1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the TargetLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetLoweringObjectFile.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
35 /// We are in the process of implementing a new TypeLegalization action
36 /// - the promotion of vector elements. This feature is disabled by default
37 /// and only enabled using this flag.
39 AllowPromoteIntElem("promote-elements", cl::Hidden
,
40 cl::desc("Allow promotion of integer vector element types"));
43 TLSModel::Model
getTLSModel(const GlobalValue
*GV
, Reloc::Model reloc
) {
44 bool isLocal
= GV
->hasLocalLinkage();
45 bool isDeclaration
= GV
->isDeclaration();
46 // FIXME: what should we do for protected and internal visibility?
47 // For variables, is internal different from hidden?
48 bool isHidden
= GV
->hasHiddenVisibility();
50 if (reloc
== Reloc::PIC_
) {
51 if (isLocal
|| isHidden
)
52 return TLSModel::LocalDynamic
;
54 return TLSModel::GeneralDynamic
;
56 if (!isDeclaration
|| isHidden
)
57 return TLSModel::LocalExec
;
59 return TLSModel::InitialExec
;
64 /// InitLibcallNames - Set default libcall names.
66 static void InitLibcallNames(const char **Names
) {
67 Names
[RTLIB::SHL_I16
] = "__ashlhi3";
68 Names
[RTLIB::SHL_I32
] = "__ashlsi3";
69 Names
[RTLIB::SHL_I64
] = "__ashldi3";
70 Names
[RTLIB::SHL_I128
] = "__ashlti3";
71 Names
[RTLIB::SRL_I16
] = "__lshrhi3";
72 Names
[RTLIB::SRL_I32
] = "__lshrsi3";
73 Names
[RTLIB::SRL_I64
] = "__lshrdi3";
74 Names
[RTLIB::SRL_I128
] = "__lshrti3";
75 Names
[RTLIB::SRA_I16
] = "__ashrhi3";
76 Names
[RTLIB::SRA_I32
] = "__ashrsi3";
77 Names
[RTLIB::SRA_I64
] = "__ashrdi3";
78 Names
[RTLIB::SRA_I128
] = "__ashrti3";
79 Names
[RTLIB::MUL_I8
] = "__mulqi3";
80 Names
[RTLIB::MUL_I16
] = "__mulhi3";
81 Names
[RTLIB::MUL_I32
] = "__mulsi3";
82 Names
[RTLIB::MUL_I64
] = "__muldi3";
83 Names
[RTLIB::MUL_I128
] = "__multi3";
84 Names
[RTLIB::MULO_I32
] = "__mulosi4";
85 Names
[RTLIB::MULO_I64
] = "__mulodi4";
86 Names
[RTLIB::MULO_I128
] = "__muloti4";
87 Names
[RTLIB::SDIV_I8
] = "__divqi3";
88 Names
[RTLIB::SDIV_I16
] = "__divhi3";
89 Names
[RTLIB::SDIV_I32
] = "__divsi3";
90 Names
[RTLIB::SDIV_I64
] = "__divdi3";
91 Names
[RTLIB::SDIV_I128
] = "__divti3";
92 Names
[RTLIB::UDIV_I8
] = "__udivqi3";
93 Names
[RTLIB::UDIV_I16
] = "__udivhi3";
94 Names
[RTLIB::UDIV_I32
] = "__udivsi3";
95 Names
[RTLIB::UDIV_I64
] = "__udivdi3";
96 Names
[RTLIB::UDIV_I128
] = "__udivti3";
97 Names
[RTLIB::SREM_I8
] = "__modqi3";
98 Names
[RTLIB::SREM_I16
] = "__modhi3";
99 Names
[RTLIB::SREM_I32
] = "__modsi3";
100 Names
[RTLIB::SREM_I64
] = "__moddi3";
101 Names
[RTLIB::SREM_I128
] = "__modti3";
102 Names
[RTLIB::UREM_I8
] = "__umodqi3";
103 Names
[RTLIB::UREM_I16
] = "__umodhi3";
104 Names
[RTLIB::UREM_I32
] = "__umodsi3";
105 Names
[RTLIB::UREM_I64
] = "__umoddi3";
106 Names
[RTLIB::UREM_I128
] = "__umodti3";
108 // These are generally not available.
109 Names
[RTLIB::SDIVREM_I8
] = 0;
110 Names
[RTLIB::SDIVREM_I16
] = 0;
111 Names
[RTLIB::SDIVREM_I32
] = 0;
112 Names
[RTLIB::SDIVREM_I64
] = 0;
113 Names
[RTLIB::SDIVREM_I128
] = 0;
114 Names
[RTLIB::UDIVREM_I8
] = 0;
115 Names
[RTLIB::UDIVREM_I16
] = 0;
116 Names
[RTLIB::UDIVREM_I32
] = 0;
117 Names
[RTLIB::UDIVREM_I64
] = 0;
118 Names
[RTLIB::UDIVREM_I128
] = 0;
120 Names
[RTLIB::NEG_I32
] = "__negsi2";
121 Names
[RTLIB::NEG_I64
] = "__negdi2";
122 Names
[RTLIB::ADD_F32
] = "__addsf3";
123 Names
[RTLIB::ADD_F64
] = "__adddf3";
124 Names
[RTLIB::ADD_F80
] = "__addxf3";
125 Names
[RTLIB::ADD_PPCF128
] = "__gcc_qadd";
126 Names
[RTLIB::SUB_F32
] = "__subsf3";
127 Names
[RTLIB::SUB_F64
] = "__subdf3";
128 Names
[RTLIB::SUB_F80
] = "__subxf3";
129 Names
[RTLIB::SUB_PPCF128
] = "__gcc_qsub";
130 Names
[RTLIB::MUL_F32
] = "__mulsf3";
131 Names
[RTLIB::MUL_F64
] = "__muldf3";
132 Names
[RTLIB::MUL_F80
] = "__mulxf3";
133 Names
[RTLIB::MUL_PPCF128
] = "__gcc_qmul";
134 Names
[RTLIB::DIV_F32
] = "__divsf3";
135 Names
[RTLIB::DIV_F64
] = "__divdf3";
136 Names
[RTLIB::DIV_F80
] = "__divxf3";
137 Names
[RTLIB::DIV_PPCF128
] = "__gcc_qdiv";
138 Names
[RTLIB::REM_F32
] = "fmodf";
139 Names
[RTLIB::REM_F64
] = "fmod";
140 Names
[RTLIB::REM_F80
] = "fmodl";
141 Names
[RTLIB::REM_PPCF128
] = "fmodl";
142 Names
[RTLIB::FMA_F32
] = "fmaf";
143 Names
[RTLIB::FMA_F64
] = "fma";
144 Names
[RTLIB::FMA_F80
] = "fmal";
145 Names
[RTLIB::FMA_PPCF128
] = "fmal";
146 Names
[RTLIB::POWI_F32
] = "__powisf2";
147 Names
[RTLIB::POWI_F64
] = "__powidf2";
148 Names
[RTLIB::POWI_F80
] = "__powixf2";
149 Names
[RTLIB::POWI_PPCF128
] = "__powitf2";
150 Names
[RTLIB::SQRT_F32
] = "sqrtf";
151 Names
[RTLIB::SQRT_F64
] = "sqrt";
152 Names
[RTLIB::SQRT_F80
] = "sqrtl";
153 Names
[RTLIB::SQRT_PPCF128
] = "sqrtl";
154 Names
[RTLIB::LOG_F32
] = "logf";
155 Names
[RTLIB::LOG_F64
] = "log";
156 Names
[RTLIB::LOG_F80
] = "logl";
157 Names
[RTLIB::LOG_PPCF128
] = "logl";
158 Names
[RTLIB::LOG2_F32
] = "log2f";
159 Names
[RTLIB::LOG2_F64
] = "log2";
160 Names
[RTLIB::LOG2_F80
] = "log2l";
161 Names
[RTLIB::LOG2_PPCF128
] = "log2l";
162 Names
[RTLIB::LOG10_F32
] = "log10f";
163 Names
[RTLIB::LOG10_F64
] = "log10";
164 Names
[RTLIB::LOG10_F80
] = "log10l";
165 Names
[RTLIB::LOG10_PPCF128
] = "log10l";
166 Names
[RTLIB::EXP_F32
] = "expf";
167 Names
[RTLIB::EXP_F64
] = "exp";
168 Names
[RTLIB::EXP_F80
] = "expl";
169 Names
[RTLIB::EXP_PPCF128
] = "expl";
170 Names
[RTLIB::EXP2_F32
] = "exp2f";
171 Names
[RTLIB::EXP2_F64
] = "exp2";
172 Names
[RTLIB::EXP2_F80
] = "exp2l";
173 Names
[RTLIB::EXP2_PPCF128
] = "exp2l";
174 Names
[RTLIB::SIN_F32
] = "sinf";
175 Names
[RTLIB::SIN_F64
] = "sin";
176 Names
[RTLIB::SIN_F80
] = "sinl";
177 Names
[RTLIB::SIN_PPCF128
] = "sinl";
178 Names
[RTLIB::COS_F32
] = "cosf";
179 Names
[RTLIB::COS_F64
] = "cos";
180 Names
[RTLIB::COS_F80
] = "cosl";
181 Names
[RTLIB::COS_PPCF128
] = "cosl";
182 Names
[RTLIB::POW_F32
] = "powf";
183 Names
[RTLIB::POW_F64
] = "pow";
184 Names
[RTLIB::POW_F80
] = "powl";
185 Names
[RTLIB::POW_PPCF128
] = "powl";
186 Names
[RTLIB::CEIL_F32
] = "ceilf";
187 Names
[RTLIB::CEIL_F64
] = "ceil";
188 Names
[RTLIB::CEIL_F80
] = "ceill";
189 Names
[RTLIB::CEIL_PPCF128
] = "ceill";
190 Names
[RTLIB::TRUNC_F32
] = "truncf";
191 Names
[RTLIB::TRUNC_F64
] = "trunc";
192 Names
[RTLIB::TRUNC_F80
] = "truncl";
193 Names
[RTLIB::TRUNC_PPCF128
] = "truncl";
194 Names
[RTLIB::RINT_F32
] = "rintf";
195 Names
[RTLIB::RINT_F64
] = "rint";
196 Names
[RTLIB::RINT_F80
] = "rintl";
197 Names
[RTLIB::RINT_PPCF128
] = "rintl";
198 Names
[RTLIB::NEARBYINT_F32
] = "nearbyintf";
199 Names
[RTLIB::NEARBYINT_F64
] = "nearbyint";
200 Names
[RTLIB::NEARBYINT_F80
] = "nearbyintl";
201 Names
[RTLIB::NEARBYINT_PPCF128
] = "nearbyintl";
202 Names
[RTLIB::FLOOR_F32
] = "floorf";
203 Names
[RTLIB::FLOOR_F64
] = "floor";
204 Names
[RTLIB::FLOOR_F80
] = "floorl";
205 Names
[RTLIB::FLOOR_PPCF128
] = "floorl";
206 Names
[RTLIB::COPYSIGN_F32
] = "copysignf";
207 Names
[RTLIB::COPYSIGN_F64
] = "copysign";
208 Names
[RTLIB::COPYSIGN_F80
] = "copysignl";
209 Names
[RTLIB::COPYSIGN_PPCF128
] = "copysignl";
210 Names
[RTLIB::FPEXT_F32_F64
] = "__extendsfdf2";
211 Names
[RTLIB::FPEXT_F16_F32
] = "__gnu_h2f_ieee";
212 Names
[RTLIB::FPROUND_F32_F16
] = "__gnu_f2h_ieee";
213 Names
[RTLIB::FPROUND_F64_F32
] = "__truncdfsf2";
214 Names
[RTLIB::FPROUND_F80_F32
] = "__truncxfsf2";
215 Names
[RTLIB::FPROUND_PPCF128_F32
] = "__trunctfsf2";
216 Names
[RTLIB::FPROUND_F80_F64
] = "__truncxfdf2";
217 Names
[RTLIB::FPROUND_PPCF128_F64
] = "__trunctfdf2";
218 Names
[RTLIB::FPTOSINT_F32_I8
] = "__fixsfqi";
219 Names
[RTLIB::FPTOSINT_F32_I16
] = "__fixsfhi";
220 Names
[RTLIB::FPTOSINT_F32_I32
] = "__fixsfsi";
221 Names
[RTLIB::FPTOSINT_F32_I64
] = "__fixsfdi";
222 Names
[RTLIB::FPTOSINT_F32_I128
] = "__fixsfti";
223 Names
[RTLIB::FPTOSINT_F64_I8
] = "__fixdfqi";
224 Names
[RTLIB::FPTOSINT_F64_I16
] = "__fixdfhi";
225 Names
[RTLIB::FPTOSINT_F64_I32
] = "__fixdfsi";
226 Names
[RTLIB::FPTOSINT_F64_I64
] = "__fixdfdi";
227 Names
[RTLIB::FPTOSINT_F64_I128
] = "__fixdfti";
228 Names
[RTLIB::FPTOSINT_F80_I32
] = "__fixxfsi";
229 Names
[RTLIB::FPTOSINT_F80_I64
] = "__fixxfdi";
230 Names
[RTLIB::FPTOSINT_F80_I128
] = "__fixxfti";
231 Names
[RTLIB::FPTOSINT_PPCF128_I32
] = "__fixtfsi";
232 Names
[RTLIB::FPTOSINT_PPCF128_I64
] = "__fixtfdi";
233 Names
[RTLIB::FPTOSINT_PPCF128_I128
] = "__fixtfti";
234 Names
[RTLIB::FPTOUINT_F32_I8
] = "__fixunssfqi";
235 Names
[RTLIB::FPTOUINT_F32_I16
] = "__fixunssfhi";
236 Names
[RTLIB::FPTOUINT_F32_I32
] = "__fixunssfsi";
237 Names
[RTLIB::FPTOUINT_F32_I64
] = "__fixunssfdi";
238 Names
[RTLIB::FPTOUINT_F32_I128
] = "__fixunssfti";
239 Names
[RTLIB::FPTOUINT_F64_I8
] = "__fixunsdfqi";
240 Names
[RTLIB::FPTOUINT_F64_I16
] = "__fixunsdfhi";
241 Names
[RTLIB::FPTOUINT_F64_I32
] = "__fixunsdfsi";
242 Names
[RTLIB::FPTOUINT_F64_I64
] = "__fixunsdfdi";
243 Names
[RTLIB::FPTOUINT_F64_I128
] = "__fixunsdfti";
244 Names
[RTLIB::FPTOUINT_F80_I32
] = "__fixunsxfsi";
245 Names
[RTLIB::FPTOUINT_F80_I64
] = "__fixunsxfdi";
246 Names
[RTLIB::FPTOUINT_F80_I128
] = "__fixunsxfti";
247 Names
[RTLIB::FPTOUINT_PPCF128_I32
] = "__fixunstfsi";
248 Names
[RTLIB::FPTOUINT_PPCF128_I64
] = "__fixunstfdi";
249 Names
[RTLIB::FPTOUINT_PPCF128_I128
] = "__fixunstfti";
250 Names
[RTLIB::SINTTOFP_I32_F32
] = "__floatsisf";
251 Names
[RTLIB::SINTTOFP_I32_F64
] = "__floatsidf";
252 Names
[RTLIB::SINTTOFP_I32_F80
] = "__floatsixf";
253 Names
[RTLIB::SINTTOFP_I32_PPCF128
] = "__floatsitf";
254 Names
[RTLIB::SINTTOFP_I64_F32
] = "__floatdisf";
255 Names
[RTLIB::SINTTOFP_I64_F64
] = "__floatdidf";
256 Names
[RTLIB::SINTTOFP_I64_F80
] = "__floatdixf";
257 Names
[RTLIB::SINTTOFP_I64_PPCF128
] = "__floatditf";
258 Names
[RTLIB::SINTTOFP_I128_F32
] = "__floattisf";
259 Names
[RTLIB::SINTTOFP_I128_F64
] = "__floattidf";
260 Names
[RTLIB::SINTTOFP_I128_F80
] = "__floattixf";
261 Names
[RTLIB::SINTTOFP_I128_PPCF128
] = "__floattitf";
262 Names
[RTLIB::UINTTOFP_I32_F32
] = "__floatunsisf";
263 Names
[RTLIB::UINTTOFP_I32_F64
] = "__floatunsidf";
264 Names
[RTLIB::UINTTOFP_I32_F80
] = "__floatunsixf";
265 Names
[RTLIB::UINTTOFP_I32_PPCF128
] = "__floatunsitf";
266 Names
[RTLIB::UINTTOFP_I64_F32
] = "__floatundisf";
267 Names
[RTLIB::UINTTOFP_I64_F64
] = "__floatundidf";
268 Names
[RTLIB::UINTTOFP_I64_F80
] = "__floatundixf";
269 Names
[RTLIB::UINTTOFP_I64_PPCF128
] = "__floatunditf";
270 Names
[RTLIB::UINTTOFP_I128_F32
] = "__floatuntisf";
271 Names
[RTLIB::UINTTOFP_I128_F64
] = "__floatuntidf";
272 Names
[RTLIB::UINTTOFP_I128_F80
] = "__floatuntixf";
273 Names
[RTLIB::UINTTOFP_I128_PPCF128
] = "__floatuntitf";
274 Names
[RTLIB::OEQ_F32
] = "__eqsf2";
275 Names
[RTLIB::OEQ_F64
] = "__eqdf2";
276 Names
[RTLIB::UNE_F32
] = "__nesf2";
277 Names
[RTLIB::UNE_F64
] = "__nedf2";
278 Names
[RTLIB::OGE_F32
] = "__gesf2";
279 Names
[RTLIB::OGE_F64
] = "__gedf2";
280 Names
[RTLIB::OLT_F32
] = "__ltsf2";
281 Names
[RTLIB::OLT_F64
] = "__ltdf2";
282 Names
[RTLIB::OLE_F32
] = "__lesf2";
283 Names
[RTLIB::OLE_F64
] = "__ledf2";
284 Names
[RTLIB::OGT_F32
] = "__gtsf2";
285 Names
[RTLIB::OGT_F64
] = "__gtdf2";
286 Names
[RTLIB::UO_F32
] = "__unordsf2";
287 Names
[RTLIB::UO_F64
] = "__unorddf2";
288 Names
[RTLIB::O_F32
] = "__unordsf2";
289 Names
[RTLIB::O_F64
] = "__unorddf2";
290 Names
[RTLIB::MEMCPY
] = "memcpy";
291 Names
[RTLIB::MEMMOVE
] = "memmove";
292 Names
[RTLIB::MEMSET
] = "memset";
293 Names
[RTLIB::UNWIND_RESUME
] = "_Unwind_Resume";
294 Names
[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1
] = "__sync_val_compare_and_swap_1";
295 Names
[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2
] = "__sync_val_compare_and_swap_2";
296 Names
[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4
] = "__sync_val_compare_and_swap_4";
297 Names
[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8
] = "__sync_val_compare_and_swap_8";
298 Names
[RTLIB::SYNC_LOCK_TEST_AND_SET_1
] = "__sync_lock_test_and_set_1";
299 Names
[RTLIB::SYNC_LOCK_TEST_AND_SET_2
] = "__sync_lock_test_and_set_2";
300 Names
[RTLIB::SYNC_LOCK_TEST_AND_SET_4
] = "__sync_lock_test_and_set_4";
301 Names
[RTLIB::SYNC_LOCK_TEST_AND_SET_8
] = "__sync_lock_test_and_set_8";
302 Names
[RTLIB::SYNC_FETCH_AND_ADD_1
] = "__sync_fetch_and_add_1";
303 Names
[RTLIB::SYNC_FETCH_AND_ADD_2
] = "__sync_fetch_and_add_2";
304 Names
[RTLIB::SYNC_FETCH_AND_ADD_4
] = "__sync_fetch_and_add_4";
305 Names
[RTLIB::SYNC_FETCH_AND_ADD_8
] = "__sync_fetch_and_add_8";
306 Names
[RTLIB::SYNC_FETCH_AND_SUB_1
] = "__sync_fetch_and_sub_1";
307 Names
[RTLIB::SYNC_FETCH_AND_SUB_2
] = "__sync_fetch_and_sub_2";
308 Names
[RTLIB::SYNC_FETCH_AND_SUB_4
] = "__sync_fetch_and_sub_4";
309 Names
[RTLIB::SYNC_FETCH_AND_SUB_8
] = "__sync_fetch_and_sub_8";
310 Names
[RTLIB::SYNC_FETCH_AND_AND_1
] = "__sync_fetch_and_and_1";
311 Names
[RTLIB::SYNC_FETCH_AND_AND_2
] = "__sync_fetch_and_and_2";
312 Names
[RTLIB::SYNC_FETCH_AND_AND_4
] = "__sync_fetch_and_and_4";
313 Names
[RTLIB::SYNC_FETCH_AND_AND_8
] = "__sync_fetch_and_and_8";
314 Names
[RTLIB::SYNC_FETCH_AND_OR_1
] = "__sync_fetch_and_or_1";
315 Names
[RTLIB::SYNC_FETCH_AND_OR_2
] = "__sync_fetch_and_or_2";
316 Names
[RTLIB::SYNC_FETCH_AND_OR_4
] = "__sync_fetch_and_or_4";
317 Names
[RTLIB::SYNC_FETCH_AND_OR_8
] = "__sync_fetch_and_or_8";
318 Names
[RTLIB::SYNC_FETCH_AND_XOR_1
] = "__sync_fetch_and_xor_1";
319 Names
[RTLIB::SYNC_FETCH_AND_XOR_2
] = "__sync_fetch_and_xor_2";
320 Names
[RTLIB::SYNC_FETCH_AND_XOR_4
] = "__sync_fetch_and-xor_4";
321 Names
[RTLIB::SYNC_FETCH_AND_XOR_8
] = "__sync_fetch_and_xor_8";
322 Names
[RTLIB::SYNC_FETCH_AND_NAND_1
] = "__sync_fetch_and_nand_1";
323 Names
[RTLIB::SYNC_FETCH_AND_NAND_2
] = "__sync_fetch_and_nand_2";
324 Names
[RTLIB::SYNC_FETCH_AND_NAND_4
] = "__sync_fetch_and_nand_4";
325 Names
[RTLIB::SYNC_FETCH_AND_NAND_8
] = "__sync_fetch_and_nand_8";
328 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
330 static void InitLibcallCallingConvs(CallingConv::ID
*CCs
) {
331 for (int i
= 0; i
< RTLIB::UNKNOWN_LIBCALL
; ++i
) {
332 CCs
[i
] = CallingConv::C
;
336 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
337 /// UNKNOWN_LIBCALL if there is none.
338 RTLIB::Libcall
RTLIB::getFPEXT(EVT OpVT
, EVT RetVT
) {
339 if (OpVT
== MVT::f32
) {
340 if (RetVT
== MVT::f64
)
341 return FPEXT_F32_F64
;
344 return UNKNOWN_LIBCALL
;
347 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
348 /// UNKNOWN_LIBCALL if there is none.
349 RTLIB::Libcall
RTLIB::getFPROUND(EVT OpVT
, EVT RetVT
) {
350 if (RetVT
== MVT::f32
) {
351 if (OpVT
== MVT::f64
)
352 return FPROUND_F64_F32
;
353 if (OpVT
== MVT::f80
)
354 return FPROUND_F80_F32
;
355 if (OpVT
== MVT::ppcf128
)
356 return FPROUND_PPCF128_F32
;
357 } else if (RetVT
== MVT::f64
) {
358 if (OpVT
== MVT::f80
)
359 return FPROUND_F80_F64
;
360 if (OpVT
== MVT::ppcf128
)
361 return FPROUND_PPCF128_F64
;
364 return UNKNOWN_LIBCALL
;
367 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
368 /// UNKNOWN_LIBCALL if there is none.
369 RTLIB::Libcall
RTLIB::getFPTOSINT(EVT OpVT
, EVT RetVT
) {
370 if (OpVT
== MVT::f32
) {
371 if (RetVT
== MVT::i8
)
372 return FPTOSINT_F32_I8
;
373 if (RetVT
== MVT::i16
)
374 return FPTOSINT_F32_I16
;
375 if (RetVT
== MVT::i32
)
376 return FPTOSINT_F32_I32
;
377 if (RetVT
== MVT::i64
)
378 return FPTOSINT_F32_I64
;
379 if (RetVT
== MVT::i128
)
380 return FPTOSINT_F32_I128
;
381 } else if (OpVT
== MVT::f64
) {
382 if (RetVT
== MVT::i8
)
383 return FPTOSINT_F64_I8
;
384 if (RetVT
== MVT::i16
)
385 return FPTOSINT_F64_I16
;
386 if (RetVT
== MVT::i32
)
387 return FPTOSINT_F64_I32
;
388 if (RetVT
== MVT::i64
)
389 return FPTOSINT_F64_I64
;
390 if (RetVT
== MVT::i128
)
391 return FPTOSINT_F64_I128
;
392 } else if (OpVT
== MVT::f80
) {
393 if (RetVT
== MVT::i32
)
394 return FPTOSINT_F80_I32
;
395 if (RetVT
== MVT::i64
)
396 return FPTOSINT_F80_I64
;
397 if (RetVT
== MVT::i128
)
398 return FPTOSINT_F80_I128
;
399 } else if (OpVT
== MVT::ppcf128
) {
400 if (RetVT
== MVT::i32
)
401 return FPTOSINT_PPCF128_I32
;
402 if (RetVT
== MVT::i64
)
403 return FPTOSINT_PPCF128_I64
;
404 if (RetVT
== MVT::i128
)
405 return FPTOSINT_PPCF128_I128
;
407 return UNKNOWN_LIBCALL
;
410 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
411 /// UNKNOWN_LIBCALL if there is none.
412 RTLIB::Libcall
RTLIB::getFPTOUINT(EVT OpVT
, EVT RetVT
) {
413 if (OpVT
== MVT::f32
) {
414 if (RetVT
== MVT::i8
)
415 return FPTOUINT_F32_I8
;
416 if (RetVT
== MVT::i16
)
417 return FPTOUINT_F32_I16
;
418 if (RetVT
== MVT::i32
)
419 return FPTOUINT_F32_I32
;
420 if (RetVT
== MVT::i64
)
421 return FPTOUINT_F32_I64
;
422 if (RetVT
== MVT::i128
)
423 return FPTOUINT_F32_I128
;
424 } else if (OpVT
== MVT::f64
) {
425 if (RetVT
== MVT::i8
)
426 return FPTOUINT_F64_I8
;
427 if (RetVT
== MVT::i16
)
428 return FPTOUINT_F64_I16
;
429 if (RetVT
== MVT::i32
)
430 return FPTOUINT_F64_I32
;
431 if (RetVT
== MVT::i64
)
432 return FPTOUINT_F64_I64
;
433 if (RetVT
== MVT::i128
)
434 return FPTOUINT_F64_I128
;
435 } else if (OpVT
== MVT::f80
) {
436 if (RetVT
== MVT::i32
)
437 return FPTOUINT_F80_I32
;
438 if (RetVT
== MVT::i64
)
439 return FPTOUINT_F80_I64
;
440 if (RetVT
== MVT::i128
)
441 return FPTOUINT_F80_I128
;
442 } else if (OpVT
== MVT::ppcf128
) {
443 if (RetVT
== MVT::i32
)
444 return FPTOUINT_PPCF128_I32
;
445 if (RetVT
== MVT::i64
)
446 return FPTOUINT_PPCF128_I64
;
447 if (RetVT
== MVT::i128
)
448 return FPTOUINT_PPCF128_I128
;
450 return UNKNOWN_LIBCALL
;
453 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
454 /// UNKNOWN_LIBCALL if there is none.
455 RTLIB::Libcall
RTLIB::getSINTTOFP(EVT OpVT
, EVT RetVT
) {
456 if (OpVT
== MVT::i32
) {
457 if (RetVT
== MVT::f32
)
458 return SINTTOFP_I32_F32
;
459 else if (RetVT
== MVT::f64
)
460 return SINTTOFP_I32_F64
;
461 else if (RetVT
== MVT::f80
)
462 return SINTTOFP_I32_F80
;
463 else if (RetVT
== MVT::ppcf128
)
464 return SINTTOFP_I32_PPCF128
;
465 } else if (OpVT
== MVT::i64
) {
466 if (RetVT
== MVT::f32
)
467 return SINTTOFP_I64_F32
;
468 else if (RetVT
== MVT::f64
)
469 return SINTTOFP_I64_F64
;
470 else if (RetVT
== MVT::f80
)
471 return SINTTOFP_I64_F80
;
472 else if (RetVT
== MVT::ppcf128
)
473 return SINTTOFP_I64_PPCF128
;
474 } else if (OpVT
== MVT::i128
) {
475 if (RetVT
== MVT::f32
)
476 return SINTTOFP_I128_F32
;
477 else if (RetVT
== MVT::f64
)
478 return SINTTOFP_I128_F64
;
479 else if (RetVT
== MVT::f80
)
480 return SINTTOFP_I128_F80
;
481 else if (RetVT
== MVT::ppcf128
)
482 return SINTTOFP_I128_PPCF128
;
484 return UNKNOWN_LIBCALL
;
487 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
488 /// UNKNOWN_LIBCALL if there is none.
489 RTLIB::Libcall
RTLIB::getUINTTOFP(EVT OpVT
, EVT RetVT
) {
490 if (OpVT
== MVT::i32
) {
491 if (RetVT
== MVT::f32
)
492 return UINTTOFP_I32_F32
;
493 else if (RetVT
== MVT::f64
)
494 return UINTTOFP_I32_F64
;
495 else if (RetVT
== MVT::f80
)
496 return UINTTOFP_I32_F80
;
497 else if (RetVT
== MVT::ppcf128
)
498 return UINTTOFP_I32_PPCF128
;
499 } else if (OpVT
== MVT::i64
) {
500 if (RetVT
== MVT::f32
)
501 return UINTTOFP_I64_F32
;
502 else if (RetVT
== MVT::f64
)
503 return UINTTOFP_I64_F64
;
504 else if (RetVT
== MVT::f80
)
505 return UINTTOFP_I64_F80
;
506 else if (RetVT
== MVT::ppcf128
)
507 return UINTTOFP_I64_PPCF128
;
508 } else if (OpVT
== MVT::i128
) {
509 if (RetVT
== MVT::f32
)
510 return UINTTOFP_I128_F32
;
511 else if (RetVT
== MVT::f64
)
512 return UINTTOFP_I128_F64
;
513 else if (RetVT
== MVT::f80
)
514 return UINTTOFP_I128_F80
;
515 else if (RetVT
== MVT::ppcf128
)
516 return UINTTOFP_I128_PPCF128
;
518 return UNKNOWN_LIBCALL
;
521 /// InitCmpLibcallCCs - Set default comparison libcall CC.
523 static void InitCmpLibcallCCs(ISD::CondCode
*CCs
) {
524 memset(CCs
, ISD::SETCC_INVALID
, sizeof(ISD::CondCode
)*RTLIB::UNKNOWN_LIBCALL
);
525 CCs
[RTLIB::OEQ_F32
] = ISD::SETEQ
;
526 CCs
[RTLIB::OEQ_F64
] = ISD::SETEQ
;
527 CCs
[RTLIB::UNE_F32
] = ISD::SETNE
;
528 CCs
[RTLIB::UNE_F64
] = ISD::SETNE
;
529 CCs
[RTLIB::OGE_F32
] = ISD::SETGE
;
530 CCs
[RTLIB::OGE_F64
] = ISD::SETGE
;
531 CCs
[RTLIB::OLT_F32
] = ISD::SETLT
;
532 CCs
[RTLIB::OLT_F64
] = ISD::SETLT
;
533 CCs
[RTLIB::OLE_F32
] = ISD::SETLE
;
534 CCs
[RTLIB::OLE_F64
] = ISD::SETLE
;
535 CCs
[RTLIB::OGT_F32
] = ISD::SETGT
;
536 CCs
[RTLIB::OGT_F64
] = ISD::SETGT
;
537 CCs
[RTLIB::UO_F32
] = ISD::SETNE
;
538 CCs
[RTLIB::UO_F64
] = ISD::SETNE
;
539 CCs
[RTLIB::O_F32
] = ISD::SETEQ
;
540 CCs
[RTLIB::O_F64
] = ISD::SETEQ
;
543 /// NOTE: The constructor takes ownership of TLOF.
544 TargetLowering::TargetLowering(const TargetMachine
&tm
,
545 const TargetLoweringObjectFile
*tlof
)
546 : TM(tm
), TD(TM
.getTargetData()), TLOF(*tlof
),
547 mayPromoteElements(AllowPromoteIntElem
) {
548 // All operations default to being supported.
549 memset(OpActions
, 0, sizeof(OpActions
));
550 memset(LoadExtActions
, 0, sizeof(LoadExtActions
));
551 memset(TruncStoreActions
, 0, sizeof(TruncStoreActions
));
552 memset(IndexedModeActions
, 0, sizeof(IndexedModeActions
));
553 memset(CondCodeActions
, 0, sizeof(CondCodeActions
));
555 // Set default actions for various operations.
556 for (unsigned VT
= 0; VT
!= (unsigned)MVT::LAST_VALUETYPE
; ++VT
) {
557 // Default all indexed load / store to expand.
558 for (unsigned IM
= (unsigned)ISD::PRE_INC
;
559 IM
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++IM
) {
560 setIndexedLoadAction(IM
, (MVT::SimpleValueType
)VT
, Expand
);
561 setIndexedStoreAction(IM
, (MVT::SimpleValueType
)VT
, Expand
);
564 // These operations default to expand.
565 setOperationAction(ISD::FGETSIGN
, (MVT::SimpleValueType
)VT
, Expand
);
566 setOperationAction(ISD::CONCAT_VECTORS
, (MVT::SimpleValueType
)VT
, Expand
);
569 // Most targets ignore the @llvm.prefetch intrinsic.
570 setOperationAction(ISD::PREFETCH
, MVT::Other
, Expand
);
572 // ConstantFP nodes default to expand. Targets can either change this to
573 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
574 // to optimize expansions for certain constants.
575 setOperationAction(ISD::ConstantFP
, MVT::f32
, Expand
);
576 setOperationAction(ISD::ConstantFP
, MVT::f64
, Expand
);
577 setOperationAction(ISD::ConstantFP
, MVT::f80
, Expand
);
579 // These library functions default to expand.
580 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
581 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
582 setOperationAction(ISD::FLOG10
,MVT::f64
, Expand
);
583 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
584 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
585 setOperationAction(ISD::FLOG
, MVT::f32
, Expand
);
586 setOperationAction(ISD::FLOG2
, MVT::f32
, Expand
);
587 setOperationAction(ISD::FLOG10
,MVT::f32
, Expand
);
588 setOperationAction(ISD::FEXP
, MVT::f32
, Expand
);
589 setOperationAction(ISD::FEXP2
, MVT::f32
, Expand
);
591 // Default ISD::TRAP to expand (which turns it into abort).
592 setOperationAction(ISD::TRAP
, MVT::Other
, Expand
);
594 IsLittleEndian
= TD
->isLittleEndian();
595 PointerTy
= MVT::getIntegerVT(8*TD
->getPointerSize());
596 memset(RegClassForVT
, 0,MVT::LAST_VALUETYPE
*sizeof(TargetRegisterClass
*));
597 memset(TargetDAGCombineArray
, 0, array_lengthof(TargetDAGCombineArray
));
598 maxStoresPerMemset
= maxStoresPerMemcpy
= maxStoresPerMemmove
= 8;
599 maxStoresPerMemsetOptSize
= maxStoresPerMemcpyOptSize
600 = maxStoresPerMemmoveOptSize
= 4;
601 benefitFromCodePlacementOpt
= false;
602 UseUnderscoreSetJmp
= false;
603 UseUnderscoreLongJmp
= false;
604 SelectIsExpensive
= false;
605 IntDivIsCheap
= false;
606 Pow2DivIsCheap
= false;
607 JumpIsExpensive
= false;
608 StackPointerRegisterToSaveRestore
= 0;
609 ExceptionPointerRegister
= 0;
610 ExceptionSelectorRegister
= 0;
611 BooleanContents
= UndefinedBooleanContent
;
612 SchedPreferenceInfo
= Sched::Latency
;
614 JumpBufAlignment
= 0;
615 MinFunctionAlignment
= 0;
616 PrefFunctionAlignment
= 0;
617 PrefLoopAlignment
= 0;
618 MinStackArgumentAlignment
= 1;
619 ShouldFoldAtomicFences
= false;
621 InitLibcallNames(LibcallRoutineNames
);
622 InitCmpLibcallCCs(CmpLibcallCCs
);
623 InitLibcallCallingConvs(LibcallCallingConvs
);
626 TargetLowering::~TargetLowering() {
630 MVT
TargetLowering::getShiftAmountTy(EVT LHSTy
) const {
631 return MVT::getIntegerVT(8*TD
->getPointerSize());
634 /// canOpTrap - Returns true if the operation can trap for the value type.
635 /// VT must be a legal type.
636 bool TargetLowering::canOpTrap(unsigned Op
, EVT VT
) const {
637 assert(isTypeLegal(VT
));
652 static unsigned getVectorTypeBreakdownMVT(MVT VT
, MVT
&IntermediateVT
,
653 unsigned &NumIntermediates
,
655 TargetLowering
*TLI
) {
656 // Figure out the right, legal destination reg to copy into.
657 unsigned NumElts
= VT
.getVectorNumElements();
658 MVT EltTy
= VT
.getVectorElementType();
660 unsigned NumVectorRegs
= 1;
662 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
663 // could break down into LHS/RHS like LegalizeDAG does.
664 if (!isPowerOf2_32(NumElts
)) {
665 NumVectorRegs
= NumElts
;
669 // Divide the input until we get to a supported size. This will always
670 // end with a scalar if the target doesn't support vectors.
671 while (NumElts
> 1 && !TLI
->isTypeLegal(MVT::getVectorVT(EltTy
, NumElts
))) {
676 NumIntermediates
= NumVectorRegs
;
678 MVT NewVT
= MVT::getVectorVT(EltTy
, NumElts
);
679 if (!TLI
->isTypeLegal(NewVT
))
681 IntermediateVT
= NewVT
;
683 unsigned NewVTSize
= NewVT
.getSizeInBits();
685 // Convert sizes such as i33 to i64.
686 if (!isPowerOf2_32(NewVTSize
))
687 NewVTSize
= NextPowerOf2(NewVTSize
);
689 EVT DestVT
= TLI
->getRegisterType(NewVT
);
691 if (EVT(DestVT
).bitsLT(NewVT
)) // Value is expanded, e.g. i64 -> i16.
692 return NumVectorRegs
*(NewVTSize
/DestVT
.getSizeInBits());
694 // Otherwise, promotion or legal types use the same number of registers as
695 // the vector decimated to the appropriate level.
696 return NumVectorRegs
;
699 /// isLegalRC - Return true if the value types that can be represented by the
700 /// specified register class are all legal.
701 bool TargetLowering::isLegalRC(const TargetRegisterClass
*RC
) const {
702 for (TargetRegisterClass::vt_iterator I
= RC
->vt_begin(), E
= RC
->vt_end();
710 /// hasLegalSuperRegRegClasses - Return true if the specified register class
711 /// has one or more super-reg register classes that are legal.
713 TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass
*RC
) const{
714 if (*RC
->superregclasses_begin() == 0)
716 for (TargetRegisterInfo::regclass_iterator I
= RC
->superregclasses_begin(),
717 E
= RC
->superregclasses_end(); I
!= E
; ++I
) {
718 const TargetRegisterClass
*RRC
= *I
;
725 /// findRepresentativeClass - Return the largest legal super-reg register class
726 /// of the register class for the specified type and its associated "cost".
727 std::pair
<const TargetRegisterClass
*, uint8_t>
728 TargetLowering::findRepresentativeClass(EVT VT
) const {
729 const TargetRegisterClass
*RC
= RegClassForVT
[VT
.getSimpleVT().SimpleTy
];
731 return std::make_pair(RC
, 0);
732 const TargetRegisterClass
*BestRC
= RC
;
733 for (TargetRegisterInfo::regclass_iterator I
= RC
->superregclasses_begin(),
734 E
= RC
->superregclasses_end(); I
!= E
; ++I
) {
735 const TargetRegisterClass
*RRC
= *I
;
736 if (RRC
->isASubClass() || !isLegalRC(RRC
))
738 if (!hasLegalSuperRegRegClasses(RRC
))
739 return std::make_pair(RRC
, 1);
742 return std::make_pair(BestRC
, 1);
746 /// computeRegisterProperties - Once all of the register classes are added,
747 /// this allows us to compute derived properties we expose.
748 void TargetLowering::computeRegisterProperties() {
749 assert(MVT::LAST_VALUETYPE
<= MVT::MAX_ALLOWED_VALUETYPE
&&
750 "Too many value types for ValueTypeActions to hold!");
752 // Everything defaults to needing one register.
753 for (unsigned i
= 0; i
!= MVT::LAST_VALUETYPE
; ++i
) {
754 NumRegistersForVT
[i
] = 1;
755 RegisterTypeForVT
[i
] = TransformToType
[i
] = (MVT::SimpleValueType
)i
;
757 // ...except isVoid, which doesn't need any registers.
758 NumRegistersForVT
[MVT::isVoid
] = 0;
760 // Find the largest integer register class.
761 unsigned LargestIntReg
= MVT::LAST_INTEGER_VALUETYPE
;
762 for (; RegClassForVT
[LargestIntReg
] == 0; --LargestIntReg
)
763 assert(LargestIntReg
!= MVT::i1
&& "No integer registers defined!");
765 // Every integer value type larger than this largest register takes twice as
766 // many registers to represent as the previous ValueType.
767 for (unsigned ExpandedReg
= LargestIntReg
+ 1; ; ++ExpandedReg
) {
768 EVT ExpandedVT
= (MVT::SimpleValueType
)ExpandedReg
;
769 if (!ExpandedVT
.isInteger())
771 NumRegistersForVT
[ExpandedReg
] = 2*NumRegistersForVT
[ExpandedReg
-1];
772 RegisterTypeForVT
[ExpandedReg
] = (MVT::SimpleValueType
)LargestIntReg
;
773 TransformToType
[ExpandedReg
] = (MVT::SimpleValueType
)(ExpandedReg
- 1);
774 ValueTypeActions
.setTypeAction(ExpandedVT
, TypeExpandInteger
);
777 // Inspect all of the ValueType's smaller than the largest integer
778 // register to see which ones need promotion.
779 unsigned LegalIntReg
= LargestIntReg
;
780 for (unsigned IntReg
= LargestIntReg
- 1;
781 IntReg
>= (unsigned)MVT::i1
; --IntReg
) {
782 EVT IVT
= (MVT::SimpleValueType
)IntReg
;
783 if (isTypeLegal(IVT
)) {
784 LegalIntReg
= IntReg
;
786 RegisterTypeForVT
[IntReg
] = TransformToType
[IntReg
] =
787 (MVT::SimpleValueType
)LegalIntReg
;
788 ValueTypeActions
.setTypeAction(IVT
, TypePromoteInteger
);
792 // ppcf128 type is really two f64's.
793 if (!isTypeLegal(MVT::ppcf128
)) {
794 NumRegistersForVT
[MVT::ppcf128
] = 2*NumRegistersForVT
[MVT::f64
];
795 RegisterTypeForVT
[MVT::ppcf128
] = MVT::f64
;
796 TransformToType
[MVT::ppcf128
] = MVT::f64
;
797 ValueTypeActions
.setTypeAction(MVT::ppcf128
, TypeExpandFloat
);
800 // Decide how to handle f64. If the target does not have native f64 support,
801 // expand it to i64 and we will be generating soft float library calls.
802 if (!isTypeLegal(MVT::f64
)) {
803 NumRegistersForVT
[MVT::f64
] = NumRegistersForVT
[MVT::i64
];
804 RegisterTypeForVT
[MVT::f64
] = RegisterTypeForVT
[MVT::i64
];
805 TransformToType
[MVT::f64
] = MVT::i64
;
806 ValueTypeActions
.setTypeAction(MVT::f64
, TypeSoftenFloat
);
809 // Decide how to handle f32. If the target does not have native support for
810 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
811 if (!isTypeLegal(MVT::f32
)) {
812 if (isTypeLegal(MVT::f64
)) {
813 NumRegistersForVT
[MVT::f32
] = NumRegistersForVT
[MVT::f64
];
814 RegisterTypeForVT
[MVT::f32
] = RegisterTypeForVT
[MVT::f64
];
815 TransformToType
[MVT::f32
] = MVT::f64
;
816 ValueTypeActions
.setTypeAction(MVT::f32
, TypePromoteInteger
);
818 NumRegistersForVT
[MVT::f32
] = NumRegistersForVT
[MVT::i32
];
819 RegisterTypeForVT
[MVT::f32
] = RegisterTypeForVT
[MVT::i32
];
820 TransformToType
[MVT::f32
] = MVT::i32
;
821 ValueTypeActions
.setTypeAction(MVT::f32
, TypeSoftenFloat
);
825 // Loop over all of the vector value types to see which need transformations.
826 for (unsigned i
= MVT::FIRST_VECTOR_VALUETYPE
;
827 i
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++i
) {
828 MVT VT
= (MVT::SimpleValueType
)i
;
829 if (isTypeLegal(VT
)) continue;
831 // Determine if there is a legal wider type. If so, we should promote to
832 // that wider vector type.
833 EVT EltVT
= VT
.getVectorElementType();
834 unsigned NElts
= VT
.getVectorNumElements();
836 bool IsLegalWiderType
= false;
837 // If we allow the promotion of vector elements using a flag,
838 // then return TypePromoteInteger on vector elements.
839 // First try to promote the elements of integer vectors. If no legal
840 // promotion was found, fallback to the widen-vector method.
841 if (mayPromoteElements
)
842 for (unsigned nVT
= i
+1; nVT
<= MVT::LAST_VECTOR_VALUETYPE
; ++nVT
) {
843 EVT SVT
= (MVT::SimpleValueType
)nVT
;
844 // Promote vectors of integers to vectors with the same number
845 // of elements, with a wider element type.
846 if (SVT
.getVectorElementType().getSizeInBits() > EltVT
.getSizeInBits()
847 && SVT
.getVectorNumElements() == NElts
&&
848 isTypeLegal(SVT
) && SVT
.getScalarType().isInteger()) {
849 TransformToType
[i
] = SVT
;
850 RegisterTypeForVT
[i
] = SVT
;
851 NumRegistersForVT
[i
] = 1;
852 ValueTypeActions
.setTypeAction(VT
, TypePromoteInteger
);
853 IsLegalWiderType
= true;
858 if (IsLegalWiderType
) continue;
860 // Try to widen the vector.
861 for (unsigned nVT
= i
+1; nVT
<= MVT::LAST_VECTOR_VALUETYPE
; ++nVT
) {
862 EVT SVT
= (MVT::SimpleValueType
)nVT
;
863 if (SVT
.getVectorElementType() == EltVT
&&
864 SVT
.getVectorNumElements() > NElts
&&
866 TransformToType
[i
] = SVT
;
867 RegisterTypeForVT
[i
] = SVT
;
868 NumRegistersForVT
[i
] = 1;
869 ValueTypeActions
.setTypeAction(VT
, TypeWidenVector
);
870 IsLegalWiderType
= true;
874 if (IsLegalWiderType
) continue;
879 unsigned NumIntermediates
;
880 NumRegistersForVT
[i
] =
881 getVectorTypeBreakdownMVT(VT
, IntermediateVT
, NumIntermediates
,
883 RegisterTypeForVT
[i
] = RegisterVT
;
885 EVT NVT
= VT
.getPow2VectorType();
887 // Type is already a power of 2. The default action is to split.
888 TransformToType
[i
] = MVT::Other
;
889 unsigned NumElts
= VT
.getVectorNumElements();
890 ValueTypeActions
.setTypeAction(VT
,
891 NumElts
> 1 ? TypeSplitVector
: TypeScalarizeVector
);
893 TransformToType
[i
] = NVT
;
894 ValueTypeActions
.setTypeAction(VT
, TypeWidenVector
);
898 // Determine the 'representative' register class for each value type.
899 // An representative register class is the largest (meaning one which is
900 // not a sub-register class / subreg register class) legal register class for
901 // a group of value types. For example, on i386, i8, i16, and i32
902 // representative would be GR32; while on x86_64 it's GR64.
903 for (unsigned i
= 0; i
!= MVT::LAST_VALUETYPE
; ++i
) {
904 const TargetRegisterClass
* RRC
;
906 tie(RRC
, Cost
) = findRepresentativeClass((MVT::SimpleValueType
)i
);
907 RepRegClassForVT
[i
] = RRC
;
908 RepRegClassCostForVT
[i
] = Cost
;
912 const char *TargetLowering::getTargetNodeName(unsigned Opcode
) const {
917 MVT::SimpleValueType
TargetLowering::getSetCCResultType(EVT VT
) const {
918 return PointerTy
.SimpleTy
;
921 MVT::SimpleValueType
TargetLowering::getCmpLibcallReturnType() const {
922 return MVT::i32
; // return the default value
925 /// getVectorTypeBreakdown - Vector types are broken down into some number of
926 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
927 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
928 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
930 /// This method returns the number of registers needed, and the VT for each
931 /// register. It also returns the VT and quantity of the intermediate values
932 /// before they are promoted/expanded.
934 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext
&Context
, EVT VT
,
936 unsigned &NumIntermediates
,
937 EVT
&RegisterVT
) const {
938 unsigned NumElts
= VT
.getVectorNumElements();
940 // If there is a wider vector type with the same element type as this one,
941 // we should widen to that legal vector type. This handles things like
942 // <2 x float> -> <4 x float>.
943 if (NumElts
!= 1 && getTypeAction(Context
, VT
) == TypeWidenVector
) {
944 RegisterVT
= getTypeToTransformTo(Context
, VT
);
945 if (isTypeLegal(RegisterVT
)) {
946 IntermediateVT
= RegisterVT
;
947 NumIntermediates
= 1;
952 // Figure out the right, legal destination reg to copy into.
953 EVT EltTy
= VT
.getVectorElementType();
955 unsigned NumVectorRegs
= 1;
957 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
958 // could break down into LHS/RHS like LegalizeDAG does.
959 if (!isPowerOf2_32(NumElts
)) {
960 NumVectorRegs
= NumElts
;
964 // Divide the input until we get to a supported size. This will always
965 // end with a scalar if the target doesn't support vectors.
966 while (NumElts
> 1 && !isTypeLegal(
967 EVT::getVectorVT(Context
, EltTy
, NumElts
))) {
972 NumIntermediates
= NumVectorRegs
;
974 EVT NewVT
= EVT::getVectorVT(Context
, EltTy
, NumElts
);
975 if (!isTypeLegal(NewVT
))
977 IntermediateVT
= NewVT
;
979 EVT DestVT
= getRegisterType(Context
, NewVT
);
981 unsigned NewVTSize
= NewVT
.getSizeInBits();
983 // Convert sizes such as i33 to i64.
984 if (!isPowerOf2_32(NewVTSize
))
985 NewVTSize
= NextPowerOf2(NewVTSize
);
987 if (DestVT
.bitsLT(NewVT
)) // Value is expanded, e.g. i64 -> i16.
988 return NumVectorRegs
*(NewVTSize
/DestVT
.getSizeInBits());
990 // Otherwise, promotion or legal types use the same number of registers as
991 // the vector decimated to the appropriate level.
992 return NumVectorRegs
;
995 /// Get the EVTs and ArgFlags collections that represent the legalized return
996 /// type of the given function. This does not require a DAG or a return value,
997 /// and is suitable for use before any DAGs for the function are constructed.
998 /// TODO: Move this out of TargetLowering.cpp.
999 void llvm::GetReturnInfo(const Type
* ReturnType
, Attributes attr
,
1000 SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1001 const TargetLowering
&TLI
,
1002 SmallVectorImpl
<uint64_t> *Offsets
) {
1003 SmallVector
<EVT
, 4> ValueVTs
;
1004 ComputeValueVTs(TLI
, ReturnType
, ValueVTs
);
1005 unsigned NumValues
= ValueVTs
.size();
1006 if (NumValues
== 0) return;
1007 unsigned Offset
= 0;
1009 for (unsigned j
= 0, f
= NumValues
; j
!= f
; ++j
) {
1010 EVT VT
= ValueVTs
[j
];
1011 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
1013 if (attr
& Attribute::SExt
)
1014 ExtendKind
= ISD::SIGN_EXTEND
;
1015 else if (attr
& Attribute::ZExt
)
1016 ExtendKind
= ISD::ZERO_EXTEND
;
1018 // FIXME: C calling convention requires the return type to be promoted to
1019 // at least 32-bit. But this is not necessary for non-C calling
1020 // conventions. The frontend should mark functions whose return values
1021 // require promoting with signext or zeroext attributes.
1022 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger()) {
1023 EVT MinVT
= TLI
.getRegisterType(ReturnType
->getContext(), MVT::i32
);
1024 if (VT
.bitsLT(MinVT
))
1028 unsigned NumParts
= TLI
.getNumRegisters(ReturnType
->getContext(), VT
);
1029 EVT PartVT
= TLI
.getRegisterType(ReturnType
->getContext(), VT
);
1030 unsigned PartSize
= TLI
.getTargetData()->getTypeAllocSize(
1031 PartVT
.getTypeForEVT(ReturnType
->getContext()));
1033 // 'inreg' on function refers to return value
1034 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1035 if (attr
& Attribute::InReg
)
1038 // Propagate extension type if any
1039 if (attr
& Attribute::SExt
)
1041 else if (attr
& Attribute::ZExt
)
1044 for (unsigned i
= 0; i
< NumParts
; ++i
) {
1045 Outs
.push_back(ISD::OutputArg(Flags
, PartVT
, /*isFixed=*/true));
1047 Offsets
->push_back(Offset
);
1054 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1055 /// function arguments in the caller parameter area. This is the actual
1056 /// alignment, not its logarithm.
1057 unsigned TargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
1058 return TD
->getCallFrameTypeAlignment(Ty
);
1061 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1062 /// current function. The returned value is a member of the
1063 /// MachineJumpTableInfo::JTEntryKind enum.
1064 unsigned TargetLowering::getJumpTableEncoding() const {
1065 // In non-pic modes, just use the address of a block.
1066 if (getTargetMachine().getRelocationModel() != Reloc::PIC_
)
1067 return MachineJumpTableInfo::EK_BlockAddress
;
1069 // In PIC mode, if the target supports a GPRel32 directive, use it.
1070 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1071 return MachineJumpTableInfo::EK_GPRel32BlockAddress
;
1073 // Otherwise, use a label difference.
1074 return MachineJumpTableInfo::EK_LabelDifference32
;
1077 SDValue
TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
1078 SelectionDAG
&DAG
) const {
1079 // If our PIC model is GP relative, use the global offset table as the base.
1080 if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress
)
1081 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy());
1085 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1086 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1089 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
1090 unsigned JTI
,MCContext
&Ctx
) const{
1091 // The normal PIC reloc base is the label at the start of the jump table.
1092 return MCSymbolRefExpr::Create(MF
->getJTISymbol(JTI
, Ctx
), Ctx
);
1096 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
1097 // Assume that everything is safe in static mode.
1098 if (getTargetMachine().getRelocationModel() == Reloc::Static
)
1101 // In dynamic-no-pic mode, assume that known defined values are safe.
1102 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC
&&
1104 !GA
->getGlobal()->isDeclaration() &&
1105 !GA
->getGlobal()->isWeakForLinker())
1108 // Otherwise assume nothing is safe.
1112 //===----------------------------------------------------------------------===//
1113 // Optimization Methods
1114 //===----------------------------------------------------------------------===//
1116 /// ShrinkDemandedConstant - Check to see if the specified operand of the
1117 /// specified instruction is a constant integer. If so, check to see if there
1118 /// are any bits set in the constant that are not demanded. If so, shrink the
1119 /// constant and return true.
1120 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op
,
1121 const APInt
&Demanded
) {
1122 DebugLoc dl
= Op
.getDebugLoc();
1124 // FIXME: ISD::SELECT, ISD::SELECT_CC
1125 switch (Op
.getOpcode()) {
1130 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
1131 if (!C
) return false;
1133 if (Op
.getOpcode() == ISD::XOR
&&
1134 (C
->getAPIntValue() | (~Demanded
)).isAllOnesValue())
1137 // if we can expand it to have all bits set, do it
1138 if (C
->getAPIntValue().intersects(~Demanded
)) {
1139 EVT VT
= Op
.getValueType();
1140 SDValue New
= DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op
.getOperand(0),
1141 DAG
.getConstant(Demanded
&
1144 return CombineTo(Op
, New
);
1154 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1155 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
1156 /// cast, but it could be generalized for targets with other types of
1157 /// implicit widening casts.
1159 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op
,
1161 const APInt
&Demanded
,
1163 assert(Op
.getNumOperands() == 2 &&
1164 "ShrinkDemandedOp only supports binary operators!");
1165 assert(Op
.getNode()->getNumValues() == 1 &&
1166 "ShrinkDemandedOp only supports nodes with one result!");
1168 // Don't do this if the node has another user, which may require the
1170 if (!Op
.getNode()->hasOneUse())
1173 // Search for the smallest integer type with free casts to and from
1174 // Op's type. For expedience, just check power-of-2 integer types.
1175 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1176 unsigned SmallVTBits
= BitWidth
- Demanded
.countLeadingZeros();
1177 if (!isPowerOf2_32(SmallVTBits
))
1178 SmallVTBits
= NextPowerOf2(SmallVTBits
);
1179 for (; SmallVTBits
< BitWidth
; SmallVTBits
= NextPowerOf2(SmallVTBits
)) {
1180 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), SmallVTBits
);
1181 if (TLI
.isTruncateFree(Op
.getValueType(), SmallVT
) &&
1182 TLI
.isZExtFree(SmallVT
, Op
.getValueType())) {
1183 // We found a type with free casts.
1184 SDValue X
= DAG
.getNode(Op
.getOpcode(), dl
, SmallVT
,
1185 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
,
1186 Op
.getNode()->getOperand(0)),
1187 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
,
1188 Op
.getNode()->getOperand(1)));
1189 SDValue Z
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, Op
.getValueType(), X
);
1190 return CombineTo(Op
, Z
);
1196 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
1197 /// DemandedMask bits of the result of Op are ever used downstream. If we can
1198 /// use this information to simplify Op, create a new simplified DAG node and
1199 /// return true, returning the original and new nodes in Old and New. Otherwise,
1200 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
1201 /// the expression (used to simplify the caller). The KnownZero/One bits may
1202 /// only be accurate for those bits in the DemandedMask.
1203 bool TargetLowering::SimplifyDemandedBits(SDValue Op
,
1204 const APInt
&DemandedMask
,
1207 TargetLoweringOpt
&TLO
,
1208 unsigned Depth
) const {
1209 unsigned BitWidth
= DemandedMask
.getBitWidth();
1210 assert(Op
.getValueType().getScalarType().getSizeInBits() == BitWidth
&&
1211 "Mask size mismatches value type size!");
1212 APInt NewMask
= DemandedMask
;
1213 DebugLoc dl
= Op
.getDebugLoc();
1215 // Don't know anything.
1216 KnownZero
= KnownOne
= APInt(BitWidth
, 0);
1218 // Other users may use these bits.
1219 if (!Op
.getNode()->hasOneUse()) {
1221 // If not at the root, Just compute the KnownZero/KnownOne bits to
1222 // simplify things downstream.
1223 TLO
.DAG
.ComputeMaskedBits(Op
, DemandedMask
, KnownZero
, KnownOne
, Depth
);
1226 // If this is the root being simplified, allow it to have multiple uses,
1227 // just set the NewMask to all bits.
1228 NewMask
= APInt::getAllOnesValue(BitWidth
);
1229 } else if (DemandedMask
== 0) {
1230 // Not demanding any bits from Op.
1231 if (Op
.getOpcode() != ISD::UNDEF
)
1232 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(Op
.getValueType()));
1234 } else if (Depth
== 6) { // Limit search depth.
1238 APInt KnownZero2
, KnownOne2
, KnownZeroOut
, KnownOneOut
;
1239 switch (Op
.getOpcode()) {
1241 // We know all of the bits for a constant!
1242 KnownOne
= cast
<ConstantSDNode
>(Op
)->getAPIntValue() & NewMask
;
1243 KnownZero
= ~KnownOne
& NewMask
;
1244 return false; // Don't fall through, will infinitely loop.
1246 // If the RHS is a constant, check to see if the LHS would be zero without
1247 // using the bits from the RHS. Below, we use knowledge about the RHS to
1248 // simplify the LHS, here we're using information from the LHS to simplify
1250 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1251 APInt LHSZero
, LHSOne
;
1252 // Do not increment Depth here; that can cause an infinite loop.
1253 TLO
.DAG
.ComputeMaskedBits(Op
.getOperand(0), NewMask
,
1254 LHSZero
, LHSOne
, Depth
);
1255 // If the LHS already has zeros where RHSC does, this and is dead.
1256 if ((LHSZero
& NewMask
) == (~RHSC
->getAPIntValue() & NewMask
))
1257 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1258 // If any of the set bits in the RHS are known zero on the LHS, shrink
1260 if (TLO
.ShrinkDemandedConstant(Op
, ~LHSZero
& NewMask
))
1264 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
1265 KnownOne
, TLO
, Depth
+1))
1267 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1268 if (SimplifyDemandedBits(Op
.getOperand(0), ~KnownZero
& NewMask
,
1269 KnownZero2
, KnownOne2
, TLO
, Depth
+1))
1271 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1273 // If all of the demanded bits are known one on one side, return the other.
1274 // These bits cannot contribute to the result of the 'and'.
1275 if ((NewMask
& ~KnownZero2
& KnownOne
) == (~KnownZero2
& NewMask
))
1276 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1277 if ((NewMask
& ~KnownZero
& KnownOne2
) == (~KnownZero
& NewMask
))
1278 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1279 // If all of the demanded bits in the inputs are known zeros, return zero.
1280 if ((NewMask
& (KnownZero
|KnownZero2
)) == NewMask
)
1281 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, Op
.getValueType()));
1282 // If the RHS is a constant, see if we can simplify it.
1283 if (TLO
.ShrinkDemandedConstant(Op
, ~KnownZero2
& NewMask
))
1285 // If the operation can be done in a smaller type, do so.
1286 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1289 // Output known-1 bits are only known if set in both the LHS & RHS.
1290 KnownOne
&= KnownOne2
;
1291 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1292 KnownZero
|= KnownZero2
;
1295 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
1296 KnownOne
, TLO
, Depth
+1))
1298 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1299 if (SimplifyDemandedBits(Op
.getOperand(0), ~KnownOne
& NewMask
,
1300 KnownZero2
, KnownOne2
, TLO
, Depth
+1))
1302 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1304 // If all of the demanded bits are known zero on one side, return the other.
1305 // These bits cannot contribute to the result of the 'or'.
1306 if ((NewMask
& ~KnownOne2
& KnownZero
) == (~KnownOne2
& NewMask
))
1307 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1308 if ((NewMask
& ~KnownOne
& KnownZero2
) == (~KnownOne
& NewMask
))
1309 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1310 // If all of the potentially set bits on one side are known to be set on
1311 // the other side, just use the 'other' side.
1312 if ((NewMask
& ~KnownZero
& KnownOne2
) == (~KnownZero
& NewMask
))
1313 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1314 if ((NewMask
& ~KnownZero2
& KnownOne
) == (~KnownZero2
& NewMask
))
1315 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1316 // If the RHS is a constant, see if we can simplify it.
1317 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1319 // If the operation can be done in a smaller type, do so.
1320 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1323 // Output known-0 bits are only known if clear in both the LHS & RHS.
1324 KnownZero
&= KnownZero2
;
1325 // Output known-1 are known to be set if set in either the LHS | RHS.
1326 KnownOne
|= KnownOne2
;
1329 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
1330 KnownOne
, TLO
, Depth
+1))
1332 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1333 if (SimplifyDemandedBits(Op
.getOperand(0), NewMask
, KnownZero2
,
1334 KnownOne2
, TLO
, Depth
+1))
1336 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1338 // If all of the demanded bits are known zero on one side, return the other.
1339 // These bits cannot contribute to the result of the 'xor'.
1340 if ((KnownZero
& NewMask
) == NewMask
)
1341 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1342 if ((KnownZero2
& NewMask
) == NewMask
)
1343 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1344 // If the operation can be done in a smaller type, do so.
1345 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1348 // If all of the unknown bits are known to be zero on one side or the other
1349 // (but not both) turn this into an *inclusive* or.
1350 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1351 if ((NewMask
& ~KnownZero
& ~KnownZero2
) == 0)
1352 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::OR
, dl
, Op
.getValueType(),
1356 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1357 KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
1358 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1359 KnownOneOut
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
1361 // If all of the demanded bits on one side are known, and all of the set
1362 // bits on that side are also known to be set on the other side, turn this
1363 // into an AND, as we know the bits will be cleared.
1364 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1365 if ((NewMask
& (KnownZero
|KnownOne
)) == NewMask
) { // all known
1366 if ((KnownOne
& KnownOne2
) == KnownOne
) {
1367 EVT VT
= Op
.getValueType();
1368 SDValue ANDC
= TLO
.DAG
.getConstant(~KnownOne
& NewMask
, VT
);
1369 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::AND
, dl
, VT
,
1370 Op
.getOperand(0), ANDC
));
1374 // If the RHS is a constant, see if we can simplify it.
1375 // for XOR, we prefer to force bits to 1 if they will make a -1.
1376 // if we can't force bits, try to shrink constant
1377 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1378 APInt Expanded
= C
->getAPIntValue() | (~NewMask
);
1379 // if we can expand it to have all bits set, do it
1380 if (Expanded
.isAllOnesValue()) {
1381 if (Expanded
!= C
->getAPIntValue()) {
1382 EVT VT
= Op
.getValueType();
1383 SDValue New
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
,VT
, Op
.getOperand(0),
1384 TLO
.DAG
.getConstant(Expanded
, VT
));
1385 return TLO
.CombineTo(Op
, New
);
1387 // if it already has all the bits set, nothing to change
1388 // but don't shrink either!
1389 } else if (TLO
.ShrinkDemandedConstant(Op
, NewMask
)) {
1394 KnownZero
= KnownZeroOut
;
1395 KnownOne
= KnownOneOut
;
1398 if (SimplifyDemandedBits(Op
.getOperand(2), NewMask
, KnownZero
,
1399 KnownOne
, TLO
, Depth
+1))
1401 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero2
,
1402 KnownOne2
, TLO
, Depth
+1))
1404 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1405 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1407 // If the operands are constants, see if we can simplify them.
1408 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1411 // Only known if known in both the LHS and RHS.
1412 KnownOne
&= KnownOne2
;
1413 KnownZero
&= KnownZero2
;
1415 case ISD::SELECT_CC
:
1416 if (SimplifyDemandedBits(Op
.getOperand(3), NewMask
, KnownZero
,
1417 KnownOne
, TLO
, Depth
+1))
1419 if (SimplifyDemandedBits(Op
.getOperand(2), NewMask
, KnownZero2
,
1420 KnownOne2
, TLO
, Depth
+1))
1422 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1423 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1425 // If the operands are constants, see if we can simplify them.
1426 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1429 // Only known if known in both the LHS and RHS.
1430 KnownOne
&= KnownOne2
;
1431 KnownZero
&= KnownZero2
;
1434 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1435 unsigned ShAmt
= SA
->getZExtValue();
1436 SDValue InOp
= Op
.getOperand(0);
1438 // If the shift count is an invalid immediate, don't do anything.
1439 if (ShAmt
>= BitWidth
)
1442 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1443 // single shift. We can do this if the bottom bits (which are shifted
1444 // out) are never demanded.
1445 if (InOp
.getOpcode() == ISD::SRL
&&
1446 isa
<ConstantSDNode
>(InOp
.getOperand(1))) {
1447 if (ShAmt
&& (NewMask
& APInt::getLowBitsSet(BitWidth
, ShAmt
)) == 0) {
1448 unsigned C1
= cast
<ConstantSDNode
>(InOp
.getOperand(1))->getZExtValue();
1449 unsigned Opc
= ISD::SHL
;
1450 int Diff
= ShAmt
-C1
;
1457 TLO
.DAG
.getConstant(Diff
, Op
.getOperand(1).getValueType());
1458 EVT VT
= Op
.getValueType();
1459 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
,
1460 InOp
.getOperand(0), NewSA
));
1464 if (SimplifyDemandedBits(InOp
, NewMask
.lshr(ShAmt
),
1465 KnownZero
, KnownOne
, TLO
, Depth
+1))
1468 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1469 // are not demanded. This will likely allow the anyext to be folded away.
1470 if (InOp
.getNode()->getOpcode() == ISD::ANY_EXTEND
) {
1471 SDValue InnerOp
= InOp
.getNode()->getOperand(0);
1472 EVT InnerVT
= InnerOp
.getValueType();
1473 if ((APInt::getHighBitsSet(BitWidth
,
1474 BitWidth
- InnerVT
.getSizeInBits()) &
1475 DemandedMask
) == 0 &&
1476 isTypeDesirableForOp(ISD::SHL
, InnerVT
)) {
1477 EVT ShTy
= getShiftAmountTy(InnerVT
);
1478 if (!APInt(BitWidth
, ShAmt
).isIntN(ShTy
.getSizeInBits()))
1481 TLO
.DAG
.getNode(ISD::SHL
, dl
, InnerVT
, InnerOp
,
1482 TLO
.DAG
.getConstant(ShAmt
, ShTy
));
1485 TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
, Op
.getValueType(),
1490 KnownZero
<<= SA
->getZExtValue();
1491 KnownOne
<<= SA
->getZExtValue();
1492 // low bits known zero.
1493 KnownZero
|= APInt::getLowBitsSet(BitWidth
, SA
->getZExtValue());
1497 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1498 EVT VT
= Op
.getValueType();
1499 unsigned ShAmt
= SA
->getZExtValue();
1500 unsigned VTSize
= VT
.getSizeInBits();
1501 SDValue InOp
= Op
.getOperand(0);
1503 // If the shift count is an invalid immediate, don't do anything.
1504 if (ShAmt
>= BitWidth
)
1507 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1508 // single shift. We can do this if the top bits (which are shifted out)
1509 // are never demanded.
1510 if (InOp
.getOpcode() == ISD::SHL
&&
1511 isa
<ConstantSDNode
>(InOp
.getOperand(1))) {
1512 if (ShAmt
&& (NewMask
& APInt::getHighBitsSet(VTSize
, ShAmt
)) == 0) {
1513 unsigned C1
= cast
<ConstantSDNode
>(InOp
.getOperand(1))->getZExtValue();
1514 unsigned Opc
= ISD::SRL
;
1515 int Diff
= ShAmt
-C1
;
1522 TLO
.DAG
.getConstant(Diff
, Op
.getOperand(1).getValueType());
1523 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
,
1524 InOp
.getOperand(0), NewSA
));
1528 // Compute the new bits that are at the top now.
1529 if (SimplifyDemandedBits(InOp
, (NewMask
<< ShAmt
),
1530 KnownZero
, KnownOne
, TLO
, Depth
+1))
1532 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1533 KnownZero
= KnownZero
.lshr(ShAmt
);
1534 KnownOne
= KnownOne
.lshr(ShAmt
);
1536 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
);
1537 KnownZero
|= HighBits
; // High bits known zero.
1541 // If this is an arithmetic shift right and only the low-bit is set, we can
1542 // always convert this into a logical shr, even if the shift amount is
1543 // variable. The low bit of the shift cannot be an input sign bit unless
1544 // the shift amount is >= the size of the datatype, which is undefined.
1545 if (DemandedMask
== 1)
1546 return TLO
.CombineTo(Op
,
1547 TLO
.DAG
.getNode(ISD::SRL
, dl
, Op
.getValueType(),
1548 Op
.getOperand(0), Op
.getOperand(1)));
1550 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1551 EVT VT
= Op
.getValueType();
1552 unsigned ShAmt
= SA
->getZExtValue();
1554 // If the shift count is an invalid immediate, don't do anything.
1555 if (ShAmt
>= BitWidth
)
1558 APInt InDemandedMask
= (NewMask
<< ShAmt
);
1560 // If any of the demanded bits are produced by the sign extension, we also
1561 // demand the input sign bit.
1562 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
);
1563 if (HighBits
.intersects(NewMask
))
1564 InDemandedMask
|= APInt::getSignBit(VT
.getScalarType().getSizeInBits());
1566 if (SimplifyDemandedBits(Op
.getOperand(0), InDemandedMask
,
1567 KnownZero
, KnownOne
, TLO
, Depth
+1))
1569 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1570 KnownZero
= KnownZero
.lshr(ShAmt
);
1571 KnownOne
= KnownOne
.lshr(ShAmt
);
1573 // Handle the sign bit, adjusted to where it is now in the mask.
1574 APInt SignBit
= APInt::getSignBit(BitWidth
).lshr(ShAmt
);
1576 // If the input sign bit is known to be zero, or if none of the top bits
1577 // are demanded, turn this into an unsigned shift right.
1578 if (KnownZero
.intersects(SignBit
) || (HighBits
& ~NewMask
) == HighBits
) {
1579 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
,
1582 } else if (KnownOne
.intersects(SignBit
)) { // New bits are known one.
1583 KnownOne
|= HighBits
;
1587 case ISD::SIGN_EXTEND_INREG
: {
1588 EVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1590 // Sign extension. Compute the demanded bits in the result that are not
1591 // present in the input.
1593 APInt::getHighBitsSet(BitWidth
,
1594 BitWidth
- EVT
.getScalarType().getSizeInBits());
1596 // If none of the extended bits are demanded, eliminate the sextinreg.
1597 if ((NewBits
& NewMask
) == 0)
1598 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1601 APInt::getSignBit(EVT
.getScalarType().getSizeInBits()).zext(BitWidth
);
1602 APInt InputDemandedBits
=
1603 APInt::getLowBitsSet(BitWidth
,
1604 EVT
.getScalarType().getSizeInBits()) &
1607 // Since the sign extended bits are demanded, we know that the sign
1609 InputDemandedBits
|= InSignBit
;
1611 if (SimplifyDemandedBits(Op
.getOperand(0), InputDemandedBits
,
1612 KnownZero
, KnownOne
, TLO
, Depth
+1))
1614 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1616 // If the sign bit of the input is known set or clear, then we know the
1617 // top bits of the result.
1619 // If the input sign bit is known zero, convert this into a zero extension.
1620 if (KnownZero
.intersects(InSignBit
))
1621 return TLO
.CombineTo(Op
,
1622 TLO
.DAG
.getZeroExtendInReg(Op
.getOperand(0),dl
,EVT
));
1624 if (KnownOne
.intersects(InSignBit
)) { // Input sign bit known set
1625 KnownOne
|= NewBits
;
1626 KnownZero
&= ~NewBits
;
1627 } else { // Input sign bit unknown
1628 KnownZero
&= ~NewBits
;
1629 KnownOne
&= ~NewBits
;
1633 case ISD::ZERO_EXTEND
: {
1634 unsigned OperandBitWidth
=
1635 Op
.getOperand(0).getValueType().getScalarType().getSizeInBits();
1636 APInt InMask
= NewMask
.trunc(OperandBitWidth
);
1638 // If none of the top bits are demanded, convert this into an any_extend.
1640 APInt::getHighBitsSet(BitWidth
, BitWidth
- OperandBitWidth
) & NewMask
;
1641 if (!NewBits
.intersects(NewMask
))
1642 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
,
1646 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
,
1647 KnownZero
, KnownOne
, TLO
, Depth
+1))
1649 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1650 KnownZero
= KnownZero
.zext(BitWidth
);
1651 KnownOne
= KnownOne
.zext(BitWidth
);
1652 KnownZero
|= NewBits
;
1655 case ISD::SIGN_EXTEND
: {
1656 EVT InVT
= Op
.getOperand(0).getValueType();
1657 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1658 APInt InMask
= APInt::getLowBitsSet(BitWidth
, InBits
);
1659 APInt InSignBit
= APInt::getBitsSet(BitWidth
, InBits
- 1, InBits
);
1660 APInt NewBits
= ~InMask
& NewMask
;
1662 // If none of the top bits are demanded, convert this into an any_extend.
1664 return TLO
.CombineTo(Op
,TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
,
1668 // Since some of the sign extended bits are demanded, we know that the sign
1670 APInt InDemandedBits
= InMask
& NewMask
;
1671 InDemandedBits
|= InSignBit
;
1672 InDemandedBits
= InDemandedBits
.trunc(InBits
);
1674 if (SimplifyDemandedBits(Op
.getOperand(0), InDemandedBits
, KnownZero
,
1675 KnownOne
, TLO
, Depth
+1))
1677 KnownZero
= KnownZero
.zext(BitWidth
);
1678 KnownOne
= KnownOne
.zext(BitWidth
);
1680 // If the sign bit is known zero, convert this to a zero extend.
1681 if (KnownZero
.intersects(InSignBit
))
1682 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
1686 // If the sign bit is known one, the top bits match.
1687 if (KnownOne
.intersects(InSignBit
)) {
1688 KnownOne
|= NewBits
;
1689 KnownZero
&= ~NewBits
;
1690 } else { // Otherwise, top bits aren't known.
1691 KnownOne
&= ~NewBits
;
1692 KnownZero
&= ~NewBits
;
1696 case ISD::ANY_EXTEND
: {
1697 unsigned OperandBitWidth
=
1698 Op
.getOperand(0).getValueType().getScalarType().getSizeInBits();
1699 APInt InMask
= NewMask
.trunc(OperandBitWidth
);
1700 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
,
1701 KnownZero
, KnownOne
, TLO
, Depth
+1))
1703 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1704 KnownZero
= KnownZero
.zext(BitWidth
);
1705 KnownOne
= KnownOne
.zext(BitWidth
);
1708 case ISD::TRUNCATE
: {
1709 // Simplify the input, using demanded bit information, and compute the known
1710 // zero/one bits live out.
1711 unsigned OperandBitWidth
=
1712 Op
.getOperand(0).getValueType().getScalarType().getSizeInBits();
1713 APInt TruncMask
= NewMask
.zext(OperandBitWidth
);
1714 if (SimplifyDemandedBits(Op
.getOperand(0), TruncMask
,
1715 KnownZero
, KnownOne
, TLO
, Depth
+1))
1717 KnownZero
= KnownZero
.trunc(BitWidth
);
1718 KnownOne
= KnownOne
.trunc(BitWidth
);
1720 // If the input is only used by this truncate, see if we can shrink it based
1721 // on the known demanded bits.
1722 if (Op
.getOperand(0).getNode()->hasOneUse()) {
1723 SDValue In
= Op
.getOperand(0);
1724 switch (In
.getOpcode()) {
1727 // Shrink SRL by a constant if none of the high bits shifted in are
1729 if (TLO
.LegalTypes() &&
1730 !isTypeDesirableForOp(ISD::SRL
, Op
.getValueType()))
1731 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1734 ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(In
.getOperand(1));
1737 SDValue Shift
= In
.getOperand(1);
1738 if (TLO
.LegalTypes()) {
1739 uint64_t ShVal
= ShAmt
->getZExtValue();
1741 TLO
.DAG
.getConstant(ShVal
, getShiftAmountTy(Op
.getValueType()));
1744 APInt HighBits
= APInt::getHighBitsSet(OperandBitWidth
,
1745 OperandBitWidth
- BitWidth
);
1746 HighBits
= HighBits
.lshr(ShAmt
->getZExtValue()).trunc(BitWidth
);
1748 if (ShAmt
->getZExtValue() < BitWidth
&& !(HighBits
& NewMask
)) {
1749 // None of the shifted in bits are needed. Add a truncate of the
1750 // shift input, then shift it.
1751 SDValue NewTrunc
= TLO
.DAG
.getNode(ISD::TRUNCATE
, dl
,
1754 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
,
1763 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1766 case ISD::AssertZext
: {
1767 // Demand all the bits of the input that are demanded in the output.
1768 // The low bits are obvious; the high bits are demanded because we're
1769 // asserting that they're zero here.
1770 if (SimplifyDemandedBits(Op
.getOperand(0), NewMask
,
1771 KnownZero
, KnownOne
, TLO
, Depth
+1))
1773 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1775 EVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1776 APInt InMask
= APInt::getLowBitsSet(BitWidth
,
1777 VT
.getSizeInBits());
1778 KnownZero
|= ~InMask
& NewMask
;
1782 // If this is an FP->Int bitcast and if the sign bit is the only
1783 // thing demanded, turn this into a FGETSIGN.
1784 if (!Op
.getOperand(0).getValueType().isVector() &&
1785 NewMask
== APInt::getSignBit(Op
.getValueType().getSizeInBits()) &&
1786 Op
.getOperand(0).getValueType().isFloatingPoint()) {
1787 bool OpVTLegal
= isOperationLegalOrCustom(ISD::FGETSIGN
, Op
.getValueType());
1788 bool i32Legal
= isOperationLegalOrCustom(ISD::FGETSIGN
, MVT::i32
);
1789 if ((OpVTLegal
|| i32Legal
) && Op
.getValueType().isSimple()) {
1790 EVT Ty
= OpVTLegal
? Op
.getValueType() : MVT::i32
;
1791 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1792 // place. We expect the SHL to be eliminated by other optimizations.
1793 SDValue Sign
= TLO
.DAG
.getNode(ISD::FGETSIGN
, dl
, Ty
, Op
.getOperand(0));
1794 unsigned OpVTSizeInBits
= Op
.getValueType().getSizeInBits();
1795 if (!OpVTLegal
&& OpVTSizeInBits
> 32)
1796 Sign
= TLO
.DAG
.getNode(ISD::ZERO_EXTEND
, dl
, Op
.getValueType(), Sign
);
1797 unsigned ShVal
= Op
.getValueType().getSizeInBits()-1;
1798 SDValue ShAmt
= TLO
.DAG
.getConstant(ShVal
, Op
.getValueType());
1799 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SHL
, dl
,
1808 // Add, Sub, and Mul don't demand any bits in positions beyond that
1809 // of the highest bit demanded of them.
1810 APInt LoMask
= APInt::getLowBitsSet(BitWidth
,
1811 BitWidth
- NewMask
.countLeadingZeros());
1812 if (SimplifyDemandedBits(Op
.getOperand(0), LoMask
, KnownZero2
,
1813 KnownOne2
, TLO
, Depth
+1))
1815 if (SimplifyDemandedBits(Op
.getOperand(1), LoMask
, KnownZero2
,
1816 KnownOne2
, TLO
, Depth
+1))
1818 // See if the operation should be performed at a smaller bit width.
1819 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1824 // Just use ComputeMaskedBits to compute output bits.
1825 TLO
.DAG
.ComputeMaskedBits(Op
, NewMask
, KnownZero
, KnownOne
, Depth
);
1829 // If we know the value of all of the demanded bits, return this as a
1831 if ((NewMask
& (KnownZero
|KnownOne
)) == NewMask
)
1832 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(KnownOne
, Op
.getValueType()));
1837 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1838 /// in Mask are known to be either zero or one and return them in the
1839 /// KnownZero/KnownOne bitsets.
1840 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
1844 const SelectionDAG
&DAG
,
1845 unsigned Depth
) const {
1846 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
1847 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
1848 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
1849 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
1850 "Should use MaskedValueIsZero if you don't know whether Op"
1851 " is a target node!");
1852 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0);
1855 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1856 /// targets that want to expose additional information about sign bits to the
1858 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op
,
1859 unsigned Depth
) const {
1860 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
1861 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
1862 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
1863 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
1864 "Should use ComputeNumSignBits if you don't know whether Op"
1865 " is a target node!");
1869 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1870 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1871 /// determine which bit is set.
1873 static bool ValueHasExactlyOneBitSet(SDValue Val
, const SelectionDAG
&DAG
) {
1874 // A left-shift of a constant one will have exactly one bit set, because
1875 // shifting the bit off the end is undefined.
1876 if (Val
.getOpcode() == ISD::SHL
)
1877 if (ConstantSDNode
*C
=
1878 dyn_cast
<ConstantSDNode
>(Val
.getNode()->getOperand(0)))
1879 if (C
->getAPIntValue() == 1)
1882 // Similarly, a right-shift of a constant sign-bit will have exactly
1884 if (Val
.getOpcode() == ISD::SRL
)
1885 if (ConstantSDNode
*C
=
1886 dyn_cast
<ConstantSDNode
>(Val
.getNode()->getOperand(0)))
1887 if (C
->getAPIntValue().isSignBit())
1890 // More could be done here, though the above checks are enough
1891 // to handle some common cases.
1893 // Fall back to ComputeMaskedBits to catch other known cases.
1894 EVT OpVT
= Val
.getValueType();
1895 unsigned BitWidth
= OpVT
.getScalarType().getSizeInBits();
1896 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
1897 APInt KnownZero
, KnownOne
;
1898 DAG
.ComputeMaskedBits(Val
, Mask
, KnownZero
, KnownOne
);
1899 return (KnownZero
.countPopulation() == BitWidth
- 1) &&
1900 (KnownOne
.countPopulation() == 1);
1903 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1904 /// and cc. If it is unable to simplify it, return a null SDValue.
1906 TargetLowering::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
1907 ISD::CondCode Cond
, bool foldBooleans
,
1908 DAGCombinerInfo
&DCI
, DebugLoc dl
) const {
1909 SelectionDAG
&DAG
= DCI
.DAG
;
1911 // These setcc operations always fold.
1915 case ISD::SETFALSE2
: return DAG
.getConstant(0, VT
);
1917 case ISD::SETTRUE2
: return DAG
.getConstant(1, VT
);
1920 // Ensure that the constant occurs on the RHS, and fold constant
1922 if (isa
<ConstantSDNode
>(N0
.getNode()))
1923 return DAG
.getSetCC(dl
, VT
, N1
, N0
, ISD::getSetCCSwappedOperands(Cond
));
1925 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
1926 const APInt
&C1
= N1C
->getAPIntValue();
1928 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1929 // equality comparison, then we're just comparing whether X itself is
1931 if (N0
.getOpcode() == ISD::SRL
&& (C1
== 0 || C1
== 1) &&
1932 N0
.getOperand(0).getOpcode() == ISD::CTLZ
&&
1933 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
1935 = cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
1936 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
1937 ShAmt
== Log2_32(N0
.getValueType().getSizeInBits())) {
1938 if ((C1
== 0) == (Cond
== ISD::SETEQ
)) {
1939 // (srl (ctlz x), 5) == 0 -> X != 0
1940 // (srl (ctlz x), 5) != 1 -> X != 0
1943 // (srl (ctlz x), 5) != 0 -> X == 0
1944 // (srl (ctlz x), 5) == 1 -> X == 0
1947 SDValue Zero
= DAG
.getConstant(0, N0
.getValueType());
1948 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0).getOperand(0),
1954 // Look through truncs that don't change the value of a ctpop.
1955 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::TRUNCATE
)
1956 CTPOP
= N0
.getOperand(0);
1958 if (CTPOP
.hasOneUse() && CTPOP
.getOpcode() == ISD::CTPOP
&&
1959 (N0
== CTPOP
|| N0
.getValueType().getSizeInBits() >
1960 Log2_32_Ceil(CTPOP
.getValueType().getSizeInBits()))) {
1961 EVT CTVT
= CTPOP
.getValueType();
1962 SDValue CTOp
= CTPOP
.getOperand(0);
1964 // (ctpop x) u< 2 -> (x & x-1) == 0
1965 // (ctpop x) u> 1 -> (x & x-1) != 0
1966 if ((Cond
== ISD::SETULT
&& C1
== 2) || (Cond
== ISD::SETUGT
&& C1
== 1)){
1967 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, CTVT
, CTOp
,
1968 DAG
.getConstant(1, CTVT
));
1969 SDValue And
= DAG
.getNode(ISD::AND
, dl
, CTVT
, CTOp
, Sub
);
1970 ISD::CondCode CC
= Cond
== ISD::SETULT
? ISD::SETEQ
: ISD::SETNE
;
1971 return DAG
.getSetCC(dl
, VT
, And
, DAG
.getConstant(0, CTVT
), CC
);
1974 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1977 // (zext x) == C --> x == (trunc C)
1978 if (DCI
.isBeforeLegalize() && N0
->hasOneUse() &&
1979 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
1980 unsigned MinBits
= N0
.getValueSizeInBits();
1982 if (N0
->getOpcode() == ISD::ZERO_EXTEND
) {
1984 MinBits
= N0
->getOperand(0).getValueSizeInBits();
1985 PreZExt
= N0
->getOperand(0);
1986 } else if (N0
->getOpcode() == ISD::AND
) {
1987 // DAGCombine turns costly ZExts into ANDs
1988 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1)))
1989 if ((C
->getAPIntValue()+1).isPowerOf2()) {
1990 MinBits
= C
->getAPIntValue().countTrailingOnes();
1991 PreZExt
= N0
->getOperand(0);
1993 } else if (LoadSDNode
*LN0
= dyn_cast
<LoadSDNode
>(N0
)) {
1995 if (LN0
->getExtensionType() == ISD::ZEXTLOAD
) {
1996 MinBits
= LN0
->getMemoryVT().getSizeInBits();
2001 // Make sure we're not loosing bits from the constant.
2002 if (MinBits
< C1
.getBitWidth() && MinBits
> C1
.getActiveBits()) {
2003 EVT MinVT
= EVT::getIntegerVT(*DAG
.getContext(), MinBits
);
2004 if (isTypeDesirableForOp(ISD::SETCC
, MinVT
)) {
2005 // Will get folded away.
2006 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, dl
, MinVT
, PreZExt
);
2007 SDValue C
= DAG
.getConstant(C1
.trunc(MinBits
), MinVT
);
2008 return DAG
.getSetCC(dl
, VT
, Trunc
, C
, Cond
);
2013 // If the LHS is '(and load, const)', the RHS is 0,
2014 // the test is for equality or unsigned, and all 1 bits of the const are
2015 // in the same partial word, see if we can shorten the load.
2016 if (DCI
.isBeforeLegalize() &&
2017 N0
.getOpcode() == ISD::AND
&& C1
== 0 &&
2018 N0
.getNode()->hasOneUse() &&
2019 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
2020 N0
.getOperand(0).getNode()->hasOneUse() &&
2021 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
2022 LoadSDNode
*Lod
= cast
<LoadSDNode
>(N0
.getOperand(0));
2024 unsigned bestWidth
= 0, bestOffset
= 0;
2025 if (!Lod
->isVolatile() && Lod
->isUnindexed()) {
2026 unsigned origWidth
= N0
.getValueType().getSizeInBits();
2027 unsigned maskWidth
= origWidth
;
2028 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2029 // 8 bits, but have to be careful...
2030 if (Lod
->getExtensionType() != ISD::NON_EXTLOAD
)
2031 origWidth
= Lod
->getMemoryVT().getSizeInBits();
2033 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
2034 for (unsigned width
= origWidth
/ 2; width
>=8; width
/= 2) {
2035 APInt newMask
= APInt::getLowBitsSet(maskWidth
, width
);
2036 for (unsigned offset
=0; offset
<origWidth
/width
; offset
++) {
2037 if ((newMask
& Mask
) == Mask
) {
2038 if (!TD
->isLittleEndian())
2039 bestOffset
= (origWidth
/width
- offset
- 1) * (width
/8);
2041 bestOffset
= (uint64_t)offset
* (width
/8);
2042 bestMask
= Mask
.lshr(offset
* (width
/8) * 8);
2046 newMask
= newMask
<< width
;
2051 EVT newVT
= EVT::getIntegerVT(*DAG
.getContext(), bestWidth
);
2052 if (newVT
.isRound()) {
2053 EVT PtrType
= Lod
->getOperand(1).getValueType();
2054 SDValue Ptr
= Lod
->getBasePtr();
2055 if (bestOffset
!= 0)
2056 Ptr
= DAG
.getNode(ISD::ADD
, dl
, PtrType
, Lod
->getBasePtr(),
2057 DAG
.getConstant(bestOffset
, PtrType
));
2058 unsigned NewAlign
= MinAlign(Lod
->getAlignment(), bestOffset
);
2059 SDValue NewLoad
= DAG
.getLoad(newVT
, dl
, Lod
->getChain(), Ptr
,
2060 Lod
->getPointerInfo().getWithOffset(bestOffset
),
2061 false, false, NewAlign
);
2062 return DAG
.getSetCC(dl
, VT
,
2063 DAG
.getNode(ISD::AND
, dl
, newVT
, NewLoad
,
2064 DAG
.getConstant(bestMask
.trunc(bestWidth
),
2066 DAG
.getConstant(0LL, newVT
), Cond
);
2071 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2072 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
2073 unsigned InSize
= N0
.getOperand(0).getValueType().getSizeInBits();
2075 // If the comparison constant has bits in the upper part, the
2076 // zero-extended value could never match.
2077 if (C1
.intersects(APInt::getHighBitsSet(C1
.getBitWidth(),
2078 C1
.getBitWidth() - InSize
))) {
2082 case ISD::SETEQ
: return DAG
.getConstant(0, VT
);
2085 case ISD::SETNE
: return DAG
.getConstant(1, VT
);
2088 // True if the sign bit of C1 is set.
2089 return DAG
.getConstant(C1
.isNegative(), VT
);
2092 // True if the sign bit of C1 isn't set.
2093 return DAG
.getConstant(C1
.isNonNegative(), VT
);
2099 // Otherwise, we can perform the comparison with the low bits.
2107 EVT newVT
= N0
.getOperand(0).getValueType();
2108 if (DCI
.isBeforeLegalizeOps() ||
2109 (isOperationLegal(ISD::SETCC
, newVT
) &&
2110 getCondCodeAction(Cond
, newVT
)==Legal
))
2111 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
2112 DAG
.getConstant(C1
.trunc(InSize
), newVT
),
2117 break; // todo, be more careful with signed comparisons
2119 } else if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
2120 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
2121 EVT ExtSrcTy
= cast
<VTSDNode
>(N0
.getOperand(1))->getVT();
2122 unsigned ExtSrcTyBits
= ExtSrcTy
.getSizeInBits();
2123 EVT ExtDstTy
= N0
.getValueType();
2124 unsigned ExtDstTyBits
= ExtDstTy
.getSizeInBits();
2126 // If the constant doesn't fit into the number of bits for the source of
2127 // the sign extension, it is impossible for both sides to be equal.
2128 if (C1
.getMinSignedBits() > ExtSrcTyBits
)
2129 return DAG
.getConstant(Cond
== ISD::SETNE
, VT
);
2132 EVT Op0Ty
= N0
.getOperand(0).getValueType();
2133 if (Op0Ty
== ExtSrcTy
) {
2134 ZextOp
= N0
.getOperand(0);
2136 APInt Imm
= APInt::getLowBitsSet(ExtDstTyBits
, ExtSrcTyBits
);
2137 ZextOp
= DAG
.getNode(ISD::AND
, dl
, Op0Ty
, N0
.getOperand(0),
2138 DAG
.getConstant(Imm
, Op0Ty
));
2140 if (!DCI
.isCalledByLegalizer())
2141 DCI
.AddToWorklist(ZextOp
.getNode());
2142 // Otherwise, make this a use of a zext.
2143 return DAG
.getSetCC(dl
, VT
, ZextOp
,
2144 DAG
.getConstant(C1
& APInt::getLowBitsSet(
2149 } else if ((N1C
->isNullValue() || N1C
->getAPIntValue() == 1) &&
2150 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
2151 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
2152 if (N0
.getOpcode() == ISD::SETCC
&&
2153 isTypeLegal(VT
) && VT
.bitsLE(N0
.getValueType())) {
2154 bool TrueWhenTrue
= (Cond
== ISD::SETEQ
) ^ (N1C
->getAPIntValue() != 1);
2156 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, N0
);
2157 // Invert the condition.
2158 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
2159 CC
= ISD::getSetCCInverse(CC
,
2160 N0
.getOperand(0).getValueType().isInteger());
2161 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N0
.getOperand(1), CC
);
2164 if ((N0
.getOpcode() == ISD::XOR
||
2165 (N0
.getOpcode() == ISD::AND
&&
2166 N0
.getOperand(0).getOpcode() == ISD::XOR
&&
2167 N0
.getOperand(1) == N0
.getOperand(0).getOperand(1))) &&
2168 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
2169 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue() == 1) {
2170 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
2171 // can only do this if the top bits are known zero.
2172 unsigned BitWidth
= N0
.getValueSizeInBits();
2173 if (DAG
.MaskedValueIsZero(N0
,
2174 APInt::getHighBitsSet(BitWidth
,
2176 // Okay, get the un-inverted input value.
2178 if (N0
.getOpcode() == ISD::XOR
)
2179 Val
= N0
.getOperand(0);
2181 assert(N0
.getOpcode() == ISD::AND
&&
2182 N0
.getOperand(0).getOpcode() == ISD::XOR
);
2183 // ((X^1)&1)^1 -> X & 1
2184 Val
= DAG
.getNode(ISD::AND
, dl
, N0
.getValueType(),
2185 N0
.getOperand(0).getOperand(0),
2189 return DAG
.getSetCC(dl
, VT
, Val
, N1
,
2190 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
2192 } else if (N1C
->getAPIntValue() == 1 &&
2194 getBooleanContents() == ZeroOrOneBooleanContent
)) {
2196 if (Op0
.getOpcode() == ISD::TRUNCATE
)
2197 Op0
= Op0
.getOperand(0);
2199 if ((Op0
.getOpcode() == ISD::XOR
) &&
2200 Op0
.getOperand(0).getOpcode() == ISD::SETCC
&&
2201 Op0
.getOperand(1).getOpcode() == ISD::SETCC
) {
2202 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2203 Cond
= (Cond
== ISD::SETEQ
) ? ISD::SETNE
: ISD::SETEQ
;
2204 return DAG
.getSetCC(dl
, VT
, Op0
.getOperand(0), Op0
.getOperand(1),
2206 } else if (Op0
.getOpcode() == ISD::AND
&&
2207 isa
<ConstantSDNode
>(Op0
.getOperand(1)) &&
2208 cast
<ConstantSDNode
>(Op0
.getOperand(1))->getAPIntValue() == 1) {
2209 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2210 if (Op0
.getValueType().bitsGT(VT
))
2211 Op0
= DAG
.getNode(ISD::AND
, dl
, VT
,
2212 DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op0
.getOperand(0)),
2213 DAG
.getConstant(1, VT
));
2214 else if (Op0
.getValueType().bitsLT(VT
))
2215 Op0
= DAG
.getNode(ISD::AND
, dl
, VT
,
2216 DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, Op0
.getOperand(0)),
2217 DAG
.getConstant(1, VT
));
2219 return DAG
.getSetCC(dl
, VT
, Op0
,
2220 DAG
.getConstant(0, Op0
.getValueType()),
2221 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
2226 APInt MinVal
, MaxVal
;
2227 unsigned OperandBitSize
= N1C
->getValueType(0).getSizeInBits();
2228 if (ISD::isSignedIntSetCC(Cond
)) {
2229 MinVal
= APInt::getSignedMinValue(OperandBitSize
);
2230 MaxVal
= APInt::getSignedMaxValue(OperandBitSize
);
2232 MinVal
= APInt::getMinValue(OperandBitSize
);
2233 MaxVal
= APInt::getMaxValue(OperandBitSize
);
2236 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2237 if (Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) {
2238 if (C1
== MinVal
) return DAG
.getConstant(1, VT
); // X >= MIN --> true
2239 // X >= C0 --> X > (C0-1)
2240 return DAG
.getSetCC(dl
, VT
, N0
,
2241 DAG
.getConstant(C1
-1, N1
.getValueType()),
2242 (Cond
== ISD::SETGE
) ? ISD::SETGT
: ISD::SETUGT
);
2245 if (Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) {
2246 if (C1
== MaxVal
) return DAG
.getConstant(1, VT
); // X <= MAX --> true
2247 // X <= C0 --> X < (C0+1)
2248 return DAG
.getSetCC(dl
, VT
, N0
,
2249 DAG
.getConstant(C1
+1, N1
.getValueType()),
2250 (Cond
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETULT
);
2253 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MinVal
)
2254 return DAG
.getConstant(0, VT
); // X < MIN --> false
2255 if ((Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) && C1
== MinVal
)
2256 return DAG
.getConstant(1, VT
); // X >= MIN --> true
2257 if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MaxVal
)
2258 return DAG
.getConstant(0, VT
); // X > MAX --> false
2259 if ((Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) && C1
== MaxVal
)
2260 return DAG
.getConstant(1, VT
); // X <= MAX --> true
2262 // Canonicalize setgt X, Min --> setne X, Min
2263 if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MinVal
)
2264 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
2265 // Canonicalize setlt X, Max --> setne X, Max
2266 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MaxVal
)
2267 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
2269 // If we have setult X, 1, turn it into seteq X, 0
2270 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MinVal
+1)
2271 return DAG
.getSetCC(dl
, VT
, N0
,
2272 DAG
.getConstant(MinVal
, N0
.getValueType()),
2274 // If we have setugt X, Max-1, turn it into seteq X, Max
2275 else if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MaxVal
-1)
2276 return DAG
.getSetCC(dl
, VT
, N0
,
2277 DAG
.getConstant(MaxVal
, N0
.getValueType()),
2280 // If we have "setcc X, C0", check to see if we can shrink the immediate
2283 // SETUGT X, SINTMAX -> SETLT X, 0
2284 if (Cond
== ISD::SETUGT
&&
2285 C1
== APInt::getSignedMaxValue(OperandBitSize
))
2286 return DAG
.getSetCC(dl
, VT
, N0
,
2287 DAG
.getConstant(0, N1
.getValueType()),
2290 // SETULT X, SINTMIN -> SETGT X, -1
2291 if (Cond
== ISD::SETULT
&&
2292 C1
== APInt::getSignedMinValue(OperandBitSize
)) {
2293 SDValue ConstMinusOne
=
2294 DAG
.getConstant(APInt::getAllOnesValue(OperandBitSize
),
2296 return DAG
.getSetCC(dl
, VT
, N0
, ConstMinusOne
, ISD::SETGT
);
2299 // Fold bit comparisons when we can.
2300 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
2301 (VT
== N0
.getValueType() ||
2302 (isTypeLegal(VT
) && VT
.bitsLE(N0
.getValueType()))) &&
2303 N0
.getOpcode() == ISD::AND
)
2304 if (ConstantSDNode
*AndRHS
=
2305 dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
2306 EVT ShiftTy
= DCI
.isBeforeLegalize() ?
2307 getPointerTy() : getShiftAmountTy(N0
.getValueType());
2308 if (Cond
== ISD::SETNE
&& C1
== 0) {// (X & 8) != 0 --> (X & 8) >> 3
2309 // Perform the xform if the AND RHS is a single bit.
2310 if (AndRHS
->getAPIntValue().isPowerOf2()) {
2311 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
2312 DAG
.getNode(ISD::SRL
, dl
, N0
.getValueType(), N0
,
2313 DAG
.getConstant(AndRHS
->getAPIntValue().logBase2(), ShiftTy
)));
2315 } else if (Cond
== ISD::SETEQ
&& C1
== AndRHS
->getAPIntValue()) {
2316 // (X & 8) == 8 --> (X & 8) >> 3
2317 // Perform the xform if C1 is a single bit.
2318 if (C1
.isPowerOf2()) {
2319 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
2320 DAG
.getNode(ISD::SRL
, dl
, N0
.getValueType(), N0
,
2321 DAG
.getConstant(C1
.logBase2(), ShiftTy
)));
2327 if (isa
<ConstantFPSDNode
>(N0
.getNode())) {
2328 // Constant fold or commute setcc.
2329 SDValue O
= DAG
.FoldSetCC(VT
, N0
, N1
, Cond
, dl
);
2330 if (O
.getNode()) return O
;
2331 } else if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode())) {
2332 // If the RHS of an FP comparison is a constant, simplify it away in
2334 if (CFP
->getValueAPF().isNaN()) {
2335 // If an operand is known to be a nan, we can fold it.
2336 switch (ISD::getUnorderedFlavor(Cond
)) {
2337 default: llvm_unreachable("Unknown flavor!");
2338 case 0: // Known false.
2339 return DAG
.getConstant(0, VT
);
2340 case 1: // Known true.
2341 return DAG
.getConstant(1, VT
);
2342 case 2: // Undefined.
2343 return DAG
.getUNDEF(VT
);
2347 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
2348 // constant if knowing that the operand is non-nan is enough. We prefer to
2349 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2351 if (Cond
== ISD::SETO
|| Cond
== ISD::SETUO
)
2352 return DAG
.getSetCC(dl
, VT
, N0
, N0
, Cond
);
2354 // If the condition is not legal, see if we can find an equivalent one
2356 if (!isCondCodeLegal(Cond
, N0
.getValueType())) {
2357 // If the comparison was an awkward floating-point == or != and one of
2358 // the comparison operands is infinity or negative infinity, convert the
2359 // condition to a less-awkward <= or >=.
2360 if (CFP
->getValueAPF().isInfinity()) {
2361 if (CFP
->getValueAPF().isNegative()) {
2362 if (Cond
== ISD::SETOEQ
&&
2363 isCondCodeLegal(ISD::SETOLE
, N0
.getValueType()))
2364 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOLE
);
2365 if (Cond
== ISD::SETUEQ
&&
2366 isCondCodeLegal(ISD::SETOLE
, N0
.getValueType()))
2367 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETULE
);
2368 if (Cond
== ISD::SETUNE
&&
2369 isCondCodeLegal(ISD::SETUGT
, N0
.getValueType()))
2370 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETUGT
);
2371 if (Cond
== ISD::SETONE
&&
2372 isCondCodeLegal(ISD::SETUGT
, N0
.getValueType()))
2373 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOGT
);
2375 if (Cond
== ISD::SETOEQ
&&
2376 isCondCodeLegal(ISD::SETOGE
, N0
.getValueType()))
2377 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOGE
);
2378 if (Cond
== ISD::SETUEQ
&&
2379 isCondCodeLegal(ISD::SETOGE
, N0
.getValueType()))
2380 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETUGE
);
2381 if (Cond
== ISD::SETUNE
&&
2382 isCondCodeLegal(ISD::SETULT
, N0
.getValueType()))
2383 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETULT
);
2384 if (Cond
== ISD::SETONE
&&
2385 isCondCodeLegal(ISD::SETULT
, N0
.getValueType()))
2386 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOLT
);
2393 // We can always fold X == X for integer setcc's.
2394 if (N0
.getValueType().isInteger())
2395 return DAG
.getConstant(ISD::isTrueWhenEqual(Cond
), VT
);
2396 unsigned UOF
= ISD::getUnorderedFlavor(Cond
);
2397 if (UOF
== 2) // FP operators that are undefined on NaNs.
2398 return DAG
.getConstant(ISD::isTrueWhenEqual(Cond
), VT
);
2399 if (UOF
== unsigned(ISD::isTrueWhenEqual(Cond
)))
2400 return DAG
.getConstant(UOF
, VT
);
2401 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
2402 // if it is not already.
2403 ISD::CondCode NewCond
= UOF
== 0 ? ISD::SETO
: ISD::SETUO
;
2404 if (NewCond
!= Cond
)
2405 return DAG
.getSetCC(dl
, VT
, N0
, N1
, NewCond
);
2408 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
2409 N0
.getValueType().isInteger()) {
2410 if (N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::SUB
||
2411 N0
.getOpcode() == ISD::XOR
) {
2412 // Simplify (X+Y) == (X+Z) --> Y == Z
2413 if (N0
.getOpcode() == N1
.getOpcode()) {
2414 if (N0
.getOperand(0) == N1
.getOperand(0))
2415 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(1), Cond
);
2416 if (N0
.getOperand(1) == N1
.getOperand(1))
2417 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(0), Cond
);
2418 if (DAG
.isCommutativeBinOp(N0
.getOpcode())) {
2419 // If X op Y == Y op X, try other combinations.
2420 if (N0
.getOperand(0) == N1
.getOperand(1))
2421 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(0),
2423 if (N0
.getOperand(1) == N1
.getOperand(0))
2424 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(1),
2429 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(N1
)) {
2430 if (ConstantSDNode
*LHSR
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
2431 // Turn (X+C1) == C2 --> X == C2-C1
2432 if (N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse()) {
2433 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
2434 DAG
.getConstant(RHSC
->getAPIntValue()-
2435 LHSR
->getAPIntValue(),
2436 N0
.getValueType()), Cond
);
2439 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2440 if (N0
.getOpcode() == ISD::XOR
)
2441 // If we know that all of the inverted bits are zero, don't bother
2442 // performing the inversion.
2443 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), ~LHSR
->getAPIntValue()))
2445 DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
2446 DAG
.getConstant(LHSR
->getAPIntValue() ^
2447 RHSC
->getAPIntValue(),
2452 // Turn (C1-X) == C2 --> X == C1-C2
2453 if (ConstantSDNode
*SUBC
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0))) {
2454 if (N0
.getOpcode() == ISD::SUB
&& N0
.getNode()->hasOneUse()) {
2456 DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
2457 DAG
.getConstant(SUBC
->getAPIntValue() -
2458 RHSC
->getAPIntValue(),
2465 // Simplify (X+Z) == X --> Z == 0
2466 if (N0
.getOperand(0) == N1
)
2467 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
2468 DAG
.getConstant(0, N0
.getValueType()), Cond
);
2469 if (N0
.getOperand(1) == N1
) {
2470 if (DAG
.isCommutativeBinOp(N0
.getOpcode()))
2471 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
2472 DAG
.getConstant(0, N0
.getValueType()), Cond
);
2473 else if (N0
.getNode()->hasOneUse()) {
2474 assert(N0
.getOpcode() == ISD::SUB
&& "Unexpected operation!");
2475 // (Z-X) == X --> Z == X<<1
2476 SDValue SH
= DAG
.getNode(ISD::SHL
, dl
, N1
.getValueType(),
2478 DAG
.getConstant(1, getShiftAmountTy(N1
.getValueType())));
2479 if (!DCI
.isCalledByLegalizer())
2480 DCI
.AddToWorklist(SH
.getNode());
2481 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), SH
, Cond
);
2486 if (N1
.getOpcode() == ISD::ADD
|| N1
.getOpcode() == ISD::SUB
||
2487 N1
.getOpcode() == ISD::XOR
) {
2488 // Simplify X == (X+Z) --> Z == 0
2489 if (N1
.getOperand(0) == N0
) {
2490 return DAG
.getSetCC(dl
, VT
, N1
.getOperand(1),
2491 DAG
.getConstant(0, N1
.getValueType()), Cond
);
2492 } else if (N1
.getOperand(1) == N0
) {
2493 if (DAG
.isCommutativeBinOp(N1
.getOpcode())) {
2494 return DAG
.getSetCC(dl
, VT
, N1
.getOperand(0),
2495 DAG
.getConstant(0, N1
.getValueType()), Cond
);
2496 } else if (N1
.getNode()->hasOneUse()) {
2497 assert(N1
.getOpcode() == ISD::SUB
&& "Unexpected operation!");
2498 // X == (Z-X) --> X<<1 == Z
2499 SDValue SH
= DAG
.getNode(ISD::SHL
, dl
, N1
.getValueType(), N0
,
2500 DAG
.getConstant(1, getShiftAmountTy(N0
.getValueType())));
2501 if (!DCI
.isCalledByLegalizer())
2502 DCI
.AddToWorklist(SH
.getNode());
2503 return DAG
.getSetCC(dl
, VT
, SH
, N1
.getOperand(0), Cond
);
2508 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2509 // Note that where y is variable and is known to have at most
2510 // one bit set (for example, if it is z&1) we cannot do this;
2511 // the expressions are not equivalent when y==0.
2512 if (N0
.getOpcode() == ISD::AND
)
2513 if (N0
.getOperand(0) == N1
|| N0
.getOperand(1) == N1
) {
2514 if (ValueHasExactlyOneBitSet(N1
, DAG
)) {
2515 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
2516 SDValue Zero
= DAG
.getConstant(0, N1
.getValueType());
2517 return DAG
.getSetCC(dl
, VT
, N0
, Zero
, Cond
);
2520 if (N1
.getOpcode() == ISD::AND
)
2521 if (N1
.getOperand(0) == N0
|| N1
.getOperand(1) == N0
) {
2522 if (ValueHasExactlyOneBitSet(N0
, DAG
)) {
2523 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
2524 SDValue Zero
= DAG
.getConstant(0, N0
.getValueType());
2525 return DAG
.getSetCC(dl
, VT
, N1
, Zero
, Cond
);
2530 // Fold away ALL boolean setcc's.
2532 if (N0
.getValueType() == MVT::i1
&& foldBooleans
) {
2534 default: llvm_unreachable("Unknown integer setcc!");
2535 case ISD::SETEQ
: // X == Y -> ~(X^Y)
2536 Temp
= DAG
.getNode(ISD::XOR
, dl
, MVT::i1
, N0
, N1
);
2537 N0
= DAG
.getNOT(dl
, Temp
, MVT::i1
);
2538 if (!DCI
.isCalledByLegalizer())
2539 DCI
.AddToWorklist(Temp
.getNode());
2541 case ISD::SETNE
: // X != Y --> (X^Y)
2542 N0
= DAG
.getNode(ISD::XOR
, dl
, MVT::i1
, N0
, N1
);
2544 case ISD::SETGT
: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
2545 case ISD::SETULT
: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
2546 Temp
= DAG
.getNOT(dl
, N0
, MVT::i1
);
2547 N0
= DAG
.getNode(ISD::AND
, dl
, MVT::i1
, N1
, Temp
);
2548 if (!DCI
.isCalledByLegalizer())
2549 DCI
.AddToWorklist(Temp
.getNode());
2551 case ISD::SETLT
: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
2552 case ISD::SETUGT
: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
2553 Temp
= DAG
.getNOT(dl
, N1
, MVT::i1
);
2554 N0
= DAG
.getNode(ISD::AND
, dl
, MVT::i1
, N0
, Temp
);
2555 if (!DCI
.isCalledByLegalizer())
2556 DCI
.AddToWorklist(Temp
.getNode());
2558 case ISD::SETULE
: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2559 case ISD::SETGE
: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2560 Temp
= DAG
.getNOT(dl
, N0
, MVT::i1
);
2561 N0
= DAG
.getNode(ISD::OR
, dl
, MVT::i1
, N1
, Temp
);
2562 if (!DCI
.isCalledByLegalizer())
2563 DCI
.AddToWorklist(Temp
.getNode());
2565 case ISD::SETUGE
: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2566 case ISD::SETLE
: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2567 Temp
= DAG
.getNOT(dl
, N1
, MVT::i1
);
2568 N0
= DAG
.getNode(ISD::OR
, dl
, MVT::i1
, N0
, Temp
);
2571 if (VT
!= MVT::i1
) {
2572 if (!DCI
.isCalledByLegalizer())
2573 DCI
.AddToWorklist(N0
.getNode());
2574 // FIXME: If running after legalize, we probably can't do this.
2575 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, N0
);
2580 // Could not fold it.
2584 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2585 /// node is a GlobalAddress + offset.
2586 bool TargetLowering::isGAPlusOffset(SDNode
*N
, const GlobalValue
*&GA
,
2587 int64_t &Offset
) const {
2588 if (isa
<GlobalAddressSDNode
>(N
)) {
2589 GlobalAddressSDNode
*GASD
= cast
<GlobalAddressSDNode
>(N
);
2590 GA
= GASD
->getGlobal();
2591 Offset
+= GASD
->getOffset();
2595 if (N
->getOpcode() == ISD::ADD
) {
2596 SDValue N1
= N
->getOperand(0);
2597 SDValue N2
= N
->getOperand(1);
2598 if (isGAPlusOffset(N1
.getNode(), GA
, Offset
)) {
2599 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(N2
);
2601 Offset
+= V
->getSExtValue();
2604 } else if (isGAPlusOffset(N2
.getNode(), GA
, Offset
)) {
2605 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(N1
);
2607 Offset
+= V
->getSExtValue();
2617 SDValue
TargetLowering::
2618 PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
2619 // Default implementation: no optimization.
2623 //===----------------------------------------------------------------------===//
2624 // Inline Assembler Implementation Methods
2625 //===----------------------------------------------------------------------===//
2628 TargetLowering::ConstraintType
2629 TargetLowering::getConstraintType(const std::string
&Constraint
) const {
2630 if (Constraint
.size() == 1) {
2631 switch (Constraint
[0]) {
2633 case 'r': return C_RegisterClass
;
2635 case 'o': // offsetable
2636 case 'V': // not offsetable
2638 case 'i': // Simple Integer or Relocatable Constant
2639 case 'n': // Simple Integer
2640 case 'E': // Floating Point Constant
2641 case 'F': // Floating Point Constant
2642 case 's': // Relocatable Constant
2643 case 'p': // Address.
2644 case 'X': // Allow ANY value.
2645 case 'I': // Target registers.
2659 if (Constraint
.size() > 1 && Constraint
[0] == '{' &&
2660 Constraint
[Constraint
.size()-1] == '}')
2665 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2666 /// with another that has more specific requirements based on the type of the
2667 /// corresponding operand.
2668 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT
) const{
2669 if (ConstraintVT
.isInteger())
2671 if (ConstraintVT
.isFloatingPoint())
2672 return "f"; // works for many targets
2676 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2677 /// vector. If it is invalid, don't add anything to Ops.
2678 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
2679 std::string
&Constraint
,
2680 std::vector
<SDValue
> &Ops
,
2681 SelectionDAG
&DAG
) const {
2683 if (Constraint
.length() > 1) return;
2685 char ConstraintLetter
= Constraint
[0];
2686 switch (ConstraintLetter
) {
2688 case 'X': // Allows any operand; labels (basic block) use this.
2689 if (Op
.getOpcode() == ISD::BasicBlock
) {
2694 case 'i': // Simple Integer or Relocatable Constant
2695 case 'n': // Simple Integer
2696 case 's': { // Relocatable Constant
2697 // These operands are interested in values of the form (GV+C), where C may
2698 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2699 // is possible and fine if either GV or C are missing.
2700 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
2701 GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
);
2703 // If we have "(add GV, C)", pull out GV/C
2704 if (Op
.getOpcode() == ISD::ADD
) {
2705 C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
2706 GA
= dyn_cast
<GlobalAddressSDNode
>(Op
.getOperand(0));
2707 if (C
== 0 || GA
== 0) {
2708 C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0));
2709 GA
= dyn_cast
<GlobalAddressSDNode
>(Op
.getOperand(1));
2711 if (C
== 0 || GA
== 0)
2715 // If we find a valid operand, map to the TargetXXX version so that the
2716 // value itself doesn't get selected.
2717 if (GA
) { // Either &GV or &GV+C
2718 if (ConstraintLetter
!= 'n') {
2719 int64_t Offs
= GA
->getOffset();
2720 if (C
) Offs
+= C
->getZExtValue();
2721 Ops
.push_back(DAG
.getTargetGlobalAddress(GA
->getGlobal(),
2722 C
? C
->getDebugLoc() : DebugLoc(),
2723 Op
.getValueType(), Offs
));
2727 if (C
) { // just C, no GV.
2728 // Simple constants are not allowed for 's'.
2729 if (ConstraintLetter
!= 's') {
2730 // gcc prints these as sign extended. Sign extend value to 64 bits
2731 // now; without this it would get ZExt'd later in
2732 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2733 Ops
.push_back(DAG
.getTargetConstant(C
->getAPIntValue().getSExtValue(),
2743 std::pair
<unsigned, const TargetRegisterClass
*> TargetLowering::
2744 getRegForInlineAsmConstraint(const std::string
&Constraint
,
2746 if (Constraint
[0] != '{')
2747 return std::make_pair(0u, static_cast<TargetRegisterClass
*>(0));
2748 assert(*(Constraint
.end()-1) == '}' && "Not a brace enclosed constraint?");
2750 // Remove the braces from around the name.
2751 StringRef
RegName(Constraint
.data()+1, Constraint
.size()-2);
2753 // Figure out which register class contains this reg.
2754 const TargetRegisterInfo
*RI
= TM
.getRegisterInfo();
2755 for (TargetRegisterInfo::regclass_iterator RCI
= RI
->regclass_begin(),
2756 E
= RI
->regclass_end(); RCI
!= E
; ++RCI
) {
2757 const TargetRegisterClass
*RC
= *RCI
;
2759 // If none of the value types for this register class are valid, we
2760 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2761 bool isLegal
= false;
2762 for (TargetRegisterClass::vt_iterator I
= RC
->vt_begin(), E
= RC
->vt_end();
2764 if (isTypeLegal(*I
)) {
2770 if (!isLegal
) continue;
2772 for (TargetRegisterClass::iterator I
= RC
->begin(), E
= RC
->end();
2774 if (RegName
.equals_lower(RI
->getName(*I
)))
2775 return std::make_pair(*I
, RC
);
2779 return std::make_pair(0u, static_cast<const TargetRegisterClass
*>(0));
2782 //===----------------------------------------------------------------------===//
2783 // Constraint Selection.
2785 /// isMatchingInputConstraint - Return true of this is an input operand that is
2786 /// a matching constraint like "4".
2787 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2788 assert(!ConstraintCode
.empty() && "No known constraint!");
2789 return isdigit(ConstraintCode
[0]);
2792 /// getMatchedOperand - If this is an input matching constraint, this method
2793 /// returns the output operand it matches.
2794 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2795 assert(!ConstraintCode
.empty() && "No known constraint!");
2796 return atoi(ConstraintCode
.c_str());
2800 /// ParseConstraints - Split up the constraint string from the inline
2801 /// assembly value into the specific constraints and their prefixes,
2802 /// and also tie in the associated operand values.
2803 /// If this returns an empty vector, and if the constraint string itself
2804 /// isn't empty, there was an error parsing.
2805 TargetLowering::AsmOperandInfoVector
TargetLowering::ParseConstraints(
2806 ImmutableCallSite CS
) const {
2807 /// ConstraintOperands - Information about all of the constraints.
2808 AsmOperandInfoVector ConstraintOperands
;
2809 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
2810 unsigned maCount
= 0; // Largest number of multiple alternative constraints.
2812 // Do a prepass over the constraints, canonicalizing them, and building up the
2813 // ConstraintOperands list.
2814 InlineAsm::ConstraintInfoVector
2815 ConstraintInfos
= IA
->ParseConstraints();
2817 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
2818 unsigned ResNo
= 0; // ResNo - The result number of the next output.
2820 for (unsigned i
= 0, e
= ConstraintInfos
.size(); i
!= e
; ++i
) {
2821 ConstraintOperands
.push_back(AsmOperandInfo(ConstraintInfos
[i
]));
2822 AsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
2824 // Update multiple alternative constraint count.
2825 if (OpInfo
.multipleAlternatives
.size() > maCount
)
2826 maCount
= OpInfo
.multipleAlternatives
.size();
2828 OpInfo
.ConstraintVT
= MVT::Other
;
2830 // Compute the value type for each operand.
2831 switch (OpInfo
.Type
) {
2832 case InlineAsm::isOutput
:
2833 // Indirect outputs just consume an argument.
2834 if (OpInfo
.isIndirect
) {
2835 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
2839 // The return value of the call is this value. As such, there is no
2840 // corresponding argument.
2841 assert(!CS
.getType()->isVoidTy() &&
2843 if (const StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
2844 OpInfo
.ConstraintVT
= getValueType(STy
->getElementType(ResNo
));
2846 assert(ResNo
== 0 && "Asm only has one result!");
2847 OpInfo
.ConstraintVT
= getValueType(CS
.getType());
2851 case InlineAsm::isInput
:
2852 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
2854 case InlineAsm::isClobber
:
2859 if (OpInfo
.CallOperandVal
) {
2860 const llvm::Type
*OpTy
= OpInfo
.CallOperandVal
->getType();
2861 if (OpInfo
.isIndirect
) {
2862 const llvm::PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
2864 report_fatal_error("Indirect operand for inline asm not a pointer!");
2865 OpTy
= PtrTy
->getElementType();
2868 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2869 if (const StructType
*STy
= dyn_cast
<StructType
>(OpTy
))
2870 if (STy
->getNumElements() == 1)
2871 OpTy
= STy
->getElementType(0);
2873 // If OpTy is not a single value, it may be a struct/union that we
2874 // can tile with integers.
2875 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
2876 unsigned BitSize
= TD
->getTypeSizeInBits(OpTy
);
2885 OpInfo
.ConstraintVT
=
2886 EVT::getEVT(IntegerType::get(OpTy
->getContext(), BitSize
), true);
2889 } else if (dyn_cast
<PointerType
>(OpTy
)) {
2890 OpInfo
.ConstraintVT
= MVT::getIntegerVT(8*TD
->getPointerSize());
2892 OpInfo
.ConstraintVT
= EVT::getEVT(OpTy
, true);
2897 // If we have multiple alternative constraints, select the best alternative.
2898 if (ConstraintInfos
.size()) {
2900 unsigned bestMAIndex
= 0;
2901 int bestWeight
= -1;
2902 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
2905 // Compute the sums of the weights for each alternative, keeping track
2906 // of the best (highest weight) one so far.
2907 for (maIndex
= 0; maIndex
< maCount
; ++maIndex
) {
2909 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
2910 cIndex
!= eIndex
; ++cIndex
) {
2911 AsmOperandInfo
& OpInfo
= ConstraintOperands
[cIndex
];
2912 if (OpInfo
.Type
== InlineAsm::isClobber
)
2915 // If this is an output operand with a matching input operand,
2916 // look up the matching input. If their types mismatch, e.g. one
2917 // is an integer, the other is floating point, or their sizes are
2918 // different, flag it as an maCantMatch.
2919 if (OpInfo
.hasMatchingInput()) {
2920 AsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
2921 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
2922 if ((OpInfo
.ConstraintVT
.isInteger() !=
2923 Input
.ConstraintVT
.isInteger()) ||
2924 (OpInfo
.ConstraintVT
.getSizeInBits() !=
2925 Input
.ConstraintVT
.getSizeInBits())) {
2926 weightSum
= -1; // Can't match.
2931 weight
= getMultipleConstraintMatchWeight(OpInfo
, maIndex
);
2936 weightSum
+= weight
;
2939 if (weightSum
> bestWeight
) {
2940 bestWeight
= weightSum
;
2941 bestMAIndex
= maIndex
;
2945 // Now select chosen alternative in each constraint.
2946 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
2947 cIndex
!= eIndex
; ++cIndex
) {
2948 AsmOperandInfo
& cInfo
= ConstraintOperands
[cIndex
];
2949 if (cInfo
.Type
== InlineAsm::isClobber
)
2951 cInfo
.selectAlternative(bestMAIndex
);
2956 // Check and hook up tied operands, choose constraint code to use.
2957 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
2958 cIndex
!= eIndex
; ++cIndex
) {
2959 AsmOperandInfo
& OpInfo
= ConstraintOperands
[cIndex
];
2961 // If this is an output operand with a matching input operand, look up the
2962 // matching input. If their types mismatch, e.g. one is an integer, the
2963 // other is floating point, or their sizes are different, flag it as an
2965 if (OpInfo
.hasMatchingInput()) {
2966 AsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
2968 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
2969 if ((OpInfo
.ConstraintVT
.isInteger() !=
2970 Input
.ConstraintVT
.isInteger()) ||
2971 (OpInfo
.ConstraintVT
.getSizeInBits() !=
2972 Input
.ConstraintVT
.getSizeInBits())) {
2973 report_fatal_error("Unsupported asm: input constraint"
2974 " with a matching output constraint of"
2975 " incompatible type!");
2982 return ConstraintOperands
;
2986 /// getConstraintGenerality - Return an integer indicating how general CT
2988 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT
) {
2990 default: llvm_unreachable("Unknown constraint type!");
2991 case TargetLowering::C_Other
:
2992 case TargetLowering::C_Unknown
:
2994 case TargetLowering::C_Register
:
2996 case TargetLowering::C_RegisterClass
:
2998 case TargetLowering::C_Memory
:
3003 /// Examine constraint type and operand type and determine a weight value.
3004 /// This object must already have been set up with the operand type
3005 /// and the current alternative constraint selected.
3006 TargetLowering::ConstraintWeight
3007 TargetLowering::getMultipleConstraintMatchWeight(
3008 AsmOperandInfo
&info
, int maIndex
) const {
3009 InlineAsm::ConstraintCodeVector
*rCodes
;
3010 if (maIndex
>= (int)info
.multipleAlternatives
.size())
3011 rCodes
= &info
.Codes
;
3013 rCodes
= &info
.multipleAlternatives
[maIndex
].Codes
;
3014 ConstraintWeight BestWeight
= CW_Invalid
;
3016 // Loop over the options, keeping track of the most general one.
3017 for (unsigned i
= 0, e
= rCodes
->size(); i
!= e
; ++i
) {
3018 ConstraintWeight weight
=
3019 getSingleConstraintMatchWeight(info
, (*rCodes
)[i
].c_str());
3020 if (weight
> BestWeight
)
3021 BestWeight
= weight
;
3027 /// Examine constraint type and operand type and determine a weight value.
3028 /// This object must already have been set up with the operand type
3029 /// and the current alternative constraint selected.
3030 TargetLowering::ConstraintWeight
3031 TargetLowering::getSingleConstraintMatchWeight(
3032 AsmOperandInfo
&info
, const char *constraint
) const {
3033 ConstraintWeight weight
= CW_Invalid
;
3034 Value
*CallOperandVal
= info
.CallOperandVal
;
3035 // If we don't have a value, we can't do a match,
3036 // but allow it at the lowest weight.
3037 if (CallOperandVal
== NULL
)
3039 // Look at the constraint type.
3040 switch (*constraint
) {
3041 case 'i': // immediate integer.
3042 case 'n': // immediate integer with a known value.
3043 if (isa
<ConstantInt
>(CallOperandVal
))
3044 weight
= CW_Constant
;
3046 case 's': // non-explicit intregal immediate.
3047 if (isa
<GlobalValue
>(CallOperandVal
))
3048 weight
= CW_Constant
;
3050 case 'E': // immediate float if host format.
3051 case 'F': // immediate float.
3052 if (isa
<ConstantFP
>(CallOperandVal
))
3053 weight
= CW_Constant
;
3055 case '<': // memory operand with autodecrement.
3056 case '>': // memory operand with autoincrement.
3057 case 'm': // memory operand.
3058 case 'o': // offsettable memory operand
3059 case 'V': // non-offsettable memory operand
3062 case 'r': // general register.
3063 case 'g': // general register, memory operand or immediate integer.
3064 // note: Clang converts "g" to "imr".
3065 if (CallOperandVal
->getType()->isIntegerTy())
3066 weight
= CW_Register
;
3068 case 'X': // any operand.
3070 weight
= CW_Default
;
3076 /// ChooseConstraint - If there are multiple different constraints that we
3077 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3078 /// This is somewhat tricky: constraints fall into four classes:
3079 /// Other -> immediates and magic values
3080 /// Register -> one specific register
3081 /// RegisterClass -> a group of regs
3082 /// Memory -> memory
3083 /// Ideally, we would pick the most specific constraint possible: if we have
3084 /// something that fits into a register, we would pick it. The problem here
3085 /// is that if we have something that could either be in a register or in
3086 /// memory that use of the register could cause selection of *other*
3087 /// operands to fail: they might only succeed if we pick memory. Because of
3088 /// this the heuristic we use is:
3090 /// 1) If there is an 'other' constraint, and if the operand is valid for
3091 /// that constraint, use it. This makes us take advantage of 'i'
3092 /// constraints when available.
3093 /// 2) Otherwise, pick the most general constraint present. This prefers
3094 /// 'm' over 'r', for example.
3096 static void ChooseConstraint(TargetLowering::AsmOperandInfo
&OpInfo
,
3097 const TargetLowering
&TLI
,
3098 SDValue Op
, SelectionDAG
*DAG
) {
3099 assert(OpInfo
.Codes
.size() > 1 && "Doesn't have multiple constraint options");
3100 unsigned BestIdx
= 0;
3101 TargetLowering::ConstraintType BestType
= TargetLowering::C_Unknown
;
3102 int BestGenerality
= -1;
3104 // Loop over the options, keeping track of the most general one.
3105 for (unsigned i
= 0, e
= OpInfo
.Codes
.size(); i
!= e
; ++i
) {
3106 TargetLowering::ConstraintType CType
=
3107 TLI
.getConstraintType(OpInfo
.Codes
[i
]);
3109 // If this is an 'other' constraint, see if the operand is valid for it.
3110 // For example, on X86 we might have an 'rI' constraint. If the operand
3111 // is an integer in the range [0..31] we want to use I (saving a load
3112 // of a register), otherwise we must use 'r'.
3113 if (CType
== TargetLowering::C_Other
&& Op
.getNode()) {
3114 assert(OpInfo
.Codes
[i
].size() == 1 &&
3115 "Unhandled multi-letter 'other' constraint");
3116 std::vector
<SDValue
> ResultOps
;
3117 TLI
.LowerAsmOperandForConstraint(Op
, OpInfo
.Codes
[i
],
3119 if (!ResultOps
.empty()) {
3126 // Things with matching constraints can only be registers, per gcc
3127 // documentation. This mainly affects "g" constraints.
3128 if (CType
== TargetLowering::C_Memory
&& OpInfo
.hasMatchingInput())
3131 // This constraint letter is more general than the previous one, use it.
3132 int Generality
= getConstraintGenerality(CType
);
3133 if (Generality
> BestGenerality
) {
3136 BestGenerality
= Generality
;
3140 OpInfo
.ConstraintCode
= OpInfo
.Codes
[BestIdx
];
3141 OpInfo
.ConstraintType
= BestType
;
3144 /// ComputeConstraintToUse - Determines the constraint code and constraint
3145 /// type to use for the specific AsmOperandInfo, setting
3146 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3147 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo
&OpInfo
,
3149 SelectionDAG
*DAG
) const {
3150 assert(!OpInfo
.Codes
.empty() && "Must have at least one constraint");
3152 // Single-letter constraints ('r') are very common.
3153 if (OpInfo
.Codes
.size() == 1) {
3154 OpInfo
.ConstraintCode
= OpInfo
.Codes
[0];
3155 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
3157 ChooseConstraint(OpInfo
, *this, Op
, DAG
);
3160 // 'X' matches anything.
3161 if (OpInfo
.ConstraintCode
== "X" && OpInfo
.CallOperandVal
) {
3162 // Labels and constants are handled elsewhere ('X' is the only thing
3163 // that matches labels). For Functions, the type here is the type of
3164 // the result, which is not what we want to look at; leave them alone.
3165 Value
*v
= OpInfo
.CallOperandVal
;
3166 if (isa
<BasicBlock
>(v
) || isa
<ConstantInt
>(v
) || isa
<Function
>(v
)) {
3167 OpInfo
.CallOperandVal
= v
;
3171 // Otherwise, try to resolve it to something we know about by looking at
3172 // the actual operand type.
3173 if (const char *Repl
= LowerXConstraint(OpInfo
.ConstraintVT
)) {
3174 OpInfo
.ConstraintCode
= Repl
;
3175 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
3180 //===----------------------------------------------------------------------===//
3181 // Loop Strength Reduction hooks
3182 //===----------------------------------------------------------------------===//
3184 /// isLegalAddressingMode - Return true if the addressing mode represented
3185 /// by AM is legal for this target, for a load/store of the specified type.
3186 bool TargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
3187 const Type
*Ty
) const {
3188 // The default implementation of this implements a conservative RISCy, r+r and
3191 // Allows a sign-extended 16-bit immediate field.
3192 if (AM
.BaseOffs
<= -(1LL << 16) || AM
.BaseOffs
>= (1LL << 16)-1)
3195 // No global is ever allowed as a base.
3199 // Only support r+r,
3201 case 0: // "r+i" or just "i", depending on HasBaseReg.
3204 if (AM
.HasBaseReg
&& AM
.BaseOffs
) // "r+r+i" is not allowed.
3206 // Otherwise we have r+r or r+i.
3209 if (AM
.HasBaseReg
|| AM
.BaseOffs
) // 2*r+r or 2*r+i is not allowed.
3211 // Allow 2*r as r+r.
3218 /// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
3219 /// with the multiplicative inverse of the constant.
3220 SDValue
TargetLowering::BuildExactSDIV(SDValue Op1
, SDValue Op2
, DebugLoc dl
,
3221 SelectionDAG
&DAG
) const {
3222 ConstantSDNode
*C
= cast
<ConstantSDNode
>(Op2
);
3223 APInt d
= C
->getAPIntValue();
3224 assert(d
!= 0 && "Division by zero!");
3226 // Shift the value upfront if it is even, so the LSB is one.
3227 unsigned ShAmt
= d
.countTrailingZeros();
3229 // TODO: For UDIV use SRL instead of SRA.
3230 SDValue Amt
= DAG
.getConstant(ShAmt
, getShiftAmountTy(Op1
.getValueType()));
3231 Op1
= DAG
.getNode(ISD::SRA
, dl
, Op1
.getValueType(), Op1
, Amt
);
3235 // Calculate the multiplicative inverse, using Newton's method.
3237 while ((t
= d
*xn
) != 1)
3238 xn
*= APInt(d
.getBitWidth(), 2) - t
;
3240 Op2
= DAG
.getConstant(xn
, Op1
.getValueType());
3241 return DAG
.getNode(ISD::MUL
, dl
, Op1
.getValueType(), Op1
, Op2
);
3244 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3245 /// return a DAG expression to select that will generate the same value by
3246 /// multiplying by a magic number. See:
3247 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3248 SDValue
TargetLowering::BuildSDIV(SDNode
*N
, SelectionDAG
&DAG
,
3249 std::vector
<SDNode
*>* Created
) const {
3250 EVT VT
= N
->getValueType(0);
3251 DebugLoc dl
= N
->getDebugLoc();
3253 // Check to see if we can do this.
3254 // FIXME: We should be more aggressive here.
3255 if (!isTypeLegal(VT
))
3258 APInt d
= cast
<ConstantSDNode
>(N
->getOperand(1))->getAPIntValue();
3259 APInt::ms magics
= d
.magic();
3261 // Multiply the numerator (operand 0) by the magic value
3262 // FIXME: We should support doing a MUL in a wider type
3264 if (isOperationLegalOrCustom(ISD::MULHS
, VT
))
3265 Q
= DAG
.getNode(ISD::MULHS
, dl
, VT
, N
->getOperand(0),
3266 DAG
.getConstant(magics
.m
, VT
));
3267 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
))
3268 Q
= SDValue(DAG
.getNode(ISD::SMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
),
3270 DAG
.getConstant(magics
.m
, VT
)).getNode(), 1);
3272 return SDValue(); // No mulhs or equvialent
3273 // If d > 0 and m < 0, add the numerator
3274 if (d
.isStrictlyPositive() && magics
.m
.isNegative()) {
3275 Q
= DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, N
->getOperand(0));
3277 Created
->push_back(Q
.getNode());
3279 // If d < 0 and m > 0, subtract the numerator.
3280 if (d
.isNegative() && magics
.m
.isStrictlyPositive()) {
3281 Q
= DAG
.getNode(ISD::SUB
, dl
, VT
, Q
, N
->getOperand(0));
3283 Created
->push_back(Q
.getNode());
3285 // Shift right algebraic if shift value is nonzero
3287 Q
= DAG
.getNode(ISD::SRA
, dl
, VT
, Q
,
3288 DAG
.getConstant(magics
.s
, getShiftAmountTy(Q
.getValueType())));
3290 Created
->push_back(Q
.getNode());
3292 // Extract the sign bit and add it to the quotient
3294 DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, DAG
.getConstant(VT
.getSizeInBits()-1,
3295 getShiftAmountTy(Q
.getValueType())));
3297 Created
->push_back(T
.getNode());
3298 return DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, T
);
3301 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3302 /// return a DAG expression to select that will generate the same value by
3303 /// multiplying by a magic number. See:
3304 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3305 SDValue
TargetLowering::BuildUDIV(SDNode
*N
, SelectionDAG
&DAG
,
3306 std::vector
<SDNode
*>* Created
) const {
3307 EVT VT
= N
->getValueType(0);
3308 DebugLoc dl
= N
->getDebugLoc();
3310 // Check to see if we can do this.
3311 // FIXME: We should be more aggressive here.
3312 if (!isTypeLegal(VT
))
3315 // FIXME: We should use a narrower constant when the upper
3316 // bits are known to be zero.
3317 const APInt
&N1C
= cast
<ConstantSDNode
>(N
->getOperand(1))->getAPIntValue();
3318 APInt::mu magics
= N1C
.magicu();
3320 SDValue Q
= N
->getOperand(0);
3322 // If the divisor is even, we can avoid using the expensive fixup by shifting
3323 // the divided value upfront.
3324 if (magics
.a
!= 0 && !N1C
[0]) {
3325 unsigned Shift
= N1C
.countTrailingZeros();
3326 Q
= DAG
.getNode(ISD::SRL
, dl
, VT
, Q
,
3327 DAG
.getConstant(Shift
, getShiftAmountTy(Q
.getValueType())));
3329 Created
->push_back(Q
.getNode());
3331 // Get magic number for the shifted divisor.
3332 magics
= N1C
.lshr(Shift
).magicu(Shift
);
3333 assert(magics
.a
== 0 && "Should use cheap fixup now");
3336 // Multiply the numerator (operand 0) by the magic value
3337 // FIXME: We should support doing a MUL in a wider type
3338 if (isOperationLegalOrCustom(ISD::MULHU
, VT
))
3339 Q
= DAG
.getNode(ISD::MULHU
, dl
, VT
, Q
, DAG
.getConstant(magics
.m
, VT
));
3340 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
))
3341 Q
= SDValue(DAG
.getNode(ISD::UMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
), Q
,
3342 DAG
.getConstant(magics
.m
, VT
)).getNode(), 1);
3344 return SDValue(); // No mulhu or equvialent
3346 Created
->push_back(Q
.getNode());
3348 if (magics
.a
== 0) {
3349 assert(magics
.s
< N1C
.getBitWidth() &&
3350 "We shouldn't generate an undefined shift!");
3351 return DAG
.getNode(ISD::SRL
, dl
, VT
, Q
,
3352 DAG
.getConstant(magics
.s
, getShiftAmountTy(Q
.getValueType())));
3354 SDValue NPQ
= DAG
.getNode(ISD::SUB
, dl
, VT
, N
->getOperand(0), Q
);
3356 Created
->push_back(NPQ
.getNode());
3357 NPQ
= DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
,
3358 DAG
.getConstant(1, getShiftAmountTy(NPQ
.getValueType())));
3360 Created
->push_back(NPQ
.getNode());
3361 NPQ
= DAG
.getNode(ISD::ADD
, dl
, VT
, NPQ
, Q
);
3363 Created
->push_back(NPQ
.getNode());
3364 return DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
,
3365 DAG
.getConstant(magics
.s
-1, getShiftAmountTy(NPQ
.getValueType())));