiftee is split.
2496 else
2497 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2500 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2501 Op1.getValueType(), Op1, Op2));
2504 void SelectionDAGBuilder::visitSDiv(const User &I) {
2505 SDValue Op1 = getValue(I.getOperand(0));
2506 SDValue Op2 = getValue(I.getOperand(1));
2508 // Turn exact SDivs into multiplications.
2509 // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2510 // exact bit.
2511 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2512 !isa<ConstantSDNode>(Op1) &&
2513 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2514 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2515 else
2516 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2517 Op1, Op2));
2520 void SelectionDAGBuilder::visitICmp(const User &I) {
2521 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2522 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2523 predicate = IC->getPredicate();
2524 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2525 predicate = ICmpInst::Predicate(IC->getPredicate());
2526 SDValue Op1 = getValue(I.getOperand(0));
2527 SDValue Op2 = getValue(I.getOperand(1));
2528 ISD::CondCode Opcode = getICmpCondCode(predicate);
2530 EVT DestVT = TLI.getValueType(I.getType());
2531 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2534 void SelectionDAGBuilder::visitFCmp(const User &I) {
2535 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2536 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2537 predicate = FC->getPredicate();
2538 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2539 predicate = FCmpInst::Predicate(FC->getPredicate());
2540 SDValue Op1 = getValue(I.getOperand(0));
2541 SDValue Op2 = getValue(I.getOperand(1));
2542 ISD::CondCode Condition = getFCmpCondCode(predicate);
2543 EVT DestVT = TLI.getValueType(I.getType());
2544 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2547 void SelectionDAGBuilder::visitSelect(const User &I) {
2548 SmallVector<EVT, 4> ValueVTs;
2549 ComputeValueVTs(TLI, I.getType(), ValueVTs);
2550 unsigned NumValues = ValueVTs.size();
2551 if (NumValues == 0) return;
2553 SmallVector<SDValue, 4> Values(NumValues);
2554 SDValue Cond = getValue(I.getOperand(0));
2555 SDValue TrueVal = getValue(I.getOperand(1));
2556 SDValue FalseVal = getValue(I.getOperand(2));
2558 for (unsigned i = 0; i != NumValues; ++i)
2559 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2560 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2561 Cond,
2562 SDValue(TrueVal.getNode(),
2563 TrueVal.getResNo() + i),
2564 SDValue(FalseVal.getNode(),
2565 FalseVal.getResNo() + i));
2567 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2568 DAG.getVTList(&ValueVTs[0], NumValues),
2569 &Values[0], NumValues));
2572 void SelectionDAGBuilder::visitTrunc(const User &I) {
2573 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2574 SDValue N = getValue(I.getOperand(0));
2575 EVT DestVT = TLI.getValueType(I.getType());
2576 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2579 void SelectionDAGBuilder::visitZExt(const User &I) {
2580 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2581 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2582 SDValue N = getValue(I.getOperand(0));
2583 EVT DestVT = TLI.getValueType(I.getType());
2584 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2587 void SelectionDAGBuilder::visitSExt(const User &I) {
2588 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2589 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2590 SDValue N = getValue(I.getOperand(0));
2591 EVT DestVT = TLI.getValueType(I.getType());
2592 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2595 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2596 // FPTrunc is never a no-op cast, no need to check
2597 SDValue N = getValue(I.getOperand(0));
2598 EVT DestVT = TLI.getValueType(I.getType());
2599 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2600 DestVT, N, DAG.getIntPtrConstant(0)));
2603 void SelectionDAGBuilder::visitFPExt(const User &I){
2604 // FPTrunc is never a no-op cast, no need to check
2605 SDValue N = getValue(I.getOperand(0));
2606 EVT DestVT = TLI.getValueType(I.getType());
2607 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2610 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2611 // FPToUI is never a no-op cast, no need to check
2612 SDValue N = getValue(I.getOperand(0));
2613 EVT DestVT = TLI.getValueType(I.getType());
2614 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2617 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2618 // FPToSI is never a no-op cast, no need to check
2619 SDValue N = getValue(I.getOperand(0));
2620 EVT DestVT = TLI.getValueType(I.getType());
2621 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2624 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2625 // UIToFP is never a no-op cast, no need to check
2626 SDValue N = getValue(I.getOperand(0));
2627 EVT DestVT = TLI.getValueType(I.getType());
2628 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2631 void SelectionDAGBuilder::visitSIToFP(const User &I){
2632 // SIToFP is never a no-op cast, no need to check
2633 SDValue N = getValue(I.getOperand(0));
2634 EVT DestVT = TLI.getValueType(I.getType());
2635 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2638 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2639 // What to do depends on the size of the integer and the size of the pointer.
2640 // We can either truncate, zero extend, or no-op, accordingly.
2641 SDValue N = getValue(I.getOperand(0));
2642 EVT DestVT = TLI.getValueType(I.getType());
2643 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2646 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2647 // What to do depends on the size of the integer and the size of the pointer.
2648 // We can either truncate, zero extend, or no-op, accordingly.
2649 SDValue N = getValue(I.getOperand(0));
2650 EVT DestVT = TLI.getValueType(I.getType());
2651 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2654 void SelectionDAGBuilder::visitBitCast(const User &I) {
2655 SDValue N = getValue(I.getOperand(0));
2656 EVT DestVT = TLI.getValueType(I.getType());
2658 // BitCast assures us that source and destination are the same size so this is
2659 // either a BITCAST or a no-op.
2660 if (DestVT != N.getValueType())
2661 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2662 DestVT, N)); // convert types.
2663 else
2664 setValue(&I, N); // noop cast.
2667 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2668 SDValue InVec = getValue(I.getOperand(0));
2669 SDValue InVal = getValue(I.getOperand(1));
2670 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2671 TLI.getPointerTy(),
2672 getValue(I.getOperand(2)));
2673 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2674 TLI.getValueType(I.getType()),
2675 InVec, InVal, InIdx));
2678 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2679 SDValue InVec = getValue(I.getOperand(0));
2680 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2681 TLI.getPointerTy(),
2682 getValue(I.getOperand(1)));
2683 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2684 TLI.getValueType(I.getType()), InVec, InIdx));
2687 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2688 // from SIndx and increasing to the element length (undefs are allowed).
2689 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2690 unsigned MaskNumElts = Mask.size();
2691 for (unsigned i = 0; i != MaskNumElts; ++i)
2692 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2693 return false;
2694 return true;
2697 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2698 SmallVector<int, 8> Mask;
2699 SDValue Src1 = getValue(I.getOperand(0));
2700 SDValue Src2 = getValue(I.getOperand(1));
2702 // Convert the ConstantVector mask operand into an array of ints, with -1
2703 // representing undef values.
2704 SmallVector<Constant*, 8> MaskElts;
2705 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2706 unsigned MaskNumElts = MaskElts.size();
2707 for (unsigned i = 0; i != MaskNumElts; ++i) {
2708 if (isa<UndefValue>(MaskElts[i]))
2709 Mask.push_back(-1);
2710 else
2711 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2714 EVT VT = TLI.getValueType(I.getType());
2715 EVT SrcVT = Src1.getValueType();
2716 unsigned SrcNumElts = SrcVT.getVectorNumElements();
2718 if (SrcNumElts == MaskNumElts) {
2719 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2720 &Mask[0]));
2721 return;
2724 // Normalize the shuffle vector since mask and vector length don't match.
2725 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2726 // Mask is longer than the source vectors and is a multiple of the source
2727 // vectors. We can use concatenate vector to make the mask and vectors
2728 // lengths match.
2729 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2730 // The shuffle is concatenating two vectors together.
2731 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2732 VT, Src1, Src2));
2733 return;
2736 // Pad both vectors with undefs to make them the same length as the mask.
2737 unsigned NumConcat = MaskNumElts / SrcNumElts;
2738 bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2739 bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2740 SDValue UndefVal = DAG.getUNDEF(SrcVT);
2742 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2743 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2744 MOps1[0] = Src1;
2745 MOps2[0] = Src2;
2747 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2748 getCurDebugLoc(), VT,
2749 &MOps1[0], NumConcat);
2750 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2751 getCurDebugLoc(), VT,
2752 &MOps2[0], NumConcat);
2754 // Readjust mask for new input vector length.
2755 SmallVector<int, 8> MappedOps;
2756 for (unsigned i = 0; i != MaskNumElts; ++i) {
2757 int Idx = Mask[i];
2758 if (Idx < (int)SrcNumElts)
2759 MappedOps.push_back(Idx);
2760 else
2761 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2764 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2765 &MappedOps[0]));
2766 return;
2769 if (SrcNumElts > MaskNumElts) {
2770 // Analyze the access pattern of the vector to see if we can extract
2771 // two subvectors and do the shuffle. The analysis is done by calculating
2772 // the range of elements the mask access on both vectors.
2773 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2774 int MaxRange[2] = {-1, -1};
2776 for (unsigned i = 0; i != MaskNumElts; ++i) {
2777 int Idx = Mask[i];
2778 int Input = 0;
2779 if (Idx < 0)
2780 continue;
2782 if (Idx >= (int)SrcNumElts) {
2783 Input = 1;
2784 Idx -= SrcNumElts;
2786 if (Idx > MaxRange[Input])
2787 MaxRange[Input] = Idx;
2788 if (Idx < MinRange[Input])
2789 MinRange[Input] = Idx;
2792 // Check if the access is smaller than the vector size and can we find
2793 // a reasonable extract index.
2794 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not
2795 // Extract.
2796 int StartIdx[2]; // StartIdx to extract from
2797 for (int Input=0; Input < 2; ++Input) {
2798 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2799 RangeUse[Input] = 0; // Unused
2800 StartIdx[Input] = 0;
2801 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2802 // Fits within range but we should see if we can find a good
2803 // start index that is a multiple of the mask length.
2804 if (MaxRange[Input] < (int)MaskNumElts) {
2805 RangeUse[Input] = 1; // Extract from beginning of the vector
2806 StartIdx[Input] = 0;
2807 } else {
2808 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2809 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2810 StartIdx[Input] + MaskNumElts <= SrcNumElts)
2811 RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2816 if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2817 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2818 return;
2820 else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2821 // Extract appropriate subvector and generate a vector shuffle
2822 for (int Input=0; Input < 2; ++Input) {
2823 SDValue &Src = Input == 0 ? Src1 : Src2;
2824 if (RangeUse[Input] == 0)
2825 Src = DAG.getUNDEF(VT);
2826 else
2827 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2828 Src, DAG.getIntPtrConstant(StartIdx[Input]));
2831 // Calculate new mask.
2832 SmallVector<int, 8> MappedOps;
2833 for (unsigned i = 0; i != MaskNumElts; ++i) {
2834 int Idx = Mask[i];
2835 if (Idx < 0)
2836 MappedOps.push_back(Idx);
2837 else if (Idx < (int)SrcNumElts)
2838 MappedOps.push_back(Idx - StartIdx[0]);
2839 else
2840 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2843 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2844 &MappedOps[0]));
2845 return;
2849 // We can't use either concat vectors or extract subvectors so fall back to
2850 // replacing the shuffle with extract and build vector.
2851 // to insert and build vector.
2852 EVT EltVT = VT.getVectorElementType();
2853 EVT PtrVT = TLI.getPointerTy();
2854 SmallVector<SDValue,8> Ops;
2855 for (unsigned i = 0; i != MaskNumElts; ++i) {
2856 if (Mask[i] < 0) {
2857 Ops.push_back(DAG.getUNDEF(EltVT));
2858 } else {
2859 int Idx = Mask[i];
2860 SDValue Res;
2862 if (Idx < (int)SrcNumElts)
2863 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2864 EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2865 else
2866 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2867 EltVT, Src2,
2868 DAG.getConstant(Idx - SrcNumElts, PtrVT));
2870 Ops.push_back(Res);
2874 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2875 VT, &Ops[0], Ops.size()));
2878 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2879 const Value *Op0 = I.getOperand(0);
2880 const Value *Op1 = I.getOperand(1);
2881 const Type *AggTy = I.getType();
2882 const Type *ValTy = Op1->getType();
2883 bool IntoUndef = isa<UndefValue>(Op0);
2884 bool FromUndef = isa<UndefValue>(Op1);
2886 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2888 SmallVector<EVT, 4> AggValueVTs;
2889 ComputeValueVTs(TLI, AggTy, AggValueVTs);
2890 SmallVector<EVT, 4> ValValueVTs;
2891 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2893 unsigned NumAggValues = AggValueVTs.size();
2894 unsigned NumValValues = ValValueVTs.size();
2895 SmallVector<SDValue, 4> Values(NumAggValues);
2897 SDValue Agg = getValue(Op0);
2898 unsigned i = 0;
2899 // Copy the beginning value(s) from the original aggregate.
2900 for (; i != LinearIndex; ++i)
2901 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2902 SDValue(Agg.getNode(), Agg.getResNo() + i);
2903 // Copy values from the inserted value(s).
2904 if (NumValValues) {
2905 SDValue Val = getValue(Op1);
2906 for (; i != LinearIndex + NumValValues; ++i)
2907 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2908 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2910 // Copy remaining value(s) from the original aggregate.
2911 for (; i != NumAggValues; ++i)
2912 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2913 SDValue(Agg.getNode(), Agg.getResNo() + i);
2915 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2916 DAG.getVTList(&AggValueVTs[0], NumAggValues),
2917 &Values[0], NumAggValues));
2920 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2921 const Value *Op0 = I.getOperand(0);
2922 const Type *AggTy = Op0->getType();
2923 const Type *ValTy = I.getType();
2924 bool OutOfUndef = isa<UndefValue>(Op0);
2926 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2928 SmallVector<EVT, 4> ValValueVTs;
2929 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2931 unsigned NumValValues = ValValueVTs.size();
2933 // Ignore a extractvalue that produces an empty object
2934 if (!NumValValues) {
2935 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2936 return;
2939 SmallVector<SDValue, 4> Values(NumValValues);
2941 SDValue Agg = getValue(Op0);
2942 // Copy out the selected value(s).
2943 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2944 Values[i - LinearIndex] =
2945 OutOfUndef ?
2946 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2947 SDValue(Agg.getNode(), Agg.getResNo() + i);
2949 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2950 DAG.getVTList(&ValValueVTs[0], NumValValues),
2951 &Values[0], NumValValues));
2954 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2955 SDValue N = getValue(I.getOperand(0));
2956 const Type *Ty = I.getOperand(0)->getType();
2958 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2959 OI != E; ++OI) {
2960 const Value *Idx = *OI;
2961 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2962 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2963 if (Field) {
2964 // N = N + Offset
2965 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2966 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2967 DAG.getIntPtrConstant(Offset));
2970 Ty = StTy->getElementType(Field);
2971 } else {
2972 Ty = cast<SequentialType>(Ty)->getElementType();
2974 // If this is a constant subscript, handle it quickly.
2975 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2976 if (CI->isZero()) continue;
2977 uint64_t Offs =
2978 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2979 SDValue OffsVal;
2980 EVT PTy = TLI.getPointerTy();
2981 unsigned PtrBits = PTy.getSizeInBits();
2982 if (PtrBits < 64)
2983 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2984 TLI.getPointerTy(),
2985 DAG.getConstant(Offs, MVT::i64));
2986 else
2987 OffsVal = DAG.getIntPtrConstant(Offs);
2989 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2990 OffsVal);
2991 continue;
2994 // N = N + Idx * ElementSize;
2995 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2996 TD->getTypeAllocSize(Ty));
2997 SDValue IdxN = getValue(Idx);
2999 // If the index is smaller or larger than intptr_t, truncate or extend
3000 // it.
3001 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3003 // If this is a multiply by a power of two, turn it into a shl
3004 // immediately. This is a very common case.
3005 if (ElementSize != 1) {
3006 if (ElementSize.isPowerOf2()) {
3007 unsigned Amt = ElementSize.logBase2();
3008 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3009 N.getValueType(), IdxN,
3010 DAG.getConstant(Amt, TLI.getPointerTy()));
3011 } else {
3012 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3013 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3014 N.getValueType(), IdxN, Scale);
3018 N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3019 N.getValueType(), N, IdxN);
3023 setValue(&I, N);
3026 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3027 // If this is a fixed sized alloca in the entry block of the function,
3028 // allocate it statically on the stack.
3029 if (FuncInfo.StaticAllocaMap.count(&I))
3030 return; // getValue will auto-populate this.
3032 const Type *Ty = I.getAllocatedType();
3033 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3034 unsigned Align =
3035 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3036 I.getAlignment());
3038 SDValue AllocSize = getValue(I.getArraySize());
3040 EVT IntPtr = TLI.getPointerTy();
3041 if (AllocSize.getValueType() != IntPtr)
3042 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3044 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3045 AllocSize,
3046 DAG.getConstant(TySize, IntPtr));
3048 // Handle alignment. If the requested alignment is less than or equal to
3049 // the stack alignment, ignore it. If the size is greater than or equal to
3050 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3051 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3052 if (Align <= StackAlign)
3053 Align = 0;
3055 // Round the size of the allocation up to the stack alignment size
3056 // by add SA-1 to the size.
3057 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3058 AllocSize.getValueType(), AllocSize,
3059 DAG.getIntPtrConstant(StackAlign-1));
3061 // Mask out the low bits for alignment purposes.
3062 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3063 AllocSize.getValueType(), AllocSize,
3064 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3066 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3067 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3068 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3069 VTs, Ops, 3);
3070 setValue(&I, DSA);
3071 DAG.setRoot(DSA.getValue(1));
3073 // Inform the Frame Information that we have just allocated a variable-sized
3074 // object.
3075 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3078 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3079 const Value *SV = I.getOperand(0);
3080 SDValue Ptr = getValue(SV);
3082 const Type *Ty = I.getType();
3084 bool isVolatile = I.isVolatile();
3085 bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3086 unsigned Alignment = I.getAlignment();
3087 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3089 SmallVector<EVT, 4> ValueVTs;
3090 SmallVector<uint64_t, 4> Offsets;
3091 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3092 unsigned NumValues = ValueVTs.size();
3093 if (NumValues == 0)
3094 return;
3096 SDValue Root;
3097 bool ConstantMemory = false;
3098 if (I.isVolatile() || NumValues > MaxParallelChains)
3099 // Serialize volatile loads with other side effects.
3100 Root = getRoot();
3101 else if (AA->pointsToConstantMemory(
3102 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3103 // Do not serialize (non-volatile) loads of constant memory with anything.
3104 Root = DAG.getEntryNode();
3105 ConstantMemory = true;
3106 } else {
3107 // Do not serialize non-volatile loads against each other.
3108 Root = DAG.getRoot();
3111 SmallVector<SDValue, 4> Values(NumValues);
3112 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3113 NumValues));
3114 EVT PtrVT = Ptr.getValueType();
3115 unsigned ChainI = 0;
3116 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3117 // Serializing loads here may result in excessive register pressure, and
3118 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3119 // could recover a bit by hoisting nodes upward in the chain by recognizing
3120 // they are side-effect free or do not alias. The optimizer should really
3121 // avoid this case by converting large object/array copies to llvm.memcpy
3122 // (MaxParallelChains should always remain as failsafe).
3123 if (ChainI == MaxParallelChains) {
3124 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3125 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3126 MVT::Other, &Chains[0], ChainI);
3127 Root = Chain;
3128 ChainI = 0;
3130 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3131 PtrVT, Ptr,
3132 DAG.getConstant(Offsets[i], PtrVT));
3133 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3134 A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3135 isNonTemporal, Alignment, TBAAInfo);
3137 Values[i] = L;
3138 Chains[ChainI] = L.getValue(1);
3141 if (!ConstantMemory) {
3142 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3143 MVT::Other, &Chains[0], ChainI);
3144 if (isVolatile)
3145 DAG.setRoot(Chain);
3146 else
3147 PendingLoads.push_back(Chain);
3150 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3151 DAG.getVTList(&ValueVTs[0], NumValues),
3152 &Values[0], NumValues));
3155 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3156 const Value *SrcV = I.getOperand(0);
3157 const Value *PtrV = I.getOperand(1);
3159 SmallVector<EVT, 4> ValueVTs;
3160 SmallVector<uint64_t, 4> Offsets;
3161 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3162 unsigned NumValues = ValueVTs.size();
3163 if (NumValues == 0)
3164 return;
3166 // Get the lowered operands. Note that we do this after
3167 // checking if NumResults is zero, because with zero results
3168 // the operands won't have values in the map.
3169 SDValue Src = getValue(SrcV);
3170 SDValue Ptr = getValue(PtrV);
3172 SDValue Root = getRoot();
3173 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3174 NumValues));
3175 EVT PtrVT = Ptr.getValueType();
3176 bool isVolatile = I.isVolatile();
3177 bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3178 unsigned Alignment = I.getAlignment();
3179 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3181 unsigned ChainI = 0;
3182 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3183 // See visitLoad comments.
3184 if (ChainI == MaxParallelChains) {
3185 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3186 MVT::Other, &Chains[0], ChainI);
3187 Root = Chain;
3188 ChainI = 0;
3190 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3191 DAG.getConstant(Offsets[i], PtrVT));
3192 SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3193 SDValue(Src.getNode(), Src.getResNo() + i),
3194 Add, MachinePointerInfo(PtrV, Offsets[i]),
3195 isVolatile, isNonTemporal, Alignment, TBAAInfo);
3196 Chains[ChainI] = St;
3199 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3200 MVT::Other, &Chains[0], ChainI);
3201 ++SDNodeOrder;
3202 AssignOrderingToNode(StoreNode.getNode());
3203 DAG.setRoot(StoreNode);
3206 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3207 /// node.
3208 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3209 unsigned Intrinsic) {
3210 bool HasChain = !I.doesNotAccessMemory();
3211 bool OnlyLoad = HasChain && I.onlyReadsMemory();
3213 // Build the operand list.
3214 SmallVector<SDValue, 8> Ops;
3215 if (HasChain) { // If this intrinsic has side-effects, chainify it.
3216 if (OnlyLoad) {
3217 // We don't need to serialize loads against other loads.
3218 Ops.push_back(DAG.getRoot());
3219 } else {
3220 Ops.push_back(getRoot());
3224 // Info is set by getTgtMemInstrinsic
3225 TargetLowering::IntrinsicInfo Info;
3226 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3228 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3229 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3230 Info.opc == ISD::INTRINSIC_W_CHAIN)
3231 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3233 // Add all operands of the call to the operand list.
3234 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3235 SDValue Op = getValue(I.getArgOperand(i));
3236 assert(TLI.isTypeLegal(Op.getValueType()) &&
3237 "Intrinsic uses a non-legal type?");
3238 Ops.push_back(Op);
3241 SmallVector<EVT, 4> ValueVTs;
3242 ComputeValueVTs(TLI, I.getType(), ValueVTs);
3243 #ifndef NDEBUG
3244 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3245 assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3246 "Intrinsic uses a non-legal type?");
3248 #endif // NDEBUG
3250 if (HasChain)
3251 ValueVTs.push_back(MVT::Other);
3253 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3255 // Create the node.
3256 SDValue Result;
3257 if (IsTgtIntrinsic) {
3258 // This is target intrinsic that touches memory
3259 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3260 VTs, &Ops[0], Ops.size(),
3261 Info.memVT,
3262 MachinePointerInfo(Info.ptrVal, Info.offset),
3263 Info.align, Info.vol,
3264 Info.readMem, Info.writeMem);
3265 } else if (!HasChain) {
3266 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3267 VTs, &Ops[0], Ops.size());
3268 } else if (!I.getType()->isVoidTy()) {
3269 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3270 VTs, &Ops[0], Ops.size());
3271 } else {
3272 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3273 VTs, &Ops[0], Ops.size());
3276 if (HasChain) {
3277 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3278 if (OnlyLoad)
3279 PendingLoads.push_back(Chain);
3280 else
3281 DAG.setRoot(Chain);
3284 if (!I.getType()->isVoidTy()) {
3285 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3286 EVT VT = TLI.getValueType(PTy);
3287 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3290 setValue(&I, Result);
3294 /// GetSignificand - Get the significand and build it into a floating-point
3295 /// number with exponent of 1:
3297 /// Op = (Op & 0x007fffff) | 0x3f800000;
3299 /// where Op is the hexidecimal representation of floating point value.
3300 static SDValue
3301 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3302 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3303 DAG.getConstant(0x007fffff, MVT::i32));
3304 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3305 DAG.getConstant(0x3f800000, MVT::i32));
3306 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3309 /// GetExponent - Get the exponent:
3311 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3313 /// where Op is the hexidecimal representation of floating point value.
3314 static SDValue
3315 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3316 DebugLoc dl) {
3317 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3318 DAG.getConstant(0x7f800000, MVT::i32));
3319 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3320 DAG.getConstant(23, TLI.getPointerTy()));
3321 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3322 DAG.getConstant(127, MVT::i32));
3323 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3326 /// getF32Constant - Get 32-bit floating point constant.
3327 static SDValue
3328 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3329 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3332 /// Inlined utility function to implement binary input atomic intrinsics for
3333 /// visitIntrinsicCall: I is a call instruction
3334 /// Op is the associated NodeType for I
3335 const char *
3336 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3337 ISD::NodeType Op) {
3338 SDValue Root = getRoot();
3339 SDValue L =
3340 DAG.getAtomic(Op, getCurDebugLoc(),
3341 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3342 Root,
3343 getValue(I.getArgOperand(0)),
3344 getValue(I.getArgOperand(1)),
3345 I.getArgOperand(0));
3346 setValue(&I, L);
3347 DAG.setRoot(L.getValue(1));
3348 return 0;
3351 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3352 const char *
3353 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3354 SDValue Op1 = getValue(I.getArgOperand(0));
3355 SDValue Op2 = getValue(I.getArgOperand(1));
3357 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3358 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3359 return 0;
3362 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3363 /// limited-precision mode.
3364 void
3365 SelectionDAGBuilder::visitExp(const CallInst &I) {
3366 SDValue result;
3367 DebugLoc dl = getCurDebugLoc();
3369 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3370 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3371 SDValue Op = getValue(I.getArgOperand(0));
3373 // Put the exponent in the right bit position for later addition to the
3374 // final result:
3376 // #define LOG2OFe 1.4426950f
3377 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3378 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3379 getF32Constant(DAG, 0x3fb8aa3b));
3380 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3382 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3383 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3384 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3386 // IntegerPartOfX <<= 23;
3387 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3388 DAG.getConstant(23, TLI.getPointerTy()));
3390 if (LimitFloatPrecision <= 6) {
3391 // For floating-point precision of 6:
3393 // TwoToFractionalPartOfX =
3394 // 0.997535578f +
3395 // (0.735607626f + 0.252464424f * x) * x;
3397 // error 0.0144103317, which is 6 bits
3398 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3399 getF32Constant(DAG, 0x3e814304));
3400 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3401 getF32Constant(DAG, 0x3f3c50c8));
3402 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3403 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3404 getF32Constant(DAG, 0x3f7f5e7e));
3405 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3407 // Add the exponent into the result in integer domain.
3408 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3409 TwoToFracPartOfX, IntegerPartOfX);
3411 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3412 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3413 // For floating-point precision of 12:
3415 // TwoToFractionalPartOfX =
3416 // 0.999892986f +
3417 // (0.696457318f +
3418 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3420 // 0.000107046256 error, which is 13 to 14 bits
3421 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3422 getF32Constant(DAG, 0x3da235e3));
3423 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3424 getF32Constant(DAG, 0x3e65b8f3));
3425 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3426 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3427 getF32Constant(DAG, 0x3f324b07));
3428 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3429 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3430 getF32Constant(DAG, 0x3f7ff8fd));
3431 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3433 // Add the exponent into the result in integer domain.
3434 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3435 TwoToFracPartOfX, IntegerPartOfX);
3437 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3438 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3439 // For floating-point precision of 18:
3441 // TwoToFractionalPartOfX =
3442 // 0.999999982f +
3443 // (0.693148872f +
3444 // (0.240227044f +
3445 // (0.554906021e-1f +
3446 // (0.961591928e-2f +
3447 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3449 // error 2.47208000*10^(-7), which is better than 18 bits
3450 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3451 getF32Constant(DAG, 0x3924b03e));
3452 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3453 getF32Constant(DAG, 0x3ab24b87));
3454 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3455 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3456 getF32Constant(DAG, 0x3c1d8c17));
3457 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3458 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3459 getF32Constant(DAG, 0x3d634a1d));
3460 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3461 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3462 getF32Constant(DAG, 0x3e75fe14));
3463 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3464 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3465 getF32Constant(DAG, 0x3f317234));
3466 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3467 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3468 getF32Constant(DAG, 0x3f800000));
3469 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3470 MVT::i32, t13);
3472 // Add the exponent into the result in integer domain.
3473 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3474 TwoToFracPartOfX, IntegerPartOfX);
3476 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3478 } else {
3479 // No special expansion.
3480 result = DAG.getNode(ISD::FEXP, dl,
3481 getValue(I.getArgOperand(0)).getValueType(),
3482 getValue(I.getArgOperand(0)));
3485 setValue(&I, result);
3488 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3489 /// limited-precision mode.
3490 void
3491 SelectionDAGBuilder::visitLog(const CallInst &I) {
3492 SDValue result;
3493 DebugLoc dl = getCurDebugLoc();
3495 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3496 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3497 SDValue Op = getValue(I.getArgOperand(0));
3498 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3500 // Scale the exponent by log(2) [0.69314718f].
3501 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3502 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3503 getF32Constant(DAG, 0x3f317218));
3505 // Get the significand and build it into a floating-point number with
3506 // exponent of 1.
3507 SDValue X = GetSignificand(DAG, Op1, dl);
3509 if (LimitFloatPrecision <= 6) {
3510 // For floating-point precision of 6:
3512 // LogofMantissa =
3513 // -1.1609546f +
3514 // (1.4034025f - 0.23903021f * x) * x;
3516 // error 0.0034276066, which is better than 8 bits
3517 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3518 getF32Constant(DAG, 0xbe74c456));
3519 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3520 getF32Constant(DAG, 0x3fb3a2b1));
3521 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3522 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3523 getF32Constant(DAG, 0x3f949a29));
3525 result = DAG.getNode(ISD::FADD, dl,
3526 MVT::f32, LogOfExponent, LogOfMantissa);
3527 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3528 // For floating-point precision of 12:
3530 // LogOfMantissa =
3531 // -1.7417939f +
3532 // (2.8212026f +
3533 // (-1.4699568f +
3534 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3536 // error 0.000061011436, which is 14 bits
3537 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3538 getF32Constant(DAG, 0xbd67b6d6));
3539 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3540 getF32Constant(DAG, 0x3ee4f4b8));
3541 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3542 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3543 getF32Constant(DAG, 0x3fbc278b));
3544 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3545 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3546 getF32Constant(DAG, 0x40348e95));
3547 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3548 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3549 getF32Constant(DAG, 0x3fdef31a));
3551 result = DAG.getNode(ISD::FADD, dl,
3552 MVT::f32, LogOfExponent, LogOfMantissa);
3553 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3554 // For floating-point precision of 18:
3556 // LogOfMantissa =
3557 // -2.1072184f +
3558 // (4.2372794f +
3559 // (-3.7029485f +
3560 // (2.2781945f +
3561 // (-0.87823314f +
3562 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3564 // error 0.0000023660568, which is better than 18 bits
3565 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3566 getF32Constant(DAG, 0xbc91e5ac));
3567 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3568 getF32Constant(DAG, 0x3e4350aa));
3569 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3570 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3571 getF32Constant(DAG, 0x3f60d3e3));
3572 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3573 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3574 getF32Constant(DAG, 0x4011cdf0));
3575 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3576 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3577 getF32Constant(DAG, 0x406cfd1c));
3578 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3579 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3580 getF32Constant(DAG, 0x408797cb));
3581 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3582 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3583 getF32Constant(DAG, 0x4006dcab));
3585 result = DAG.getNode(ISD::FADD, dl,
3586 MVT::f32, LogOfExponent, LogOfMantissa);
3588 } else {
3589 // No special expansion.
3590 result = DAG.getNode(ISD::FLOG, dl,
3591 getValue(I.getArgOperand(0)).getValueType(),
3592 getValue(I.getArgOperand(0)));
3595 setValue(&I, result);
3598 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3599 /// limited-precision mode.
3600 void
3601 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3602 SDValue result;
3603 DebugLoc dl = getCurDebugLoc();
3605 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3606 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3607 SDValue Op = getValue(I.getArgOperand(0));
3608 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3610 // Get the exponent.
3611 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3613 // Get the significand and build it into a floating-point number with
3614 // exponent of 1.
3615 SDValue X = GetSignificand(DAG, Op1, dl);
3617 // Different possible minimax approximations of significand in
3618 // floating-point for various degrees of accuracy over [1,2].
3619 if (LimitFloatPrecision <= 6) {
3620 // For floating-point precision of 6:
3622 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3624 // error 0.0049451742, which is more than 7 bits
3625 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3626 getF32Constant(DAG, 0xbeb08fe0));
3627 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3628 getF32Constant(DAG, 0x40019463));
3629 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3630 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3631 getF32Constant(DAG, 0x3fd6633d));
3633 result = DAG.getNode(ISD::FADD, dl,
3634 MVT::f32, LogOfExponent, Log2ofMantissa);
3635 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3636 // For floating-point precision of 12:
3638 // Log2ofMantissa =
3639 // -2.51285454f +
3640 // (4.07009056f +
3641 // (-2.12067489f +
3642 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3644 // error 0.0000876136000, which is better than 13 bits
3645 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3646 getF32Constant(DAG, 0xbda7262e));
3647 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3648 getF32Constant(DAG, 0x3f25280b));
3649 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3650 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3651 getF32Constant(DAG, 0x4007b923));
3652 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3653 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3654 getF32Constant(DAG, 0x40823e2f));
3655 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3656 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3657 getF32Constant(DAG, 0x4020d29c));
3659 result = DAG.getNode(ISD::FADD, dl,
3660 MVT::f32, LogOfExponent, Log2ofMantissa);
3661 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3662 // For floating-point precision of 18:
3664 // Log2ofMantissa =
3665 // -3.0400495f +
3666 // (6.1129976f +
3667 // (-5.3420409f +
3668 // (3.2865683f +
3669 // (-1.2669343f +
3670 // (0.27515199f -
3671 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3673 // error 0.0000018516, which is better than 18 bits
3674 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3675 getF32Constant(DAG, 0xbcd2769e));
3676 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3677 getF32Constant(DAG, 0x3e8ce0b9));
3678 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3679 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3680 getF32Constant(DAG, 0x3fa22ae7));
3681 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3682 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3683 getF32Constant(DAG, 0x40525723));
3684 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3685 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3686 getF32Constant(DAG, 0x40aaf200));
3687 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3688 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3689 getF32Constant(DAG, 0x40c39dad));
3690 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3691 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3692 getF32Constant(DAG, 0x4042902c));
3694 result = DAG.getNode(ISD::FADD, dl,
3695 MVT::f32, LogOfExponent, Log2ofMantissa);
3697 } else {
3698 // No special expansion.
3699 result = DAG.getNode(ISD::FLOG2, dl,
3700 getValue(I.getArgOperand(0)).getValueType(),
3701 getValue(I.getArgOperand(0)));
3704 setValue(&I, result);
3707 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3708 /// limited-precision mode.
3709 void
3710 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3711 SDValue result;
3712 DebugLoc dl = getCurDebugLoc();
3714 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3715 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3716 SDValue Op = getValue(I.getArgOperand(0));
3717 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3719 // Scale the exponent by log10(2) [0.30102999f].
3720 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3721 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3722 getF32Constant(DAG, 0x3e9a209a));
3724 // Get the significand and build it into a floating-point number with
3725 // exponent of 1.
3726 SDValue X = GetSignificand(DAG, Op1, dl);
3728 if (LimitFloatPrecision <= 6) {
3729 // For floating-point precision of 6:
3731 // Log10ofMantissa =
3732 // -0.50419619f +
3733 // (0.60948995f - 0.10380950f * x) * x;
3735 // error 0.0014886165, which is 6 bits
3736 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3737 getF32Constant(DAG, 0xbdd49a13));
3738 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3739 getF32Constant(DAG, 0x3f1c0789));
3740 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3741 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3742 getF32Constant(DAG, 0x3f011300));
3744 result = DAG.getNode(ISD::FADD, dl,
3745 MVT::f32, LogOfExponent, Log10ofMantissa);
3746 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3747 // For floating-point precision of 12:
3749 // Log10ofMantissa =
3750 // -0.64831180f +
3751 // (0.91751397f +
3752 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3754 // error 0.00019228036, which is better than 12 bits
3755 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3756 getF32Constant(DAG, 0x3d431f31));
3757 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3758 getF32Constant(DAG, 0x3ea21fb2));
3759 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3760 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3761 getF32Constant(DAG, 0x3f6ae232));
3762 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3763 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3764 getF32Constant(DAG, 0x3f25f7c3));
3766 result = DAG.getNode(ISD::FADD, dl,
3767 MVT::f32, LogOfExponent, Log10ofMantissa);
3768 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3769 // For floating-point precision of 18:
3771 // Log10ofMantissa =
3772 // -0.84299375f +
3773 // (1.5327582f +
3774 // (-1.0688956f +
3775 // (0.49102474f +
3776 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3778 // error 0.0000037995730, which is better than 18 bits
3779 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3780 getF32Constant(DAG, 0x3c5d51ce));
3781 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3782 getF32Constant(DAG, 0x3e00685a));
3783 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3784 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3785 getF32Constant(DAG, 0x3efb6798));
3786 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3787 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3788 getF32Constant(DAG, 0x3f88d192));
3789 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3790 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3791 getF32Constant(DAG, 0x3fc4316c));
3792 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3793 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3794 getF32Constant(DAG, 0x3f57ce70));
3796 result = DAG.getNode(ISD::FADD, dl,
3797 MVT::f32, LogOfExponent, Log10ofMantissa);
3799 } else {
3800 // No special expansion.
3801 result = DAG.getNode(ISD::FLOG10, dl,
3802 getValue(I.getArgOperand(0)).getValueType(),
3803 getValue(I.getArgOperand(0)));
3806 setValue(&I, result);
3809 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3810 /// limited-precision mode.
3811 void
3812 SelectionDAGBuilder::visitExp2(const CallInst &I) {
3813 SDValue result;
3814 DebugLoc dl = getCurDebugLoc();
3816 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3817 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3818 SDValue Op = getValue(I.getArgOperand(0));
3820 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3822 // FractionalPartOfX = x - (float)IntegerPartOfX;
3823 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3824 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3826 // IntegerPartOfX <<= 23;
3827 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3828 DAG.getConstant(23, TLI.getPointerTy()));
3830 if (LimitFloatPrecision <= 6) {
3831 // For floating-point precision of 6:
3833 // TwoToFractionalPartOfX =
3834 // 0.997535578f +
3835 // (0.735607626f + 0.252464424f * x) * x;
3837 // error 0.0144103317, which is 6 bits
3838 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3839 getF32Constant(DAG, 0x3e814304));
3840 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3841 getF32Constant(DAG, 0x3f3c50c8));
3842 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3843 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3844 getF32Constant(DAG, 0x3f7f5e7e));
3845 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3846 SDValue TwoToFractionalPartOfX =
3847 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3849 result = DAG.getNode(ISD::BITCAST, dl,
3850 MVT::f32, TwoToFractionalPartOfX);
3851 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3852 // For floating-point precision of 12:
3854 // TwoToFractionalPartOfX =
3855 // 0.999892986f +
3856 // (0.696457318f +
3857 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3859 // error 0.000107046256, which is 13 to 14 bits
3860 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3861 getF32Constant(DAG, 0x3da235e3));
3862 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3863 getF32Constant(DAG, 0x3e65b8f3));
3864 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3865 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3866 getF32Constant(DAG, 0x3f324b07));
3867 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3868 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3869 getF32Constant(DAG, 0x3f7ff8fd));
3870 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3871 SDValue TwoToFractionalPartOfX =
3872 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3874 result = DAG.getNode(ISD::BITCAST, dl,
3875 MVT::f32, TwoToFractionalPartOfX);
3876 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3877 // For floating-point precision of 18:
3879 // TwoToFractionalPartOfX =
3880 // 0.999999982f +
3881 // (0.693148872f +
3882 // (0.240227044f +
3883 // (0.554906021e-1f +
3884 // (0.961591928e-2f +
3885 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3886 // error 2.47208000*10^(-7), which is better than 18 bits
3887 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3888 getF32Constant(DAG, 0x3924b03e));
3889 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3890 getF32Constant(DAG, 0x3ab24b87));
3891 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3892 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3893 getF32Constant(DAG, 0x3c1d8c17));
3894 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3895 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3896 getF32Constant(DAG, 0x3d634a1d));
3897 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3898 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3899 getF32Constant(DAG, 0x3e75fe14));
3900 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3901 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3902 getF32Constant(DAG, 0x3f317234));
3903 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3904 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3905 getF32Constant(DAG, 0x3f800000));
3906 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3907 SDValue TwoToFractionalPartOfX =
3908 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3910 result = DAG.getNode(ISD::BITCAST, dl,
3911 MVT::f32, TwoToFractionalPartOfX);
3913 } else {
3914 // No special expansion.
3915 result = DAG.getNode(ISD::FEXP2, dl,
3916 getValue(I.getArgOperand(0)).getValueType(),
3917 getValue(I.getArgOperand(0)));
3920 setValue(&I, result);
3923 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3924 /// limited-precision mode with x == 10.0f.
3925 void
3926 SelectionDAGBuilder::visitPow(const CallInst &I) {
3927 SDValue result;
3928 const Value *Val = I.getArgOperand(0);
3929 DebugLoc dl = getCurDebugLoc();
3930 bool IsExp10 = false;
3932 if (getValue(Val).getValueType() == MVT::f32 &&
3933 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3934 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3935 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3936 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3937 APFloat Ten(10.0f);
3938 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3943 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3944 SDValue Op = getValue(I.getArgOperand(1));
3946 // Put the exponent in the right bit position for later addition to the
3947 // final result:
3949 // #define LOG2OF10 3.3219281f
3950 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
3951 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3952 getF32Constant(DAG, 0x40549a78));
3953 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3955 // FractionalPartOfX = x - (float)IntegerPartOfX;
3956 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3957 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3959 // IntegerPartOfX <<= 23;
3960 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3961 DAG.getConstant(23, TLI.getPointerTy()));
3963 if (LimitFloatPrecision <= 6) {
3964 // For floating-point precision of 6:
3966 // twoToFractionalPartOfX =
3967 // 0.997535578f +
3968 // (0.735607626f + 0.252464424f * x) * x;
3970 // error 0.0144103317, which is 6 bits
3971 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3972 getF32Constant(DAG, 0x3e814304));
3973 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3974 getF32Constant(DAG, 0x3f3c50c8));
3975 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3976 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3977 getF32Constant(DAG, 0x3f7f5e7e));
3978 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3979 SDValue TwoToFractionalPartOfX =
3980 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3982 result = DAG.getNode(ISD::BITCAST, dl,
3983 MVT::f32, TwoToFractionalPartOfX);
3984 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3985 // For floating-point precision of 12:
3987 // TwoToFractionalPartOfX =
3988 // 0.999892986f +
3989 // (0.696457318f +
3990 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3992 // error 0.000107046256, which is 13 to 14 bits
3993 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3994 getF32Constant(DAG, 0x3da235e3));
3995 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3996 getF32Constant(DAG, 0x3e65b8f3));
3997 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3998 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3999 getF32Constant(DAG, 0x3f324b07));
4000 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4001 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4002 getF32Constant(DAG, 0x3f7ff8fd));
4003 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4004 SDValue TwoToFractionalPartOfX =
4005 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4007 result = DAG.getNode(ISD::BITCAST, dl,
4008 MVT::f32, TwoToFractionalPartOfX);
4009 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4010 // For floating-point precision of 18:
4012 // TwoToFractionalPartOfX =
4013 // 0.999999982f +
4014 // (0.693148872f +
4015 // (0.240227044f +
4016 // (0.554906021e-1f +
4017 // (0.961591928e-2f +
4018 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4019 // error 2.47208000*10^(-7), which is better than 18 bits
4020 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4021 getF32Constant(DAG, 0x3924b03e));
4022 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4023 getF32Constant(DAG, 0x3ab24b87));
4024 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4025 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4026 getF32Constant(DAG, 0x3c1d8c17));
4027 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4028 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4029 getF32Constant(DAG, 0x3d634a1d));
4030 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4031 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4032 getF32Constant(DAG, 0x3e75fe14));
4033 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4034 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4035 getF32Constant(DAG, 0x3f317234));
4036 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4037 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4038 getF32Constant(DAG, 0x3f800000));
4039 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4040 SDValue TwoToFractionalPartOfX =
4041 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4043 result = DAG.getNode(ISD::BITCAST, dl,
4044 MVT::f32, TwoToFractionalPartOfX);
4046 } else {
4047 // No special expansion.
4048 result = DAG.getNode(ISD::FPOW, dl,
4049 getValue(I.getArgOperand(0)).getValueType(),
4050 getValue(I.getArgOperand(0)),
4051 getValue(I.getArgOperand(1)));
4054 setValue(&I, result);
4058 /// ExpandPowI - Expand a llvm.powi intrinsic.
4059 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4060 SelectionDAG &DAG) {
4061 // If RHS is a constant, we can expand this out to a multiplication tree,
4062 // otherwise we end up lowering to a call to __powidf2 (for example). When
4063 // optimizing for size, we only want to do this if the expansion would produce
4064 // a small number of multiplies, otherwise we do the full expansion.
4065 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4066 // Get the exponent as a positive value.
4067 unsigned Val = RHSC->getSExtValue();
4068 if ((int)Val < 0) Val = -Val;
4070 // powi(x, 0) -> 1.0
4071 if (Val == 0)
4072 return DAG.getConstantFP(1.0, LHS.getValueType());
4074 const Function *F = DAG.getMachineFunction().getFunction();
4075 if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4076 // If optimizing for size, don't insert too many multiplies. This
4077 // inserts up to 5 multiplies.
4078 CountPopulation_32(Val)+Log2_32(Val) < 7) {
4079 // We use the simple binary decomposition method to generate the multiply
4080 // sequence. There are more optimal ways to do this (for example,
4081 // powi(x,15) generates one more multiply than it should), but this has
4082 // the benefit of being both really simple and much better than a libcall.
4083 SDValue Res; // Logically starts equal to 1.0
4084 SDValue CurSquare = LHS;
4085 while (Val) {
4086 if (Val & 1) {
4087 if (Res.getNode())
4088 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4089 else
4090 Res = CurSquare; // 1.0*CurSquare.
4093 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4094 CurSquare, CurSquare);
4095 Val >>= 1;
4098 // If the original was negative, invert the result, producing 1/(x*x*x).
4099 if (RHSC->getSExtValue() < 0)
4100 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4101 DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4102 return Res;
4106 // Otherwise, expand to a libcall.
4107 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4110 // getTruncatedArgReg - Find underlying register used for an truncated
4111 // argument.
4112 static unsigned getTruncatedArgReg(const SDValue &N) {
4113 if (N.getOpcode() != ISD::TRUNCATE)
4114 return 0;
4116 const SDValue &Ext = N.getOperand(0);
4117 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4118 const SDValue &CFR = Ext.getOperand(0);
4119 if (CFR.getOpcode() == ISD::CopyFromReg)
4120 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4121 else
4122 if (CFR.getOpcode() == ISD::TRUNCATE)
4123 return getTruncatedArgReg(CFR);
4125 return 0;
4128 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4129 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4130 /// At the end of instruction selection, they will be inserted to the entry BB.
4131 bool
4132 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4133 int64_t Offset,
4134 const SDValue &N) {
4135 const Argument *Arg = dyn_cast<Argument>(V);
4136 if (!Arg)
4137 return false;
4139 MachineFunction &MF = DAG.getMachineFunction();
4140 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4141 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4143 // Ignore inlined function arguments here.
4144 DIVariable DV(Variable);
4145 if (DV.isInlinedFnArgument(MF.getFunction()))
4146 return false;
4148 unsigned Reg = 0;
4149 if (Arg->hasByValAttr()) {
4150 // Byval arguments' frame index is recorded during argument lowering.
4151 // Use this info directly.
4152 Reg = TRI->getFrameRegister(MF);
4153 Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4154 // If byval argument ofset is not recorded then ignore this.
4155 if (!Offset)
4156 Reg = 0;
4159 if (N.getNode()) {
4160 if (N.getOpcode() == ISD::CopyFromReg)
4161 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4162 else
4163 Reg = getTruncatedArgReg(N);
4164 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4165 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4166 unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4167 if (PR)
4168 Reg = PR;
4172 if (!Reg) {
4173 // Check if ValueMap has reg number.
4174 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4175 if (VMI != FuncInfo.ValueMap.end())
4176 Reg = VMI->second;
4179 if (!Reg && N.getNode()) {
4180 // Check if frame index is available.
4181 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4182 if (FrameIndexSDNode *FINode =
4183 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4184 Reg = TRI->getFrameRegister(MF);
4185 Offset = FINode->getIndex();
4189 if (!Reg)
4190 return false;
4192 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4193 TII->get(TargetOpcode::DBG_VALUE))
4194 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4195 FuncInfo.ArgDbgValues.push_back(&*MIB);
4196 return true;
4199 // VisualStudio defines setjmp as _setjmp
4200 #if defined(_MSC_VER) && defined(setjmp) && \
4201 !defined(setjmp_undefined_for_msvc)
4202 # pragma push_macro("setjmp")
4203 # undef setjmp
4204 # define setjmp_undefined_for_msvc
4205 #endif
4207 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
4208 /// we want to emit this as a call to a named external function, return the name
4209 /// otherwise lower it and return null.
4210 const char *
4211 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4212 DebugLoc dl = getCurDebugLoc();
4213 SDValue Res;
4215 switch (Intrinsic) {
4216 default:
4217 // By default, turn this into a target intrinsic node.
4218 visitTargetIntrinsic(I, Intrinsic);
4219 return 0;
4220 case Intrinsic::vastart: visitVAStart(I); return 0;
4221 case Intrinsic::vaend: visitVAEnd(I); return 0;
4222 case Intrinsic::vacopy: visitVACopy(I); return 0;
4223 case Intrinsic::returnaddress:
4224 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4225 getValue(I.getArgOperand(0))));
4226 return 0;
4227 case Intrinsic::frameaddress:
4228 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4229 getValue(I.getArgOperand(0))));
4230 return 0;
4231 case Intrinsic::setjmp:
4232 return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4233 case Intrinsic::longjmp:
4234 return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4235 case Intrinsic::memcpy: {
4236 // Assert for address < 256 since we support only user defined address
4237 // spaces.
4238 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4239 < 256 &&
4240 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4241 < 256 &&
4242 "Unknown address space");
4243 SDValue Op1 = getValue(I.getArgOperand(0));
4244 SDValue Op2 = getValue(I.getArgOperand(1));
4245 SDValue Op3 = getValue(I.getArgOperand(2));
4246 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4247 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4248 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4249 MachinePointerInfo(I.getArgOperand(0)),
4250 MachinePointerInfo(I.getArgOperand(1))));
4251 return 0;
4253 case Intrinsic::memset: {
4254 // Assert for address < 256 since we support only user defined address
4255 // spaces.
4256 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4257 < 256 &&
4258 "Unknown address space");
4259 SDValue Op1 = getValue(I.getArgOperand(0));
4260 SDValue Op2 = getValue(I.getArgOperand(1));
4261 SDValue Op3 = getValue(I.getArgOperand(2));
4262 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4263 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4264 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4265 MachinePointerInfo(I.getArgOperand(0))));
4266 return 0;
4268 case Intrinsic::memmove: {
4269 // Assert for address < 256 since we support only user defined address
4270 // spaces.
4271 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4272 < 256 &&
4273 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4274 < 256 &&
4275 "Unknown address space");
4276 SDValue Op1 = getValue(I.getArgOperand(0));
4277 SDValue Op2 = getValue(I.getArgOperand(1));
4278 SDValue Op3 = getValue(I.getArgOperand(2));
4279 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4280 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4281 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4282 MachinePointerInfo(I.getArgOperand(0)),
4283 MachinePointerInfo(I.getArgOperand(1))));
4284 return 0;
4286 case Intrinsic::dbg_declare: {
4287 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4288 MDNode *Variable = DI.getVariable();
4289 const Value *Address = DI.getAddress();
4290 if (!Address || !DIVariable(DI.getVariable()).Verify())
4291 return 0;
4293 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
4294 // but do not always have a corresponding SDNode built. The SDNodeOrder
4295 // absolute, but not relative, values are different depending on whether
4296 // debug info exists.
4297 ++SDNodeOrder;
4299 // Check if address has undef value.
4300 if (isa<UndefValue>(Address) ||
4301 (Address->use_empty() && !isa<Argument>(Address))) {
4302 DEBUG(dbgs() << "Dropping debug info for " << DI);
4303 return 0;
4306 SDValue &N = NodeMap[Address];
4307 if (!N.getNode() && isa<Argument>(Address))
4308 // Check unused arguments map.
4309 N = UnusedArgNodeMap[Address];
4310 SDDbgValue *SDV;
4311 if (N.getNode()) {
4312 // Parameters are handled specially.
4313 bool isParameter =
4314 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4315 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4316 Address = BCI->getOperand(0);
4317 const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4319 if (isParameter && !AI) {
4320 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4321 if (FINode)
4322 // Byval parameter. We have a frame index at this point.
4323 SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4324 0, dl, SDNodeOrder);
4325 else {
4326 // Address is an argument, so try to emit its dbg value using
4327 // virtual register info from the FuncInfo.ValueMap.
4328 EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4329 return 0;
4331 } else if (AI)
4332 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4333 0, dl, SDNodeOrder);
4334 else {
4335 // Can't do anything with other non-AI cases yet.
4336 DEBUG(dbgs() << "Dropping debug info for " << DI);
4337 return 0;
4339 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4340 } else {
4341 // If Address is an argument then try to emit its dbg value using
4342 // virtual register info from the FuncInfo.ValueMap.
4343 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4344 // If variable is pinned by a alloca in dominating bb then
4345 // use StaticAllocaMap.
4346 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4347 if (AI->getParent() != DI.getParent()) {
4348 DenseMap<const AllocaInst*, int>::iterator SI =
4349 FuncInfo.StaticAllocaMap.find(AI);
4350 if (SI != FuncInfo.StaticAllocaMap.end()) {
4351 SDV = DAG.getDbgValue(Variable, SI->second,
4352 0, dl, SDNodeOrder);
4353 DAG.AddDbgValue(SDV, 0, false);
4354 return 0;
4358 DEBUG(dbgs() << "Dropping debug info for " << DI);
4361 return 0;
4363 case Intrinsic::dbg_value: {
4364 const DbgValueInst &DI = cast<DbgValueInst>(I);
4365 if (!DIVariable(DI.getVariable()).Verify())
4366 return 0;
4368 MDNode *Variable = DI.getVariable();
4369 uint64_t Offset = DI.getOffset();
4370 const Value *V = DI.getValue();
4371 if (!V)
4372 return 0;
4374 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
4375 // but do not always have a corresponding SDNode built. The SDNodeOrder
4376 // absolute, but not relative, values are different depending on whether
4377 // debug info exists.
4378 ++SDNodeOrder;
4379 SDDbgValue *SDV;
4380 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4381 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4382 DAG.AddDbgValue(SDV, 0, false);
4383 } else {
4384 // Do not use getValue() in here; we don't want to generate code at
4385 // this point if it hasn't been done yet.
4386 SDValue N = NodeMap[V];
4387 if (!N.getNode() && isa<Argument>(V))
4388 // Check unused arguments map.
4389 N = UnusedArgNodeMap[V];
4390 if (N.getNode()) {
4391 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4392 SDV = DAG.getDbgValue(Variable, N.getNode(),
4393 N.getResNo(), Offset, dl, SDNodeOrder);
4394 DAG.AddDbgValue(SDV, N.getNode(), false);
4396 } else if (!V->use_empty() ) {
4397 // Do not call getValue(V) yet, as we don't want to generate code.
4398 // Remember it for later.
4399 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4400 DanglingDebugInfoMap[V] = DDI;
4401 } else {
4402 // We may expand this to cover more cases. One case where we have no
4403 // data available is an unreferenced parameter.
4404 DEBUG(dbgs() << "Dropping debug info for " << DI);
4408 // Build a debug info table entry.
4409 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4410 V = BCI->getOperand(0);
4411 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4412 // Don't handle byval struct arguments or VLAs, for example.
4413 if (!AI)
4414 return 0;
4415 DenseMap<const AllocaInst*, int>::iterator SI =
4416 FuncInfo.StaticAllocaMap.find(AI);
4417 if (SI == FuncInfo.StaticAllocaMap.end())
4418 return 0; // VLAs.
4419 int FI = SI->second;
4421 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4422 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4423 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4424 return 0;
4426 case Intrinsic::eh_exception: {
4427 // Insert the EXCEPTIONADDR instruction.
4428 assert(FuncInfo.MBB->isLandingPad() &&
4429 "Call to eh.exception not in landing pad!");
4430 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4431 SDValue Ops[1];
4432 Ops[0] = DAG.getRoot();
4433 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4434 setValue(&I, Op);
4435 DAG.setRoot(Op.getValue(1));
4436 return 0;
4439 case Intrinsic::eh_selector: {
4440 MachineBasicBlock *CallMBB = FuncInfo.MBB;
4441 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4442 if (CallMBB->isLandingPad())
4443 AddCatchInfo(I, &MMI, CallMBB);
4444 else {
4445 #ifndef NDEBUG
4446 FuncInfo.CatchInfoLost.insert(&I);
4447 #endif
4448 // FIXME: Mark exception selector register as live in. Hack for PR1508.
4449 unsigned Reg = TLI.getExceptionSelectorRegister();
4450 if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4453 // Insert the EHSELECTION instruction.
4454 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4455 SDValue Ops[2];
4456 Ops[0] = getValue(I.getArgOperand(0));
4457 Ops[1] = getRoot();
4458 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4459 DAG.setRoot(Op.getValue(1));
4460 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4461 return 0;
4464 case Intrinsic::eh_typeid_for: {
4465 // Find the type id for the given typeinfo.
4466 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4467 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4468 Res = DAG.getConstant(TypeID, MVT::i32);
4469 setValue(&I, Res);
4470 return 0;
4473 case Intrinsic::eh_return_i32:
4474 case Intrinsic::eh_return_i64:
4475 DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4476 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4477 MVT::Other,
4478 getControlRoot(),
4479 getValue(I.getArgOperand(0)),
4480 getValue(I.getArgOperand(1))));
4481 return 0;
4482 case Intrinsic::eh_unwind_init:
4483 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4484 return 0;
4485 case Intrinsic::eh_dwarf_cfa: {
4486 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4487 TLI.getPointerTy());
4488 SDValue Offset = DAG.getNode(ISD::ADD, dl,
4489 TLI.getPointerTy(),
4490 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4491 TLI.getPointerTy()),
4492 CfaArg);
4493 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4494 TLI.getPointerTy(),
4495 DAG.getConstant(0, TLI.getPointerTy()));
4496 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4497 FA, Offset));
4498 return 0;
4500 case Intrinsic::eh_sjlj_callsite: {
4501 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4502 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4503 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4504 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4506 MMI.setCurrentCallSite(CI->getZExtValue());
4507 return 0;
4509 case Intrinsic::eh_sjlj_setjmp: {
4510 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4511 getValue(I.getArgOperand(0))));
4512 return 0;
4514 case Intrinsic::eh_sjlj_longjmp: {
4515 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4516 getRoot(), getValue(I.getArgOperand(0))));
4517 return 0;
4519 case Intrinsic::eh_sjlj_dispatch_setup: {
4520 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4521 getRoot(), getValue(I.getArgOperand(0))));
4522 return 0;
4525 case Intrinsic::x86_mmx_pslli_w:
4526 case Intrinsic::x86_mmx_pslli_d:
4527 case Intrinsic::x86_mmx_pslli_q:
4528 case Intrinsic::x86_mmx_psrli_w:
4529 case Intrinsic::x86_mmx_psrli_d:
4530 case Intrinsic::x86_mmx_psrli_q:
4531 case Intrinsic::x86_mmx_psrai_w:
4532 case Intrinsic::x86_mmx_psrai_d: {
4533 SDValue ShAmt = getValue(I.getArgOperand(1));
4534 if (isa<ConstantSDNode>(ShAmt)) {
4535 visitTargetIntrinsic(I, Intrinsic);
4536 return 0;
4538 unsigned NewIntrinsic = 0;
4539 EVT ShAmtVT = MVT::v2i32;
4540 switch (Intrinsic) {
4541 case Intrinsic::x86_mmx_pslli_w:
4542 NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4543 break;
4544 case Intrinsic::x86_mmx_pslli_d:
4545 NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4546 break;
4547 case Intrinsic::x86_mmx_pslli_q:
4548 NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4549 break;
4550 case Intrinsic::x86_mmx_psrli_w:
4551 NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4552 break;
4553 case Intrinsic::x86_mmx_psrli_d:
4554 NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4555 break;
4556 case Intrinsic::x86_mmx_psrli_q:
4557 NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4558 break;
4559 case Intrinsic::x86_mmx_psrai_w:
4560 NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4561 break;
4562 case Intrinsic::x86_mmx_psrai_d:
4563 NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4564 break;
4565 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
4568 // The vector shift intrinsics with scalars uses 32b shift amounts but
4569 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4570 // to be zero.
4571 // We must do this early because v2i32 is not a legal type.
4572 DebugLoc dl = getCurDebugLoc();
4573 SDValue ShOps[2];
4574 ShOps[0] = ShAmt;
4575 ShOps[1] = DAG.getConstant(0, MVT::i32);
4576 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4577 EVT DestVT = TLI.getValueType(I.getType());
4578 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4579 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4580 DAG.getConstant(NewIntrinsic, MVT::i32),
4581 getValue(I.getArgOperand(0)), ShAmt);
4582 setValue(&I, Res);
4583 return 0;
4585 case Intrinsic::convertff:
4586 case Intrinsic::convertfsi:
4587 case Intrinsic::convertfui:
4588 case Intrinsic::convertsif:
4589 case Intrinsic::convertuif:
4590 case Intrinsic::convertss:
4591 case Intrinsic::convertsu:
4592 case Intrinsic::convertus:
4593 case Intrinsic::convertuu: {
4594 ISD::CvtCode Code = ISD::CVT_INVALID;
4595 switch (Intrinsic) {
4596 case Intrinsic::convertff: Code = ISD::CVT_FF; break;
4597 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4598 case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4599 case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4600 case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4601 case Intrinsic::convertss: Code = ISD::CVT_SS; break;
4602 case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
4603 case Intrinsic::convertus: Code = ISD::CVT_US; break;
4604 case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
4606 EVT DestVT = TLI.getValueType(I.getType());
4607 const Value *Op1 = I.getArgOperand(0);
4608 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4609 DAG.getValueType(DestVT),
4610 DAG.getValueType(getValue(Op1).getValueType()),
4611 getValue(I.getArgOperand(1)),
4612 getValue(I.getArgOperand(2)),
4613 Code);
4614 setValue(&I, Res);
4615 return 0;
4617 case Intrinsic::sqrt:
4618 setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4619 getValue(I.getArgOperand(0)).getValueType(),
4620 getValue(I.getArgOperand(0))));
4621 return 0;
4622 case Intrinsic::powi:
4623 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4624 getValue(I.getArgOperand(1)), DAG));
4625 return 0;
4626 case Intrinsic::sin:
4627 setValue(&I, DAG.getNode(ISD::FSIN, dl,
4628 getValue(I.getArgOperand(0)).getValueType(),
4629 getValue(I.getArgOperand(0))));
4630 return 0;
4631 case Intrinsic::cos:
4632 setValue(&I, DAG.getNode(ISD::FCOS, dl,
4633 getValue(I.getArgOperand(0)).getValueType(),
4634 getValue(I.getArgOperand(0))));
4635 return 0;
4636 case Intrinsic::log:
4637 visitLog(I);
4638 return 0;
4639 case Intrinsic::log2:
4640 visitLog2(I);
4641 return 0;
4642 case Intrinsic::log10:
4643 visitLog10(I);
4644 return 0;
4645 case Intrinsic::exp:
4646 visitExp(I);
4647 return 0;
4648 case Intrinsic::exp2:
4649 visitExp2(I);
4650 return 0;
4651 case Intrinsic::pow:
4652 visitPow(I);
4653 return 0;
4654 case Intrinsic::fma:
4655 setValue(&I, DAG.getNode(ISD::FMA, dl,
4656 getValue(I.getArgOperand(0)).getValueType(),
4657 getValue(I.getArgOperand(0)),
4658 getValue(I.getArgOperand(1)),
4659 getValue(I.getArgOperand(2))));
4660 return 0;
4661 case Intrinsic::convert_to_fp16:
4662 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4663 MVT::i16, getValue(I.getArgOperand(0))));
4664 return 0;
4665 case Intrinsic::convert_from_fp16:
4666 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4667 MVT::f32, getValue(I.getArgOperand(0))));
4668 return 0;
4669 case Intrinsic::pcmarker: {
4670 SDValue Tmp = getValue(I.getArgOperand(0));
4671 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4672 return 0;
4674 case Intrinsic::readcyclecounter: {
4675 SDValue Op = getRoot();
4676 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4677 DAG.getVTList(MVT::i64, MVT::Other),
4678 &Op, 1);
4679 setValue(&I, Res);
4680 DAG.setRoot(Res.getValue(1));
4681 return 0;
4683 case Intrinsic::bswap:
4684 setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4685 getValue(I.getArgOperand(0)).getValueType(),
4686 getValue(I.getArgOperand(0))));
4687 return 0;
4688 case Intrinsic::cttz: {
4689 SDValue Arg = getValue(I.getArgOperand(0));
4690 EVT Ty = Arg.getValueType();
4691 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4692 return 0;
4694 case Intrinsic::ctlz: {
4695 SDValue Arg = getValue(I.getArgOperand(0));
4696 EVT Ty = Arg.getValueType();
4697 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4698 return 0;
4700 case Intrinsic::ctpop: {
4701 SDValue Arg = getValue(I.getArgOperand(0));
4702 EVT Ty = Arg.getValueType();
4703 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4704 return 0;
4706 case Intrinsic::stacksave: {
4707 SDValue Op = getRoot();
4708 Res = DAG.getNode(ISD::STACKSAVE, dl,
4709 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4710 setValue(&I, Res);
4711 DAG.setRoot(Res.getValue(1));
4712 return 0;
4714 case Intrinsic::stackrestore: {
4715 Res = getValue(I.getArgOperand(0));
4716 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4717 return 0;
4719 case Intrinsic::stackprotector: {
4720 // Emit code into the DAG to store the stack guard onto the stack.
4721 MachineFunction &MF = DAG.getMachineFunction();
4722 MachineFrameInfo *MFI = MF.getFrameInfo();
4723 EVT PtrTy = TLI.getPointerTy();
4725 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value.
4726 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4728 int FI = FuncInfo.StaticAllocaMap[Slot];
4729 MFI->setStackProtectorIndex(FI);
4731 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4733 // Store the stack protector onto the stack.
4734 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4735 MachinePointerInfo::getFixedStack(FI),
4736 true, false, 0);
4737 setValue(&I, Res);
4738 DAG.setRoot(Res);
4739 return 0;
4741 case Intrinsic::objectsize: {
4742 // If we don't know by now, we're never going to know.
4743 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4745 assert(CI && "Non-constant type in __builtin_object_size?");
4747 SDValue Arg = getValue(I.getCalledValue());
4748 EVT Ty = Arg.getValueType();
4750 if (CI->isZero())
4751 Res = DAG.getConstant(-1ULL, Ty);
4752 else
4753 Res = DAG.getConstant(0, Ty);
4755 setValue(&I, Res);
4756 return 0;
4758 case Intrinsic::var_annotation:
4759 // Discard annotate attributes
4760 return 0;
4762 case Intrinsic::init_trampoline: {
4763 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4765 SDValue Ops[6];
4766 Ops[0] = getRoot();
4767 Ops[1] = getValue(I.getArgOperand(0));
4768 Ops[2] = getValue(I.getArgOperand(1));
4769 Ops[3] = getValue(I.getArgOperand(2));
4770 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4771 Ops[5] = DAG.getSrcValue(F);
4773 Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4774 DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4775 Ops, 6);
4777 setValue(&I, Res);
4778 DAG.setRoot(Res.getValue(1));
4779 return 0;
4781 case Intrinsic::gcroot:
4782 if (GFI) {
4783 const Value *Alloca = I.getArgOperand(0);
4784 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4786 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4787 GFI->addStackRoot(FI->getIndex(), TypeMap);
4789 return 0;
4790 case Intrinsic::gcread:
4791 case Intrinsic::gcwrite:
4792 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4793 return 0;
4794 case Intrinsic::flt_rounds:
4795 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4796 return 0;
4798 case Intrinsic::expect: {
4799 // Just replace __builtin_expect(exp, c) with EXP.
4800 setValue(&I, getValue(I.getArgOperand(0)));
4801 return 0;
4804 case Intrinsic::trap: {
4805 StringRef TrapFuncName = getTrapFunctionName();
4806 if (TrapFuncName.empty()) {
4807 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4808 return 0;
4810 TargetLowering::ArgListTy Args;
4811 std::pair<SDValue, SDValue> Result =
4812 TLI.LowerCallTo(getRoot(), I.getType(),
4813 false, false, false, false, 0, CallingConv::C,
4814 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4815 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4816 Args, DAG, getCurDebugLoc());
4817 DAG.setRoot(Result.second);
4818 return 0;
4820 case Intrinsic::uadd_with_overflow:
4821 return implVisitAluOverflow(I, ISD::UADDO);
4822 case Intrinsic::sadd_with_overflow:
4823 return implVisitAluOverflow(I, ISD::SADDO);
4824 case Intrinsic::usub_with_overflow:
4825 return implVisitAluOverflow(I, ISD::USUBO);
4826 case Intrinsic::ssub_with_overflow:
4827 return implVisitAluOverflow(I, ISD::SSUBO);
4828 case Intrinsic::umul_with_overflow:
4829 return implVisitAluOverflow(I, ISD::UMULO);
4830 case Intrinsic::smul_with_overflow:
4831 return implVisitAluOverflow(I, ISD::SMULO);
4833 case Intrinsic::prefetch: {
4834 SDValue Ops[5];
4835 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4836 Ops[0] = getRoot();
4837 Ops[1] = getValue(I.getArgOperand(0));
4838 Ops[2] = getValue(I.getArgOperand(1));
4839 Ops[3] = getValue(I.getArgOperand(2));
4840 Ops[4] = getValue(I.getArgOperand(3));
4841 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4842 DAG.getVTList(MVT::Other),
4843 &Ops[0], 5,
4844 EVT::getIntegerVT(*Context, 8),
4845 MachinePointerInfo(I.getArgOperand(0)),
4846 0, /* align */
4847 false, /* volatile */
4848 rw==0, /* read */
4849 rw==1)); /* write */
4850 return 0;
4852 case Intrinsic::memory_barrier: {
4853 SDValue Ops[6];
4854 Ops[0] = getRoot();
4855 for (int x = 1; x < 6; ++x)
4856 Ops[x] = getValue(I.getArgOperand(x - 1));
4858 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4859 return 0;
4861 case Intrinsic::atomic_cmp_swap: {
4862 SDValue Root = getRoot();
4863 SDValue L =
4864 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4865 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4866 Root,
4867 getValue(I.getArgOperand(0)),
4868 getValue(I.getArgOperand(1)),
4869 getValue(I.getArgOperand(2)),
4870 MachinePointerInfo(I.getArgOperand(0)));
4871 setValue(&I, L);
4872 DAG.setRoot(L.getValue(1));
4873 return 0;
4875 case Intrinsic::atomic_load_add:
4876 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4877 case Intrinsic::atomic_load_sub:
4878 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4879 case Intrinsic::atomic_load_or:
4880 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4881 case Intrinsic::atomic_load_xor:
4882 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4883 case Intrinsic::atomic_load_and:
4884 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4885 case Intrinsic::atomic_load_nand:
4886 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4887 case Intrinsic::atomic_load_max:
4888 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4889 case Intrinsic::atomic_load_min:
4890 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4891 case Intrinsic::atomic_load_umin:
4892 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4893 case Intrinsic::atomic_load_umax:
4894 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4895 case Intrinsic::atomic_swap:
4896 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4898 case Intrinsic::invariant_start:
4899 case Intrinsic::lifetime_start:
4900 // Discard region information.
4901 setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4902 return 0;
4903 case Intrinsic::invariant_end:
4904 case Intrinsic::lifetime_end:
4905 // Discard region information.
4906 return 0;
4910 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4911 bool isTailCall,
4912 MachineBasicBlock *LandingPad) {
4913 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4914 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4915 const Type *RetTy = FTy->getReturnType();
4916 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4917 MCSymbol *BeginLabel = 0;
4919 TargetLowering::ArgListTy Args;
4920 TargetLowering::ArgListEntry Entry;
4921 Args.reserve(CS.arg_size());
4923 // Check whether the function can return without sret-demotion.
4924 SmallVector<ISD::OutputArg, 4> Outs;
4925 SmallVector<uint64_t, 4> Offsets;
4926 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4927 Outs, TLI, &Offsets);
4929 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4930 DAG.getMachineFunction(),
4931 FTy->isVarArg(), Outs,
4932 FTy->getContext());
4934 SDValue DemoteStackSlot;
4935 int DemoteStackIdx = -100;
4937 if (!CanLowerReturn) {
4938 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4939 FTy->getReturnType());
4940 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(
4941 FTy->getReturnType());
4942 MachineFunction &MF = DAG.getMachineFunction();
4943 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4944 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4946 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4947 Entry.Node = DemoteStackSlot;
4948 Entry.Ty = StackSlotPtrType;
4949 Entry.isSExt = false;
4950 Entry.isZExt = false;
4951 Entry.isInReg = false;
4952 Entry.isSRet = true;
4953 Entry.isNest = false;
4954 Entry.isByVal = false;
4955 Entry.Alignment = Align;
4956 Args.push_back(Entry);
4957 RetTy = Type::getVoidTy(FTy->getContext());
4960 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4961 i != e; ++i) {
4962 const Value *V = *i;
4964 // Skip empty types
4965 if (V->getType()->isEmptyTy())
4966 continue;
4968 SDValue ArgNode = getValue(V);
4969 Entry.Node = ArgNode; Entry.Ty = V->getType();
4971 unsigned attrInd = i - CS.arg_begin() + 1;
4972 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
4973 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
4974 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4975 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
4976 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
4977 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4978 Entry.Alignment = CS.getParamAlignment(attrInd);
4979 Args.push_back(Entry);
4982 if (LandingPad) {
4983 // Insert a label before the invoke call to mark the try range. This can be
4984 // used to detect deletion of the invoke via the MachineModuleInfo.
4985 BeginLabel = MMI.getContext().CreateTempSymbol();
4987 // For SjLj, keep track of which landing pads go with which invokes
4988 // so as to maintain the ordering of pads in the LSDA.
4989 unsigned CallSiteIndex = MMI.getCurrentCallSite();
4990 if (CallSiteIndex) {
4991 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4992 // Now that the call site is handled, stop tracking it.
4993 MMI.setCurrentCallSite(0);
4996 // Both PendingLoads and PendingExports must be flushed here;
4997 // this call might not return.
4998 (void)getRoot();
4999 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5002 // Check if target-independent constraints permit a tail call here.
5003 // Target-dependent constraints are checked within TLI.LowerCallTo.
5004 if (isTailCall &&
5005 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5006 isTailCall = false;
5008 // If there's a possibility that fast-isel has already selected some amount
5009 // of the current basic block, don't emit a tail call.
5010 if (isTailCall && EnableFastISel)
5011 isTailCall = false;
5013 std::pair<SDValue,SDValue> Result =
5014 TLI.LowerCallTo(getRoot(), RetTy,
5015 CS.paramHasAttr(0, Attribute::SExt),
5016 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5017 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5018 CS.getCallingConv(),
5019 isTailCall,
5020 !CS.getInstruction()->use_empty(),
5021 Callee, Args, DAG, getCurDebugLoc());
5022 assert((isTailCall || Result.second.getNode()) &&
5023 "Non-null chain expected with non-tail call!");
5024 assert((Result.second.getNode() || !Result.first.getNode()) &&
5025 "Null value expected with tail call!");
5026 if (Result.first.getNode()) {
5027 setValue(CS.getInstruction(), Result.first);
5028 } else if (!CanLowerReturn && Result.second.getNode()) {
5029 // The instruction result is the result of loading from the
5030 // hidden sret parameter.
5031 SmallVector<EVT, 1> PVTs;
5032 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5034 ComputeValueVTs(TLI, PtrRetTy, PVTs);
5035 assert(PVTs.size() == 1 && "Pointers should fit in one register");
5036 EVT PtrVT = PVTs[0];
5037 unsigned NumValues = Outs.size();
5038 SmallVector<SDValue, 4> Values(NumValues);
5039 SmallVector<SDValue, 4> Chains(NumValues);
5041 for (unsigned i = 0; i < NumValues; ++i) {
5042 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5043 DemoteStackSlot,
5044 DAG.getConstant(Offsets[i], PtrVT));
5045 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5046 Add,
5047 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5048 false, false, 1);
5049 Values[i] = L;
5050 Chains[i] = L.getValue(1);
5053 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5054 MVT::Other, &Chains[0], NumValues);
5055 PendingLoads.push_back(Chain);
5057 // Collect the legal value parts into potentially illegal values
5058 // that correspond to the original function's return values.
5059 SmallVector<EVT, 4> RetTys;
5060 RetTy = FTy->getReturnType();
5061 ComputeValueVTs(TLI, RetTy, RetTys);
5062 ISD::NodeType AssertOp = ISD::DELETED_NODE;
5063 SmallVector<SDValue, 4> ReturnValues;
5064 unsigned CurReg = 0;
5065 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5066 EVT VT = RetTys[I];
5067 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5068 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5070 SDValue ReturnValue =
5071 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5072 RegisterVT, VT, AssertOp);
5073 ReturnValues.push_back(ReturnValue);
5074 CurReg += NumRegs;
5077 setValue(CS.getInstruction(),
5078 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5079 DAG.getVTList(&RetTys[0], RetTys.size()),
5080 &ReturnValues[0], ReturnValues.size()));
5083 // Assign order to nodes here. If the call does not produce a result, it won't
5084 // be mapped to a SDNode and visit() will not assign it an order number.
5085 if (!Result.second.getNode()) {
5086 // As a special case, a null chain means that a tail call has been emitted and
5087 // the DAG root is already updated.
5088 HasTailCall = true;
5089 ++SDNodeOrder;
5090 AssignOrderingToNode(DAG.getRoot().getNode());
5091 } else {
5092 DAG.setRoot(Result.second);
5093 ++SDNodeOrder;
5094 AssignOrderingToNode(Result.second.getNode());
5097 if (LandingPad) {
5098 // Insert a label at the end of the invoke call to mark the try range. This
5099 // can be used to detect deletion of the invoke via the MachineModuleInfo.
5100 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5101 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5103 // Inform MachineModuleInfo of range.
5104 MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5108 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5109 /// value is equal or not-equal to zero.
5110 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5111 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5112 UI != E; ++UI) {
5113 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5114 if (IC->isEquality())
5115 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5116 if (C->isNullValue())
5117 continue;
5118 // Unknown instruction.
5119 return false;
5121 return true;
5124 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5125 const Type *LoadTy,
5126 SelectionDAGBuilder &Builder) {
5128 // Check to see if this load can be trivially constant folded, e.g. if the
5129 // input is from a string literal.
5130 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5131 // Cast pointer to the type we really want to load.
5132 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5133 PointerType::getUnqual(LoadTy));
5135 if (const Constant *LoadCst =
5136 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5137 Builder.TD))
5138 return Builder.getValue(LoadCst);
5141 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
5142 // still constant memory, the input chain can be the entry node.
5143 SDValue Root;
5144 bool ConstantMemory = false;
5146 // Do not serialize (non-volatile) loads of constant memory with anything.
5147 if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5148 Root = Builder.DAG.getEntryNode();
5149 ConstantMemory = true;
5150 } else {
5151 // Do not serialize non-volatile loads against each other.
5152 Root = Builder.DAG.getRoot();
5155 SDValue Ptr = Builder.getValue(PtrVal);
5156 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5157 Ptr, MachinePointerInfo(PtrVal),
5158 false /*volatile*/,
5159 false /*nontemporal*/, 1 /* align=1 */);
5161 if (!ConstantMemory)
5162 Builder.PendingLoads.push_back(LoadVal.getValue(1));
5163 return LoadVal;
5167 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5168 /// If so, return true and lower it, otherwise return false and it will be
5169 /// lowered like a normal call.
5170 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5171 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
5172 if (I.getNumArgOperands() != 3)
5173 return false;
5175 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5176 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5177 !I.getArgOperand(2)->getType()->isIntegerTy() ||
5178 !I.getType()->isIntegerTy())
5179 return false;
5181 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5183 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
5184 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
5185 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5186 bool ActuallyDoIt = true;
5187 MVT LoadVT;
5188 const Type *LoadTy;
5189 switch (Size->getZExtValue()) {
5190 default:
5191 LoadVT = MVT::Other;
5192 LoadTy = 0;
5193 ActuallyDoIt = false;
5194 break;
5195 case 2:
5196 LoadVT = MVT::i16;
5197 LoadTy = Type::getInt16Ty(Size->getContext());
5198 break;
5199 case 4:
5200 LoadVT = MVT::i32;
5201 LoadTy = Type::getInt32Ty(Size->getContext());
5202 break;
5203 case 8:
5204 LoadVT = MVT::i64;
5205 LoadTy = Type::getInt64Ty(Size->getContext());
5206 break;
5208 case 16:
5209 LoadVT = MVT::v4i32;
5210 LoadTy = Type::getInt32Ty(Size->getContext());
5211 LoadTy = VectorType::get(LoadTy, 4);
5212 break;
5216 // This turns into unaligned loads. We only do this if the target natively
5217 // supports the MVT we'll be loading or if it is small enough (<= 4) that
5218 // we'll only produce a small number of byte loads.
5220 // Require that we can find a legal MVT, and only do this if the target
5221 // supports unaligned loads of that type. Expanding into byte loads would
5222 // bloat the code.
5223 if (ActuallyDoIt && Size->getZExtValue() > 4) {
5224 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5225 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5226 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5227 ActuallyDoIt = false;
5230 if (ActuallyDoIt) {
5231 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5232 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5234 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5235 ISD::SETNE);
5236 EVT CallVT = TLI.getValueType(I.getType(), true);
5237 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5238 return true;
5243 return false;
5247 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5248 // Handle inline assembly differently.
5249 if (isa<InlineAsm>(I.getCalledValue())) {
5250 visitInlineAsm(&I);
5251 return;
5254 // See if any floating point values are being passed to this function. This is
5255 // used to emit an undefined reference to fltused on Windows.
5256 const FunctionType *FT =
5257 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5258 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5259 if (FT->isVarArg() &&
5260 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5261 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5262 const Type* T = I.getArgOperand(i)->getType();
5263 for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5264 i != e; ++i) {
5265 if (!i->isFloatingPointTy()) continue;
5266 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5267 break;
5272 const char *RenameFn = 0;
5273 if (Function *F = I.getCalledFunction()) {
5274 if (F->isDeclaration()) {
5275 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5276 if (unsigned IID = II->getIntrinsicID(F)) {
5277 RenameFn = visitIntrinsicCall(I, IID);
5278 if (!RenameFn)
5279 return;
5282 if (unsigned IID = F->getIntrinsicID()) {
5283 RenameFn = visitIntrinsicCall(I, IID);
5284 if (!RenameFn)
5285 return;
5289 // Check for well-known libc/libm calls. If the function is internal, it
5290 // can't be a library call.
5291 if (!F->hasLocalLinkage() && F->hasName()) {
5292 StringRef Name = F->getName();
5293 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5294 if (I.getNumArgOperands() == 2 && // Basic sanity checks.
5295 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5296 I.getType() == I.getArgOperand(0)->getType() &&
5297 I.getType() == I.getArgOperand(1)->getType()) {
5298 SDValue LHS = getValue(I.getArgOperand(0));
5299 SDValue RHS = getValue(I.getArgOperand(1));
5300 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5301 LHS.getValueType(), LHS, RHS));
5302 return;
5304 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5305 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5306 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5307 I.getType() == I.getArgOperand(0)->getType()) {
5308 SDValue Tmp = getValue(I.getArgOperand(0));
5309 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5310 Tmp.getValueType(), Tmp));
5311 return;
5313 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5314 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5315 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5316 I.getType() == I.getArgOperand(0)->getType() &&
5317 I.onlyReadsMemory()) {
5318 SDValue Tmp = getValue(I.getArgOperand(0));
5319 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5320 Tmp.getValueType(), Tmp));
5321 return;
5323 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5324 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5325 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5326 I.getType() == I.getArgOperand(0)->getType() &&
5327 I.onlyReadsMemory()) {
5328 SDValue Tmp = getValue(I.getArgOperand(0));
5329 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5330 Tmp.getValueType(), Tmp));
5331 return;
5333 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5334 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5335 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5336 I.getType() == I.getArgOperand(0)->getType() &&
5337 I.onlyReadsMemory()) {
5338 SDValue Tmp = getValue(I.getArgOperand(0));
5339 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5340 Tmp.getValueType(), Tmp));
5341 return;
5343 } else if (Name == "memcmp") {
5344 if (visitMemCmpCall(I))
5345 return;
5350 SDValue Callee;
5351 if (!RenameFn)
5352 Callee = getValue(I.getCalledValue());
5353 else
5354 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5356 // Check if we can potentially perform a tail call. More detailed checking is
5357 // be done within LowerCallTo, after more information about the call is known.
5358 LowerCallTo(&I, Callee, I.isTailCall());
5361 namespace {
5363 /// AsmOperandInfo - This contains information for each constraint that we are
5364 /// lowering.
5365 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5366 public:
5367 /// CallOperand - If this is the result output operand or a clobber
5368 /// this is null, otherwise it is the incoming operand to the CallInst.
5369 /// This gets modified as the asm is processed.
5370 SDValue CallOperand;
5372 /// AssignedRegs - If this is a register or register class operand, this
5373 /// contains the set of register corresponding to the operand.
5374 RegsForValue AssignedRegs;
5376 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5377 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5380 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5381 /// busy in OutputRegs/InputRegs.
5382 void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5383 std::set<unsigned> &OutputRegs,
5384 std::set<unsigned> &InputRegs,
5385 const TargetRegisterInfo &TRI) const {
5386 if (isOutReg) {
5387 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5388 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5390 if (isInReg) {
5391 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5392 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5396 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5397 /// corresponds to. If there is no Value* for this operand, it returns
5398 /// MVT::Other.
5399 EVT getCallOperandValEVT(LLVMContext &Context,
5400 const TargetLowering &TLI,
5401 const TargetData *TD) const {
5402 if (CallOperandVal == 0) return MVT::Other;
5404 if (isa<BasicBlock>(CallOperandVal))
5405 return TLI.getPointerTy();
5407 const llvm::Type *OpTy = CallOperandVal->getType();
5409 // FIXME: code duplicated from TargetLowering::ParseConstraints().
5410 // If this is an indirect operand, the operand is a pointer to the
5411 // accessed type.
5412 if (isIndirect) {
5413 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5414 if (!PtrTy)
5415 report_fatal_error("Indirect operand for inline asm not a pointer!");
5416 OpTy = PtrTy->getElementType();
5419 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5420 if (const StructType *STy = dyn_cast<StructType>(OpTy))
5421 if (STy->getNumElements() == 1)
5422 OpTy = STy->getElementType(0);
5424 // If OpTy is not a single value, it may be a struct/union that we
5425 // can tile with integers.
5426 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5427 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5428 switch (BitSize) {
5429 default: break;
5430 case 1:
5431 case 8:
5432 case 16:
5433 case 32:
5434 case 64:
5435 case 128:
5436 OpTy = IntegerType::get(Context, BitSize);
5437 break;
5441 return TLI.getValueType(OpTy, true);
5444 private:
5445 /// MarkRegAndAliases - Mark the specified register and all aliases in the
5446 /// specified set.
5447 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5448 const TargetRegisterInfo &TRI) {
5449 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5450 Regs.insert(Reg);
5451 if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5452 for (; *Aliases; ++Aliases)
5453 Regs.insert(*Aliases);
5457 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5459 } // end anonymous namespace
5461 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5462 /// specified operand. We prefer to assign virtual registers, to allow the
5463 /// register allocator to handle the assignment process. However, if the asm
5464 /// uses features that we can't model on machineinstrs, we have SDISel do the
5465 /// allocation. This produces generally horrible, but correct, code.
5467 /// OpInfo describes the operand.
5468 /// Input and OutputRegs are the set of already allocated physical registers.
5470 static void GetRegistersForValue(SelectionDAG &DAG,
5471 const TargetLowering &TLI,
5472 DebugLoc DL,
5473 SDISelAsmOperandInfo &OpInfo,
5474 std::set<unsigned> &OutputRegs,
5475 std::set<unsigned> &InputRegs) {
5476 LLVMContext &Context = *DAG.getContext();
5478 // Compute whether this value requires an input register, an output register,
5479 // or both.
5480 bool isOutReg = false;
5481 bool isInReg = false;
5482 switch (OpInfo.Type) {
5483 case InlineAsm::isOutput:
5484 isOutReg = true;
5486 // If there is an input constraint that matches this, we need to reserve
5487 // the input register so no other inputs allocate to it.
5488 isInReg = OpInfo.hasMatchingInput();
5489 break;
5490 case InlineAsm::isInput:
5491 isInReg = true;
5492 isOutReg = false;
5493 break;
5494 case InlineAsm::isClobber:
5495 isOutReg = true;
5496 isInReg = true;
5497 break;
5501 MachineFunction &MF = DAG.getMachineFunction();
5502 SmallVector<unsigned, 4> Regs;
5504 // If this is a constraint for a single physreg, or a constraint for a
5505 // register class, find it.
5506 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5507 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5508 OpInfo.ConstraintVT);
5510 unsigned NumRegs = 1;
5511 if (OpInfo.ConstraintVT != MVT::Other) {
5512 // If this is a FP input in an integer register (or visa versa) insert a bit
5513 // cast of the input value. More generally, handle any case where the input
5514 // value disagrees with the register class we plan to stick this in.
5515 if (OpInfo.Type == InlineAsm::isInput &&
5516 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5517 // Try to convert to the first EVT that the reg class contains. If the
5518 // types are identical size, use a bitcast to convert (e.g. two differing
5519 // vector types).
5520 EVT RegVT = *PhysReg.second->vt_begin();
5521 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5522 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5523 RegVT, OpInfo.CallOperand);
5524 OpInfo.ConstraintVT = RegVT;
5525 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5526 // If the input is a FP value and we want it in FP registers, do a
5527 // bitcast to the corresponding integer type. This turns an f64 value
5528 // into i64, which can be passed with two i32 values on a 32-bit
5529 // machine.
5530 RegVT = EVT::getIntegerVT(Context,
5531 OpInfo.ConstraintVT.getSizeInBits());
5532 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5533 RegVT, OpInfo.CallOperand);
5534 OpInfo.ConstraintVT = RegVT;
5538 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5541 EVT RegVT;
5542 EVT ValueVT = OpInfo.ConstraintVT;
5544 // If this is a constraint for a specific physical register, like {r17},
5545 // assign it now.
5546 if (unsigned AssignedReg = PhysReg.first) {
5547 const TargetRegisterClass *RC = PhysReg.second;
5548 if (OpInfo.ConstraintVT == MVT::Other)
5549 ValueVT = *RC->vt_begin();
5551 // Get the actual register value type. This is important, because the user
5552 // may have asked for (e.g.) the AX register in i32 type. We need to
5553 // remember that AX is actually i16 to get the right extension.
5554 RegVT = *RC->vt_begin();
5556 // This is a explicit reference to a physical register.
5557 Regs.push_back(AssignedReg);
5559 // If this is an expanded reference, add the rest of the regs to Regs.
5560 if (NumRegs != 1) {
5561 TargetRegisterClass::iterator I = RC->begin();
5562 for (; *I != AssignedReg; ++I)
5563 assert(I != RC->end() && "Didn't find reg!");
5565 // Already added the first reg.
5566 --NumRegs; ++I;
5567 for (; NumRegs; --NumRegs, ++I) {
5568 assert(I != RC->end() && "Ran out of registers to allocate!");
5569 Regs.push_back(*I);
5573 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5574 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5575 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5576 return;
5579 // Otherwise, if this was a reference to an LLVM register class, create vregs
5580 // for this reference.
5581 if (const TargetRegisterClass *RC = PhysReg.second) {
5582 RegVT = *RC->vt_begin();
5583 if (OpInfo.ConstraintVT == MVT::Other)
5584 ValueVT = RegVT;
5586 // Create the appropriate number of virtual registers.
5587 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5588 for (; NumRegs; --NumRegs)
5589 Regs.push_back(RegInfo.createVirtualRegister(RC));
5591 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5592 return;
5595 // Otherwise, we couldn't allocate enough registers for this.
5598 /// visitInlineAsm - Handle a call to an InlineAsm object.
5600 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5601 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5603 /// ConstraintOperands - Information about all of the constraints.
5604 SDISelAsmOperandInfoVector ConstraintOperands;
5606 std::set<unsigned> OutputRegs, InputRegs;
5608 TargetLowering::AsmOperandInfoVector
5609 TargetConstraints = TLI.ParseConstraints(CS);
5611 bool hasMemory = false;
5613 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5614 unsigned ResNo = 0; // ResNo - The result number of the next output.
5615 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5616 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5617 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5619 EVT OpVT = MVT::Other;
5621 // Compute the value type for each operand.
5622 switch (OpInfo.Type) {
5623 case InlineAsm::isOutput:
5624 // Indirect outputs just consume an argument.
5625 if (OpInfo.isIndirect) {
5626 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5627 break;
5630 // The return value of the call is this value. As such, there is no
5631 // corresponding argument.
5632 assert(!CS.getType()->isVoidTy() &&
5633 "Bad inline asm!");
5634 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5635 OpVT = TLI.getValueType(STy->getElementType(ResNo));
5636 } else {
5637 assert(ResNo == 0 && "Asm only has one result!");
5638 OpVT = TLI.getValueType(CS.getType());
5640 ++ResNo;
5641 break;
5642 case InlineAsm::isInput:
5643 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5644 break;
5645 case InlineAsm::isClobber:
5646 // Nothing to do.
5647 break;
5650 // If this is an input or an indirect output, process the call argument.
5651 // BasicBlocks are labels, currently appearing only in asm's.
5652 if (OpInfo.CallOperandVal) {
5653 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5654 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5655 } else {
5656 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5659 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5662 OpInfo.ConstraintVT = OpVT;
5664 // Indirect operand accesses access memory.
5665 if (OpInfo.isIndirect)
5666 hasMemory = true;
5667 else {
5668 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5669 TargetLowering::ConstraintType
5670 CType = TLI.getConstraintType(OpInfo.Codes[j]);
5671 if (CType == TargetLowering::C_Memory) {
5672 hasMemory = true;
5673 break;
5679 SDValue Chain, Flag;
5681 // We won't need to flush pending loads if this asm doesn't touch
5682 // memory and is nonvolatile.
5683 if (hasMemory || IA->hasSideEffects())
5684 Chain = getRoot();
5685 else
5686 Chain = DAG.getRoot();
5688 // Second pass over the constraints: compute which constraint option to use
5689 // and assign registers to constraints that want a specific physreg.
5690 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5691 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5693 // If this is an output operand with a matching input operand, look up the
5694 // matching input. If their types mismatch, e.g. one is an integer, the
5695 // other is floating point, or their sizes are different, flag it as an
5696 // error.
5697 if (OpInfo.hasMatchingInput()) {
5698 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5700 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5701 if ((OpInfo.ConstraintVT.isInteger() !=
5702 Input.ConstraintVT.isInteger()) ||
5703 (OpInfo.ConstraintVT.getSizeInBits() !=
5704 Input.ConstraintVT.getSizeInBits())) {
5705 report_fatal_error("Unsupported asm: input constraint"
5706 " with a matching output constraint of"
5707 " incompatible type!");
5709 Input.ConstraintVT = OpInfo.ConstraintVT;
5713 // Compute the constraint code and ConstraintType to use.
5714 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5716 // If this is a memory input, and if the operand is not indirect, do what we
5717 // need to to provide an address for the memory input.
5718 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5719 !OpInfo.isIndirect) {
5720 assert((OpInfo.isMultipleAlternative ||
5721 (OpInfo.Type == InlineAsm::isInput)) &&
5722 "Can only indirectify direct input operands!");
5724 // Memory operands really want the address of the value. If we don't have
5725 // an indirect input, put it in the constpool if we can, otherwise spill
5726 // it to a stack slot.
5727 // TODO: This isn't quite right. We need to handle these according to
5728 // the addressing mode that the constraint wants. Also, this may take
5729 // an additional register for the computation and we don't want that
5730 // either.
5732 // If the operand is a float, integer, or vector constant, spill to a
5733 // constant pool entry to get its address.
5734 const Value *OpVal = OpInfo.CallOperandVal;
5735 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5736 isa<ConstantVector>(OpVal)) {
5737 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5738 TLI.getPointerTy());
5739 } else {
5740 // Otherwise, create a stack slot and emit a store to it before the
5741 // asm.
5742 const Type *Ty = OpVal->getType();
5743 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5744 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5745 MachineFunction &MF = DAG.getMachineFunction();
5746 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5747 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5748 Chain = DAG.getStore(Chain, getCurDebugLoc(),
5749 OpInfo.CallOperand, StackSlot,
5750 MachinePointerInfo::getFixedStack(SSFI),
5751 false, false, 0);
5752 OpInfo.CallOperand = StackSlot;
5755 // There is no longer a Value* corresponding to this operand.
5756 OpInfo.CallOperandVal = 0;
5758 // It is now an indirect operand.
5759 OpInfo.isIndirect = true;
5762 // If this constraint is for a specific register, allocate it before
5763 // anything else.
5764 if (OpInfo.ConstraintType == TargetLowering::C_Register)
5765 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5766 InputRegs);
5769 // Second pass - Loop over all of the operands, assigning virtual or physregs
5770 // to register class operands.
5771 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5772 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5774 // C_Register operands have already been allocated, Other/Memory don't need
5775 // to be.
5776 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5777 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5778 InputRegs);
5781 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5782 std::vector<SDValue> AsmNodeOperands;
5783 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
5784 AsmNodeOperands.push_back(
5785 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5786 TLI.getPointerTy()));
5788 // If we have a !srcloc metadata node associated with it, we want to attach
5789 // this to the ultimately generated inline asm machineinstr. To do this, we
5790 // pass in the third operand as this (potentially null) inline asm MDNode.
5791 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5792 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5794 // Remember the HasSideEffect and AlignStack bits as operand 3.
5795 unsigned ExtraInfo = 0;
5796 if (IA->hasSideEffects())
5797 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5798 if (IA->isAlignStack())
5799 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5800 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5801 TLI.getPointerTy()));
5803 // Loop over all of the inputs, copying the operand values into the
5804 // appropriate registers and processing the output regs.
5805 RegsForValue RetValRegs;
5807 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5808 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5810 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5811 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5813 switch (OpInfo.Type) {
5814 case InlineAsm::isOutput: {
5815 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5816 OpInfo.ConstraintType != TargetLowering::C_Register) {
5817 // Memory output, or 'other' output (e.g. 'X' constraint).
5818 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5820 // Add information to the INLINEASM node to know about this output.
5821 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5822 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5823 TLI.getPointerTy()));
5824 AsmNodeOperands.push_back(OpInfo.CallOperand);
5825 break;
5828 // Otherwise, this is a register or register class output.
5830 // Copy the output from the appropriate register. Find a register that
5831 // we can use.
5832 if (OpInfo.AssignedRegs.Regs.empty())
5833 report_fatal_error("Couldn't allocate output reg for constraint '" +
5834 Twine(OpInfo.ConstraintCode) + "'!");
5836 // If this is an indirect operand, store through the pointer after the
5837 // asm.
5838 if (OpInfo.isIndirect) {
5839 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5840 OpInfo.CallOperandVal));
5841 } else {
5842 // This is the result value of the call.
5843 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5844 // Concatenate this output onto the outputs list.
5845 RetValRegs.append(OpInfo.AssignedRegs);
5848 // Add information to the INLINEASM node to know that this register is
5849 // set.
5850 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5851 InlineAsm::Kind_RegDefEarlyClobber :
5852 InlineAsm::Kind_RegDef,
5853 false,
5855 DAG,
5856 AsmNodeOperands);
5857 break;
5859 case InlineAsm::isInput: {
5860 SDValue InOperandVal = OpInfo.CallOperand;
5862 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
5863 // If this is required to match an output register we have already set,
5864 // just use its register.
5865 unsigned OperandNo = OpInfo.getMatchedOperand();
5867 // Scan until we find the definition we already emitted of this operand.
5868 // When we find it, create a RegsForValue operand.
5869 unsigned CurOp = InlineAsm::Op_FirstOperand;
5870 for (; OperandNo; --OperandNo) {
5871 // Advance to the next operand.
5872 unsigned OpFlag =
5873 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5874 assert((InlineAsm::isRegDefKind(OpFlag) ||
5875 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5876 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5877 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5880 unsigned OpFlag =
5881 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5882 if (InlineAsm::isRegDefKind(OpFlag) ||
5883 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5884 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5885 if (OpInfo.isIndirect) {
5886 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5887 LLVMContext &Ctx = *DAG.getContext();
5888 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
5889 " don't know how to handle tied "
5890 "indirect register inputs");
5893 RegsForValue MatchedRegs;
5894 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5895 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5896 MatchedRegs.RegVTs.push_back(RegVT);
5897 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5898 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5899 i != e; ++i)
5900 MatchedRegs.Regs.push_back
5901 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5903 // Use the produced MatchedRegs object to
5904 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5905 Chain, &Flag);
5906 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5907 true, OpInfo.getMatchedOperand(),
5908 DAG, AsmNodeOperands);
5909 break;
5912 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5913 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5914 "Unexpected number of operands");
5915 // Add information to the INLINEASM node to know about this input.
5916 // See InlineAsm.h isUseOperandTiedToDef.
5917 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5918 OpInfo.getMatchedOperand());
5919 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5920 TLI.getPointerTy()));
5921 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5922 break;
5925 // Treat indirect 'X' constraint as memory.
5926 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5927 OpInfo.isIndirect)
5928 OpInfo.ConstraintType = TargetLowering::C_Memory;
5930 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5931 std::vector<SDValue> Ops;
5932 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
5933 Ops, DAG);
5934 if (Ops.empty())
5935 report_fatal_error("Invalid operand for inline asm constraint '" +
5936 Twine(OpInfo.ConstraintCode) + "'!");
5938 // Add information to the INLINEASM node to know about this input.
5939 unsigned ResOpType =
5940 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5941 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5942 TLI.getPointerTy()));
5943 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5944 break;
5947 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5948 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5949 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5950 "Memory operands expect pointer values");
5952 // Add information to the INLINEASM node to know about this input.
5953 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5954 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5955 TLI.getPointerTy()));
5956 AsmNodeOperands.push_back(InOperandVal);
5957 break;
5960 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5961 OpInfo.ConstraintType == TargetLowering::C_Register) &&
5962 "Unknown constraint type!");
5963 assert(!OpInfo.isIndirect &&
5964 "Don't know how to handle indirect register inputs yet!");
5966 // Copy the input into the appropriate registers.
5967 if (OpInfo.AssignedRegs.Regs.empty() ||
5968 !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5969 report_fatal_error("Couldn't allocate input reg for constraint '" +
5970 Twine(OpInfo.ConstraintCode) + "'!");
5972 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5973 Chain, &Flag);
5975 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5976 DAG, AsmNodeOperands);
5977 break;
5979 case InlineAsm::isClobber: {
5980 // Add the clobbered value to the operand list, so that the register
5981 // allocator is aware that the physreg got clobbered.
5982 if (!OpInfo.AssignedRegs.Regs.empty())
5983 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
5984 false, 0, DAG,
5985 AsmNodeOperands);
5986 break;
5991 // Finish up input operands. Set the input chain and add the flag last.
5992 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5993 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5995 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5996 DAG.getVTList(MVT::Other, MVT::Glue),
5997 &AsmNodeOperands[0], AsmNodeOperands.size());
5998 Flag = Chain.getValue(1);
6000 // If this asm returns a register value, copy the result from that register
6001 // and set it as the value of the call.
6002 if (!RetValRegs.Regs.empty()) {
6003 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6004 Chain, &Flag);
6006 // FIXME: Why don't we do this for inline asms with MRVs?
6007 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6008 EVT ResultType = TLI.getValueType(CS.getType());
6010 // If any of the results of the inline asm is a vector, it may have the
6011 // wrong width/num elts. This can happen for register classes that can
6012 // contain multiple different value types. The preg or vreg allocated may
6013 // not have the same VT as was expected. Convert it to the right type
6014 // with bit_convert.
6015 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6016 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6017 ResultType, Val);
6019 } else if (ResultType != Val.getValueType() &&
6020 ResultType.isInteger() && Val.getValueType().isInteger()) {
6021 // If a result value was tied to an input value, the computed result may
6022 // have a wider width than the expected result. Extract the relevant
6023 // portion.
6024 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6027 assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6030 setValue(CS.getInstruction(), Val);
6031 // Don't need to use this as a chain in this case.
6032 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6033 return;
6036 std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6038 // Process indirect outputs, first output all of the flagged copies out of
6039 // physregs.
6040 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6041 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6042 const Value *Ptr = IndirectStoresToEmit[i].second;
6043 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6044 Chain, &Flag);
6045 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6048 // Emit the non-flagged stores from the physregs.
6049 SmallVector<SDValue, 8> OutChains;
6050 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6051 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6052 StoresToEmit[i].first,
6053 getValue(StoresToEmit[i].second),
6054 MachinePointerInfo(StoresToEmit[i].second),
6055 false, false, 0);
6056 OutChains.push_back(Val);
6059 if (!OutChains.empty())
6060 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6061 &OutChains[0], OutChains.size());
6063 DAG.setRoot(Chain);
6066 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6067 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6068 MVT::Other, getRoot(),
6069 getValue(I.getArgOperand(0)),
6070 DAG.getSrcValue(I.getArgOperand(0))));
6073 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6074 const TargetData &TD = *TLI.getTargetData();
6075 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6076 getRoot(), getValue(I.getOperand(0)),
6077 DAG.getSrcValue(I.getOperand(0)),
6078 TD.getABITypeAlignment(I.getType()));
6079 setValue(&I, V);
6080 DAG.setRoot(V.getValue(1));
6083 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6084 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6085 MVT::Other, getRoot(),
6086 getValue(I.getArgOperand(0)),
6087 DAG.getSrcValue(I.getArgOperand(0))));
6090 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6091 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6092 MVT::Other, getRoot(),
6093 getValue(I.getArgOperand(0)),
6094 getValue(I.getArgOperand(1)),
6095 DAG.getSrcValue(I.getArgOperand(0)),
6096 DAG.getSrcValue(I.getArgOperand(1))));
6099 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6100 /// implementation, which just calls LowerCall.
6101 /// FIXME: When all targets are
6102 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6103 std::pair<SDValue, SDValue>
6104 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6105 bool RetSExt, bool RetZExt, bool isVarArg,
6106 bool isInreg, unsigned NumFixedArgs,
6107 CallingConv::ID CallConv, bool isTailCall,
6108 bool isReturnValueUsed,
6109 SDValue Callee,
6110 ArgListTy &Args, SelectionDAG &DAG,
6111 DebugLoc dl) const {
6112 // Handle all of the outgoing arguments.
6113 SmallVector<ISD::OutputArg, 32> Outs;
6114 SmallVector<SDValue, 32> OutVals;
6115 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6116 SmallVector<EVT, 4> ValueVTs;
6117 ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6118 for (unsigned Value = 0, NumValues = ValueVTs.size();
6119 Value != NumValues; ++Value) {
6120 EVT VT = ValueVTs[Value];
6121 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6122 SDValue Op = SDValue(Args[i].Node.getNode(),
6123 Args[i].Node.getResNo() + Value);
6124 ISD::ArgFlagsTy Flags;
6125 unsigned OriginalAlignment =
6126 getTargetData()->getABITypeAlignment(ArgTy);
6128 if (Args[i].isZExt)
6129 Flags.setZExt();
6130 if (Args[i].isSExt)
6131 Flags.setSExt();
6132 if (Args[i].isInReg)
6133 Flags.setInReg();
6134 if (Args[i].isSRet)
6135 Flags.setSRet();
6136 if (Args[i].isByVal) {
6137 Flags.setByVal();
6138 const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6139 const Type *ElementTy = Ty->getElementType();
6140 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6141 // For ByVal, alignment should come from FE. BE will guess if this
6142 // info is not there but there are cases it cannot get right.
6143 unsigned FrameAlign;
6144 if (Args[i].Alignment)
6145 FrameAlign = Args[i].Alignment;
6146 else
6147 FrameAlign = getByValTypeAlignment(ElementTy);
6148 Flags.setByValAlign(FrameAlign);
6150 if (Args[i].isNest)
6151 Flags.setNest();
6152 Flags.setOrigAlign(OriginalAlignment);
6154 EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6155 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6156 SmallVector<SDValue, 4> Parts(NumParts);
6157 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6159 if (Args[i].isSExt)
6160 ExtendKind = ISD::SIGN_EXTEND;
6161 else if (Args[i].isZExt)
6162 ExtendKind = ISD::ZERO_EXTEND;
6164 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6165 PartVT, ExtendKind);
6167 for (unsigned j = 0; j != NumParts; ++j) {
6168 // if it isn't first piece, alignment must be 1
6169 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6170 i < NumFixedArgs);
6171 if (NumParts > 1 && j == 0)
6172 MyFlags.Flags.setSplit();
6173 else if (j != 0)
6174 MyFlags.Flags.setOrigAlign(1);
6176 Outs.push_back(MyFlags);
6177 OutVals.push_back(Parts[j]);
6182 // Handle the incoming return values from the call.
6183 SmallVector<ISD::InputArg, 32> Ins;
6184 SmallVector<EVT, 4> RetTys;
6185 ComputeValueVTs(*this, RetTy, RetTys);
6186 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6187 EVT VT = RetTys[I];
6188 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6189 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6190 for (unsigned i = 0; i != NumRegs; ++i) {
6191 ISD::InputArg MyFlags;
6192 MyFlags.VT = RegisterVT.getSimpleVT();
6193 MyFlags.Used = isReturnValueUsed;
6194 if (RetSExt)
6195 MyFlags.Flags.setSExt();
6196 if (RetZExt)
6197 MyFlags.Flags.setZExt();
6198 if (isInreg)
6199 MyFlags.Flags.setInReg();
6200 Ins.push_back(MyFlags);
6204 SmallVector<SDValue, 4> InVals;
6205 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6206 Outs, OutVals, Ins, dl, DAG, InVals);
6208 // Verify that the target's LowerCall behaved as expected.
6209 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6210 "LowerCall didn't return a valid chain!");
6211 assert((!isTailCall || InVals.empty()) &&
6212 "LowerCall emitted a return value for a tail call!");
6213 assert((isTailCall || InVals.size() == Ins.size()) &&
6214 "LowerCall didn't emit the correct number of values!");
6216 // For a tail call, the return value is merely live-out and there aren't
6217 // any nodes in the DAG representing it. Return a special value to
6218 // indicate that a tail call has been emitted and no more Instructions
6219 // should be processed in the current block.
6220 if (isTailCall) {
6221 DAG.setRoot(Chain);
6222 return std::make_pair(SDValue(), SDValue());
6225 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6226 assert(InVals[i].getNode() &&
6227 "LowerCall emitted a null value!");
6228 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6229 "LowerCall emitted a value with the wrong type!");
6232 // Collect the legal value parts into potentially illegal values
6233 // that correspond to the original function's return values.
6234 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6235 if (RetSExt)
6236 AssertOp = ISD::AssertSext;
6237 else if (RetZExt)
6238 AssertOp = ISD::AssertZext;
6239 SmallVector<SDValue, 4> ReturnValues;
6240 unsigned CurReg = 0;
6241 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6242 EVT VT = RetTys[I];
6243 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6244 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6246 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6247 NumRegs, RegisterVT, VT,
6248 AssertOp));
6249 CurReg += NumRegs;
6252 // For a function returning void, there is no return value. We can't create
6253 // such a node, so we just return a null return value in that case. In
6254 // that case, nothing will actually look at the value.
6255 if (ReturnValues.empty())
6256 return std::make_pair(SDValue(), Chain);
6258 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6259 DAG.getVTList(&RetTys[0], RetTys.size()),
6260 &ReturnValues[0], ReturnValues.size());
6261 return std::make_pair(Res, Chain);
6264 void TargetLowering::LowerOperationWrapper(SDNode *N,
6265 SmallVectorImpl<SDValue> &Results,
6266 SelectionDAG &DAG) const {
6267 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6268 if (Res.getNode())
6269 Results.push_back(Res);
6272 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6273 llvm_unreachable("LowerOperation not implemented for this target!");
6274 return SDValue();
6277 void
6278 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6279 SDValue Op = getNonRegisterValue(V);
6280 assert((Op.getOpcode() != ISD::CopyFromReg ||
6281 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6282 "Copy from a reg to the same reg!");
6283 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6285 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6286 SDValue Chain = DAG.getEntryNode();
6287 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6288 PendingExports.push_back(Chain);
6291 #include "llvm/CodeGen/SelectionDAGISel.h"
6293 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6294 /// entry block, return true. This includes arguments used by switches, since
6295 /// the switch may expand into multiple basic blocks.
6296 static bool isOnlyUsedInEntryBlock(const Argument *A) {
6297 // With FastISel active, we may be splitting blocks, so force creation
6298 // of virtual registers for all non-dead arguments.
6299 if (EnableFastISel)
6300 return A->use_empty();
6302 const BasicBlock *Entry = A->getParent()->begin();
6303 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6304 UI != E; ++UI) {
6305 const User *U = *UI;
6306 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6307 return false; // Use not in entry block.
6309 return true;
6312 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6313 // If this is the entry block, emit arguments.
6314 const Function &F = *LLVMBB->getParent();
6315 SelectionDAG &DAG = SDB->DAG;
6316 DebugLoc dl = SDB->getCurDebugLoc();
6317 const TargetData *TD = TLI.getTargetData();
6318 SmallVector<ISD::InputArg, 16> Ins;
6320 // Check whether the function can return without sret-demotion.
6321 SmallVector<ISD::OutputArg, 4> Outs;
6322 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6323 Outs, TLI);
6325 if (!FuncInfo->CanLowerReturn) {
6326 // Put in an sret pointer parameter before all the other parameters.
6327 SmallVector<EVT, 1> ValueVTs;
6328 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6330 // NOTE: Assuming that a pointer will never break down to more than one VT
6331 // or one register.
6332 ISD::ArgFlagsTy Flags;
6333 Flags.setSRet();
6334 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6335 ISD::InputArg RetArg(Flags, RegisterVT, true);
6336 Ins.push_back(RetArg);
6339 // Set up the incoming argument description vector.
6340 unsigned Idx = 1;
6341 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6342 I != E; ++I, ++Idx) {
6343 SmallVector<EVT, 4> ValueVTs;
6344 ComputeValueVTs(TLI, I->getType(), ValueVTs);
6345 bool isArgValueUsed = !I->use_empty();
6346 for (unsigned Value = 0, NumValues = ValueVTs.size();
6347 Value != NumValues; ++Value) {
6348 EVT VT = ValueVTs[Value];
6349 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6350 ISD::ArgFlagsTy Flags;
6351 unsigned OriginalAlignment =
6352 TD->getABITypeAlignment(ArgTy);
6354 if (F.paramHasAttr(Idx, Attribute::ZExt))
6355 Flags.setZExt();
6356 if (F.paramHasAttr(Idx, Attribute::SExt))
6357 Flags.setSExt();
6358 if (F.paramHasAttr(Idx, Attribute::InReg))
6359 Flags.setInReg();
6360 if (F.paramHasAttr(Idx, Attribute::StructRet))
6361 Flags.setSRet();
6362 if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6363 Flags.setByVal();
6364 const PointerType *Ty = cast<PointerType>(I->getType());
6365 const Type *ElementTy = Ty->getElementType();
6366 Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6367 // For ByVal, alignment should be passed from FE. BE will guess if
6368 // this info is not there but there are cases it cannot get right.
6369 unsigned FrameAlign;
6370 if (F.getParamAlignment(Idx))
6371 FrameAlign = F.getParamAlignment(Idx);
6372 else
6373 FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6374 Flags.setByValAlign(FrameAlign);
6376 if (F.paramHasAttr(Idx, Attribute::Nest))
6377 Flags.setNest();
6378 Flags.setOrigAlign(OriginalAlignment);
6380 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6381 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6382 for (unsigned i = 0; i != NumRegs; ++i) {
6383 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6384 if (NumRegs > 1 && i == 0)
6385 MyFlags.Flags.setSplit();
6386 // if it isn't first piece, alignment must be 1
6387 else if (i > 0)
6388 MyFlags.Flags.setOrigAlign(1);
6389 Ins.push_back(MyFlags);
6394 // Call the target to set up the argument values.
6395 SmallVector<SDValue, 8> InVals;
6396 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6397 F.isVarArg(), Ins,
6398 dl, DAG, InVals);
6400 // Verify that the target's LowerFormalArguments behaved as expected.
6401 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6402 "LowerFormalArguments didn't return a valid chain!");
6403 assert(InVals.size() == Ins.size() &&
6404 "LowerFormalArguments didn't emit the correct number of values!");
6405 DEBUG({
6406 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6407 assert(InVals[i].getNode() &&
6408 "LowerFormalArguments emitted a null value!");
6409 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6410 "LowerFormalArguments emitted a value with the wrong type!");
6414 // Update the DAG with the new chain value resulting from argument lowering.
6415 DAG.setRoot(NewRoot);
6417 // Set up the argument values.
6418 unsigned i = 0;
6419 Idx = 1;
6420 if (!FuncInfo->CanLowerReturn) {
6421 // Create a virtual register for the sret pointer, and put in a copy
6422 // from the sret argument into it.
6423 SmallVector<EVT, 1> ValueVTs;
6424 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6425 EVT VT = ValueVTs[0];
6426 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6427 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6428 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6429 RegVT, VT, AssertOp);
6431 MachineFunction& MF = SDB->DAG.getMachineFunction();
6432 MachineRegisterInfo& RegInfo = MF.getRegInfo();
6433 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6434 FuncInfo->DemoteRegister = SRetReg;
6435 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6436 SRetReg, ArgValue);
6437 DAG.setRoot(NewRoot);
6439 // i indexes lowered arguments. Bump it past the hidden sret argument.
6440 // Idx indexes LLVM arguments. Don't touch it.
6441 ++i;
6444 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6445 ++I, ++Idx) {
6446 SmallVector<SDValue, 4> ArgValues;
6447 SmallVector<EVT, 4> ValueVTs;
6448 ComputeValueVTs(TLI, I->getType(), ValueVTs);
6449 unsigned NumValues = ValueVTs.size();
6451 // If this argument is unused then remember its value. It is used to generate
6452 // debugging information.
6453 if (I->use_empty() && NumValues)
6454 SDB->setUnusedArgValue(I, InVals[i]);
6456 for (unsigned Val = 0; Val != NumValues; ++Val) {
6457 EVT VT = ValueVTs[Val];
6458 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6459 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6461 if (!I->use_empty()) {
6462 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6463 if (F.paramHasAttr(Idx, Attribute::SExt))
6464 AssertOp = ISD::AssertSext;
6465 else if (F.paramHasAttr(Idx, Attribute::ZExt))
6466 AssertOp = ISD::AssertZext;
6468 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6469 NumParts, PartVT, VT,
6470 AssertOp));
6473 i += NumParts;
6476 // We don't need to do anything else for unused arguments.
6477 if (ArgValues.empty())
6478 continue;
6480 // Note down frame index for byval arguments.
6481 if (I->hasByValAttr())
6482 if (FrameIndexSDNode *FI =
6483 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6484 FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6486 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6487 SDB->getCurDebugLoc());
6488 SDB->setValue(I, Res);
6490 // If this argument is live outside of the entry block, insert a copy from
6491 // wherever we got it to the vreg that other BB's will reference it as.
6492 if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6493 // If we can, though, try to skip creating an unnecessary vreg.
6494 // FIXME: This isn't very clean... it would be nice to make this more
6495 // general. It's also subtly incompatible with the hacks FastISel
6496 // uses with vregs.
6497 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6498 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6499 FuncInfo->ValueMap[I] = Reg;
6500 continue;
6503 if (!isOnlyUsedInEntryBlock(I)) {
6504 FuncInfo->InitializeRegForValue(I);
6505 SDB->CopyToExportRegsIfNeeded(I);
6509 assert(i == InVals.size() && "Argument register count mismatch!");
6511 // Finally, if the target has anything special to do, allow it to do so.
6512 // FIXME: this should insert code into the DAG!
6513 EmitFunctionEntryCode();
6516 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
6517 /// ensure constants are generated when needed. Remember the virtual registers
6518 /// that need to be added to the Machine PHI nodes as input. We cannot just
6519 /// directly add them, because expansion might result in multiple MBB's for one
6520 /// BB. As such, the start of the BB might correspond to a different MBB than
6521 /// the end.
6523 void
6524 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6525 const TerminatorInst *TI = LLVMBB->getTerminator();
6527 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6529 // Check successor nodes' PHI nodes that expect a constant to be available
6530 // from this block.
6531 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6532 const BasicBlock *SuccBB = TI->getSuccessor(succ);
6533 if (!isa<PHINode>(SuccBB->begin())) continue;
6534 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6536 // If this terminator has multiple identical successors (common for
6537 // switches), only handle each succ once.
6538 if (!SuccsHandled.insert(SuccMBB)) continue;
6540 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6542 // At this point we know that there is a 1-1 correspondence between LLVM PHI
6543 // nodes and Machine PHI nodes, but the incoming operands have not been
6544 // emitted yet.
6545 for (BasicBlock::const_iterator I = SuccBB->begin();
6546 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6547 // Ignore dead phi's.
6548 if (PN->use_empty()) continue;
6550 // Skip empty types
6551 if (PN->getType()->isEmptyTy())
6552 continue;
6554 unsigned Reg;
6555 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6557 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6558 unsigned &RegOut = ConstantsOut[C];
6559 if (RegOut == 0) {
6560 RegOut = FuncInfo.CreateRegs(C->getType());
6561 CopyValueToVirtualRegister(C, RegOut);
6563 Reg = RegOut;
6564 } else {
6565 DenseMap<const Value *, unsigned>::iterator I =
6566 FuncInfo.ValueMap.find(PHIOp);
6567 if (I != FuncInfo.ValueMap.end())
6568 Reg = I->second;
6569 else {
6570 assert(isa<AllocaInst>(PHIOp) &&
6571 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6572 "Didn't codegen value into a register!??");
6573 Reg = FuncInfo.CreateRegs(PHIOp->getType());
6574 CopyValueToVirtualRegister(PHIOp, Reg);
6578 // Remember that this register needs to added to the machine PHI node as
6579 // the input for this MBB.
6580 SmallVector<EVT, 4> ValueVTs;
6581 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6582 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6583 EVT VT = ValueVTs[vti];
6584 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6585 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6586 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6587 Reg += NumRegisters;
6591 ConstantsOut.clear();