Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
blob87bb296b8c790f78e1385442b2e2a3f44e3de3b4
1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/CodeGen/FunctionLoweringInfo.h"
18 #include "llvm/CodeGen/SelectionDAGISel.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/DebugInfo.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Function.h"
24 #include "llvm/InlineAsm.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/IntrinsicInst.h"
28 #include "llvm/LLVMContext.h"
29 #include "llvm/Module.h"
30 #include "llvm/CodeGen/FastISel.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/GCMetadata.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39 #include "llvm/CodeGen/SchedulerRegistry.h"
40 #include "llvm/CodeGen/SelectionDAG.h"
41 #include "llvm/Target/TargetRegisterInfo.h"
42 #include "llvm/Target/TargetIntrinsicInfo.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetLowering.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/Timer.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/ADT/PostOrderIterator.h"
54 #include "llvm/ADT/Statistic.h"
55 #include <algorithm>
56 using namespace llvm;
58 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
59 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
60 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
61 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
62 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
64 static cl::opt<bool>
65 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
66 cl::desc("Enable verbose messages in the \"fast\" "
67 "instruction selector"));
68 static cl::opt<bool>
69 EnableFastISelAbort("fast-isel-abort", cl::Hidden,
70 cl::desc("Enable abort calls when \"fast\" instruction fails"));
72 static cl::opt<bool>
73 UseMBPI("use-mbpi",
74 cl::desc("use Machine Branch Probability Info"),
75 cl::init(true), cl::Hidden);
77 #ifndef NDEBUG
78 static cl::opt<bool>
79 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
80 cl::desc("Pop up a window to show dags before the first "
81 "dag combine pass"));
82 static cl::opt<bool>
83 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
84 cl::desc("Pop up a window to show dags before legalize types"));
85 static cl::opt<bool>
86 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
87 cl::desc("Pop up a window to show dags before legalize"));
88 static cl::opt<bool>
89 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
90 cl::desc("Pop up a window to show dags before the second "
91 "dag combine pass"));
92 static cl::opt<bool>
93 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
94 cl::desc("Pop up a window to show dags before the post legalize types"
95 " dag combine pass"));
96 static cl::opt<bool>
97 ViewISelDAGs("view-isel-dags", cl::Hidden,
98 cl::desc("Pop up a window to show isel dags as they are selected"));
99 static cl::opt<bool>
100 ViewSchedDAGs("view-sched-dags", cl::Hidden,
101 cl::desc("Pop up a window to show sched dags as they are processed"));
102 static cl::opt<bool>
103 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
104 cl::desc("Pop up a window to show SUnit dags after they are processed"));
105 #else
106 static const bool ViewDAGCombine1 = false,
107 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
108 ViewDAGCombine2 = false,
109 ViewDAGCombineLT = false,
110 ViewISelDAGs = false, ViewSchedDAGs = false,
111 ViewSUnitDAGs = false;
112 #endif
114 //===---------------------------------------------------------------------===//
116 /// RegisterScheduler class - Track the registration of instruction schedulers.
118 //===---------------------------------------------------------------------===//
119 MachinePassRegistry RegisterScheduler::Registry;
121 //===---------------------------------------------------------------------===//
123 /// ISHeuristic command line option for instruction schedulers.
125 //===---------------------------------------------------------------------===//
126 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
127 RegisterPassParser<RegisterScheduler> >
128 ISHeuristic("pre-RA-sched",
129 cl::init(&createDefaultScheduler),
130 cl::desc("Instruction schedulers available (before register"
131 " allocation):"));
133 static RegisterScheduler
134 defaultListDAGScheduler("default", "Best scheduler for the target",
135 createDefaultScheduler);
137 namespace llvm {
138 //===--------------------------------------------------------------------===//
139 /// createDefaultScheduler - This creates an instruction scheduler appropriate
140 /// for the target.
141 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
142 CodeGenOpt::Level OptLevel) {
143 const TargetLowering &TLI = IS->getTargetLowering();
145 if (OptLevel == CodeGenOpt::None)
146 return createSourceListDAGScheduler(IS, OptLevel);
147 if (TLI.getSchedulingPreference() == Sched::Latency)
148 return createTDListDAGScheduler(IS, OptLevel);
149 if (TLI.getSchedulingPreference() == Sched::RegPressure)
150 return createBURRListDAGScheduler(IS, OptLevel);
151 if (TLI.getSchedulingPreference() == Sched::Hybrid)
152 return createHybridListDAGScheduler(IS, OptLevel);
153 assert(TLI.getSchedulingPreference() == Sched::ILP &&
154 "Unknown sched type!");
155 return createILPListDAGScheduler(IS, OptLevel);
159 // EmitInstrWithCustomInserter - This method should be implemented by targets
160 // that mark instructions with the 'usesCustomInserter' flag. These
161 // instructions are special in various ways, which require special support to
162 // insert. The specified MachineInstr is created but not inserted into any
163 // basic blocks, and this method is called to expand it into a sequence of
164 // instructions, potentially also creating new basic blocks and control flow.
165 // When new basic blocks are inserted and the edges from MBB to its successors
166 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
167 // DenseMap.
168 MachineBasicBlock *
169 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
170 MachineBasicBlock *MBB) const {
171 #ifndef NDEBUG
172 dbgs() << "If a target marks an instruction with "
173 "'usesCustomInserter', it must implement "
174 "TargetLowering::EmitInstrWithCustomInserter!";
175 #endif
176 llvm_unreachable(0);
177 return 0;
180 //===----------------------------------------------------------------------===//
181 // SelectionDAGISel code
182 //===----------------------------------------------------------------------===//
184 SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
185 CodeGenOpt::Level OL) :
186 MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
187 FuncInfo(new FunctionLoweringInfo(TLI)),
188 CurDAG(new SelectionDAG(tm)),
189 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
190 GFI(),
191 OptLevel(OL),
192 DAGSize(0) {
193 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
194 initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
195 initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
198 SelectionDAGISel::~SelectionDAGISel() {
199 delete SDB;
200 delete CurDAG;
201 delete FuncInfo;
204 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
205 AU.addRequired<AliasAnalysis>();
206 AU.addPreserved<AliasAnalysis>();
207 AU.addRequired<GCModuleInfo>();
208 AU.addPreserved<GCModuleInfo>();
209 if (UseMBPI && OptLevel != CodeGenOpt::None)
210 AU.addRequired<BranchProbabilityInfo>();
211 MachineFunctionPass::getAnalysisUsage(AU);
214 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
215 /// may trap on it. In this case we have to split the edge so that the path
216 /// through the predecessor block that doesn't go to the phi block doesn't
217 /// execute the possibly trapping instruction.
219 /// This is required for correctness, so it must be done at -O0.
221 static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
222 // Loop for blocks with phi nodes.
223 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
224 PHINode *PN = dyn_cast<PHINode>(BB->begin());
225 if (PN == 0) continue;
227 ReprocessBlock:
228 // For each block with a PHI node, check to see if any of the input values
229 // are potentially trapping constant expressions. Constant expressions are
230 // the only potentially trapping value that can occur as the argument to a
231 // PHI.
232 for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
233 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
234 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
235 if (CE == 0 || !CE->canTrap()) continue;
237 // The only case we have to worry about is when the edge is critical.
238 // Since this block has a PHI Node, we assume it has multiple input
239 // edges: check to see if the pred has multiple successors.
240 BasicBlock *Pred = PN->getIncomingBlock(i);
241 if (Pred->getTerminator()->getNumSuccessors() == 1)
242 continue;
244 // Okay, we have to split this edge.
245 SplitCriticalEdge(Pred->getTerminator(),
246 GetSuccessorNumber(Pred, BB), SDISel, true);
247 goto ReprocessBlock;
252 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
253 // Do some sanity-checking on the command-line options.
254 assert((!EnableFastISelVerbose || EnableFastISel) &&
255 "-fast-isel-verbose requires -fast-isel");
256 assert((!EnableFastISelAbort || EnableFastISel) &&
257 "-fast-isel-abort requires -fast-isel");
259 const Function &Fn = *mf.getFunction();
260 const TargetInstrInfo &TII = *TM.getInstrInfo();
261 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
263 MF = &mf;
264 RegInfo = &MF->getRegInfo();
265 AA = &getAnalysis<AliasAnalysis>();
266 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
268 DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
270 SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
272 CurDAG->init(*MF);
273 FuncInfo->set(Fn, *MF);
275 if (UseMBPI && OptLevel != CodeGenOpt::None)
276 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
277 else
278 FuncInfo->BPI = 0;
280 SDB->init(GFI, *AA);
282 SelectAllBasicBlocks(Fn);
284 // If the first basic block in the function has live ins that need to be
285 // copied into vregs, emit the copies into the top of the block before
286 // emitting the code for the block.
287 MachineBasicBlock *EntryMBB = MF->begin();
288 RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
290 DenseMap<unsigned, unsigned> LiveInMap;
291 if (!FuncInfo->ArgDbgValues.empty())
292 for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
293 E = RegInfo->livein_end(); LI != E; ++LI)
294 if (LI->second)
295 LiveInMap.insert(std::make_pair(LI->first, LI->second));
297 // Insert DBG_VALUE instructions for function arguments to the entry block.
298 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
299 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
300 unsigned Reg = MI->getOperand(0).getReg();
301 if (TargetRegisterInfo::isPhysicalRegister(Reg))
302 EntryMBB->insert(EntryMBB->begin(), MI);
303 else {
304 MachineInstr *Def = RegInfo->getVRegDef(Reg);
305 MachineBasicBlock::iterator InsertPos = Def;
306 // FIXME: VR def may not be in entry block.
307 Def->getParent()->insert(llvm::next(InsertPos), MI);
310 // If Reg is live-in then update debug info to track its copy in a vreg.
311 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
312 if (LDI != LiveInMap.end()) {
313 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
314 MachineBasicBlock::iterator InsertPos = Def;
315 const MDNode *Variable =
316 MI->getOperand(MI->getNumOperands()-1).getMetadata();
317 unsigned Offset = MI->getOperand(1).getImm();
318 // Def is never a terminator here, so it is ok to increment InsertPos.
319 BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
320 TII.get(TargetOpcode::DBG_VALUE))
321 .addReg(LDI->second, RegState::Debug)
322 .addImm(Offset).addMetadata(Variable);
324 // If this vreg is directly copied into an exported register then
325 // that COPY instructions also need DBG_VALUE, if it is the only
326 // user of LDI->second.
327 MachineInstr *CopyUseMI = NULL;
328 for (MachineRegisterInfo::use_iterator
329 UI = RegInfo->use_begin(LDI->second);
330 MachineInstr *UseMI = UI.skipInstruction();) {
331 if (UseMI->isDebugValue()) continue;
332 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
333 CopyUseMI = UseMI; continue;
335 // Otherwise this is another use or second copy use.
336 CopyUseMI = NULL; break;
338 if (CopyUseMI) {
339 MachineInstr *NewMI =
340 BuildMI(*MF, CopyUseMI->getDebugLoc(),
341 TII.get(TargetOpcode::DBG_VALUE))
342 .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
343 .addImm(Offset).addMetadata(Variable);
344 EntryMBB->insertAfter(CopyUseMI, NewMI);
349 // Determine if there are any calls in this machine function.
350 MachineFrameInfo *MFI = MF->getFrameInfo();
351 if (!MFI->hasCalls()) {
352 for (MachineFunction::const_iterator
353 I = MF->begin(), E = MF->end(); I != E; ++I) {
354 const MachineBasicBlock *MBB = I;
355 for (MachineBasicBlock::const_iterator
356 II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
357 const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
359 if ((MCID.isCall() && !MCID.isReturn()) ||
360 II->isStackAligningInlineAsm()) {
361 MFI->setHasCalls(true);
362 goto done;
366 done:;
369 // Determine if there is a call to setjmp in the machine function.
370 MF->setCallsSetJmp(Fn.callsFunctionThatReturnsTwice());
372 // Replace forward-declared registers with the registers containing
373 // the desired value.
374 MachineRegisterInfo &MRI = MF->getRegInfo();
375 for (DenseMap<unsigned, unsigned>::iterator
376 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
377 I != E; ++I) {
378 unsigned From = I->first;
379 unsigned To = I->second;
380 // If To is also scheduled to be replaced, find what its ultimate
381 // replacement is.
382 for (;;) {
383 DenseMap<unsigned, unsigned>::iterator J =
384 FuncInfo->RegFixups.find(To);
385 if (J == E) break;
386 To = J->second;
388 // Replace it.
389 MRI.replaceRegWith(From, To);
392 // Release function-specific state. SDB and CurDAG are already cleared
393 // at this point.
394 FuncInfo->clear();
396 return true;
399 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
400 BasicBlock::const_iterator End,
401 bool &HadTailCall) {
402 // Lower all of the non-terminator instructions. If a call is emitted
403 // as a tail call, cease emitting nodes for this block. Terminators
404 // are handled below.
405 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
406 SDB->visit(*I);
408 // Make sure the root of the DAG is up-to-date.
409 CurDAG->setRoot(SDB->getControlRoot());
410 HadTailCall = SDB->HasTailCall;
411 SDB->clear();
413 // Final step, emit the lowered DAG as machine code.
414 CodeGenAndEmitDAG();
417 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
418 SmallPtrSet<SDNode*, 128> VisitedNodes;
419 SmallVector<SDNode*, 128> Worklist;
421 Worklist.push_back(CurDAG->getRoot().getNode());
423 APInt Mask;
424 APInt KnownZero;
425 APInt KnownOne;
427 do {
428 SDNode *N = Worklist.pop_back_val();
430 // If we've already seen this node, ignore it.
431 if (!VisitedNodes.insert(N))
432 continue;
434 // Otherwise, add all chain operands to the worklist.
435 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
436 if (N->getOperand(i).getValueType() == MVT::Other)
437 Worklist.push_back(N->getOperand(i).getNode());
439 // If this is a CopyToReg with a vreg dest, process it.
440 if (N->getOpcode() != ISD::CopyToReg)
441 continue;
443 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
444 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
445 continue;
447 // Ignore non-scalar or non-integer values.
448 SDValue Src = N->getOperand(2);
449 EVT SrcVT = Src.getValueType();
450 if (!SrcVT.isInteger() || SrcVT.isVector())
451 continue;
453 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
454 Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
455 CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
456 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
457 } while (!Worklist.empty());
460 void SelectionDAGISel::CodeGenAndEmitDAG() {
461 std::string GroupName;
462 if (TimePassesIsEnabled)
463 GroupName = "Instruction Selection and Scheduling";
464 std::string BlockName;
465 int BlockNumber = -1;
466 #ifdef NDEBUG
467 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
468 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
469 ViewSUnitDAGs)
470 #endif
472 BlockNumber = FuncInfo->MBB->getNumber();
473 BlockName = MF->getFunction()->getNameStr() + ":" +
474 FuncInfo->MBB->getBasicBlock()->getNameStr();
476 DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
477 << " '" << BlockName << "'\n"; CurDAG->dump());
479 if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
481 // Run the DAG combiner in pre-legalize mode.
483 NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
484 CurDAG->Combine(Unrestricted, *AA, OptLevel);
487 DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
488 << " '" << BlockName << "'\n"; CurDAG->dump());
490 // Second step, hack on the DAG until it only uses operations and types that
491 // the target supports.
492 if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
493 BlockName);
495 bool Changed;
497 NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
498 Changed = CurDAG->LegalizeTypes();
501 DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
502 << " '" << BlockName << "'\n"; CurDAG->dump());
504 if (Changed) {
505 if (ViewDAGCombineLT)
506 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
508 // Run the DAG combiner in post-type-legalize mode.
510 NamedRegionTimer T("DAG Combining after legalize types", GroupName,
511 TimePassesIsEnabled);
512 CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
515 DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
516 << " '" << BlockName << "'\n"; CurDAG->dump());
520 NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
521 Changed = CurDAG->LegalizeVectors();
524 if (Changed) {
526 NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
527 CurDAG->LegalizeTypes();
530 if (ViewDAGCombineLT)
531 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
533 // Run the DAG combiner in post-type-legalize mode.
535 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
536 TimePassesIsEnabled);
537 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
540 DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
541 << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
544 if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
547 NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
548 CurDAG->Legalize();
551 DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
552 << " '" << BlockName << "'\n"; CurDAG->dump());
554 if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
556 // Run the DAG combiner in post-legalize mode.
558 NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
559 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
562 DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
563 << " '" << BlockName << "'\n"; CurDAG->dump());
565 if (OptLevel != CodeGenOpt::None)
566 ComputeLiveOutVRegInfo();
568 if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
570 // Third, instruction select all of the operations to machine code, adding the
571 // code to the MachineBasicBlock.
573 NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
574 DoInstructionSelection();
577 DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
578 << " '" << BlockName << "'\n"; CurDAG->dump());
580 if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
582 // Schedule machine code.
583 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
585 NamedRegionTimer T("Instruction Scheduling", GroupName,
586 TimePassesIsEnabled);
587 Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
590 if (ViewSUnitDAGs) Scheduler->viewGraph();
592 // Emit machine code to BB. This can change 'BB' to the last block being
593 // inserted into.
594 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
596 NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
598 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
599 FuncInfo->InsertPt = Scheduler->InsertPos;
602 // If the block was split, make sure we update any references that are used to
603 // update PHI nodes later on.
604 if (FirstMBB != LastMBB)
605 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
607 // Free the scheduler state.
609 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
610 TimePassesIsEnabled);
611 delete Scheduler;
614 // Free the SelectionDAG state, now that we're finished with it.
615 CurDAG->clear();
618 void SelectionDAGISel::DoInstructionSelection() {
619 DEBUG(errs() << "===== Instruction selection begins: BB#"
620 << FuncInfo->MBB->getNumber()
621 << " '" << FuncInfo->MBB->getName() << "'\n");
623 PreprocessISelDAG();
625 // Select target instructions for the DAG.
627 // Number all nodes with a topological order and set DAGSize.
628 DAGSize = CurDAG->AssignTopologicalOrder();
630 // Create a dummy node (which is not added to allnodes), that adds
631 // a reference to the root node, preventing it from being deleted,
632 // and tracking any changes of the root.
633 HandleSDNode Dummy(CurDAG->getRoot());
634 ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
635 ++ISelPosition;
637 // The AllNodes list is now topological-sorted. Visit the
638 // nodes by starting at the end of the list (the root of the
639 // graph) and preceding back toward the beginning (the entry
640 // node).
641 while (ISelPosition != CurDAG->allnodes_begin()) {
642 SDNode *Node = --ISelPosition;
643 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
644 // but there are currently some corner cases that it misses. Also, this
645 // makes it theoretically possible to disable the DAGCombiner.
646 if (Node->use_empty())
647 continue;
649 SDNode *ResNode = Select(Node);
651 // FIXME: This is pretty gross. 'Select' should be changed to not return
652 // anything at all and this code should be nuked with a tactical strike.
654 // If node should not be replaced, continue with the next one.
655 if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
656 continue;
657 // Replace node.
658 if (ResNode)
659 ReplaceUses(Node, ResNode);
661 // If after the replacement this node is not used any more,
662 // remove this dead node.
663 if (Node->use_empty()) { // Don't delete EntryToken, etc.
664 ISelUpdater ISU(ISelPosition);
665 CurDAG->RemoveDeadNode(Node, &ISU);
669 CurDAG->setRoot(Dummy.getValue());
672 DEBUG(errs() << "===== Instruction selection ends:\n");
674 PostprocessISelDAG();
677 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
678 /// do other setup for EH landing-pad blocks.
679 void SelectionDAGISel::PrepareEHLandingPad() {
680 // Add a label to mark the beginning of the landing pad. Deletion of the
681 // landing pad can thus be detected via the MachineModuleInfo.
682 MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
684 const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
685 BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
686 .addSym(Label);
688 // Mark exception register as live in.
689 unsigned Reg = TLI.getExceptionAddressRegister();
690 if (Reg) FuncInfo->MBB->addLiveIn(Reg);
692 // Mark exception selector register as live in.
693 Reg = TLI.getExceptionSelectorRegister();
694 if (Reg) FuncInfo->MBB->addLiveIn(Reg);
696 // FIXME: Hack around an exception handling flaw (PR1508): the personality
697 // function and list of typeids logically belong to the invoke (or, if you
698 // like, the basic block containing the invoke), and need to be associated
699 // with it in the dwarf exception handling tables. Currently however the
700 // information is provided by an intrinsic (eh.selector) that can be moved
701 // to unexpected places by the optimizers: if the unwind edge is critical,
702 // then breaking it can result in the intrinsics being in the successor of
703 // the landing pad, not the landing pad itself. This results
704 // in exceptions not being caught because no typeids are associated with
705 // the invoke. This may not be the only way things can go wrong, but it
706 // is the only way we try to work around for the moment.
707 const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
708 const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
710 if (Br && Br->isUnconditional()) { // Critical edge?
711 BasicBlock::const_iterator I, E;
712 for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
713 if (isa<EHSelectorInst>(I))
714 break;
716 if (I == E)
717 // No catch info found - try to extract some from the successor.
718 CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
724 /// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
725 /// load into the specified FoldInst. Note that we could have a sequence where
726 /// multiple LLVM IR instructions are folded into the same machineinstr. For
727 /// example we could have:
728 /// A: x = load i32 *P
729 /// B: y = icmp A, 42
730 /// C: br y, ...
732 /// In this scenario, LI is "A", and FoldInst is "C". We know about "B" (and
733 /// any other folded instructions) because it is between A and C.
735 /// If we succeed in folding the load into the operation, return true.
737 bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
738 const Instruction *FoldInst,
739 FastISel *FastIS) {
740 // We know that the load has a single use, but don't know what it is. If it
741 // isn't one of the folded instructions, then we can't succeed here. Handle
742 // this by scanning the single-use users of the load until we get to FoldInst.
743 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
745 const Instruction *TheUser = LI->use_back();
746 while (TheUser != FoldInst && // Scan up until we find FoldInst.
747 // Stay in the right block.
748 TheUser->getParent() == FoldInst->getParent() &&
749 --MaxUsers) { // Don't scan too far.
750 // If there are multiple or no uses of this instruction, then bail out.
751 if (!TheUser->hasOneUse())
752 return false;
754 TheUser = TheUser->use_back();
757 // Don't try to fold volatile loads. Target has to deal with alignment
758 // constraints.
759 if (LI->isVolatile()) return false;
761 // Figure out which vreg this is going into. If there is no assigned vreg yet
762 // then there actually was no reference to it. Perhaps the load is referenced
763 // by a dead instruction.
764 unsigned LoadReg = FastIS->getRegForValue(LI);
765 if (LoadReg == 0)
766 return false;
768 // Check to see what the uses of this vreg are. If it has no uses, or more
769 // than one use (at the machine instr level) then we can't fold it.
770 MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
771 if (RI == RegInfo->reg_end())
772 return false;
774 // See if there is exactly one use of the vreg. If there are multiple uses,
775 // then the instruction got lowered to multiple machine instructions or the
776 // use of the loaded value ended up being multiple operands of the result, in
777 // either case, we can't fold this.
778 MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
779 if (PostRI != RegInfo->reg_end())
780 return false;
782 assert(RI.getOperand().isUse() &&
783 "The only use of the vreg must be a use, we haven't emitted the def!");
785 MachineInstr *User = &*RI;
787 // Set the insertion point properly. Folding the load can cause generation of
788 // other random instructions (like sign extends) for addressing modes, make
789 // sure they get inserted in a logical place before the new instruction.
790 FuncInfo->InsertPt = User;
791 FuncInfo->MBB = User->getParent();
793 // Ask the target to try folding the load.
794 return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
797 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
798 /// side-effect free and is either dead or folded into a generated instruction.
799 /// Return false if it needs to be emitted.
800 static bool isFoldedOrDeadInstruction(const Instruction *I,
801 FunctionLoweringInfo *FuncInfo) {
802 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
803 !isa<TerminatorInst>(I) && // Terminators aren't folded.
804 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
805 !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
808 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
809 // Initialize the Fast-ISel state, if needed.
810 FastISel *FastIS = 0;
811 if (EnableFastISel)
812 FastIS = TLI.createFastISel(*FuncInfo);
814 // Iterate over all basic blocks in the function.
815 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
816 for (ReversePostOrderTraversal<const Function*>::rpo_iterator
817 I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
818 const BasicBlock *LLVMBB = *I;
820 if (OptLevel != CodeGenOpt::None) {
821 bool AllPredsVisited = true;
822 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
823 PI != PE; ++PI) {
824 if (!FuncInfo->VisitedBBs.count(*PI)) {
825 AllPredsVisited = false;
826 break;
830 if (AllPredsVisited) {
831 for (BasicBlock::const_iterator I = LLVMBB->begin();
832 isa<PHINode>(I); ++I)
833 FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
834 } else {
835 for (BasicBlock::const_iterator I = LLVMBB->begin();
836 isa<PHINode>(I); ++I)
837 FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
840 FuncInfo->VisitedBBs.insert(LLVMBB);
843 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
844 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
846 BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
847 BasicBlock::const_iterator const End = LLVMBB->end();
848 BasicBlock::const_iterator BI = End;
850 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
852 // Setup an EH landing-pad block.
853 if (FuncInfo->MBB->isLandingPad())
854 PrepareEHLandingPad();
856 // Lower any arguments needed in this block if this is the entry block.
857 if (LLVMBB == &Fn.getEntryBlock())
858 LowerArguments(LLVMBB);
860 // Before doing SelectionDAG ISel, see if FastISel has been requested.
861 if (FastIS) {
862 FastIS->startNewBlock();
864 // Emit code for any incoming arguments. This must happen before
865 // beginning FastISel on the entry block.
866 if (LLVMBB == &Fn.getEntryBlock()) {
867 CurDAG->setRoot(SDB->getControlRoot());
868 SDB->clear();
869 CodeGenAndEmitDAG();
871 // If we inserted any instructions at the beginning, make a note of
872 // where they are, so we can be sure to emit subsequent instructions
873 // after them.
874 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
875 FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
876 else
877 FastIS->setLastLocalValue(0);
880 // Do FastISel on as many instructions as possible.
881 for (; BI != Begin; --BI) {
882 const Instruction *Inst = llvm::prior(BI);
884 // If we no longer require this instruction, skip it.
885 if (isFoldedOrDeadInstruction(Inst, FuncInfo))
886 continue;
888 // Bottom-up: reset the insert pos at the top, after any local-value
889 // instructions.
890 FastIS->recomputeInsertPt();
892 // Try to select the instruction with FastISel.
893 if (FastIS->SelectInstruction(Inst)) {
894 ++NumFastIselSuccess;
895 // If fast isel succeeded, skip over all the folded instructions, and
896 // then see if there is a load right before the selected instructions.
897 // Try to fold the load if so.
898 const Instruction *BeforeInst = Inst;
899 while (BeforeInst != Begin) {
900 BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
901 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
902 break;
904 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
905 BeforeInst->hasOneUse() &&
906 TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS))
907 // If we succeeded, don't re-select the load.
908 BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
909 continue;
912 // Then handle certain instructions as single-LLVM-Instruction blocks.
913 if (isa<CallInst>(Inst)) {
914 ++NumFastIselFailures;
915 if (EnableFastISelVerbose || EnableFastISelAbort) {
916 dbgs() << "FastISel missed call: ";
917 Inst->dump();
920 if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
921 unsigned &R = FuncInfo->ValueMap[Inst];
922 if (!R)
923 R = FuncInfo->CreateRegs(Inst->getType());
926 bool HadTailCall = false;
927 SelectBasicBlock(Inst, BI, HadTailCall);
929 // If the call was emitted as a tail call, we're done with the block.
930 if (HadTailCall) {
931 --BI;
932 break;
935 continue;
938 if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
939 // Don't abort, and use a different message for terminator misses.
940 ++NumFastIselFailures;
941 if (EnableFastISelVerbose || EnableFastISelAbort) {
942 dbgs() << "FastISel missed terminator: ";
943 Inst->dump();
945 } else {
946 ++NumFastIselFailures;
947 if (EnableFastISelVerbose || EnableFastISelAbort) {
948 dbgs() << "FastISel miss: ";
949 Inst->dump();
951 if (EnableFastISelAbort)
952 // The "fast" selector couldn't handle something and bailed.
953 // For the purpose of debugging, just abort.
954 llvm_unreachable("FastISel didn't select the entire block");
956 break;
959 FastIS->recomputeInsertPt();
962 if (Begin != BI)
963 ++NumDAGBlocks;
964 else
965 ++NumFastIselBlocks;
967 if (Begin != BI) {
968 // Run SelectionDAG instruction selection on the remainder of the block
969 // not handled by FastISel. If FastISel is not run, this is the entire
970 // block.
971 bool HadTailCall;
972 SelectBasicBlock(Begin, BI, HadTailCall);
975 FinishBasicBlock();
976 FuncInfo->PHINodesToUpdate.clear();
979 delete FastIS;
980 SDB->clearDanglingDebugInfo();
983 void
984 SelectionDAGISel::FinishBasicBlock() {
986 DEBUG(dbgs() << "Total amount of phi nodes to update: "
987 << FuncInfo->PHINodesToUpdate.size() << "\n";
988 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
989 dbgs() << "Node " << i << " : ("
990 << FuncInfo->PHINodesToUpdate[i].first
991 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
993 // Next, now that we know what the last MBB the LLVM BB expanded is, update
994 // PHI nodes in successors.
995 if (SDB->SwitchCases.empty() &&
996 SDB->JTCases.empty() &&
997 SDB->BitTestCases.empty()) {
998 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
999 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1000 assert(PHI->isPHI() &&
1001 "This is not a machine PHI node that we are updating!");
1002 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1003 continue;
1004 PHI->addOperand(
1005 MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1006 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1008 return;
1011 for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1012 // Lower header first, if it wasn't already lowered
1013 if (!SDB->BitTestCases[i].Emitted) {
1014 // Set the current basic block to the mbb we wish to insert the code into
1015 FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1016 FuncInfo->InsertPt = FuncInfo->MBB->end();
1017 // Emit the code
1018 SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1019 CurDAG->setRoot(SDB->getRoot());
1020 SDB->clear();
1021 CodeGenAndEmitDAG();
1024 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1025 // Set the current basic block to the mbb we wish to insert the code into
1026 FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1027 FuncInfo->InsertPt = FuncInfo->MBB->end();
1028 // Emit the code
1029 if (j+1 != ej)
1030 SDB->visitBitTestCase(SDB->BitTestCases[i],
1031 SDB->BitTestCases[i].Cases[j+1].ThisBB,
1032 SDB->BitTestCases[i].Reg,
1033 SDB->BitTestCases[i].Cases[j],
1034 FuncInfo->MBB);
1035 else
1036 SDB->visitBitTestCase(SDB->BitTestCases[i],
1037 SDB->BitTestCases[i].Default,
1038 SDB->BitTestCases[i].Reg,
1039 SDB->BitTestCases[i].Cases[j],
1040 FuncInfo->MBB);
1043 CurDAG->setRoot(SDB->getRoot());
1044 SDB->clear();
1045 CodeGenAndEmitDAG();
1048 // Update PHI Nodes
1049 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1050 pi != pe; ++pi) {
1051 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1052 MachineBasicBlock *PHIBB = PHI->getParent();
1053 assert(PHI->isPHI() &&
1054 "This is not a machine PHI node that we are updating!");
1055 // This is "default" BB. We have two jumps to it. From "header" BB and
1056 // from last "case" BB.
1057 if (PHIBB == SDB->BitTestCases[i].Default) {
1058 PHI->addOperand(MachineOperand::
1059 CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1060 false));
1061 PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1062 PHI->addOperand(MachineOperand::
1063 CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1064 false));
1065 PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1066 back().ThisBB));
1068 // One of "cases" BB.
1069 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1070 j != ej; ++j) {
1071 MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1072 if (cBB->isSuccessor(PHIBB)) {
1073 PHI->addOperand(MachineOperand::
1074 CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1075 false));
1076 PHI->addOperand(MachineOperand::CreateMBB(cBB));
1081 SDB->BitTestCases.clear();
1083 // If the JumpTable record is filled in, then we need to emit a jump table.
1084 // Updating the PHI nodes is tricky in this case, since we need to determine
1085 // whether the PHI is a successor of the range check MBB or the jump table MBB
1086 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1087 // Lower header first, if it wasn't already lowered
1088 if (!SDB->JTCases[i].first.Emitted) {
1089 // Set the current basic block to the mbb we wish to insert the code into
1090 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1091 FuncInfo->InsertPt = FuncInfo->MBB->end();
1092 // Emit the code
1093 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1094 FuncInfo->MBB);
1095 CurDAG->setRoot(SDB->getRoot());
1096 SDB->clear();
1097 CodeGenAndEmitDAG();
1100 // Set the current basic block to the mbb we wish to insert the code into
1101 FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1102 FuncInfo->InsertPt = FuncInfo->MBB->end();
1103 // Emit the code
1104 SDB->visitJumpTable(SDB->JTCases[i].second);
1105 CurDAG->setRoot(SDB->getRoot());
1106 SDB->clear();
1107 CodeGenAndEmitDAG();
1109 // Update PHI Nodes
1110 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1111 pi != pe; ++pi) {
1112 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1113 MachineBasicBlock *PHIBB = PHI->getParent();
1114 assert(PHI->isPHI() &&
1115 "This is not a machine PHI node that we are updating!");
1116 // "default" BB. We can go there only from header BB.
1117 if (PHIBB == SDB->JTCases[i].second.Default) {
1118 PHI->addOperand
1119 (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1120 false));
1121 PHI->addOperand
1122 (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1124 // JT BB. Just iterate over successors here
1125 if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1126 PHI->addOperand
1127 (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1128 false));
1129 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1133 SDB->JTCases.clear();
1135 // If the switch block involved a branch to one of the actual successors, we
1136 // need to update PHI nodes in that block.
1137 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1138 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1139 assert(PHI->isPHI() &&
1140 "This is not a machine PHI node that we are updating!");
1141 if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1142 PHI->addOperand(
1143 MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1144 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1148 // If we generated any switch lowering information, build and codegen any
1149 // additional DAGs necessary.
1150 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1151 // Set the current basic block to the mbb we wish to insert the code into
1152 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1153 FuncInfo->InsertPt = FuncInfo->MBB->end();
1155 // Determine the unique successors.
1156 SmallVector<MachineBasicBlock *, 2> Succs;
1157 Succs.push_back(SDB->SwitchCases[i].TrueBB);
1158 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1159 Succs.push_back(SDB->SwitchCases[i].FalseBB);
1161 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1162 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1163 CurDAG->setRoot(SDB->getRoot());
1164 SDB->clear();
1165 CodeGenAndEmitDAG();
1167 // Remember the last block, now that any splitting is done, for use in
1168 // populating PHI nodes in successors.
1169 MachineBasicBlock *ThisBB = FuncInfo->MBB;
1171 // Handle any PHI nodes in successors of this chunk, as if we were coming
1172 // from the original BB before switch expansion. Note that PHI nodes can
1173 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1174 // handle them the right number of times.
1175 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1176 FuncInfo->MBB = Succs[i];
1177 FuncInfo->InsertPt = FuncInfo->MBB->end();
1178 // FuncInfo->MBB may have been removed from the CFG if a branch was
1179 // constant folded.
1180 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1181 for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1182 Phi != FuncInfo->MBB->end() && Phi->isPHI();
1183 ++Phi) {
1184 // This value for this PHI node is recorded in PHINodesToUpdate.
1185 for (unsigned pn = 0; ; ++pn) {
1186 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1187 "Didn't find PHI entry!");
1188 if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1189 Phi->addOperand(MachineOperand::
1190 CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1191 false));
1192 Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1193 break;
1200 SDB->SwitchCases.clear();
1204 /// Create the scheduler. If a specific scheduler was specified
1205 /// via the SchedulerRegistry, use it, otherwise select the
1206 /// one preferred by the target.
1208 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1209 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1211 if (!Ctor) {
1212 Ctor = ISHeuristic;
1213 RegisterScheduler::setDefault(Ctor);
1216 return Ctor(this, OptLevel);
1219 //===----------------------------------------------------------------------===//
1220 // Helper functions used by the generated instruction selector.
1221 //===----------------------------------------------------------------------===//
1222 // Calls to these methods are generated by tblgen.
1224 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1225 /// the dag combiner simplified the 255, we still want to match. RHS is the
1226 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1227 /// specified in the .td file (e.g. 255).
1228 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1229 int64_t DesiredMaskS) const {
1230 const APInt &ActualMask = RHS->getAPIntValue();
1231 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1233 // If the actual mask exactly matches, success!
1234 if (ActualMask == DesiredMask)
1235 return true;
1237 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1238 if (ActualMask.intersects(~DesiredMask))
1239 return false;
1241 // Otherwise, the DAG Combiner may have proven that the value coming in is
1242 // either already zero or is not demanded. Check for known zero input bits.
1243 APInt NeededMask = DesiredMask & ~ActualMask;
1244 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1245 return true;
1247 // TODO: check to see if missing bits are just not demanded.
1249 // Otherwise, this pattern doesn't match.
1250 return false;
1253 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1254 /// the dag combiner simplified the 255, we still want to match. RHS is the
1255 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1256 /// specified in the .td file (e.g. 255).
1257 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1258 int64_t DesiredMaskS) const {
1259 const APInt &ActualMask = RHS->getAPIntValue();
1260 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1262 // If the actual mask exactly matches, success!
1263 if (ActualMask == DesiredMask)
1264 return true;
1266 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1267 if (ActualMask.intersects(~DesiredMask))
1268 return false;
1270 // Otherwise, the DAG Combiner may have proven that the value coming in is
1271 // either already zero or is not demanded. Check for known zero input bits.
1272 APInt NeededMask = DesiredMask & ~ActualMask;
1274 APInt KnownZero, KnownOne;
1275 CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1277 // If all the missing bits in the or are already known to be set, match!
1278 if ((NeededMask & KnownOne) == NeededMask)
1279 return true;
1281 // TODO: check to see if missing bits are just not demanded.
1283 // Otherwise, this pattern doesn't match.
1284 return false;
1288 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1289 /// by tblgen. Others should not call it.
1290 void SelectionDAGISel::
1291 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1292 std::vector<SDValue> InOps;
1293 std::swap(InOps, Ops);
1295 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1296 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
1297 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
1298 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
1300 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1301 if (InOps[e-1].getValueType() == MVT::Glue)
1302 --e; // Don't process a glue operand if it is here.
1304 while (i != e) {
1305 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1306 if (!InlineAsm::isMemKind(Flags)) {
1307 // Just skip over this operand, copying the operands verbatim.
1308 Ops.insert(Ops.end(), InOps.begin()+i,
1309 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1310 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1311 } else {
1312 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1313 "Memory operand with multiple values?");
1314 // Otherwise, this is a memory operand. Ask the target to select it.
1315 std::vector<SDValue> SelOps;
1316 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1317 report_fatal_error("Could not match memory address. Inline asm"
1318 " failure!");
1320 // Add this to the output node.
1321 unsigned NewFlags =
1322 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1323 Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1324 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1325 i += 2;
1329 // Add the glue input back if present.
1330 if (e != InOps.size())
1331 Ops.push_back(InOps.back());
1334 /// findGlueUse - Return use of MVT::Glue value produced by the specified
1335 /// SDNode.
1337 static SDNode *findGlueUse(SDNode *N) {
1338 unsigned FlagResNo = N->getNumValues()-1;
1339 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1340 SDUse &Use = I.getUse();
1341 if (Use.getResNo() == FlagResNo)
1342 return Use.getUser();
1344 return NULL;
1347 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1348 /// This function recursively traverses up the operand chain, ignoring
1349 /// certain nodes.
1350 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1351 SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1352 bool IgnoreChains) {
1353 // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1354 // greater than all of its (recursive) operands. If we scan to a point where
1355 // 'use' is smaller than the node we're scanning for, then we know we will
1356 // never find it.
1358 // The Use may be -1 (unassigned) if it is a newly allocated node. This can
1359 // happen because we scan down to newly selected nodes in the case of glue
1360 // uses.
1361 if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1362 return false;
1364 // Don't revisit nodes if we already scanned it and didn't fail, we know we
1365 // won't fail if we scan it again.
1366 if (!Visited.insert(Use))
1367 return false;
1369 for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1370 // Ignore chain uses, they are validated by HandleMergeInputChains.
1371 if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1372 continue;
1374 SDNode *N = Use->getOperand(i).getNode();
1375 if (N == Def) {
1376 if (Use == ImmedUse || Use == Root)
1377 continue; // We are not looking for immediate use.
1378 assert(N != Root);
1379 return true;
1382 // Traverse up the operand chain.
1383 if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1384 return true;
1386 return false;
1389 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
1390 /// operand node N of U during instruction selection that starts at Root.
1391 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1392 SDNode *Root) const {
1393 if (OptLevel == CodeGenOpt::None) return false;
1394 return N.hasOneUse();
1397 /// IsLegalToFold - Returns true if the specific operand node N of
1398 /// U can be folded during instruction selection that starts at Root.
1399 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1400 CodeGenOpt::Level OptLevel,
1401 bool IgnoreChains) {
1402 if (OptLevel == CodeGenOpt::None) return false;
1404 // If Root use can somehow reach N through a path that that doesn't contain
1405 // U then folding N would create a cycle. e.g. In the following
1406 // diagram, Root can reach N through X. If N is folded into into Root, then
1407 // X is both a predecessor and a successor of U.
1409 // [N*] //
1410 // ^ ^ //
1411 // / \ //
1412 // [U*] [X]? //
1413 // ^ ^ //
1414 // \ / //
1415 // \ / //
1416 // [Root*] //
1418 // * indicates nodes to be folded together.
1420 // If Root produces glue, then it gets (even more) interesting. Since it
1421 // will be "glued" together with its glue use in the scheduler, we need to
1422 // check if it might reach N.
1424 // [N*] //
1425 // ^ ^ //
1426 // / \ //
1427 // [U*] [X]? //
1428 // ^ ^ //
1429 // \ \ //
1430 // \ | //
1431 // [Root*] | //
1432 // ^ | //
1433 // f | //
1434 // | / //
1435 // [Y] / //
1436 // ^ / //
1437 // f / //
1438 // | / //
1439 // [GU] //
1441 // If GU (glue use) indirectly reaches N (the load), and Root folds N
1442 // (call it Fold), then X is a predecessor of GU and a successor of
1443 // Fold. But since Fold and GU are glued together, this will create
1444 // a cycle in the scheduling graph.
1446 // If the node has glue, walk down the graph to the "lowest" node in the
1447 // glueged set.
1448 EVT VT = Root->getValueType(Root->getNumValues()-1);
1449 while (VT == MVT::Glue) {
1450 SDNode *GU = findGlueUse(Root);
1451 if (GU == NULL)
1452 break;
1453 Root = GU;
1454 VT = Root->getValueType(Root->getNumValues()-1);
1456 // If our query node has a glue result with a use, we've walked up it. If
1457 // the user (which has already been selected) has a chain or indirectly uses
1458 // the chain, our WalkChainUsers predicate will not consider it. Because of
1459 // this, we cannot ignore chains in this predicate.
1460 IgnoreChains = false;
1464 SmallPtrSet<SDNode*, 16> Visited;
1465 return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1468 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1469 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1470 SelectInlineAsmMemoryOperands(Ops);
1472 std::vector<EVT> VTs;
1473 VTs.push_back(MVT::Other);
1474 VTs.push_back(MVT::Glue);
1475 SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1476 VTs, &Ops[0], Ops.size());
1477 New->setNodeId(-1);
1478 return New.getNode();
1481 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1482 return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1485 /// GetVBR - decode a vbr encoding whose top bit is set.
1486 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1487 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1488 assert(Val >= 128 && "Not a VBR");
1489 Val &= 127; // Remove first vbr bit.
1491 unsigned Shift = 7;
1492 uint64_t NextBits;
1493 do {
1494 NextBits = MatcherTable[Idx++];
1495 Val |= (NextBits&127) << Shift;
1496 Shift += 7;
1497 } while (NextBits & 128);
1499 return Val;
1503 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1504 /// interior glue and chain results to use the new glue and chain results.
1505 void SelectionDAGISel::
1506 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1507 const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1508 SDValue InputGlue,
1509 const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1510 bool isMorphNodeTo) {
1511 SmallVector<SDNode*, 4> NowDeadNodes;
1513 ISelUpdater ISU(ISelPosition);
1515 // Now that all the normal results are replaced, we replace the chain and
1516 // glue results if present.
1517 if (!ChainNodesMatched.empty()) {
1518 assert(InputChain.getNode() != 0 &&
1519 "Matched input chains but didn't produce a chain");
1520 // Loop over all of the nodes we matched that produced a chain result.
1521 // Replace all the chain results with the final chain we ended up with.
1522 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1523 SDNode *ChainNode = ChainNodesMatched[i];
1525 // If this node was already deleted, don't look at it.
1526 if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1527 continue;
1529 // Don't replace the results of the root node if we're doing a
1530 // MorphNodeTo.
1531 if (ChainNode == NodeToMatch && isMorphNodeTo)
1532 continue;
1534 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1535 if (ChainVal.getValueType() == MVT::Glue)
1536 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1537 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1538 CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1540 // If the node became dead and we haven't already seen it, delete it.
1541 if (ChainNode->use_empty() &&
1542 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1543 NowDeadNodes.push_back(ChainNode);
1547 // If the result produces glue, update any glue results in the matched
1548 // pattern with the glue result.
1549 if (InputGlue.getNode() != 0) {
1550 // Handle any interior nodes explicitly marked.
1551 for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1552 SDNode *FRN = GlueResultNodesMatched[i];
1554 // If this node was already deleted, don't look at it.
1555 if (FRN->getOpcode() == ISD::DELETED_NODE)
1556 continue;
1558 assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1559 "Doesn't have a glue result");
1560 CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1561 InputGlue, &ISU);
1563 // If the node became dead and we haven't already seen it, delete it.
1564 if (FRN->use_empty() &&
1565 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1566 NowDeadNodes.push_back(FRN);
1570 if (!NowDeadNodes.empty())
1571 CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1573 DEBUG(errs() << "ISEL: Match complete!\n");
1576 enum ChainResult {
1577 CR_Simple,
1578 CR_InducesCycle,
1579 CR_LeadsToInteriorNode
1582 /// WalkChainUsers - Walk down the users of the specified chained node that is
1583 /// part of the pattern we're matching, looking at all of the users we find.
1584 /// This determines whether something is an interior node, whether we have a
1585 /// non-pattern node in between two pattern nodes (which prevent folding because
1586 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1587 /// between pattern nodes (in which case the TF becomes part of the pattern).
1589 /// The walk we do here is guaranteed to be small because we quickly get down to
1590 /// already selected nodes "below" us.
1591 static ChainResult
1592 WalkChainUsers(SDNode *ChainedNode,
1593 SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1594 SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1595 ChainResult Result = CR_Simple;
1597 for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1598 E = ChainedNode->use_end(); UI != E; ++UI) {
1599 // Make sure the use is of the chain, not some other value we produce.
1600 if (UI.getUse().getValueType() != MVT::Other) continue;
1602 SDNode *User = *UI;
1604 // If we see an already-selected machine node, then we've gone beyond the
1605 // pattern that we're selecting down into the already selected chunk of the
1606 // DAG.
1607 if (User->isMachineOpcode() ||
1608 User->getOpcode() == ISD::HANDLENODE) // Root of the graph.
1609 continue;
1611 if (User->getOpcode() == ISD::CopyToReg ||
1612 User->getOpcode() == ISD::CopyFromReg ||
1613 User->getOpcode() == ISD::INLINEASM ||
1614 User->getOpcode() == ISD::EH_LABEL) {
1615 // If their node ID got reset to -1 then they've already been selected.
1616 // Treat them like a MachineOpcode.
1617 if (User->getNodeId() == -1)
1618 continue;
1621 // If we have a TokenFactor, we handle it specially.
1622 if (User->getOpcode() != ISD::TokenFactor) {
1623 // If the node isn't a token factor and isn't part of our pattern, then it
1624 // must be a random chained node in between two nodes we're selecting.
1625 // This happens when we have something like:
1626 // x = load ptr
1627 // call
1628 // y = x+4
1629 // store y -> ptr
1630 // Because we structurally match the load/store as a read/modify/write,
1631 // but the call is chained between them. We cannot fold in this case
1632 // because it would induce a cycle in the graph.
1633 if (!std::count(ChainedNodesInPattern.begin(),
1634 ChainedNodesInPattern.end(), User))
1635 return CR_InducesCycle;
1637 // Otherwise we found a node that is part of our pattern. For example in:
1638 // x = load ptr
1639 // y = x+4
1640 // store y -> ptr
1641 // This would happen when we're scanning down from the load and see the
1642 // store as a user. Record that there is a use of ChainedNode that is
1643 // part of the pattern and keep scanning uses.
1644 Result = CR_LeadsToInteriorNode;
1645 InteriorChainedNodes.push_back(User);
1646 continue;
1649 // If we found a TokenFactor, there are two cases to consider: first if the
1650 // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1651 // uses of the TF are in our pattern) we just want to ignore it. Second,
1652 // the TokenFactor can be sandwiched in between two chained nodes, like so:
1653 // [Load chain]
1654 // ^
1655 // |
1656 // [Load]
1657 // ^ ^
1658 // | \ DAG's like cheese
1659 // / \ do you?
1660 // / |
1661 // [TokenFactor] [Op]
1662 // ^ ^
1663 // | |
1664 // \ /
1665 // \ /
1666 // [Store]
1668 // In this case, the TokenFactor becomes part of our match and we rewrite it
1669 // as a new TokenFactor.
1671 // To distinguish these two cases, do a recursive walk down the uses.
1672 switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1673 case CR_Simple:
1674 // If the uses of the TokenFactor are just already-selected nodes, ignore
1675 // it, it is "below" our pattern.
1676 continue;
1677 case CR_InducesCycle:
1678 // If the uses of the TokenFactor lead to nodes that are not part of our
1679 // pattern that are not selected, folding would turn this into a cycle,
1680 // bail out now.
1681 return CR_InducesCycle;
1682 case CR_LeadsToInteriorNode:
1683 break; // Otherwise, keep processing.
1686 // Okay, we know we're in the interesting interior case. The TokenFactor
1687 // is now going to be considered part of the pattern so that we rewrite its
1688 // uses (it may have uses that are not part of the pattern) with the
1689 // ultimate chain result of the generated code. We will also add its chain
1690 // inputs as inputs to the ultimate TokenFactor we create.
1691 Result = CR_LeadsToInteriorNode;
1692 ChainedNodesInPattern.push_back(User);
1693 InteriorChainedNodes.push_back(User);
1694 continue;
1697 return Result;
1700 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1701 /// operation for when the pattern matched at least one node with a chains. The
1702 /// input vector contains a list of all of the chained nodes that we match. We
1703 /// must determine if this is a valid thing to cover (i.e. matching it won't
1704 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1705 /// be used as the input node chain for the generated nodes.
1706 static SDValue
1707 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1708 SelectionDAG *CurDAG) {
1709 // Walk all of the chained nodes we've matched, recursively scanning down the
1710 // users of the chain result. This adds any TokenFactor nodes that are caught
1711 // in between chained nodes to the chained and interior nodes list.
1712 SmallVector<SDNode*, 3> InteriorChainedNodes;
1713 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1714 if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1715 InteriorChainedNodes) == CR_InducesCycle)
1716 return SDValue(); // Would induce a cycle.
1719 // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1720 // that we are interested in. Form our input TokenFactor node.
1721 SmallVector<SDValue, 3> InputChains;
1722 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1723 // Add the input chain of this node to the InputChains list (which will be
1724 // the operands of the generated TokenFactor) if it's not an interior node.
1725 SDNode *N = ChainNodesMatched[i];
1726 if (N->getOpcode() != ISD::TokenFactor) {
1727 if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1728 continue;
1730 // Otherwise, add the input chain.
1731 SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1732 assert(InChain.getValueType() == MVT::Other && "Not a chain");
1733 InputChains.push_back(InChain);
1734 continue;
1737 // If we have a token factor, we want to add all inputs of the token factor
1738 // that are not part of the pattern we're matching.
1739 for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1740 if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1741 N->getOperand(op).getNode()))
1742 InputChains.push_back(N->getOperand(op));
1746 SDValue Res;
1747 if (InputChains.size() == 1)
1748 return InputChains[0];
1749 return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1750 MVT::Other, &InputChains[0], InputChains.size());
1753 /// MorphNode - Handle morphing a node in place for the selector.
1754 SDNode *SelectionDAGISel::
1755 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1756 const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1757 // It is possible we're using MorphNodeTo to replace a node with no
1758 // normal results with one that has a normal result (or we could be
1759 // adding a chain) and the input could have glue and chains as well.
1760 // In this case we need to shift the operands down.
1761 // FIXME: This is a horrible hack and broken in obscure cases, no worse
1762 // than the old isel though.
1763 int OldGlueResultNo = -1, OldChainResultNo = -1;
1765 unsigned NTMNumResults = Node->getNumValues();
1766 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1767 OldGlueResultNo = NTMNumResults-1;
1768 if (NTMNumResults != 1 &&
1769 Node->getValueType(NTMNumResults-2) == MVT::Other)
1770 OldChainResultNo = NTMNumResults-2;
1771 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1772 OldChainResultNo = NTMNumResults-1;
1774 // Call the underlying SelectionDAG routine to do the transmogrification. Note
1775 // that this deletes operands of the old node that become dead.
1776 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1778 // MorphNodeTo can operate in two ways: if an existing node with the
1779 // specified operands exists, it can just return it. Otherwise, it
1780 // updates the node in place to have the requested operands.
1781 if (Res == Node) {
1782 // If we updated the node in place, reset the node ID. To the isel,
1783 // this should be just like a newly allocated machine node.
1784 Res->setNodeId(-1);
1787 unsigned ResNumResults = Res->getNumValues();
1788 // Move the glue if needed.
1789 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1790 (unsigned)OldGlueResultNo != ResNumResults-1)
1791 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1792 SDValue(Res, ResNumResults-1));
1794 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1795 --ResNumResults;
1797 // Move the chain reference if needed.
1798 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1799 (unsigned)OldChainResultNo != ResNumResults-1)
1800 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1801 SDValue(Res, ResNumResults-1));
1803 // Otherwise, no replacement happened because the node already exists. Replace
1804 // Uses of the old node with the new one.
1805 if (Res != Node)
1806 CurDAG->ReplaceAllUsesWith(Node, Res);
1808 return Res;
1811 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1812 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1813 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1814 SDValue N,
1815 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1816 // Accept if it is exactly the same as a previously recorded node.
1817 unsigned RecNo = MatcherTable[MatcherIndex++];
1818 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1819 return N == RecordedNodes[RecNo].first;
1822 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1823 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1824 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1825 SelectionDAGISel &SDISel) {
1826 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1829 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
1830 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1831 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1832 SelectionDAGISel &SDISel, SDNode *N) {
1833 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1836 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1837 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1838 SDNode *N) {
1839 uint16_t Opc = MatcherTable[MatcherIndex++];
1840 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1841 return N->getOpcode() == Opc;
1844 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1845 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1846 SDValue N, const TargetLowering &TLI) {
1847 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1848 if (N.getValueType() == VT) return true;
1850 // Handle the case when VT is iPTR.
1851 return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1854 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1855 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1856 SDValue N, const TargetLowering &TLI,
1857 unsigned ChildNo) {
1858 if (ChildNo >= N.getNumOperands())
1859 return false; // Match fails if out of range child #.
1860 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1864 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1865 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1866 SDValue N) {
1867 return cast<CondCodeSDNode>(N)->get() ==
1868 (ISD::CondCode)MatcherTable[MatcherIndex++];
1871 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1872 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1873 SDValue N, const TargetLowering &TLI) {
1874 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1875 if (cast<VTSDNode>(N)->getVT() == VT)
1876 return true;
1878 // Handle the case when VT is iPTR.
1879 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1882 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1883 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1884 SDValue N) {
1885 int64_t Val = MatcherTable[MatcherIndex++];
1886 if (Val & 128)
1887 Val = GetVBR(Val, MatcherTable, MatcherIndex);
1889 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1890 return C != 0 && C->getSExtValue() == Val;
1893 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1894 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1895 SDValue N, SelectionDAGISel &SDISel) {
1896 int64_t Val = MatcherTable[MatcherIndex++];
1897 if (Val & 128)
1898 Val = GetVBR(Val, MatcherTable, MatcherIndex);
1900 if (N->getOpcode() != ISD::AND) return false;
1902 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1903 return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1906 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1907 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1908 SDValue N, SelectionDAGISel &SDISel) {
1909 int64_t Val = MatcherTable[MatcherIndex++];
1910 if (Val & 128)
1911 Val = GetVBR(Val, MatcherTable, MatcherIndex);
1913 if (N->getOpcode() != ISD::OR) return false;
1915 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1916 return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1919 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
1920 /// scope, evaluate the current node. If the current predicate is known to
1921 /// fail, set Result=true and return anything. If the current predicate is
1922 /// known to pass, set Result=false and return the MatcherIndex to continue
1923 /// with. If the current predicate is unknown, set Result=false and return the
1924 /// MatcherIndex to continue with.
1925 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1926 unsigned Index, SDValue N,
1927 bool &Result, SelectionDAGISel &SDISel,
1928 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1929 switch (Table[Index++]) {
1930 default:
1931 Result = false;
1932 return Index-1; // Could not evaluate this predicate.
1933 case SelectionDAGISel::OPC_CheckSame:
1934 Result = !::CheckSame(Table, Index, N, RecordedNodes);
1935 return Index;
1936 case SelectionDAGISel::OPC_CheckPatternPredicate:
1937 Result = !::CheckPatternPredicate(Table, Index, SDISel);
1938 return Index;
1939 case SelectionDAGISel::OPC_CheckPredicate:
1940 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1941 return Index;
1942 case SelectionDAGISel::OPC_CheckOpcode:
1943 Result = !::CheckOpcode(Table, Index, N.getNode());
1944 return Index;
1945 case SelectionDAGISel::OPC_CheckType:
1946 Result = !::CheckType(Table, Index, N, SDISel.TLI);
1947 return Index;
1948 case SelectionDAGISel::OPC_CheckChild0Type:
1949 case SelectionDAGISel::OPC_CheckChild1Type:
1950 case SelectionDAGISel::OPC_CheckChild2Type:
1951 case SelectionDAGISel::OPC_CheckChild3Type:
1952 case SelectionDAGISel::OPC_CheckChild4Type:
1953 case SelectionDAGISel::OPC_CheckChild5Type:
1954 case SelectionDAGISel::OPC_CheckChild6Type:
1955 case SelectionDAGISel::OPC_CheckChild7Type:
1956 Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1957 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1958 return Index;
1959 case SelectionDAGISel::OPC_CheckCondCode:
1960 Result = !::CheckCondCode(Table, Index, N);
1961 return Index;
1962 case SelectionDAGISel::OPC_CheckValueType:
1963 Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1964 return Index;
1965 case SelectionDAGISel::OPC_CheckInteger:
1966 Result = !::CheckInteger(Table, Index, N);
1967 return Index;
1968 case SelectionDAGISel::OPC_CheckAndImm:
1969 Result = !::CheckAndImm(Table, Index, N, SDISel);
1970 return Index;
1971 case SelectionDAGISel::OPC_CheckOrImm:
1972 Result = !::CheckOrImm(Table, Index, N, SDISel);
1973 return Index;
1977 namespace {
1979 struct MatchScope {
1980 /// FailIndex - If this match fails, this is the index to continue with.
1981 unsigned FailIndex;
1983 /// NodeStack - The node stack when the scope was formed.
1984 SmallVector<SDValue, 4> NodeStack;
1986 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1987 unsigned NumRecordedNodes;
1989 /// NumMatchedMemRefs - The number of matched memref entries.
1990 unsigned NumMatchedMemRefs;
1992 /// InputChain/InputGlue - The current chain/glue
1993 SDValue InputChain, InputGlue;
1995 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1996 bool HasChainNodesMatched, HasGlueResultNodesMatched;
2001 SDNode *SelectionDAGISel::
2002 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2003 unsigned TableSize) {
2004 // FIXME: Should these even be selected? Handle these cases in the caller?
2005 switch (NodeToMatch->getOpcode()) {
2006 default:
2007 break;
2008 case ISD::EntryToken: // These nodes remain the same.
2009 case ISD::BasicBlock:
2010 case ISD::Register:
2011 //case ISD::VALUETYPE:
2012 //case ISD::CONDCODE:
2013 case ISD::HANDLENODE:
2014 case ISD::MDNODE_SDNODE:
2015 case ISD::TargetConstant:
2016 case ISD::TargetConstantFP:
2017 case ISD::TargetConstantPool:
2018 case ISD::TargetFrameIndex:
2019 case ISD::TargetExternalSymbol:
2020 case ISD::TargetBlockAddress:
2021 case ISD::TargetJumpTable:
2022 case ISD::TargetGlobalTLSAddress:
2023 case ISD::TargetGlobalAddress:
2024 case ISD::TokenFactor:
2025 case ISD::CopyFromReg:
2026 case ISD::CopyToReg:
2027 case ISD::EH_LABEL:
2028 NodeToMatch->setNodeId(-1); // Mark selected.
2029 return 0;
2030 case ISD::AssertSext:
2031 case ISD::AssertZext:
2032 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2033 NodeToMatch->getOperand(0));
2034 return 0;
2035 case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2036 case ISD::UNDEF: return Select_UNDEF(NodeToMatch);
2039 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2041 // Set up the node stack with NodeToMatch as the only node on the stack.
2042 SmallVector<SDValue, 8> NodeStack;
2043 SDValue N = SDValue(NodeToMatch, 0);
2044 NodeStack.push_back(N);
2046 // MatchScopes - Scopes used when matching, if a match failure happens, this
2047 // indicates where to continue checking.
2048 SmallVector<MatchScope, 8> MatchScopes;
2050 // RecordedNodes - This is the set of nodes that have been recorded by the
2051 // state machine. The second value is the parent of the node, or null if the
2052 // root is recorded.
2053 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2055 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2056 // pattern.
2057 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2059 // These are the current input chain and glue for use when generating nodes.
2060 // Various Emit operations change these. For example, emitting a copytoreg
2061 // uses and updates these.
2062 SDValue InputChain, InputGlue;
2064 // ChainNodesMatched - If a pattern matches nodes that have input/output
2065 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2066 // which ones they are. The result is captured into this list so that we can
2067 // update the chain results when the pattern is complete.
2068 SmallVector<SDNode*, 3> ChainNodesMatched;
2069 SmallVector<SDNode*, 3> GlueResultNodesMatched;
2071 DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2072 NodeToMatch->dump(CurDAG);
2073 errs() << '\n');
2075 // Determine where to start the interpreter. Normally we start at opcode #0,
2076 // but if the state machine starts with an OPC_SwitchOpcode, then we
2077 // accelerate the first lookup (which is guaranteed to be hot) with the
2078 // OpcodeOffset table.
2079 unsigned MatcherIndex = 0;
2081 if (!OpcodeOffset.empty()) {
2082 // Already computed the OpcodeOffset table, just index into it.
2083 if (N.getOpcode() < OpcodeOffset.size())
2084 MatcherIndex = OpcodeOffset[N.getOpcode()];
2085 DEBUG(errs() << " Initial Opcode index to " << MatcherIndex << "\n");
2087 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2088 // Otherwise, the table isn't computed, but the state machine does start
2089 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2090 // is the first time we're selecting an instruction.
2091 unsigned Idx = 1;
2092 while (1) {
2093 // Get the size of this case.
2094 unsigned CaseSize = MatcherTable[Idx++];
2095 if (CaseSize & 128)
2096 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2097 if (CaseSize == 0) break;
2099 // Get the opcode, add the index to the table.
2100 uint16_t Opc = MatcherTable[Idx++];
2101 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2102 if (Opc >= OpcodeOffset.size())
2103 OpcodeOffset.resize((Opc+1)*2);
2104 OpcodeOffset[Opc] = Idx;
2105 Idx += CaseSize;
2108 // Okay, do the lookup for the first opcode.
2109 if (N.getOpcode() < OpcodeOffset.size())
2110 MatcherIndex = OpcodeOffset[N.getOpcode()];
2113 while (1) {
2114 assert(MatcherIndex < TableSize && "Invalid index");
2115 #ifndef NDEBUG
2116 unsigned CurrentOpcodeIndex = MatcherIndex;
2117 #endif
2118 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2119 switch (Opcode) {
2120 case OPC_Scope: {
2121 // Okay, the semantics of this operation are that we should push a scope
2122 // then evaluate the first child. However, pushing a scope only to have
2123 // the first check fail (which then pops it) is inefficient. If we can
2124 // determine immediately that the first check (or first several) will
2125 // immediately fail, don't even bother pushing a scope for them.
2126 unsigned FailIndex;
2128 while (1) {
2129 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2130 if (NumToSkip & 128)
2131 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2132 // Found the end of the scope with no match.
2133 if (NumToSkip == 0) {
2134 FailIndex = 0;
2135 break;
2138 FailIndex = MatcherIndex+NumToSkip;
2140 unsigned MatcherIndexOfPredicate = MatcherIndex;
2141 (void)MatcherIndexOfPredicate; // silence warning.
2143 // If we can't evaluate this predicate without pushing a scope (e.g. if
2144 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2145 // push the scope and evaluate the full predicate chain.
2146 bool Result;
2147 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2148 Result, *this, RecordedNodes);
2149 if (!Result)
2150 break;
2152 DEBUG(errs() << " Skipped scope entry (due to false predicate) at "
2153 << "index " << MatcherIndexOfPredicate
2154 << ", continuing at " << FailIndex << "\n");
2155 ++NumDAGIselRetries;
2157 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2158 // move to the next case.
2159 MatcherIndex = FailIndex;
2162 // If the whole scope failed to match, bail.
2163 if (FailIndex == 0) break;
2165 // Push a MatchScope which indicates where to go if the first child fails
2166 // to match.
2167 MatchScope NewEntry;
2168 NewEntry.FailIndex = FailIndex;
2169 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2170 NewEntry.NumRecordedNodes = RecordedNodes.size();
2171 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2172 NewEntry.InputChain = InputChain;
2173 NewEntry.InputGlue = InputGlue;
2174 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2175 NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2176 MatchScopes.push_back(NewEntry);
2177 continue;
2179 case OPC_RecordNode: {
2180 // Remember this node, it may end up being an operand in the pattern.
2181 SDNode *Parent = 0;
2182 if (NodeStack.size() > 1)
2183 Parent = NodeStack[NodeStack.size()-2].getNode();
2184 RecordedNodes.push_back(std::make_pair(N, Parent));
2185 continue;
2188 case OPC_RecordChild0: case OPC_RecordChild1:
2189 case OPC_RecordChild2: case OPC_RecordChild3:
2190 case OPC_RecordChild4: case OPC_RecordChild5:
2191 case OPC_RecordChild6: case OPC_RecordChild7: {
2192 unsigned ChildNo = Opcode-OPC_RecordChild0;
2193 if (ChildNo >= N.getNumOperands())
2194 break; // Match fails if out of range child #.
2196 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2197 N.getNode()));
2198 continue;
2200 case OPC_RecordMemRef:
2201 MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2202 continue;
2204 case OPC_CaptureGlueInput:
2205 // If the current node has an input glue, capture it in InputGlue.
2206 if (N->getNumOperands() != 0 &&
2207 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2208 InputGlue = N->getOperand(N->getNumOperands()-1);
2209 continue;
2211 case OPC_MoveChild: {
2212 unsigned ChildNo = MatcherTable[MatcherIndex++];
2213 if (ChildNo >= N.getNumOperands())
2214 break; // Match fails if out of range child #.
2215 N = N.getOperand(ChildNo);
2216 NodeStack.push_back(N);
2217 continue;
2220 case OPC_MoveParent:
2221 // Pop the current node off the NodeStack.
2222 NodeStack.pop_back();
2223 assert(!NodeStack.empty() && "Node stack imbalance!");
2224 N = NodeStack.back();
2225 continue;
2227 case OPC_CheckSame:
2228 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2229 continue;
2230 case OPC_CheckPatternPredicate:
2231 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2232 continue;
2233 case OPC_CheckPredicate:
2234 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2235 N.getNode()))
2236 break;
2237 continue;
2238 case OPC_CheckComplexPat: {
2239 unsigned CPNum = MatcherTable[MatcherIndex++];
2240 unsigned RecNo = MatcherTable[MatcherIndex++];
2241 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2242 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2243 RecordedNodes[RecNo].first, CPNum,
2244 RecordedNodes))
2245 break;
2246 continue;
2248 case OPC_CheckOpcode:
2249 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2250 continue;
2252 case OPC_CheckType:
2253 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2254 continue;
2256 case OPC_SwitchOpcode: {
2257 unsigned CurNodeOpcode = N.getOpcode();
2258 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2259 unsigned CaseSize;
2260 while (1) {
2261 // Get the size of this case.
2262 CaseSize = MatcherTable[MatcherIndex++];
2263 if (CaseSize & 128)
2264 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2265 if (CaseSize == 0) break;
2267 uint16_t Opc = MatcherTable[MatcherIndex++];
2268 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2270 // If the opcode matches, then we will execute this case.
2271 if (CurNodeOpcode == Opc)
2272 break;
2274 // Otherwise, skip over this case.
2275 MatcherIndex += CaseSize;
2278 // If no cases matched, bail out.
2279 if (CaseSize == 0) break;
2281 // Otherwise, execute the case we found.
2282 DEBUG(errs() << " OpcodeSwitch from " << SwitchStart
2283 << " to " << MatcherIndex << "\n");
2284 continue;
2287 case OPC_SwitchType: {
2288 MVT CurNodeVT = N.getValueType().getSimpleVT();
2289 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2290 unsigned CaseSize;
2291 while (1) {
2292 // Get the size of this case.
2293 CaseSize = MatcherTable[MatcherIndex++];
2294 if (CaseSize & 128)
2295 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2296 if (CaseSize == 0) break;
2298 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2299 if (CaseVT == MVT::iPTR)
2300 CaseVT = TLI.getPointerTy();
2302 // If the VT matches, then we will execute this case.
2303 if (CurNodeVT == CaseVT)
2304 break;
2306 // Otherwise, skip over this case.
2307 MatcherIndex += CaseSize;
2310 // If no cases matched, bail out.
2311 if (CaseSize == 0) break;
2313 // Otherwise, execute the case we found.
2314 DEBUG(errs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2315 << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2316 continue;
2318 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2319 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2320 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2321 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2322 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2323 Opcode-OPC_CheckChild0Type))
2324 break;
2325 continue;
2326 case OPC_CheckCondCode:
2327 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2328 continue;
2329 case OPC_CheckValueType:
2330 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2331 continue;
2332 case OPC_CheckInteger:
2333 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2334 continue;
2335 case OPC_CheckAndImm:
2336 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2337 continue;
2338 case OPC_CheckOrImm:
2339 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2340 continue;
2342 case OPC_CheckFoldableChainNode: {
2343 assert(NodeStack.size() != 1 && "No parent node");
2344 // Verify that all intermediate nodes between the root and this one have
2345 // a single use.
2346 bool HasMultipleUses = false;
2347 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2348 if (!NodeStack[i].hasOneUse()) {
2349 HasMultipleUses = true;
2350 break;
2352 if (HasMultipleUses) break;
2354 // Check to see that the target thinks this is profitable to fold and that
2355 // we can fold it without inducing cycles in the graph.
2356 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2357 NodeToMatch) ||
2358 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2359 NodeToMatch, OptLevel,
2360 true/*We validate our own chains*/))
2361 break;
2363 continue;
2365 case OPC_EmitInteger: {
2366 MVT::SimpleValueType VT =
2367 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2368 int64_t Val = MatcherTable[MatcherIndex++];
2369 if (Val & 128)
2370 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2371 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2372 CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2373 continue;
2375 case OPC_EmitRegister: {
2376 MVT::SimpleValueType VT =
2377 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2378 unsigned RegNo = MatcherTable[MatcherIndex++];
2379 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2380 CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2381 continue;
2383 case OPC_EmitRegister2: {
2384 // For targets w/ more than 256 register names, the register enum
2385 // values are stored in two bytes in the matcher table (just like
2386 // opcodes).
2387 MVT::SimpleValueType VT =
2388 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2389 unsigned RegNo = MatcherTable[MatcherIndex++];
2390 RegNo |= MatcherTable[MatcherIndex++] << 8;
2391 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2392 CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2393 continue;
2396 case OPC_EmitConvertToTarget: {
2397 // Convert from IMM/FPIMM to target version.
2398 unsigned RecNo = MatcherTable[MatcherIndex++];
2399 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2400 SDValue Imm = RecordedNodes[RecNo].first;
2402 if (Imm->getOpcode() == ISD::Constant) {
2403 int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2404 Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2405 } else if (Imm->getOpcode() == ISD::ConstantFP) {
2406 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2407 Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2410 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2411 continue;
2414 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
2415 case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1
2416 // These are space-optimized forms of OPC_EmitMergeInputChains.
2417 assert(InputChain.getNode() == 0 &&
2418 "EmitMergeInputChains should be the first chain producing node");
2419 assert(ChainNodesMatched.empty() &&
2420 "Should only have one EmitMergeInputChains per match");
2422 // Read all of the chained nodes.
2423 unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2424 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2425 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2427 // FIXME: What if other value results of the node have uses not matched
2428 // by this pattern?
2429 if (ChainNodesMatched.back() != NodeToMatch &&
2430 !RecordedNodes[RecNo].first.hasOneUse()) {
2431 ChainNodesMatched.clear();
2432 break;
2435 // Merge the input chains if they are not intra-pattern references.
2436 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2438 if (InputChain.getNode() == 0)
2439 break; // Failed to merge.
2440 continue;
2443 case OPC_EmitMergeInputChains: {
2444 assert(InputChain.getNode() == 0 &&
2445 "EmitMergeInputChains should be the first chain producing node");
2446 // This node gets a list of nodes we matched in the input that have
2447 // chains. We want to token factor all of the input chains to these nodes
2448 // together. However, if any of the input chains is actually one of the
2449 // nodes matched in this pattern, then we have an intra-match reference.
2450 // Ignore these because the newly token factored chain should not refer to
2451 // the old nodes.
2452 unsigned NumChains = MatcherTable[MatcherIndex++];
2453 assert(NumChains != 0 && "Can't TF zero chains");
2455 assert(ChainNodesMatched.empty() &&
2456 "Should only have one EmitMergeInputChains per match");
2458 // Read all of the chained nodes.
2459 for (unsigned i = 0; i != NumChains; ++i) {
2460 unsigned RecNo = MatcherTable[MatcherIndex++];
2461 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2462 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2464 // FIXME: What if other value results of the node have uses not matched
2465 // by this pattern?
2466 if (ChainNodesMatched.back() != NodeToMatch &&
2467 !RecordedNodes[RecNo].first.hasOneUse()) {
2468 ChainNodesMatched.clear();
2469 break;
2473 // If the inner loop broke out, the match fails.
2474 if (ChainNodesMatched.empty())
2475 break;
2477 // Merge the input chains if they are not intra-pattern references.
2478 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2480 if (InputChain.getNode() == 0)
2481 break; // Failed to merge.
2483 continue;
2486 case OPC_EmitCopyToReg: {
2487 unsigned RecNo = MatcherTable[MatcherIndex++];
2488 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2489 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2491 if (InputChain.getNode() == 0)
2492 InputChain = CurDAG->getEntryNode();
2494 InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2495 DestPhysReg, RecordedNodes[RecNo].first,
2496 InputGlue);
2498 InputGlue = InputChain.getValue(1);
2499 continue;
2502 case OPC_EmitNodeXForm: {
2503 unsigned XFormNo = MatcherTable[MatcherIndex++];
2504 unsigned RecNo = MatcherTable[MatcherIndex++];
2505 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2506 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2507 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2508 continue;
2511 case OPC_EmitNode:
2512 case OPC_MorphNodeTo: {
2513 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2514 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2515 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2516 // Get the result VT list.
2517 unsigned NumVTs = MatcherTable[MatcherIndex++];
2518 SmallVector<EVT, 4> VTs;
2519 for (unsigned i = 0; i != NumVTs; ++i) {
2520 MVT::SimpleValueType VT =
2521 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2522 if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2523 VTs.push_back(VT);
2526 if (EmitNodeInfo & OPFL_Chain)
2527 VTs.push_back(MVT::Other);
2528 if (EmitNodeInfo & OPFL_GlueOutput)
2529 VTs.push_back(MVT::Glue);
2531 // This is hot code, so optimize the two most common cases of 1 and 2
2532 // results.
2533 SDVTList VTList;
2534 if (VTs.size() == 1)
2535 VTList = CurDAG->getVTList(VTs[0]);
2536 else if (VTs.size() == 2)
2537 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2538 else
2539 VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2541 // Get the operand list.
2542 unsigned NumOps = MatcherTable[MatcherIndex++];
2543 SmallVector<SDValue, 8> Ops;
2544 for (unsigned i = 0; i != NumOps; ++i) {
2545 unsigned RecNo = MatcherTable[MatcherIndex++];
2546 if (RecNo & 128)
2547 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2549 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2550 Ops.push_back(RecordedNodes[RecNo].first);
2553 // If there are variadic operands to add, handle them now.
2554 if (EmitNodeInfo & OPFL_VariadicInfo) {
2555 // Determine the start index to copy from.
2556 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2557 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2558 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2559 "Invalid variadic node");
2560 // Copy all of the variadic operands, not including a potential glue
2561 // input.
2562 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2563 i != e; ++i) {
2564 SDValue V = NodeToMatch->getOperand(i);
2565 if (V.getValueType() == MVT::Glue) break;
2566 Ops.push_back(V);
2570 // If this has chain/glue inputs, add them.
2571 if (EmitNodeInfo & OPFL_Chain)
2572 Ops.push_back(InputChain);
2573 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2574 Ops.push_back(InputGlue);
2576 // Create the node.
2577 SDNode *Res = 0;
2578 if (Opcode != OPC_MorphNodeTo) {
2579 // If this is a normal EmitNode command, just create the new node and
2580 // add the results to the RecordedNodes list.
2581 Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2582 VTList, Ops.data(), Ops.size());
2584 // Add all the non-glue/non-chain results to the RecordedNodes list.
2585 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2586 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2587 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2588 (SDNode*) 0));
2591 } else {
2592 Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2593 EmitNodeInfo);
2596 // If the node had chain/glue results, update our notion of the current
2597 // chain and glue.
2598 if (EmitNodeInfo & OPFL_GlueOutput) {
2599 InputGlue = SDValue(Res, VTs.size()-1);
2600 if (EmitNodeInfo & OPFL_Chain)
2601 InputChain = SDValue(Res, VTs.size()-2);
2602 } else if (EmitNodeInfo & OPFL_Chain)
2603 InputChain = SDValue(Res, VTs.size()-1);
2605 // If the OPFL_MemRefs glue is set on this node, slap all of the
2606 // accumulated memrefs onto it.
2608 // FIXME: This is vastly incorrect for patterns with multiple outputs
2609 // instructions that access memory and for ComplexPatterns that match
2610 // loads.
2611 if (EmitNodeInfo & OPFL_MemRefs) {
2612 // Only attach load or store memory operands if the generated
2613 // instruction may load or store.
2614 const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2615 bool mayLoad = MCID.mayLoad();
2616 bool mayStore = MCID.mayStore();
2618 unsigned NumMemRefs = 0;
2619 for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2620 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2621 if ((*I)->isLoad()) {
2622 if (mayLoad)
2623 ++NumMemRefs;
2624 } else if ((*I)->isStore()) {
2625 if (mayStore)
2626 ++NumMemRefs;
2627 } else {
2628 ++NumMemRefs;
2632 MachineSDNode::mmo_iterator MemRefs =
2633 MF->allocateMemRefsArray(NumMemRefs);
2635 MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2636 for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2637 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2638 if ((*I)->isLoad()) {
2639 if (mayLoad)
2640 *MemRefsPos++ = *I;
2641 } else if ((*I)->isStore()) {
2642 if (mayStore)
2643 *MemRefsPos++ = *I;
2644 } else {
2645 *MemRefsPos++ = *I;
2649 cast<MachineSDNode>(Res)
2650 ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2653 DEBUG(errs() << " "
2654 << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2655 << " node: "; Res->dump(CurDAG); errs() << "\n");
2657 // If this was a MorphNodeTo then we're completely done!
2658 if (Opcode == OPC_MorphNodeTo) {
2659 // Update chain and glue uses.
2660 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2661 InputGlue, GlueResultNodesMatched, true);
2662 return Res;
2665 continue;
2668 case OPC_MarkGlueResults: {
2669 unsigned NumNodes = MatcherTable[MatcherIndex++];
2671 // Read and remember all the glue-result nodes.
2672 for (unsigned i = 0; i != NumNodes; ++i) {
2673 unsigned RecNo = MatcherTable[MatcherIndex++];
2674 if (RecNo & 128)
2675 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2677 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2678 GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2680 continue;
2683 case OPC_CompleteMatch: {
2684 // The match has been completed, and any new nodes (if any) have been
2685 // created. Patch up references to the matched dag to use the newly
2686 // created nodes.
2687 unsigned NumResults = MatcherTable[MatcherIndex++];
2689 for (unsigned i = 0; i != NumResults; ++i) {
2690 unsigned ResSlot = MatcherTable[MatcherIndex++];
2691 if (ResSlot & 128)
2692 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2694 assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2695 SDValue Res = RecordedNodes[ResSlot].first;
2697 assert(i < NodeToMatch->getNumValues() &&
2698 NodeToMatch->getValueType(i) != MVT::Other &&
2699 NodeToMatch->getValueType(i) != MVT::Glue &&
2700 "Invalid number of results to complete!");
2701 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2702 NodeToMatch->getValueType(i) == MVT::iPTR ||
2703 Res.getValueType() == MVT::iPTR ||
2704 NodeToMatch->getValueType(i).getSizeInBits() ==
2705 Res.getValueType().getSizeInBits()) &&
2706 "invalid replacement");
2707 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2710 // If the root node defines glue, add it to the glue nodes to update list.
2711 if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2712 GlueResultNodesMatched.push_back(NodeToMatch);
2714 // Update chain and glue uses.
2715 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2716 InputGlue, GlueResultNodesMatched, false);
2718 assert(NodeToMatch->use_empty() &&
2719 "Didn't replace all uses of the node?");
2721 // FIXME: We just return here, which interacts correctly with SelectRoot
2722 // above. We should fix this to not return an SDNode* anymore.
2723 return 0;
2727 // If the code reached this point, then the match failed. See if there is
2728 // another child to try in the current 'Scope', otherwise pop it until we
2729 // find a case to check.
2730 DEBUG(errs() << " Match failed at index " << CurrentOpcodeIndex << "\n");
2731 ++NumDAGIselRetries;
2732 while (1) {
2733 if (MatchScopes.empty()) {
2734 CannotYetSelect(NodeToMatch);
2735 return 0;
2738 // Restore the interpreter state back to the point where the scope was
2739 // formed.
2740 MatchScope &LastScope = MatchScopes.back();
2741 RecordedNodes.resize(LastScope.NumRecordedNodes);
2742 NodeStack.clear();
2743 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2744 N = NodeStack.back();
2746 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2747 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2748 MatcherIndex = LastScope.FailIndex;
2750 DEBUG(errs() << " Continuing at " << MatcherIndex << "\n");
2752 InputChain = LastScope.InputChain;
2753 InputGlue = LastScope.InputGlue;
2754 if (!LastScope.HasChainNodesMatched)
2755 ChainNodesMatched.clear();
2756 if (!LastScope.HasGlueResultNodesMatched)
2757 GlueResultNodesMatched.clear();
2759 // Check to see what the offset is at the new MatcherIndex. If it is zero
2760 // we have reached the end of this scope, otherwise we have another child
2761 // in the current scope to try.
2762 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2763 if (NumToSkip & 128)
2764 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2766 // If we have another child in this scope to match, update FailIndex and
2767 // try it.
2768 if (NumToSkip != 0) {
2769 LastScope.FailIndex = MatcherIndex+NumToSkip;
2770 break;
2773 // End of this scope, pop it and try the next child in the containing
2774 // scope.
2775 MatchScopes.pop_back();
2782 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2783 std::string msg;
2784 raw_string_ostream Msg(msg);
2785 Msg << "Cannot select: ";
2787 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2788 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2789 N->getOpcode() != ISD::INTRINSIC_VOID) {
2790 N->printrFull(Msg, CurDAG);
2791 } else {
2792 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2793 unsigned iid =
2794 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2795 if (iid < Intrinsic::num_intrinsics)
2796 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2797 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2798 Msg << "target intrinsic %" << TII->getName(iid);
2799 else
2800 Msg << "unknown intrinsic #" << iid;
2802 report_fatal_error(Msg.str());
2805 char SelectionDAGISel::ID = 0;