Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / CodeGen / SelectionDAG / TargetLowering.cpp
blob4a7afe475e7767dd52184ba390bed401328adba6
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetLoweringObjectFile.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
32 #include <cctype>
33 using namespace llvm;
35 /// We are in the process of implementing a new TypeLegalization action
36 /// - the promotion of vector elements. This feature is disabled by default
37 /// and only enabled using this flag.
38 static cl::opt<bool>
39 AllowPromoteIntElem("promote-elements", cl::Hidden,
40 cl::desc("Allow promotion of integer vector element types"));
42 namespace llvm {
43 TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
44 bool isLocal = GV->hasLocalLinkage();
45 bool isDeclaration = GV->isDeclaration();
46 // FIXME: what should we do for protected and internal visibility?
47 // For variables, is internal different from hidden?
48 bool isHidden = GV->hasHiddenVisibility();
50 if (reloc == Reloc::PIC_) {
51 if (isLocal || isHidden)
52 return TLSModel::LocalDynamic;
53 else
54 return TLSModel::GeneralDynamic;
55 } else {
56 if (!isDeclaration || isHidden)
57 return TLSModel::LocalExec;
58 else
59 return TLSModel::InitialExec;
64 /// InitLibcallNames - Set default libcall names.
65 ///
66 static void InitLibcallNames(const char **Names) {
67 Names[RTLIB::SHL_I16] = "__ashlhi3";
68 Names[RTLIB::SHL_I32] = "__ashlsi3";
69 Names[RTLIB::SHL_I64] = "__ashldi3";
70 Names[RTLIB::SHL_I128] = "__ashlti3";
71 Names[RTLIB::SRL_I16] = "__lshrhi3";
72 Names[RTLIB::SRL_I32] = "__lshrsi3";
73 Names[RTLIB::SRL_I64] = "__lshrdi3";
74 Names[RTLIB::SRL_I128] = "__lshrti3";
75 Names[RTLIB::SRA_I16] = "__ashrhi3";
76 Names[RTLIB::SRA_I32] = "__ashrsi3";
77 Names[RTLIB::SRA_I64] = "__ashrdi3";
78 Names[RTLIB::SRA_I128] = "__ashrti3";
79 Names[RTLIB::MUL_I8] = "__mulqi3";
80 Names[RTLIB::MUL_I16] = "__mulhi3";
81 Names[RTLIB::MUL_I32] = "__mulsi3";
82 Names[RTLIB::MUL_I64] = "__muldi3";
83 Names[RTLIB::MUL_I128] = "__multi3";
84 Names[RTLIB::MULO_I32] = "__mulosi4";
85 Names[RTLIB::MULO_I64] = "__mulodi4";
86 Names[RTLIB::MULO_I128] = "__muloti4";
87 Names[RTLIB::SDIV_I8] = "__divqi3";
88 Names[RTLIB::SDIV_I16] = "__divhi3";
89 Names[RTLIB::SDIV_I32] = "__divsi3";
90 Names[RTLIB::SDIV_I64] = "__divdi3";
91 Names[RTLIB::SDIV_I128] = "__divti3";
92 Names[RTLIB::UDIV_I8] = "__udivqi3";
93 Names[RTLIB::UDIV_I16] = "__udivhi3";
94 Names[RTLIB::UDIV_I32] = "__udivsi3";
95 Names[RTLIB::UDIV_I64] = "__udivdi3";
96 Names[RTLIB::UDIV_I128] = "__udivti3";
97 Names[RTLIB::SREM_I8] = "__modqi3";
98 Names[RTLIB::SREM_I16] = "__modhi3";
99 Names[RTLIB::SREM_I32] = "__modsi3";
100 Names[RTLIB::SREM_I64] = "__moddi3";
101 Names[RTLIB::SREM_I128] = "__modti3";
102 Names[RTLIB::UREM_I8] = "__umodqi3";
103 Names[RTLIB::UREM_I16] = "__umodhi3";
104 Names[RTLIB::UREM_I32] = "__umodsi3";
105 Names[RTLIB::UREM_I64] = "__umoddi3";
106 Names[RTLIB::UREM_I128] = "__umodti3";
108 // These are generally not available.
109 Names[RTLIB::SDIVREM_I8] = 0;
110 Names[RTLIB::SDIVREM_I16] = 0;
111 Names[RTLIB::SDIVREM_I32] = 0;
112 Names[RTLIB::SDIVREM_I64] = 0;
113 Names[RTLIB::SDIVREM_I128] = 0;
114 Names[RTLIB::UDIVREM_I8] = 0;
115 Names[RTLIB::UDIVREM_I16] = 0;
116 Names[RTLIB::UDIVREM_I32] = 0;
117 Names[RTLIB::UDIVREM_I64] = 0;
118 Names[RTLIB::UDIVREM_I128] = 0;
120 Names[RTLIB::NEG_I32] = "__negsi2";
121 Names[RTLIB::NEG_I64] = "__negdi2";
122 Names[RTLIB::ADD_F32] = "__addsf3";
123 Names[RTLIB::ADD_F64] = "__adddf3";
124 Names[RTLIB::ADD_F80] = "__addxf3";
125 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
126 Names[RTLIB::SUB_F32] = "__subsf3";
127 Names[RTLIB::SUB_F64] = "__subdf3";
128 Names[RTLIB::SUB_F80] = "__subxf3";
129 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
130 Names[RTLIB::MUL_F32] = "__mulsf3";
131 Names[RTLIB::MUL_F64] = "__muldf3";
132 Names[RTLIB::MUL_F80] = "__mulxf3";
133 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
134 Names[RTLIB::DIV_F32] = "__divsf3";
135 Names[RTLIB::DIV_F64] = "__divdf3";
136 Names[RTLIB::DIV_F80] = "__divxf3";
137 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
138 Names[RTLIB::REM_F32] = "fmodf";
139 Names[RTLIB::REM_F64] = "fmod";
140 Names[RTLIB::REM_F80] = "fmodl";
141 Names[RTLIB::REM_PPCF128] = "fmodl";
142 Names[RTLIB::FMA_F32] = "fmaf";
143 Names[RTLIB::FMA_F64] = "fma";
144 Names[RTLIB::FMA_F80] = "fmal";
145 Names[RTLIB::FMA_PPCF128] = "fmal";
146 Names[RTLIB::POWI_F32] = "__powisf2";
147 Names[RTLIB::POWI_F64] = "__powidf2";
148 Names[RTLIB::POWI_F80] = "__powixf2";
149 Names[RTLIB::POWI_PPCF128] = "__powitf2";
150 Names[RTLIB::SQRT_F32] = "sqrtf";
151 Names[RTLIB::SQRT_F64] = "sqrt";
152 Names[RTLIB::SQRT_F80] = "sqrtl";
153 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
154 Names[RTLIB::LOG_F32] = "logf";
155 Names[RTLIB::LOG_F64] = "log";
156 Names[RTLIB::LOG_F80] = "logl";
157 Names[RTLIB::LOG_PPCF128] = "logl";
158 Names[RTLIB::LOG2_F32] = "log2f";
159 Names[RTLIB::LOG2_F64] = "log2";
160 Names[RTLIB::LOG2_F80] = "log2l";
161 Names[RTLIB::LOG2_PPCF128] = "log2l";
162 Names[RTLIB::LOG10_F32] = "log10f";
163 Names[RTLIB::LOG10_F64] = "log10";
164 Names[RTLIB::LOG10_F80] = "log10l";
165 Names[RTLIB::LOG10_PPCF128] = "log10l";
166 Names[RTLIB::EXP_F32] = "expf";
167 Names[RTLIB::EXP_F64] = "exp";
168 Names[RTLIB::EXP_F80] = "expl";
169 Names[RTLIB::EXP_PPCF128] = "expl";
170 Names[RTLIB::EXP2_F32] = "exp2f";
171 Names[RTLIB::EXP2_F64] = "exp2";
172 Names[RTLIB::EXP2_F80] = "exp2l";
173 Names[RTLIB::EXP2_PPCF128] = "exp2l";
174 Names[RTLIB::SIN_F32] = "sinf";
175 Names[RTLIB::SIN_F64] = "sin";
176 Names[RTLIB::SIN_F80] = "sinl";
177 Names[RTLIB::SIN_PPCF128] = "sinl";
178 Names[RTLIB::COS_F32] = "cosf";
179 Names[RTLIB::COS_F64] = "cos";
180 Names[RTLIB::COS_F80] = "cosl";
181 Names[RTLIB::COS_PPCF128] = "cosl";
182 Names[RTLIB::POW_F32] = "powf";
183 Names[RTLIB::POW_F64] = "pow";
184 Names[RTLIB::POW_F80] = "powl";
185 Names[RTLIB::POW_PPCF128] = "powl";
186 Names[RTLIB::CEIL_F32] = "ceilf";
187 Names[RTLIB::CEIL_F64] = "ceil";
188 Names[RTLIB::CEIL_F80] = "ceill";
189 Names[RTLIB::CEIL_PPCF128] = "ceill";
190 Names[RTLIB::TRUNC_F32] = "truncf";
191 Names[RTLIB::TRUNC_F64] = "trunc";
192 Names[RTLIB::TRUNC_F80] = "truncl";
193 Names[RTLIB::TRUNC_PPCF128] = "truncl";
194 Names[RTLIB::RINT_F32] = "rintf";
195 Names[RTLIB::RINT_F64] = "rint";
196 Names[RTLIB::RINT_F80] = "rintl";
197 Names[RTLIB::RINT_PPCF128] = "rintl";
198 Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
199 Names[RTLIB::NEARBYINT_F64] = "nearbyint";
200 Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
201 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
202 Names[RTLIB::FLOOR_F32] = "floorf";
203 Names[RTLIB::FLOOR_F64] = "floor";
204 Names[RTLIB::FLOOR_F80] = "floorl";
205 Names[RTLIB::FLOOR_PPCF128] = "floorl";
206 Names[RTLIB::COPYSIGN_F32] = "copysignf";
207 Names[RTLIB::COPYSIGN_F64] = "copysign";
208 Names[RTLIB::COPYSIGN_F80] = "copysignl";
209 Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
210 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
211 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
212 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
213 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
214 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
215 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
216 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
217 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
218 Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
219 Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
220 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
221 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
222 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
223 Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
224 Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
225 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
226 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
227 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
228 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
229 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
230 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
231 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
232 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
233 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
234 Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
235 Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
236 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
237 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
238 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
239 Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
240 Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
241 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
242 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
243 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
244 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
245 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
246 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
247 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
248 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
249 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
250 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
251 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
252 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
253 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
254 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
255 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
256 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
257 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
258 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
259 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
260 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
261 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
262 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
263 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
264 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
265 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
266 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
267 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
268 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
269 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
270 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
271 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
272 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
273 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
274 Names[RTLIB::OEQ_F32] = "__eqsf2";
275 Names[RTLIB::OEQ_F64] = "__eqdf2";
276 Names[RTLIB::UNE_F32] = "__nesf2";
277 Names[RTLIB::UNE_F64] = "__nedf2";
278 Names[RTLIB::OGE_F32] = "__gesf2";
279 Names[RTLIB::OGE_F64] = "__gedf2";
280 Names[RTLIB::OLT_F32] = "__ltsf2";
281 Names[RTLIB::OLT_F64] = "__ltdf2";
282 Names[RTLIB::OLE_F32] = "__lesf2";
283 Names[RTLIB::OLE_F64] = "__ledf2";
284 Names[RTLIB::OGT_F32] = "__gtsf2";
285 Names[RTLIB::OGT_F64] = "__gtdf2";
286 Names[RTLIB::UO_F32] = "__unordsf2";
287 Names[RTLIB::UO_F64] = "__unorddf2";
288 Names[RTLIB::O_F32] = "__unordsf2";
289 Names[RTLIB::O_F64] = "__unorddf2";
290 Names[RTLIB::MEMCPY] = "memcpy";
291 Names[RTLIB::MEMMOVE] = "memmove";
292 Names[RTLIB::MEMSET] = "memset";
293 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
294 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
295 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
296 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
297 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
298 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
299 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
300 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
301 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
302 Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
303 Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
304 Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
305 Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
306 Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
307 Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
308 Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
309 Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
310 Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
311 Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
312 Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
313 Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
314 Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
315 Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
316 Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
317 Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
318 Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
319 Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
320 Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
321 Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
322 Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
323 Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
324 Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
325 Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
328 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
330 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
331 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
332 CCs[i] = CallingConv::C;
336 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
337 /// UNKNOWN_LIBCALL if there is none.
338 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
339 if (OpVT == MVT::f32) {
340 if (RetVT == MVT::f64)
341 return FPEXT_F32_F64;
344 return UNKNOWN_LIBCALL;
347 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
348 /// UNKNOWN_LIBCALL if there is none.
349 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
350 if (RetVT == MVT::f32) {
351 if (OpVT == MVT::f64)
352 return FPROUND_F64_F32;
353 if (OpVT == MVT::f80)
354 return FPROUND_F80_F32;
355 if (OpVT == MVT::ppcf128)
356 return FPROUND_PPCF128_F32;
357 } else if (RetVT == MVT::f64) {
358 if (OpVT == MVT::f80)
359 return FPROUND_F80_F64;
360 if (OpVT == MVT::ppcf128)
361 return FPROUND_PPCF128_F64;
364 return UNKNOWN_LIBCALL;
367 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
368 /// UNKNOWN_LIBCALL if there is none.
369 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
370 if (OpVT == MVT::f32) {
371 if (RetVT == MVT::i8)
372 return FPTOSINT_F32_I8;
373 if (RetVT == MVT::i16)
374 return FPTOSINT_F32_I16;
375 if (RetVT == MVT::i32)
376 return FPTOSINT_F32_I32;
377 if (RetVT == MVT::i64)
378 return FPTOSINT_F32_I64;
379 if (RetVT == MVT::i128)
380 return FPTOSINT_F32_I128;
381 } else if (OpVT == MVT::f64) {
382 if (RetVT == MVT::i8)
383 return FPTOSINT_F64_I8;
384 if (RetVT == MVT::i16)
385 return FPTOSINT_F64_I16;
386 if (RetVT == MVT::i32)
387 return FPTOSINT_F64_I32;
388 if (RetVT == MVT::i64)
389 return FPTOSINT_F64_I64;
390 if (RetVT == MVT::i128)
391 return FPTOSINT_F64_I128;
392 } else if (OpVT == MVT::f80) {
393 if (RetVT == MVT::i32)
394 return FPTOSINT_F80_I32;
395 if (RetVT == MVT::i64)
396 return FPTOSINT_F80_I64;
397 if (RetVT == MVT::i128)
398 return FPTOSINT_F80_I128;
399 } else if (OpVT == MVT::ppcf128) {
400 if (RetVT == MVT::i32)
401 return FPTOSINT_PPCF128_I32;
402 if (RetVT == MVT::i64)
403 return FPTOSINT_PPCF128_I64;
404 if (RetVT == MVT::i128)
405 return FPTOSINT_PPCF128_I128;
407 return UNKNOWN_LIBCALL;
410 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
411 /// UNKNOWN_LIBCALL if there is none.
412 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
413 if (OpVT == MVT::f32) {
414 if (RetVT == MVT::i8)
415 return FPTOUINT_F32_I8;
416 if (RetVT == MVT::i16)
417 return FPTOUINT_F32_I16;
418 if (RetVT == MVT::i32)
419 return FPTOUINT_F32_I32;
420 if (RetVT == MVT::i64)
421 return FPTOUINT_F32_I64;
422 if (RetVT == MVT::i128)
423 return FPTOUINT_F32_I128;
424 } else if (OpVT == MVT::f64) {
425 if (RetVT == MVT::i8)
426 return FPTOUINT_F64_I8;
427 if (RetVT == MVT::i16)
428 return FPTOUINT_F64_I16;
429 if (RetVT == MVT::i32)
430 return FPTOUINT_F64_I32;
431 if (RetVT == MVT::i64)
432 return FPTOUINT_F64_I64;
433 if (RetVT == MVT::i128)
434 return FPTOUINT_F64_I128;
435 } else if (OpVT == MVT::f80) {
436 if (RetVT == MVT::i32)
437 return FPTOUINT_F80_I32;
438 if (RetVT == MVT::i64)
439 return FPTOUINT_F80_I64;
440 if (RetVT == MVT::i128)
441 return FPTOUINT_F80_I128;
442 } else if (OpVT == MVT::ppcf128) {
443 if (RetVT == MVT::i32)
444 return FPTOUINT_PPCF128_I32;
445 if (RetVT == MVT::i64)
446 return FPTOUINT_PPCF128_I64;
447 if (RetVT == MVT::i128)
448 return FPTOUINT_PPCF128_I128;
450 return UNKNOWN_LIBCALL;
453 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
454 /// UNKNOWN_LIBCALL if there is none.
455 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
456 if (OpVT == MVT::i32) {
457 if (RetVT == MVT::f32)
458 return SINTTOFP_I32_F32;
459 else if (RetVT == MVT::f64)
460 return SINTTOFP_I32_F64;
461 else if (RetVT == MVT::f80)
462 return SINTTOFP_I32_F80;
463 else if (RetVT == MVT::ppcf128)
464 return SINTTOFP_I32_PPCF128;
465 } else if (OpVT == MVT::i64) {
466 if (RetVT == MVT::f32)
467 return SINTTOFP_I64_F32;
468 else if (RetVT == MVT::f64)
469 return SINTTOFP_I64_F64;
470 else if (RetVT == MVT::f80)
471 return SINTTOFP_I64_F80;
472 else if (RetVT == MVT::ppcf128)
473 return SINTTOFP_I64_PPCF128;
474 } else if (OpVT == MVT::i128) {
475 if (RetVT == MVT::f32)
476 return SINTTOFP_I128_F32;
477 else if (RetVT == MVT::f64)
478 return SINTTOFP_I128_F64;
479 else if (RetVT == MVT::f80)
480 return SINTTOFP_I128_F80;
481 else if (RetVT == MVT::ppcf128)
482 return SINTTOFP_I128_PPCF128;
484 return UNKNOWN_LIBCALL;
487 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
488 /// UNKNOWN_LIBCALL if there is none.
489 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
490 if (OpVT == MVT::i32) {
491 if (RetVT == MVT::f32)
492 return UINTTOFP_I32_F32;
493 else if (RetVT == MVT::f64)
494 return UINTTOFP_I32_F64;
495 else if (RetVT == MVT::f80)
496 return UINTTOFP_I32_F80;
497 else if (RetVT == MVT::ppcf128)
498 return UINTTOFP_I32_PPCF128;
499 } else if (OpVT == MVT::i64) {
500 if (RetVT == MVT::f32)
501 return UINTTOFP_I64_F32;
502 else if (RetVT == MVT::f64)
503 return UINTTOFP_I64_F64;
504 else if (RetVT == MVT::f80)
505 return UINTTOFP_I64_F80;
506 else if (RetVT == MVT::ppcf128)
507 return UINTTOFP_I64_PPCF128;
508 } else if (OpVT == MVT::i128) {
509 if (RetVT == MVT::f32)
510 return UINTTOFP_I128_F32;
511 else if (RetVT == MVT::f64)
512 return UINTTOFP_I128_F64;
513 else if (RetVT == MVT::f80)
514 return UINTTOFP_I128_F80;
515 else if (RetVT == MVT::ppcf128)
516 return UINTTOFP_I128_PPCF128;
518 return UNKNOWN_LIBCALL;
521 /// InitCmpLibcallCCs - Set default comparison libcall CC.
523 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
524 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
525 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
526 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
527 CCs[RTLIB::UNE_F32] = ISD::SETNE;
528 CCs[RTLIB::UNE_F64] = ISD::SETNE;
529 CCs[RTLIB::OGE_F32] = ISD::SETGE;
530 CCs[RTLIB::OGE_F64] = ISD::SETGE;
531 CCs[RTLIB::OLT_F32] = ISD::SETLT;
532 CCs[RTLIB::OLT_F64] = ISD::SETLT;
533 CCs[RTLIB::OLE_F32] = ISD::SETLE;
534 CCs[RTLIB::OLE_F64] = ISD::SETLE;
535 CCs[RTLIB::OGT_F32] = ISD::SETGT;
536 CCs[RTLIB::OGT_F64] = ISD::SETGT;
537 CCs[RTLIB::UO_F32] = ISD::SETNE;
538 CCs[RTLIB::UO_F64] = ISD::SETNE;
539 CCs[RTLIB::O_F32] = ISD::SETEQ;
540 CCs[RTLIB::O_F64] = ISD::SETEQ;
543 /// NOTE: The constructor takes ownership of TLOF.
544 TargetLowering::TargetLowering(const TargetMachine &tm,
545 const TargetLoweringObjectFile *tlof)
546 : TM(tm), TD(TM.getTargetData()), TLOF(*tlof),
547 mayPromoteElements(AllowPromoteIntElem) {
548 // All operations default to being supported.
549 memset(OpActions, 0, sizeof(OpActions));
550 memset(LoadExtActions, 0, sizeof(LoadExtActions));
551 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
552 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
553 memset(CondCodeActions, 0, sizeof(CondCodeActions));
555 // Set default actions for various operations.
556 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
557 // Default all indexed load / store to expand.
558 for (unsigned IM = (unsigned)ISD::PRE_INC;
559 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
560 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
561 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
564 // These operations default to expand.
565 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
566 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
569 // Most targets ignore the @llvm.prefetch intrinsic.
570 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
572 // ConstantFP nodes default to expand. Targets can either change this to
573 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
574 // to optimize expansions for certain constants.
575 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
576 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
577 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
579 // These library functions default to expand.
580 setOperationAction(ISD::FLOG , MVT::f64, Expand);
581 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
582 setOperationAction(ISD::FLOG10,MVT::f64, Expand);
583 setOperationAction(ISD::FEXP , MVT::f64, Expand);
584 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
585 setOperationAction(ISD::FLOG , MVT::f32, Expand);
586 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
587 setOperationAction(ISD::FLOG10,MVT::f32, Expand);
588 setOperationAction(ISD::FEXP , MVT::f32, Expand);
589 setOperationAction(ISD::FEXP2, MVT::f32, Expand);
591 // Default ISD::TRAP to expand (which turns it into abort).
592 setOperationAction(ISD::TRAP, MVT::Other, Expand);
594 IsLittleEndian = TD->isLittleEndian();
595 PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
596 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
597 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
598 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
599 maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
600 = maxStoresPerMemmoveOptSize = 4;
601 benefitFromCodePlacementOpt = false;
602 UseUnderscoreSetJmp = false;
603 UseUnderscoreLongJmp = false;
604 SelectIsExpensive = false;
605 IntDivIsCheap = false;
606 Pow2DivIsCheap = false;
607 JumpIsExpensive = false;
608 StackPointerRegisterToSaveRestore = 0;
609 ExceptionPointerRegister = 0;
610 ExceptionSelectorRegister = 0;
611 BooleanContents = UndefinedBooleanContent;
612 SchedPreferenceInfo = Sched::Latency;
613 JumpBufSize = 0;
614 JumpBufAlignment = 0;
615 MinFunctionAlignment = 0;
616 PrefFunctionAlignment = 0;
617 PrefLoopAlignment = 0;
618 MinStackArgumentAlignment = 1;
619 ShouldFoldAtomicFences = false;
621 InitLibcallNames(LibcallRoutineNames);
622 InitCmpLibcallCCs(CmpLibcallCCs);
623 InitLibcallCallingConvs(LibcallCallingConvs);
626 TargetLowering::~TargetLowering() {
627 delete &TLOF;
630 MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
631 return MVT::getIntegerVT(8*TD->getPointerSize());
634 /// canOpTrap - Returns true if the operation can trap for the value type.
635 /// VT must be a legal type.
636 bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
637 assert(isTypeLegal(VT));
638 switch (Op) {
639 default:
640 return false;
641 case ISD::FDIV:
642 case ISD::FREM:
643 case ISD::SDIV:
644 case ISD::UDIV:
645 case ISD::SREM:
646 case ISD::UREM:
647 return true;
652 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
653 unsigned &NumIntermediates,
654 EVT &RegisterVT,
655 TargetLowering *TLI) {
656 // Figure out the right, legal destination reg to copy into.
657 unsigned NumElts = VT.getVectorNumElements();
658 MVT EltTy = VT.getVectorElementType();
660 unsigned NumVectorRegs = 1;
662 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
663 // could break down into LHS/RHS like LegalizeDAG does.
664 if (!isPowerOf2_32(NumElts)) {
665 NumVectorRegs = NumElts;
666 NumElts = 1;
669 // Divide the input until we get to a supported size. This will always
670 // end with a scalar if the target doesn't support vectors.
671 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
672 NumElts >>= 1;
673 NumVectorRegs <<= 1;
676 NumIntermediates = NumVectorRegs;
678 MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
679 if (!TLI->isTypeLegal(NewVT))
680 NewVT = EltTy;
681 IntermediateVT = NewVT;
683 unsigned NewVTSize = NewVT.getSizeInBits();
685 // Convert sizes such as i33 to i64.
686 if (!isPowerOf2_32(NewVTSize))
687 NewVTSize = NextPowerOf2(NewVTSize);
689 EVT DestVT = TLI->getRegisterType(NewVT);
690 RegisterVT = DestVT;
691 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
692 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
694 // Otherwise, promotion or legal types use the same number of registers as
695 // the vector decimated to the appropriate level.
696 return NumVectorRegs;
699 /// isLegalRC - Return true if the value types that can be represented by the
700 /// specified register class are all legal.
701 bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
702 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
703 I != E; ++I) {
704 if (isTypeLegal(*I))
705 return true;
707 return false;
710 /// hasLegalSuperRegRegClasses - Return true if the specified register class
711 /// has one or more super-reg register classes that are legal.
712 bool
713 TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
714 if (*RC->superregclasses_begin() == 0)
715 return false;
716 for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
717 E = RC->superregclasses_end(); I != E; ++I) {
718 const TargetRegisterClass *RRC = *I;
719 if (isLegalRC(RRC))
720 return true;
722 return false;
725 /// findRepresentativeClass - Return the largest legal super-reg register class
726 /// of the register class for the specified type and its associated "cost".
727 std::pair<const TargetRegisterClass*, uint8_t>
728 TargetLowering::findRepresentativeClass(EVT VT) const {
729 const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
730 if (!RC)
731 return std::make_pair(RC, 0);
732 const TargetRegisterClass *BestRC = RC;
733 for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
734 E = RC->superregclasses_end(); I != E; ++I) {
735 const TargetRegisterClass *RRC = *I;
736 if (RRC->isASubClass() || !isLegalRC(RRC))
737 continue;
738 if (!hasLegalSuperRegRegClasses(RRC))
739 return std::make_pair(RRC, 1);
740 BestRC = RRC;
742 return std::make_pair(BestRC, 1);
746 /// computeRegisterProperties - Once all of the register classes are added,
747 /// this allows us to compute derived properties we expose.
748 void TargetLowering::computeRegisterProperties() {
749 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
750 "Too many value types for ValueTypeActions to hold!");
752 // Everything defaults to needing one register.
753 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
754 NumRegistersForVT[i] = 1;
755 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
757 // ...except isVoid, which doesn't need any registers.
758 NumRegistersForVT[MVT::isVoid] = 0;
760 // Find the largest integer register class.
761 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
762 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
763 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
765 // Every integer value type larger than this largest register takes twice as
766 // many registers to represent as the previous ValueType.
767 for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
768 EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
769 if (!ExpandedVT.isInteger())
770 break;
771 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
772 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
773 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
774 ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
777 // Inspect all of the ValueType's smaller than the largest integer
778 // register to see which ones need promotion.
779 unsigned LegalIntReg = LargestIntReg;
780 for (unsigned IntReg = LargestIntReg - 1;
781 IntReg >= (unsigned)MVT::i1; --IntReg) {
782 EVT IVT = (MVT::SimpleValueType)IntReg;
783 if (isTypeLegal(IVT)) {
784 LegalIntReg = IntReg;
785 } else {
786 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
787 (MVT::SimpleValueType)LegalIntReg;
788 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
792 // ppcf128 type is really two f64's.
793 if (!isTypeLegal(MVT::ppcf128)) {
794 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
795 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
796 TransformToType[MVT::ppcf128] = MVT::f64;
797 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
800 // Decide how to handle f64. If the target does not have native f64 support,
801 // expand it to i64 and we will be generating soft float library calls.
802 if (!isTypeLegal(MVT::f64)) {
803 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
804 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
805 TransformToType[MVT::f64] = MVT::i64;
806 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
809 // Decide how to handle f32. If the target does not have native support for
810 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
811 if (!isTypeLegal(MVT::f32)) {
812 if (isTypeLegal(MVT::f64)) {
813 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
814 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
815 TransformToType[MVT::f32] = MVT::f64;
816 ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
817 } else {
818 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
819 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
820 TransformToType[MVT::f32] = MVT::i32;
821 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
825 // Loop over all of the vector value types to see which need transformations.
826 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
827 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
828 MVT VT = (MVT::SimpleValueType)i;
829 if (isTypeLegal(VT)) continue;
831 // Determine if there is a legal wider type. If so, we should promote to
832 // that wider vector type.
833 EVT EltVT = VT.getVectorElementType();
834 unsigned NElts = VT.getVectorNumElements();
835 if (NElts != 1) {
836 bool IsLegalWiderType = false;
837 // If we allow the promotion of vector elements using a flag,
838 // then return TypePromoteInteger on vector elements.
839 // First try to promote the elements of integer vectors. If no legal
840 // promotion was found, fallback to the widen-vector method.
841 if (mayPromoteElements)
842 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
843 EVT SVT = (MVT::SimpleValueType)nVT;
844 // Promote vectors of integers to vectors with the same number
845 // of elements, with a wider element type.
846 if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
847 && SVT.getVectorNumElements() == NElts &&
848 isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
849 TransformToType[i] = SVT;
850 RegisterTypeForVT[i] = SVT;
851 NumRegistersForVT[i] = 1;
852 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
853 IsLegalWiderType = true;
854 break;
858 if (IsLegalWiderType) continue;
860 // Try to widen the vector.
861 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
862 EVT SVT = (MVT::SimpleValueType)nVT;
863 if (SVT.getVectorElementType() == EltVT &&
864 SVT.getVectorNumElements() > NElts &&
865 isTypeLegal(SVT)) {
866 TransformToType[i] = SVT;
867 RegisterTypeForVT[i] = SVT;
868 NumRegistersForVT[i] = 1;
869 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
870 IsLegalWiderType = true;
871 break;
874 if (IsLegalWiderType) continue;
877 MVT IntermediateVT;
878 EVT RegisterVT;
879 unsigned NumIntermediates;
880 NumRegistersForVT[i] =
881 getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
882 RegisterVT, this);
883 RegisterTypeForVT[i] = RegisterVT;
885 EVT NVT = VT.getPow2VectorType();
886 if (NVT == VT) {
887 // Type is already a power of 2. The default action is to split.
888 TransformToType[i] = MVT::Other;
889 unsigned NumElts = VT.getVectorNumElements();
890 ValueTypeActions.setTypeAction(VT,
891 NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
892 } else {
893 TransformToType[i] = NVT;
894 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
898 // Determine the 'representative' register class for each value type.
899 // An representative register class is the largest (meaning one which is
900 // not a sub-register class / subreg register class) legal register class for
901 // a group of value types. For example, on i386, i8, i16, and i32
902 // representative would be GR32; while on x86_64 it's GR64.
903 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
904 const TargetRegisterClass* RRC;
905 uint8_t Cost;
906 tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
907 RepRegClassForVT[i] = RRC;
908 RepRegClassCostForVT[i] = Cost;
912 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
913 return NULL;
917 MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
918 return PointerTy.SimpleTy;
921 MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
922 return MVT::i32; // return the default value
925 /// getVectorTypeBreakdown - Vector types are broken down into some number of
926 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
927 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
928 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
930 /// This method returns the number of registers needed, and the VT for each
931 /// register. It also returns the VT and quantity of the intermediate values
932 /// before they are promoted/expanded.
934 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
935 EVT &IntermediateVT,
936 unsigned &NumIntermediates,
937 EVT &RegisterVT) const {
938 unsigned NumElts = VT.getVectorNumElements();
940 // If there is a wider vector type with the same element type as this one,
941 // we should widen to that legal vector type. This handles things like
942 // <2 x float> -> <4 x float>.
943 if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) {
944 RegisterVT = getTypeToTransformTo(Context, VT);
945 if (isTypeLegal(RegisterVT)) {
946 IntermediateVT = RegisterVT;
947 NumIntermediates = 1;
948 return 1;
952 // Figure out the right, legal destination reg to copy into.
953 EVT EltTy = VT.getVectorElementType();
955 unsigned NumVectorRegs = 1;
957 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
958 // could break down into LHS/RHS like LegalizeDAG does.
959 if (!isPowerOf2_32(NumElts)) {
960 NumVectorRegs = NumElts;
961 NumElts = 1;
964 // Divide the input until we get to a supported size. This will always
965 // end with a scalar if the target doesn't support vectors.
966 while (NumElts > 1 && !isTypeLegal(
967 EVT::getVectorVT(Context, EltTy, NumElts))) {
968 NumElts >>= 1;
969 NumVectorRegs <<= 1;
972 NumIntermediates = NumVectorRegs;
974 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
975 if (!isTypeLegal(NewVT))
976 NewVT = EltTy;
977 IntermediateVT = NewVT;
979 EVT DestVT = getRegisterType(Context, NewVT);
980 RegisterVT = DestVT;
981 unsigned NewVTSize = NewVT.getSizeInBits();
983 // Convert sizes such as i33 to i64.
984 if (!isPowerOf2_32(NewVTSize))
985 NewVTSize = NextPowerOf2(NewVTSize);
987 if (DestVT.bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
988 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
990 // Otherwise, promotion or legal types use the same number of registers as
991 // the vector decimated to the appropriate level.
992 return NumVectorRegs;
995 /// Get the EVTs and ArgFlags collections that represent the legalized return
996 /// type of the given function. This does not require a DAG or a return value,
997 /// and is suitable for use before any DAGs for the function are constructed.
998 /// TODO: Move this out of TargetLowering.cpp.
999 void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
1000 SmallVectorImpl<ISD::OutputArg> &Outs,
1001 const TargetLowering &TLI,
1002 SmallVectorImpl<uint64_t> *Offsets) {
1003 SmallVector<EVT, 4> ValueVTs;
1004 ComputeValueVTs(TLI, ReturnType, ValueVTs);
1005 unsigned NumValues = ValueVTs.size();
1006 if (NumValues == 0) return;
1007 unsigned Offset = 0;
1009 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1010 EVT VT = ValueVTs[j];
1011 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1013 if (attr & Attribute::SExt)
1014 ExtendKind = ISD::SIGN_EXTEND;
1015 else if (attr & Attribute::ZExt)
1016 ExtendKind = ISD::ZERO_EXTEND;
1018 // FIXME: C calling convention requires the return type to be promoted to
1019 // at least 32-bit. But this is not necessary for non-C calling
1020 // conventions. The frontend should mark functions whose return values
1021 // require promoting with signext or zeroext attributes.
1022 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1023 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1024 if (VT.bitsLT(MinVT))
1025 VT = MinVT;
1028 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1029 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1030 unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
1031 PartVT.getTypeForEVT(ReturnType->getContext()));
1033 // 'inreg' on function refers to return value
1034 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1035 if (attr & Attribute::InReg)
1036 Flags.setInReg();
1038 // Propagate extension type if any
1039 if (attr & Attribute::SExt)
1040 Flags.setSExt();
1041 else if (attr & Attribute::ZExt)
1042 Flags.setZExt();
1044 for (unsigned i = 0; i < NumParts; ++i) {
1045 Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
1046 if (Offsets) {
1047 Offsets->push_back(Offset);
1048 Offset += PartSize;
1054 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1055 /// function arguments in the caller parameter area. This is the actual
1056 /// alignment, not its logarithm.
1057 unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1058 return TD->getCallFrameTypeAlignment(Ty);
1061 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1062 /// current function. The returned value is a member of the
1063 /// MachineJumpTableInfo::JTEntryKind enum.
1064 unsigned TargetLowering::getJumpTableEncoding() const {
1065 // In non-pic modes, just use the address of a block.
1066 if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1067 return MachineJumpTableInfo::EK_BlockAddress;
1069 // In PIC mode, if the target supports a GPRel32 directive, use it.
1070 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1071 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1073 // Otherwise, use a label difference.
1074 return MachineJumpTableInfo::EK_LabelDifference32;
1077 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1078 SelectionDAG &DAG) const {
1079 // If our PIC model is GP relative, use the global offset table as the base.
1080 if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1081 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1082 return Table;
1085 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1086 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1087 /// MCExpr.
1088 const MCExpr *
1089 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1090 unsigned JTI,MCContext &Ctx) const{
1091 // The normal PIC reloc base is the label at the start of the jump table.
1092 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1095 bool
1096 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1097 // Assume that everything is safe in static mode.
1098 if (getTargetMachine().getRelocationModel() == Reloc::Static)
1099 return true;
1101 // In dynamic-no-pic mode, assume that known defined values are safe.
1102 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1103 GA &&
1104 !GA->getGlobal()->isDeclaration() &&
1105 !GA->getGlobal()->isWeakForLinker())
1106 return true;
1108 // Otherwise assume nothing is safe.
1109 return false;
1112 //===----------------------------------------------------------------------===//
1113 // Optimization Methods
1114 //===----------------------------------------------------------------------===//
1116 /// ShrinkDemandedConstant - Check to see if the specified operand of the
1117 /// specified instruction is a constant integer. If so, check to see if there
1118 /// are any bits set in the constant that are not demanded. If so, shrink the
1119 /// constant and return true.
1120 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1121 const APInt &Demanded) {
1122 DebugLoc dl = Op.getDebugLoc();
1124 // FIXME: ISD::SELECT, ISD::SELECT_CC
1125 switch (Op.getOpcode()) {
1126 default: break;
1127 case ISD::XOR:
1128 case ISD::AND:
1129 case ISD::OR: {
1130 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1131 if (!C) return false;
1133 if (Op.getOpcode() == ISD::XOR &&
1134 (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1135 return false;
1137 // if we can expand it to have all bits set, do it
1138 if (C->getAPIntValue().intersects(~Demanded)) {
1139 EVT VT = Op.getValueType();
1140 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1141 DAG.getConstant(Demanded &
1142 C->getAPIntValue(),
1143 VT));
1144 return CombineTo(Op, New);
1147 break;
1151 return false;
1154 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1155 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
1156 /// cast, but it could be generalized for targets with other types of
1157 /// implicit widening casts.
1158 bool
1159 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1160 unsigned BitWidth,
1161 const APInt &Demanded,
1162 DebugLoc dl) {
1163 assert(Op.getNumOperands() == 2 &&
1164 "ShrinkDemandedOp only supports binary operators!");
1165 assert(Op.getNode()->getNumValues() == 1 &&
1166 "ShrinkDemandedOp only supports nodes with one result!");
1168 // Don't do this if the node has another user, which may require the
1169 // full value.
1170 if (!Op.getNode()->hasOneUse())
1171 return false;
1173 // Search for the smallest integer type with free casts to and from
1174 // Op's type. For expedience, just check power-of-2 integer types.
1175 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1176 unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1177 if (!isPowerOf2_32(SmallVTBits))
1178 SmallVTBits = NextPowerOf2(SmallVTBits);
1179 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1180 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1181 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1182 TLI.isZExtFree(SmallVT, Op.getValueType())) {
1183 // We found a type with free casts.
1184 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1185 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1186 Op.getNode()->getOperand(0)),
1187 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1188 Op.getNode()->getOperand(1)));
1189 SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1190 return CombineTo(Op, Z);
1193 return false;
1196 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
1197 /// DemandedMask bits of the result of Op are ever used downstream. If we can
1198 /// use this information to simplify Op, create a new simplified DAG node and
1199 /// return true, returning the original and new nodes in Old and New. Otherwise,
1200 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
1201 /// the expression (used to simplify the caller). The KnownZero/One bits may
1202 /// only be accurate for those bits in the DemandedMask.
1203 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1204 const APInt &DemandedMask,
1205 APInt &KnownZero,
1206 APInt &KnownOne,
1207 TargetLoweringOpt &TLO,
1208 unsigned Depth) const {
1209 unsigned BitWidth = DemandedMask.getBitWidth();
1210 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1211 "Mask size mismatches value type size!");
1212 APInt NewMask = DemandedMask;
1213 DebugLoc dl = Op.getDebugLoc();
1215 // Don't know anything.
1216 KnownZero = KnownOne = APInt(BitWidth, 0);
1218 // Other users may use these bits.
1219 if (!Op.getNode()->hasOneUse()) {
1220 if (Depth != 0) {
1221 // If not at the root, Just compute the KnownZero/KnownOne bits to
1222 // simplify things downstream.
1223 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1224 return false;
1226 // If this is the root being simplified, allow it to have multiple uses,
1227 // just set the NewMask to all bits.
1228 NewMask = APInt::getAllOnesValue(BitWidth);
1229 } else if (DemandedMask == 0) {
1230 // Not demanding any bits from Op.
1231 if (Op.getOpcode() != ISD::UNDEF)
1232 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1233 return false;
1234 } else if (Depth == 6) { // Limit search depth.
1235 return false;
1238 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1239 switch (Op.getOpcode()) {
1240 case ISD::Constant:
1241 // We know all of the bits for a constant!
1242 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1243 KnownZero = ~KnownOne & NewMask;
1244 return false; // Don't fall through, will infinitely loop.
1245 case ISD::AND:
1246 // If the RHS is a constant, check to see if the LHS would be zero without
1247 // using the bits from the RHS. Below, we use knowledge about the RHS to
1248 // simplify the LHS, here we're using information from the LHS to simplify
1249 // the RHS.
1250 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1251 APInt LHSZero, LHSOne;
1252 // Do not increment Depth here; that can cause an infinite loop.
1253 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1254 LHSZero, LHSOne, Depth);
1255 // If the LHS already has zeros where RHSC does, this and is dead.
1256 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1257 return TLO.CombineTo(Op, Op.getOperand(0));
1258 // If any of the set bits in the RHS are known zero on the LHS, shrink
1259 // the constant.
1260 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1261 return true;
1264 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1265 KnownOne, TLO, Depth+1))
1266 return true;
1267 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1268 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1269 KnownZero2, KnownOne2, TLO, Depth+1))
1270 return true;
1271 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1273 // If all of the demanded bits are known one on one side, return the other.
1274 // These bits cannot contribute to the result of the 'and'.
1275 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1276 return TLO.CombineTo(Op, Op.getOperand(0));
1277 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1278 return TLO.CombineTo(Op, Op.getOperand(1));
1279 // If all of the demanded bits in the inputs are known zeros, return zero.
1280 if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1281 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1282 // If the RHS is a constant, see if we can simplify it.
1283 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1284 return true;
1285 // If the operation can be done in a smaller type, do so.
1286 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1287 return true;
1289 // Output known-1 bits are only known if set in both the LHS & RHS.
1290 KnownOne &= KnownOne2;
1291 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1292 KnownZero |= KnownZero2;
1293 break;
1294 case ISD::OR:
1295 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1296 KnownOne, TLO, Depth+1))
1297 return true;
1298 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1299 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1300 KnownZero2, KnownOne2, TLO, Depth+1))
1301 return true;
1302 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1304 // If all of the demanded bits are known zero on one side, return the other.
1305 // These bits cannot contribute to the result of the 'or'.
1306 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1307 return TLO.CombineTo(Op, Op.getOperand(0));
1308 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1309 return TLO.CombineTo(Op, Op.getOperand(1));
1310 // If all of the potentially set bits on one side are known to be set on
1311 // the other side, just use the 'other' side.
1312 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1313 return TLO.CombineTo(Op, Op.getOperand(0));
1314 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1315 return TLO.CombineTo(Op, Op.getOperand(1));
1316 // If the RHS is a constant, see if we can simplify it.
1317 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1318 return true;
1319 // If the operation can be done in a smaller type, do so.
1320 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1321 return true;
1323 // Output known-0 bits are only known if clear in both the LHS & RHS.
1324 KnownZero &= KnownZero2;
1325 // Output known-1 are known to be set if set in either the LHS | RHS.
1326 KnownOne |= KnownOne2;
1327 break;
1328 case ISD::XOR:
1329 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1330 KnownOne, TLO, Depth+1))
1331 return true;
1332 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1333 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1334 KnownOne2, TLO, Depth+1))
1335 return true;
1336 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1338 // If all of the demanded bits are known zero on one side, return the other.
1339 // These bits cannot contribute to the result of the 'xor'.
1340 if ((KnownZero & NewMask) == NewMask)
1341 return TLO.CombineTo(Op, Op.getOperand(0));
1342 if ((KnownZero2 & NewMask) == NewMask)
1343 return TLO.CombineTo(Op, Op.getOperand(1));
1344 // If the operation can be done in a smaller type, do so.
1345 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1346 return true;
1348 // If all of the unknown bits are known to be zero on one side or the other
1349 // (but not both) turn this into an *inclusive* or.
1350 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1351 if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1352 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1353 Op.getOperand(0),
1354 Op.getOperand(1)));
1356 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1357 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1358 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1359 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1361 // If all of the demanded bits on one side are known, and all of the set
1362 // bits on that side are also known to be set on the other side, turn this
1363 // into an AND, as we know the bits will be cleared.
1364 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1365 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1366 if ((KnownOne & KnownOne2) == KnownOne) {
1367 EVT VT = Op.getValueType();
1368 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1369 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1370 Op.getOperand(0), ANDC));
1374 // If the RHS is a constant, see if we can simplify it.
1375 // for XOR, we prefer to force bits to 1 if they will make a -1.
1376 // if we can't force bits, try to shrink constant
1377 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1378 APInt Expanded = C->getAPIntValue() | (~NewMask);
1379 // if we can expand it to have all bits set, do it
1380 if (Expanded.isAllOnesValue()) {
1381 if (Expanded != C->getAPIntValue()) {
1382 EVT VT = Op.getValueType();
1383 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1384 TLO.DAG.getConstant(Expanded, VT));
1385 return TLO.CombineTo(Op, New);
1387 // if it already has all the bits set, nothing to change
1388 // but don't shrink either!
1389 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1390 return true;
1394 KnownZero = KnownZeroOut;
1395 KnownOne = KnownOneOut;
1396 break;
1397 case ISD::SELECT:
1398 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1399 KnownOne, TLO, Depth+1))
1400 return true;
1401 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1402 KnownOne2, TLO, Depth+1))
1403 return true;
1404 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1405 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1407 // If the operands are constants, see if we can simplify them.
1408 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1409 return true;
1411 // Only known if known in both the LHS and RHS.
1412 KnownOne &= KnownOne2;
1413 KnownZero &= KnownZero2;
1414 break;
1415 case ISD::SELECT_CC:
1416 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1417 KnownOne, TLO, Depth+1))
1418 return true;
1419 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1420 KnownOne2, TLO, Depth+1))
1421 return true;
1422 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1423 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1425 // If the operands are constants, see if we can simplify them.
1426 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1427 return true;
1429 // Only known if known in both the LHS and RHS.
1430 KnownOne &= KnownOne2;
1431 KnownZero &= KnownZero2;
1432 break;
1433 case ISD::SHL:
1434 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1435 unsigned ShAmt = SA->getZExtValue();
1436 SDValue InOp = Op.getOperand(0);
1438 // If the shift count is an invalid immediate, don't do anything.
1439 if (ShAmt >= BitWidth)
1440 break;
1442 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1443 // single shift. We can do this if the bottom bits (which are shifted
1444 // out) are never demanded.
1445 if (InOp.getOpcode() == ISD::SRL &&
1446 isa<ConstantSDNode>(InOp.getOperand(1))) {
1447 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1448 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1449 unsigned Opc = ISD::SHL;
1450 int Diff = ShAmt-C1;
1451 if (Diff < 0) {
1452 Diff = -Diff;
1453 Opc = ISD::SRL;
1456 SDValue NewSA =
1457 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1458 EVT VT = Op.getValueType();
1459 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1460 InOp.getOperand(0), NewSA));
1464 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1465 KnownZero, KnownOne, TLO, Depth+1))
1466 return true;
1468 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1469 // are not demanded. This will likely allow the anyext to be folded away.
1470 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1471 SDValue InnerOp = InOp.getNode()->getOperand(0);
1472 EVT InnerVT = InnerOp.getValueType();
1473 if ((APInt::getHighBitsSet(BitWidth,
1474 BitWidth - InnerVT.getSizeInBits()) &
1475 DemandedMask) == 0 &&
1476 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1477 EVT ShTy = getShiftAmountTy(InnerVT);
1478 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1479 ShTy = InnerVT;
1480 SDValue NarrowShl =
1481 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1482 TLO.DAG.getConstant(ShAmt, ShTy));
1483 return
1484 TLO.CombineTo(Op,
1485 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1486 NarrowShl));
1490 KnownZero <<= SA->getZExtValue();
1491 KnownOne <<= SA->getZExtValue();
1492 // low bits known zero.
1493 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1495 break;
1496 case ISD::SRL:
1497 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1498 EVT VT = Op.getValueType();
1499 unsigned ShAmt = SA->getZExtValue();
1500 unsigned VTSize = VT.getSizeInBits();
1501 SDValue InOp = Op.getOperand(0);
1503 // If the shift count is an invalid immediate, don't do anything.
1504 if (ShAmt >= BitWidth)
1505 break;
1507 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1508 // single shift. We can do this if the top bits (which are shifted out)
1509 // are never demanded.
1510 if (InOp.getOpcode() == ISD::SHL &&
1511 isa<ConstantSDNode>(InOp.getOperand(1))) {
1512 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1513 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1514 unsigned Opc = ISD::SRL;
1515 int Diff = ShAmt-C1;
1516 if (Diff < 0) {
1517 Diff = -Diff;
1518 Opc = ISD::SHL;
1521 SDValue NewSA =
1522 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1523 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1524 InOp.getOperand(0), NewSA));
1528 // Compute the new bits that are at the top now.
1529 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1530 KnownZero, KnownOne, TLO, Depth+1))
1531 return true;
1532 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1533 KnownZero = KnownZero.lshr(ShAmt);
1534 KnownOne = KnownOne.lshr(ShAmt);
1536 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1537 KnownZero |= HighBits; // High bits known zero.
1539 break;
1540 case ISD::SRA:
1541 // If this is an arithmetic shift right and only the low-bit is set, we can
1542 // always convert this into a logical shr, even if the shift amount is
1543 // variable. The low bit of the shift cannot be an input sign bit unless
1544 // the shift amount is >= the size of the datatype, which is undefined.
1545 if (DemandedMask == 1)
1546 return TLO.CombineTo(Op,
1547 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1548 Op.getOperand(0), Op.getOperand(1)));
1550 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1551 EVT VT = Op.getValueType();
1552 unsigned ShAmt = SA->getZExtValue();
1554 // If the shift count is an invalid immediate, don't do anything.
1555 if (ShAmt >= BitWidth)
1556 break;
1558 APInt InDemandedMask = (NewMask << ShAmt);
1560 // If any of the demanded bits are produced by the sign extension, we also
1561 // demand the input sign bit.
1562 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1563 if (HighBits.intersects(NewMask))
1564 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1566 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1567 KnownZero, KnownOne, TLO, Depth+1))
1568 return true;
1569 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1570 KnownZero = KnownZero.lshr(ShAmt);
1571 KnownOne = KnownOne.lshr(ShAmt);
1573 // Handle the sign bit, adjusted to where it is now in the mask.
1574 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1576 // If the input sign bit is known to be zero, or if none of the top bits
1577 // are demanded, turn this into an unsigned shift right.
1578 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1579 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1580 Op.getOperand(0),
1581 Op.getOperand(1)));
1582 } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1583 KnownOne |= HighBits;
1586 break;
1587 case ISD::SIGN_EXTEND_INREG: {
1588 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1590 // Sign extension. Compute the demanded bits in the result that are not
1591 // present in the input.
1592 APInt NewBits =
1593 APInt::getHighBitsSet(BitWidth,
1594 BitWidth - EVT.getScalarType().getSizeInBits());
1596 // If none of the extended bits are demanded, eliminate the sextinreg.
1597 if ((NewBits & NewMask) == 0)
1598 return TLO.CombineTo(Op, Op.getOperand(0));
1600 APInt InSignBit =
1601 APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1602 APInt InputDemandedBits =
1603 APInt::getLowBitsSet(BitWidth,
1604 EVT.getScalarType().getSizeInBits()) &
1605 NewMask;
1607 // Since the sign extended bits are demanded, we know that the sign
1608 // bit is demanded.
1609 InputDemandedBits |= InSignBit;
1611 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1612 KnownZero, KnownOne, TLO, Depth+1))
1613 return true;
1614 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1616 // If the sign bit of the input is known set or clear, then we know the
1617 // top bits of the result.
1619 // If the input sign bit is known zero, convert this into a zero extension.
1620 if (KnownZero.intersects(InSignBit))
1621 return TLO.CombineTo(Op,
1622 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1624 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1625 KnownOne |= NewBits;
1626 KnownZero &= ~NewBits;
1627 } else { // Input sign bit unknown
1628 KnownZero &= ~NewBits;
1629 KnownOne &= ~NewBits;
1631 break;
1633 case ISD::ZERO_EXTEND: {
1634 unsigned OperandBitWidth =
1635 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1636 APInt InMask = NewMask.trunc(OperandBitWidth);
1638 // If none of the top bits are demanded, convert this into an any_extend.
1639 APInt NewBits =
1640 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1641 if (!NewBits.intersects(NewMask))
1642 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1643 Op.getValueType(),
1644 Op.getOperand(0)));
1646 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1647 KnownZero, KnownOne, TLO, Depth+1))
1648 return true;
1649 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1650 KnownZero = KnownZero.zext(BitWidth);
1651 KnownOne = KnownOne.zext(BitWidth);
1652 KnownZero |= NewBits;
1653 break;
1655 case ISD::SIGN_EXTEND: {
1656 EVT InVT = Op.getOperand(0).getValueType();
1657 unsigned InBits = InVT.getScalarType().getSizeInBits();
1658 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
1659 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1660 APInt NewBits = ~InMask & NewMask;
1662 // If none of the top bits are demanded, convert this into an any_extend.
1663 if (NewBits == 0)
1664 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1665 Op.getValueType(),
1666 Op.getOperand(0)));
1668 // Since some of the sign extended bits are demanded, we know that the sign
1669 // bit is demanded.
1670 APInt InDemandedBits = InMask & NewMask;
1671 InDemandedBits |= InSignBit;
1672 InDemandedBits = InDemandedBits.trunc(InBits);
1674 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1675 KnownOne, TLO, Depth+1))
1676 return true;
1677 KnownZero = KnownZero.zext(BitWidth);
1678 KnownOne = KnownOne.zext(BitWidth);
1680 // If the sign bit is known zero, convert this to a zero extend.
1681 if (KnownZero.intersects(InSignBit))
1682 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1683 Op.getValueType(),
1684 Op.getOperand(0)));
1686 // If the sign bit is known one, the top bits match.
1687 if (KnownOne.intersects(InSignBit)) {
1688 KnownOne |= NewBits;
1689 KnownZero &= ~NewBits;
1690 } else { // Otherwise, top bits aren't known.
1691 KnownOne &= ~NewBits;
1692 KnownZero &= ~NewBits;
1694 break;
1696 case ISD::ANY_EXTEND: {
1697 unsigned OperandBitWidth =
1698 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1699 APInt InMask = NewMask.trunc(OperandBitWidth);
1700 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1701 KnownZero, KnownOne, TLO, Depth+1))
1702 return true;
1703 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704 KnownZero = KnownZero.zext(BitWidth);
1705 KnownOne = KnownOne.zext(BitWidth);
1706 break;
1708 case ISD::TRUNCATE: {
1709 // Simplify the input, using demanded bit information, and compute the known
1710 // zero/one bits live out.
1711 unsigned OperandBitWidth =
1712 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1713 APInt TruncMask = NewMask.zext(OperandBitWidth);
1714 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1715 KnownZero, KnownOne, TLO, Depth+1))
1716 return true;
1717 KnownZero = KnownZero.trunc(BitWidth);
1718 KnownOne = KnownOne.trunc(BitWidth);
1720 // If the input is only used by this truncate, see if we can shrink it based
1721 // on the known demanded bits.
1722 if (Op.getOperand(0).getNode()->hasOneUse()) {
1723 SDValue In = Op.getOperand(0);
1724 switch (In.getOpcode()) {
1725 default: break;
1726 case ISD::SRL:
1727 // Shrink SRL by a constant if none of the high bits shifted in are
1728 // demanded.
1729 if (TLO.LegalTypes() &&
1730 !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1731 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1732 // undesirable.
1733 break;
1734 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1735 if (!ShAmt)
1736 break;
1737 SDValue Shift = In.getOperand(1);
1738 if (TLO.LegalTypes()) {
1739 uint64_t ShVal = ShAmt->getZExtValue();
1740 Shift =
1741 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1744 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1745 OperandBitWidth - BitWidth);
1746 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1748 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1749 // None of the shifted in bits are needed. Add a truncate of the
1750 // shift input, then shift it.
1751 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1752 Op.getValueType(),
1753 In.getOperand(0));
1754 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1755 Op.getValueType(),
1756 NewTrunc,
1757 Shift));
1759 break;
1763 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1764 break;
1766 case ISD::AssertZext: {
1767 // Demand all the bits of the input that are demanded in the output.
1768 // The low bits are obvious; the high bits are demanded because we're
1769 // asserting that they're zero here.
1770 if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1771 KnownZero, KnownOne, TLO, Depth+1))
1772 return true;
1773 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1775 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1776 APInt InMask = APInt::getLowBitsSet(BitWidth,
1777 VT.getSizeInBits());
1778 KnownZero |= ~InMask & NewMask;
1779 break;
1781 case ISD::BITCAST:
1782 // If this is an FP->Int bitcast and if the sign bit is the only
1783 // thing demanded, turn this into a FGETSIGN.
1784 if (!Op.getOperand(0).getValueType().isVector() &&
1785 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1786 Op.getOperand(0).getValueType().isFloatingPoint()) {
1787 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1788 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1789 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1790 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1791 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1792 // place. We expect the SHL to be eliminated by other optimizations.
1793 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1794 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1795 if (!OpVTLegal && OpVTSizeInBits > 32)
1796 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1797 unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1798 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1799 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1800 Op.getValueType(),
1801 Sign, ShAmt));
1804 break;
1805 case ISD::ADD:
1806 case ISD::MUL:
1807 case ISD::SUB: {
1808 // Add, Sub, and Mul don't demand any bits in positions beyond that
1809 // of the highest bit demanded of them.
1810 APInt LoMask = APInt::getLowBitsSet(BitWidth,
1811 BitWidth - NewMask.countLeadingZeros());
1812 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1813 KnownOne2, TLO, Depth+1))
1814 return true;
1815 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1816 KnownOne2, TLO, Depth+1))
1817 return true;
1818 // See if the operation should be performed at a smaller bit width.
1819 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1820 return true;
1822 // FALL THROUGH
1823 default:
1824 // Just use ComputeMaskedBits to compute output bits.
1825 TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1826 break;
1829 // If we know the value of all of the demanded bits, return this as a
1830 // constant.
1831 if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1832 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1834 return false;
1837 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1838 /// in Mask are known to be either zero or one and return them in the
1839 /// KnownZero/KnownOne bitsets.
1840 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1841 const APInt &Mask,
1842 APInt &KnownZero,
1843 APInt &KnownOne,
1844 const SelectionDAG &DAG,
1845 unsigned Depth) const {
1846 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1847 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1848 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1849 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1850 "Should use MaskedValueIsZero if you don't know whether Op"
1851 " is a target node!");
1852 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1855 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1856 /// targets that want to expose additional information about sign bits to the
1857 /// DAG Combiner.
1858 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1859 unsigned Depth) const {
1860 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1861 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1862 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1863 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1864 "Should use ComputeNumSignBits if you don't know whether Op"
1865 " is a target node!");
1866 return 1;
1869 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1870 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1871 /// determine which bit is set.
1873 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1874 // A left-shift of a constant one will have exactly one bit set, because
1875 // shifting the bit off the end is undefined.
1876 if (Val.getOpcode() == ISD::SHL)
1877 if (ConstantSDNode *C =
1878 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1879 if (C->getAPIntValue() == 1)
1880 return true;
1882 // Similarly, a right-shift of a constant sign-bit will have exactly
1883 // one bit set.
1884 if (Val.getOpcode() == ISD::SRL)
1885 if (ConstantSDNode *C =
1886 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1887 if (C->getAPIntValue().isSignBit())
1888 return true;
1890 // More could be done here, though the above checks are enough
1891 // to handle some common cases.
1893 // Fall back to ComputeMaskedBits to catch other known cases.
1894 EVT OpVT = Val.getValueType();
1895 unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1896 APInt Mask = APInt::getAllOnesValue(BitWidth);
1897 APInt KnownZero, KnownOne;
1898 DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1899 return (KnownZero.countPopulation() == BitWidth - 1) &&
1900 (KnownOne.countPopulation() == 1);
1903 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1904 /// and cc. If it is unable to simplify it, return a null SDValue.
1905 SDValue
1906 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1907 ISD::CondCode Cond, bool foldBooleans,
1908 DAGCombinerInfo &DCI, DebugLoc dl) const {
1909 SelectionDAG &DAG = DCI.DAG;
1911 // These setcc operations always fold.
1912 switch (Cond) {
1913 default: break;
1914 case ISD::SETFALSE:
1915 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1916 case ISD::SETTRUE:
1917 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1920 // Ensure that the constant occurs on the RHS, and fold constant
1921 // comparisons.
1922 if (isa<ConstantSDNode>(N0.getNode()))
1923 return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1925 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1926 const APInt &C1 = N1C->getAPIntValue();
1928 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1929 // equality comparison, then we're just comparing whether X itself is
1930 // zero.
1931 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1932 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1933 N0.getOperand(1).getOpcode() == ISD::Constant) {
1934 const APInt &ShAmt
1935 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1936 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1937 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1938 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1939 // (srl (ctlz x), 5) == 0 -> X != 0
1940 // (srl (ctlz x), 5) != 1 -> X != 0
1941 Cond = ISD::SETNE;
1942 } else {
1943 // (srl (ctlz x), 5) != 0 -> X == 0
1944 // (srl (ctlz x), 5) == 1 -> X == 0
1945 Cond = ISD::SETEQ;
1947 SDValue Zero = DAG.getConstant(0, N0.getValueType());
1948 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1949 Zero, Cond);
1953 SDValue CTPOP = N0;
1954 // Look through truncs that don't change the value of a ctpop.
1955 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1956 CTPOP = N0.getOperand(0);
1958 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1959 (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1960 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1961 EVT CTVT = CTPOP.getValueType();
1962 SDValue CTOp = CTPOP.getOperand(0);
1964 // (ctpop x) u< 2 -> (x & x-1) == 0
1965 // (ctpop x) u> 1 -> (x & x-1) != 0
1966 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1967 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1968 DAG.getConstant(1, CTVT));
1969 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1970 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1971 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1974 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1977 // (zext x) == C --> x == (trunc C)
1978 if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1979 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1980 unsigned MinBits = N0.getValueSizeInBits();
1981 SDValue PreZExt;
1982 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1983 // ZExt
1984 MinBits = N0->getOperand(0).getValueSizeInBits();
1985 PreZExt = N0->getOperand(0);
1986 } else if (N0->getOpcode() == ISD::AND) {
1987 // DAGCombine turns costly ZExts into ANDs
1988 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1989 if ((C->getAPIntValue()+1).isPowerOf2()) {
1990 MinBits = C->getAPIntValue().countTrailingOnes();
1991 PreZExt = N0->getOperand(0);
1993 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1994 // ZEXTLOAD
1995 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1996 MinBits = LN0->getMemoryVT().getSizeInBits();
1997 PreZExt = N0;
2001 // Make sure we're not loosing bits from the constant.
2002 if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
2003 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2004 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2005 // Will get folded away.
2006 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
2007 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
2008 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2013 // If the LHS is '(and load, const)', the RHS is 0,
2014 // the test is for equality or unsigned, and all 1 bits of the const are
2015 // in the same partial word, see if we can shorten the load.
2016 if (DCI.isBeforeLegalize() &&
2017 N0.getOpcode() == ISD::AND && C1 == 0 &&
2018 N0.getNode()->hasOneUse() &&
2019 isa<LoadSDNode>(N0.getOperand(0)) &&
2020 N0.getOperand(0).getNode()->hasOneUse() &&
2021 isa<ConstantSDNode>(N0.getOperand(1))) {
2022 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2023 APInt bestMask;
2024 unsigned bestWidth = 0, bestOffset = 0;
2025 if (!Lod->isVolatile() && Lod->isUnindexed()) {
2026 unsigned origWidth = N0.getValueType().getSizeInBits();
2027 unsigned maskWidth = origWidth;
2028 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2029 // 8 bits, but have to be careful...
2030 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2031 origWidth = Lod->getMemoryVT().getSizeInBits();
2032 const APInt &Mask =
2033 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2034 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2035 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2036 for (unsigned offset=0; offset<origWidth/width; offset++) {
2037 if ((newMask & Mask) == Mask) {
2038 if (!TD->isLittleEndian())
2039 bestOffset = (origWidth/width - offset - 1) * (width/8);
2040 else
2041 bestOffset = (uint64_t)offset * (width/8);
2042 bestMask = Mask.lshr(offset * (width/8) * 8);
2043 bestWidth = width;
2044 break;
2046 newMask = newMask << width;
2050 if (bestWidth) {
2051 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2052 if (newVT.isRound()) {
2053 EVT PtrType = Lod->getOperand(1).getValueType();
2054 SDValue Ptr = Lod->getBasePtr();
2055 if (bestOffset != 0)
2056 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2057 DAG.getConstant(bestOffset, PtrType));
2058 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2059 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2060 Lod->getPointerInfo().getWithOffset(bestOffset),
2061 false, false, NewAlign);
2062 return DAG.getSetCC(dl, VT,
2063 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2064 DAG.getConstant(bestMask.trunc(bestWidth),
2065 newVT)),
2066 DAG.getConstant(0LL, newVT), Cond);
2071 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2072 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2073 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2075 // If the comparison constant has bits in the upper part, the
2076 // zero-extended value could never match.
2077 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2078 C1.getBitWidth() - InSize))) {
2079 switch (Cond) {
2080 case ISD::SETUGT:
2081 case ISD::SETUGE:
2082 case ISD::SETEQ: return DAG.getConstant(0, VT);
2083 case ISD::SETULT:
2084 case ISD::SETULE:
2085 case ISD::SETNE: return DAG.getConstant(1, VT);
2086 case ISD::SETGT:
2087 case ISD::SETGE:
2088 // True if the sign bit of C1 is set.
2089 return DAG.getConstant(C1.isNegative(), VT);
2090 case ISD::SETLT:
2091 case ISD::SETLE:
2092 // True if the sign bit of C1 isn't set.
2093 return DAG.getConstant(C1.isNonNegative(), VT);
2094 default:
2095 break;
2099 // Otherwise, we can perform the comparison with the low bits.
2100 switch (Cond) {
2101 case ISD::SETEQ:
2102 case ISD::SETNE:
2103 case ISD::SETUGT:
2104 case ISD::SETUGE:
2105 case ISD::SETULT:
2106 case ISD::SETULE: {
2107 EVT newVT = N0.getOperand(0).getValueType();
2108 if (DCI.isBeforeLegalizeOps() ||
2109 (isOperationLegal(ISD::SETCC, newVT) &&
2110 getCondCodeAction(Cond, newVT)==Legal))
2111 return DAG.getSetCC(dl, VT, N0.getOperand(0),
2112 DAG.getConstant(C1.trunc(InSize), newVT),
2113 Cond);
2114 break;
2116 default:
2117 break; // todo, be more careful with signed comparisons
2119 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2120 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2121 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2122 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2123 EVT ExtDstTy = N0.getValueType();
2124 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2126 // If the constant doesn't fit into the number of bits for the source of
2127 // the sign extension, it is impossible for both sides to be equal.
2128 if (C1.getMinSignedBits() > ExtSrcTyBits)
2129 return DAG.getConstant(Cond == ISD::SETNE, VT);
2131 SDValue ZextOp;
2132 EVT Op0Ty = N0.getOperand(0).getValueType();
2133 if (Op0Ty == ExtSrcTy) {
2134 ZextOp = N0.getOperand(0);
2135 } else {
2136 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2137 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2138 DAG.getConstant(Imm, Op0Ty));
2140 if (!DCI.isCalledByLegalizer())
2141 DCI.AddToWorklist(ZextOp.getNode());
2142 // Otherwise, make this a use of a zext.
2143 return DAG.getSetCC(dl, VT, ZextOp,
2144 DAG.getConstant(C1 & APInt::getLowBitsSet(
2145 ExtDstTyBits,
2146 ExtSrcTyBits),
2147 ExtDstTy),
2148 Cond);
2149 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2150 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2151 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
2152 if (N0.getOpcode() == ISD::SETCC &&
2153 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2154 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2155 if (TrueWhenTrue)
2156 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2157 // Invert the condition.
2158 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2159 CC = ISD::getSetCCInverse(CC,
2160 N0.getOperand(0).getValueType().isInteger());
2161 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2164 if ((N0.getOpcode() == ISD::XOR ||
2165 (N0.getOpcode() == ISD::AND &&
2166 N0.getOperand(0).getOpcode() == ISD::XOR &&
2167 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2168 isa<ConstantSDNode>(N0.getOperand(1)) &&
2169 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2170 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
2171 // can only do this if the top bits are known zero.
2172 unsigned BitWidth = N0.getValueSizeInBits();
2173 if (DAG.MaskedValueIsZero(N0,
2174 APInt::getHighBitsSet(BitWidth,
2175 BitWidth-1))) {
2176 // Okay, get the un-inverted input value.
2177 SDValue Val;
2178 if (N0.getOpcode() == ISD::XOR)
2179 Val = N0.getOperand(0);
2180 else {
2181 assert(N0.getOpcode() == ISD::AND &&
2182 N0.getOperand(0).getOpcode() == ISD::XOR);
2183 // ((X^1)&1)^1 -> X & 1
2184 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2185 N0.getOperand(0).getOperand(0),
2186 N0.getOperand(1));
2189 return DAG.getSetCC(dl, VT, Val, N1,
2190 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2192 } else if (N1C->getAPIntValue() == 1 &&
2193 (VT == MVT::i1 ||
2194 getBooleanContents() == ZeroOrOneBooleanContent)) {
2195 SDValue Op0 = N0;
2196 if (Op0.getOpcode() == ISD::TRUNCATE)
2197 Op0 = Op0.getOperand(0);
2199 if ((Op0.getOpcode() == ISD::XOR) &&
2200 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2201 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2202 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2203 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2204 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2205 Cond);
2206 } else if (Op0.getOpcode() == ISD::AND &&
2207 isa<ConstantSDNode>(Op0.getOperand(1)) &&
2208 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2209 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2210 if (Op0.getValueType().bitsGT(VT))
2211 Op0 = DAG.getNode(ISD::AND, dl, VT,
2212 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2213 DAG.getConstant(1, VT));
2214 else if (Op0.getValueType().bitsLT(VT))
2215 Op0 = DAG.getNode(ISD::AND, dl, VT,
2216 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2217 DAG.getConstant(1, VT));
2219 return DAG.getSetCC(dl, VT, Op0,
2220 DAG.getConstant(0, Op0.getValueType()),
2221 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2226 APInt MinVal, MaxVal;
2227 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2228 if (ISD::isSignedIntSetCC(Cond)) {
2229 MinVal = APInt::getSignedMinValue(OperandBitSize);
2230 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2231 } else {
2232 MinVal = APInt::getMinValue(OperandBitSize);
2233 MaxVal = APInt::getMaxValue(OperandBitSize);
2236 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2237 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2238 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
2239 // X >= C0 --> X > (C0-1)
2240 return DAG.getSetCC(dl, VT, N0,
2241 DAG.getConstant(C1-1, N1.getValueType()),
2242 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2245 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2246 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
2247 // X <= C0 --> X < (C0+1)
2248 return DAG.getSetCC(dl, VT, N0,
2249 DAG.getConstant(C1+1, N1.getValueType()),
2250 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2253 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2254 return DAG.getConstant(0, VT); // X < MIN --> false
2255 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2256 return DAG.getConstant(1, VT); // X >= MIN --> true
2257 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2258 return DAG.getConstant(0, VT); // X > MAX --> false
2259 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2260 return DAG.getConstant(1, VT); // X <= MAX --> true
2262 // Canonicalize setgt X, Min --> setne X, Min
2263 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2264 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2265 // Canonicalize setlt X, Max --> setne X, Max
2266 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2267 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2269 // If we have setult X, 1, turn it into seteq X, 0
2270 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2271 return DAG.getSetCC(dl, VT, N0,
2272 DAG.getConstant(MinVal, N0.getValueType()),
2273 ISD::SETEQ);
2274 // If we have setugt X, Max-1, turn it into seteq X, Max
2275 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2276 return DAG.getSetCC(dl, VT, N0,
2277 DAG.getConstant(MaxVal, N0.getValueType()),
2278 ISD::SETEQ);
2280 // If we have "setcc X, C0", check to see if we can shrink the immediate
2281 // by changing cc.
2283 // SETUGT X, SINTMAX -> SETLT X, 0
2284 if (Cond == ISD::SETUGT &&
2285 C1 == APInt::getSignedMaxValue(OperandBitSize))
2286 return DAG.getSetCC(dl, VT, N0,
2287 DAG.getConstant(0, N1.getValueType()),
2288 ISD::SETLT);
2290 // SETULT X, SINTMIN -> SETGT X, -1
2291 if (Cond == ISD::SETULT &&
2292 C1 == APInt::getSignedMinValue(OperandBitSize)) {
2293 SDValue ConstMinusOne =
2294 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2295 N1.getValueType());
2296 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2299 // Fold bit comparisons when we can.
2300 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2301 (VT == N0.getValueType() ||
2302 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2303 N0.getOpcode() == ISD::AND)
2304 if (ConstantSDNode *AndRHS =
2305 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2306 EVT ShiftTy = DCI.isBeforeLegalize() ?
2307 getPointerTy() : getShiftAmountTy(N0.getValueType());
2308 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
2309 // Perform the xform if the AND RHS is a single bit.
2310 if (AndRHS->getAPIntValue().isPowerOf2()) {
2311 return DAG.getNode(ISD::TRUNCATE, dl, VT,
2312 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2313 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2315 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2316 // (X & 8) == 8 --> (X & 8) >> 3
2317 // Perform the xform if C1 is a single bit.
2318 if (C1.isPowerOf2()) {
2319 return DAG.getNode(ISD::TRUNCATE, dl, VT,
2320 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2321 DAG.getConstant(C1.logBase2(), ShiftTy)));
2327 if (isa<ConstantFPSDNode>(N0.getNode())) {
2328 // Constant fold or commute setcc.
2329 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2330 if (O.getNode()) return O;
2331 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2332 // If the RHS of an FP comparison is a constant, simplify it away in
2333 // some cases.
2334 if (CFP->getValueAPF().isNaN()) {
2335 // If an operand is known to be a nan, we can fold it.
2336 switch (ISD::getUnorderedFlavor(Cond)) {
2337 default: llvm_unreachable("Unknown flavor!");
2338 case 0: // Known false.
2339 return DAG.getConstant(0, VT);
2340 case 1: // Known true.
2341 return DAG.getConstant(1, VT);
2342 case 2: // Undefined.
2343 return DAG.getUNDEF(VT);
2347 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
2348 // constant if knowing that the operand is non-nan is enough. We prefer to
2349 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2350 // materialize 0.0.
2351 if (Cond == ISD::SETO || Cond == ISD::SETUO)
2352 return DAG.getSetCC(dl, VT, N0, N0, Cond);
2354 // If the condition is not legal, see if we can find an equivalent one
2355 // which is legal.
2356 if (!isCondCodeLegal(Cond, N0.getValueType())) {
2357 // If the comparison was an awkward floating-point == or != and one of
2358 // the comparison operands is infinity or negative infinity, convert the
2359 // condition to a less-awkward <= or >=.
2360 if (CFP->getValueAPF().isInfinity()) {
2361 if (CFP->getValueAPF().isNegative()) {
2362 if (Cond == ISD::SETOEQ &&
2363 isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2364 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2365 if (Cond == ISD::SETUEQ &&
2366 isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2367 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2368 if (Cond == ISD::SETUNE &&
2369 isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2370 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2371 if (Cond == ISD::SETONE &&
2372 isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2373 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2374 } else {
2375 if (Cond == ISD::SETOEQ &&
2376 isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2377 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2378 if (Cond == ISD::SETUEQ &&
2379 isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2380 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2381 if (Cond == ISD::SETUNE &&
2382 isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2383 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2384 if (Cond == ISD::SETONE &&
2385 isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2386 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2392 if (N0 == N1) {
2393 // We can always fold X == X for integer setcc's.
2394 if (N0.getValueType().isInteger())
2395 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2396 unsigned UOF = ISD::getUnorderedFlavor(Cond);
2397 if (UOF == 2) // FP operators that are undefined on NaNs.
2398 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2399 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2400 return DAG.getConstant(UOF, VT);
2401 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
2402 // if it is not already.
2403 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2404 if (NewCond != Cond)
2405 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2408 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2409 N0.getValueType().isInteger()) {
2410 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2411 N0.getOpcode() == ISD::XOR) {
2412 // Simplify (X+Y) == (X+Z) --> Y == Z
2413 if (N0.getOpcode() == N1.getOpcode()) {
2414 if (N0.getOperand(0) == N1.getOperand(0))
2415 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2416 if (N0.getOperand(1) == N1.getOperand(1))
2417 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2418 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2419 // If X op Y == Y op X, try other combinations.
2420 if (N0.getOperand(0) == N1.getOperand(1))
2421 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2422 Cond);
2423 if (N0.getOperand(1) == N1.getOperand(0))
2424 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2425 Cond);
2429 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2430 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2431 // Turn (X+C1) == C2 --> X == C2-C1
2432 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2433 return DAG.getSetCC(dl, VT, N0.getOperand(0),
2434 DAG.getConstant(RHSC->getAPIntValue()-
2435 LHSR->getAPIntValue(),
2436 N0.getValueType()), Cond);
2439 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2440 if (N0.getOpcode() == ISD::XOR)
2441 // If we know that all of the inverted bits are zero, don't bother
2442 // performing the inversion.
2443 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2444 return
2445 DAG.getSetCC(dl, VT, N0.getOperand(0),
2446 DAG.getConstant(LHSR->getAPIntValue() ^
2447 RHSC->getAPIntValue(),
2448 N0.getValueType()),
2449 Cond);
2452 // Turn (C1-X) == C2 --> X == C1-C2
2453 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2454 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2455 return
2456 DAG.getSetCC(dl, VT, N0.getOperand(1),
2457 DAG.getConstant(SUBC->getAPIntValue() -
2458 RHSC->getAPIntValue(),
2459 N0.getValueType()),
2460 Cond);
2465 // Simplify (X+Z) == X --> Z == 0
2466 if (N0.getOperand(0) == N1)
2467 return DAG.getSetCC(dl, VT, N0.getOperand(1),
2468 DAG.getConstant(0, N0.getValueType()), Cond);
2469 if (N0.getOperand(1) == N1) {
2470 if (DAG.isCommutativeBinOp(N0.getOpcode()))
2471 return DAG.getSetCC(dl, VT, N0.getOperand(0),
2472 DAG.getConstant(0, N0.getValueType()), Cond);
2473 else if (N0.getNode()->hasOneUse()) {
2474 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2475 // (Z-X) == X --> Z == X<<1
2476 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2478 DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2479 if (!DCI.isCalledByLegalizer())
2480 DCI.AddToWorklist(SH.getNode());
2481 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2486 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2487 N1.getOpcode() == ISD::XOR) {
2488 // Simplify X == (X+Z) --> Z == 0
2489 if (N1.getOperand(0) == N0) {
2490 return DAG.getSetCC(dl, VT, N1.getOperand(1),
2491 DAG.getConstant(0, N1.getValueType()), Cond);
2492 } else if (N1.getOperand(1) == N0) {
2493 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2494 return DAG.getSetCC(dl, VT, N1.getOperand(0),
2495 DAG.getConstant(0, N1.getValueType()), Cond);
2496 } else if (N1.getNode()->hasOneUse()) {
2497 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2498 // X == (Z-X) --> X<<1 == Z
2499 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2500 DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2501 if (!DCI.isCalledByLegalizer())
2502 DCI.AddToWorklist(SH.getNode());
2503 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2508 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2509 // Note that where y is variable and is known to have at most
2510 // one bit set (for example, if it is z&1) we cannot do this;
2511 // the expressions are not equivalent when y==0.
2512 if (N0.getOpcode() == ISD::AND)
2513 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2514 if (ValueHasExactlyOneBitSet(N1, DAG)) {
2515 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2516 SDValue Zero = DAG.getConstant(0, N1.getValueType());
2517 return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2520 if (N1.getOpcode() == ISD::AND)
2521 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2522 if (ValueHasExactlyOneBitSet(N0, DAG)) {
2523 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2524 SDValue Zero = DAG.getConstant(0, N0.getValueType());
2525 return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2530 // Fold away ALL boolean setcc's.
2531 SDValue Temp;
2532 if (N0.getValueType() == MVT::i1 && foldBooleans) {
2533 switch (Cond) {
2534 default: llvm_unreachable("Unknown integer setcc!");
2535 case ISD::SETEQ: // X == Y -> ~(X^Y)
2536 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2537 N0 = DAG.getNOT(dl, Temp, MVT::i1);
2538 if (!DCI.isCalledByLegalizer())
2539 DCI.AddToWorklist(Temp.getNode());
2540 break;
2541 case ISD::SETNE: // X != Y --> (X^Y)
2542 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2543 break;
2544 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
2545 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
2546 Temp = DAG.getNOT(dl, N0, MVT::i1);
2547 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2548 if (!DCI.isCalledByLegalizer())
2549 DCI.AddToWorklist(Temp.getNode());
2550 break;
2551 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
2552 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
2553 Temp = DAG.getNOT(dl, N1, MVT::i1);
2554 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2555 if (!DCI.isCalledByLegalizer())
2556 DCI.AddToWorklist(Temp.getNode());
2557 break;
2558 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2559 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2560 Temp = DAG.getNOT(dl, N0, MVT::i1);
2561 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2562 if (!DCI.isCalledByLegalizer())
2563 DCI.AddToWorklist(Temp.getNode());
2564 break;
2565 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2566 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2567 Temp = DAG.getNOT(dl, N1, MVT::i1);
2568 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2569 break;
2571 if (VT != MVT::i1) {
2572 if (!DCI.isCalledByLegalizer())
2573 DCI.AddToWorklist(N0.getNode());
2574 // FIXME: If running after legalize, we probably can't do this.
2575 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2577 return N0;
2580 // Could not fold it.
2581 return SDValue();
2584 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2585 /// node is a GlobalAddress + offset.
2586 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2587 int64_t &Offset) const {
2588 if (isa<GlobalAddressSDNode>(N)) {
2589 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2590 GA = GASD->getGlobal();
2591 Offset += GASD->getOffset();
2592 return true;
2595 if (N->getOpcode() == ISD::ADD) {
2596 SDValue N1 = N->getOperand(0);
2597 SDValue N2 = N->getOperand(1);
2598 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2599 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2600 if (V) {
2601 Offset += V->getSExtValue();
2602 return true;
2604 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2605 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2606 if (V) {
2607 Offset += V->getSExtValue();
2608 return true;
2613 return false;
2617 SDValue TargetLowering::
2618 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2619 // Default implementation: no optimization.
2620 return SDValue();
2623 //===----------------------------------------------------------------------===//
2624 // Inline Assembler Implementation Methods
2625 //===----------------------------------------------------------------------===//
2628 TargetLowering::ConstraintType
2629 TargetLowering::getConstraintType(const std::string &Constraint) const {
2630 if (Constraint.size() == 1) {
2631 switch (Constraint[0]) {
2632 default: break;
2633 case 'r': return C_RegisterClass;
2634 case 'm': // memory
2635 case 'o': // offsetable
2636 case 'V': // not offsetable
2637 return C_Memory;
2638 case 'i': // Simple Integer or Relocatable Constant
2639 case 'n': // Simple Integer
2640 case 'E': // Floating Point Constant
2641 case 'F': // Floating Point Constant
2642 case 's': // Relocatable Constant
2643 case 'p': // Address.
2644 case 'X': // Allow ANY value.
2645 case 'I': // Target registers.
2646 case 'J':
2647 case 'K':
2648 case 'L':
2649 case 'M':
2650 case 'N':
2651 case 'O':
2652 case 'P':
2653 case '<':
2654 case '>':
2655 return C_Other;
2659 if (Constraint.size() > 1 && Constraint[0] == '{' &&
2660 Constraint[Constraint.size()-1] == '}')
2661 return C_Register;
2662 return C_Unknown;
2665 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2666 /// with another that has more specific requirements based on the type of the
2667 /// corresponding operand.
2668 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2669 if (ConstraintVT.isInteger())
2670 return "r";
2671 if (ConstraintVT.isFloatingPoint())
2672 return "f"; // works for many targets
2673 return 0;
2676 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2677 /// vector. If it is invalid, don't add anything to Ops.
2678 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2679 std::string &Constraint,
2680 std::vector<SDValue> &Ops,
2681 SelectionDAG &DAG) const {
2683 if (Constraint.length() > 1) return;
2685 char ConstraintLetter = Constraint[0];
2686 switch (ConstraintLetter) {
2687 default: break;
2688 case 'X': // Allows any operand; labels (basic block) use this.
2689 if (Op.getOpcode() == ISD::BasicBlock) {
2690 Ops.push_back(Op);
2691 return;
2693 // fall through
2694 case 'i': // Simple Integer or Relocatable Constant
2695 case 'n': // Simple Integer
2696 case 's': { // Relocatable Constant
2697 // These operands are interested in values of the form (GV+C), where C may
2698 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2699 // is possible and fine if either GV or C are missing.
2700 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2701 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2703 // If we have "(add GV, C)", pull out GV/C
2704 if (Op.getOpcode() == ISD::ADD) {
2705 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2706 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2707 if (C == 0 || GA == 0) {
2708 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2709 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2711 if (C == 0 || GA == 0)
2712 C = 0, GA = 0;
2715 // If we find a valid operand, map to the TargetXXX version so that the
2716 // value itself doesn't get selected.
2717 if (GA) { // Either &GV or &GV+C
2718 if (ConstraintLetter != 'n') {
2719 int64_t Offs = GA->getOffset();
2720 if (C) Offs += C->getZExtValue();
2721 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2722 C ? C->getDebugLoc() : DebugLoc(),
2723 Op.getValueType(), Offs));
2724 return;
2727 if (C) { // just C, no GV.
2728 // Simple constants are not allowed for 's'.
2729 if (ConstraintLetter != 's') {
2730 // gcc prints these as sign extended. Sign extend value to 64 bits
2731 // now; without this it would get ZExt'd later in
2732 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2733 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2734 MVT::i64));
2735 return;
2738 break;
2743 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2744 getRegForInlineAsmConstraint(const std::string &Constraint,
2745 EVT VT) const {
2746 if (Constraint[0] != '{')
2747 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2748 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2750 // Remove the braces from around the name.
2751 StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2753 // Figure out which register class contains this reg.
2754 const TargetRegisterInfo *RI = TM.getRegisterInfo();
2755 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2756 E = RI->regclass_end(); RCI != E; ++RCI) {
2757 const TargetRegisterClass *RC = *RCI;
2759 // If none of the value types for this register class are valid, we
2760 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2761 bool isLegal = false;
2762 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2763 I != E; ++I) {
2764 if (isTypeLegal(*I)) {
2765 isLegal = true;
2766 break;
2770 if (!isLegal) continue;
2772 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2773 I != E; ++I) {
2774 if (RegName.equals_lower(RI->getName(*I)))
2775 return std::make_pair(*I, RC);
2779 return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2782 //===----------------------------------------------------------------------===//
2783 // Constraint Selection.
2785 /// isMatchingInputConstraint - Return true of this is an input operand that is
2786 /// a matching constraint like "4".
2787 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2788 assert(!ConstraintCode.empty() && "No known constraint!");
2789 return isdigit(ConstraintCode[0]);
2792 /// getMatchedOperand - If this is an input matching constraint, this method
2793 /// returns the output operand it matches.
2794 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2795 assert(!ConstraintCode.empty() && "No known constraint!");
2796 return atoi(ConstraintCode.c_str());
2800 /// ParseConstraints - Split up the constraint string from the inline
2801 /// assembly value into the specific constraints and their prefixes,
2802 /// and also tie in the associated operand values.
2803 /// If this returns an empty vector, and if the constraint string itself
2804 /// isn't empty, there was an error parsing.
2805 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2806 ImmutableCallSite CS) const {
2807 /// ConstraintOperands - Information about all of the constraints.
2808 AsmOperandInfoVector ConstraintOperands;
2809 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2810 unsigned maCount = 0; // Largest number of multiple alternative constraints.
2812 // Do a prepass over the constraints, canonicalizing them, and building up the
2813 // ConstraintOperands list.
2814 InlineAsm::ConstraintInfoVector
2815 ConstraintInfos = IA->ParseConstraints();
2817 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
2818 unsigned ResNo = 0; // ResNo - The result number of the next output.
2820 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2821 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2822 AsmOperandInfo &OpInfo = ConstraintOperands.back();
2824 // Update multiple alternative constraint count.
2825 if (OpInfo.multipleAlternatives.size() > maCount)
2826 maCount = OpInfo.multipleAlternatives.size();
2828 OpInfo.ConstraintVT = MVT::Other;
2830 // Compute the value type for each operand.
2831 switch (OpInfo.Type) {
2832 case InlineAsm::isOutput:
2833 // Indirect outputs just consume an argument.
2834 if (OpInfo.isIndirect) {
2835 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2836 break;
2839 // The return value of the call is this value. As such, there is no
2840 // corresponding argument.
2841 assert(!CS.getType()->isVoidTy() &&
2842 "Bad inline asm!");
2843 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
2844 OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2845 } else {
2846 assert(ResNo == 0 && "Asm only has one result!");
2847 OpInfo.ConstraintVT = getValueType(CS.getType());
2849 ++ResNo;
2850 break;
2851 case InlineAsm::isInput:
2852 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2853 break;
2854 case InlineAsm::isClobber:
2855 // Nothing to do.
2856 break;
2859 if (OpInfo.CallOperandVal) {
2860 const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2861 if (OpInfo.isIndirect) {
2862 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2863 if (!PtrTy)
2864 report_fatal_error("Indirect operand for inline asm not a pointer!");
2865 OpTy = PtrTy->getElementType();
2868 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2869 if (const StructType *STy = dyn_cast<StructType>(OpTy))
2870 if (STy->getNumElements() == 1)
2871 OpTy = STy->getElementType(0);
2873 // If OpTy is not a single value, it may be a struct/union that we
2874 // can tile with integers.
2875 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2876 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2877 switch (BitSize) {
2878 default: break;
2879 case 1:
2880 case 8:
2881 case 16:
2882 case 32:
2883 case 64:
2884 case 128:
2885 OpInfo.ConstraintVT =
2886 EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2887 break;
2889 } else if (dyn_cast<PointerType>(OpTy)) {
2890 OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2891 } else {
2892 OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2897 // If we have multiple alternative constraints, select the best alternative.
2898 if (ConstraintInfos.size()) {
2899 if (maCount) {
2900 unsigned bestMAIndex = 0;
2901 int bestWeight = -1;
2902 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
2903 int weight = -1;
2904 unsigned maIndex;
2905 // Compute the sums of the weights for each alternative, keeping track
2906 // of the best (highest weight) one so far.
2907 for (maIndex = 0; maIndex < maCount; ++maIndex) {
2908 int weightSum = 0;
2909 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2910 cIndex != eIndex; ++cIndex) {
2911 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2912 if (OpInfo.Type == InlineAsm::isClobber)
2913 continue;
2915 // If this is an output operand with a matching input operand,
2916 // look up the matching input. If their types mismatch, e.g. one
2917 // is an integer, the other is floating point, or their sizes are
2918 // different, flag it as an maCantMatch.
2919 if (OpInfo.hasMatchingInput()) {
2920 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2921 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2922 if ((OpInfo.ConstraintVT.isInteger() !=
2923 Input.ConstraintVT.isInteger()) ||
2924 (OpInfo.ConstraintVT.getSizeInBits() !=
2925 Input.ConstraintVT.getSizeInBits())) {
2926 weightSum = -1; // Can't match.
2927 break;
2931 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2932 if (weight == -1) {
2933 weightSum = -1;
2934 break;
2936 weightSum += weight;
2938 // Update best.
2939 if (weightSum > bestWeight) {
2940 bestWeight = weightSum;
2941 bestMAIndex = maIndex;
2945 // Now select chosen alternative in each constraint.
2946 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2947 cIndex != eIndex; ++cIndex) {
2948 AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2949 if (cInfo.Type == InlineAsm::isClobber)
2950 continue;
2951 cInfo.selectAlternative(bestMAIndex);
2956 // Check and hook up tied operands, choose constraint code to use.
2957 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2958 cIndex != eIndex; ++cIndex) {
2959 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2961 // If this is an output operand with a matching input operand, look up the
2962 // matching input. If their types mismatch, e.g. one is an integer, the
2963 // other is floating point, or their sizes are different, flag it as an
2964 // error.
2965 if (OpInfo.hasMatchingInput()) {
2966 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2968 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2969 if ((OpInfo.ConstraintVT.isInteger() !=
2970 Input.ConstraintVT.isInteger()) ||
2971 (OpInfo.ConstraintVT.getSizeInBits() !=
2972 Input.ConstraintVT.getSizeInBits())) {
2973 report_fatal_error("Unsupported asm: input constraint"
2974 " with a matching output constraint of"
2975 " incompatible type!");
2982 return ConstraintOperands;
2986 /// getConstraintGenerality - Return an integer indicating how general CT
2987 /// is.
2988 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2989 switch (CT) {
2990 default: llvm_unreachable("Unknown constraint type!");
2991 case TargetLowering::C_Other:
2992 case TargetLowering::C_Unknown:
2993 return 0;
2994 case TargetLowering::C_Register:
2995 return 1;
2996 case TargetLowering::C_RegisterClass:
2997 return 2;
2998 case TargetLowering::C_Memory:
2999 return 3;
3003 /// Examine constraint type and operand type and determine a weight value.
3004 /// This object must already have been set up with the operand type
3005 /// and the current alternative constraint selected.
3006 TargetLowering::ConstraintWeight
3007 TargetLowering::getMultipleConstraintMatchWeight(
3008 AsmOperandInfo &info, int maIndex) const {
3009 InlineAsm::ConstraintCodeVector *rCodes;
3010 if (maIndex >= (int)info.multipleAlternatives.size())
3011 rCodes = &info.Codes;
3012 else
3013 rCodes = &info.multipleAlternatives[maIndex].Codes;
3014 ConstraintWeight BestWeight = CW_Invalid;
3016 // Loop over the options, keeping track of the most general one.
3017 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3018 ConstraintWeight weight =
3019 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3020 if (weight > BestWeight)
3021 BestWeight = weight;
3024 return BestWeight;
3027 /// Examine constraint type and operand type and determine a weight value.
3028 /// This object must already have been set up with the operand type
3029 /// and the current alternative constraint selected.
3030 TargetLowering::ConstraintWeight
3031 TargetLowering::getSingleConstraintMatchWeight(
3032 AsmOperandInfo &info, const char *constraint) const {
3033 ConstraintWeight weight = CW_Invalid;
3034 Value *CallOperandVal = info.CallOperandVal;
3035 // If we don't have a value, we can't do a match,
3036 // but allow it at the lowest weight.
3037 if (CallOperandVal == NULL)
3038 return CW_Default;
3039 // Look at the constraint type.
3040 switch (*constraint) {
3041 case 'i': // immediate integer.
3042 case 'n': // immediate integer with a known value.
3043 if (isa<ConstantInt>(CallOperandVal))
3044 weight = CW_Constant;
3045 break;
3046 case 's': // non-explicit intregal immediate.
3047 if (isa<GlobalValue>(CallOperandVal))
3048 weight = CW_Constant;
3049 break;
3050 case 'E': // immediate float if host format.
3051 case 'F': // immediate float.
3052 if (isa<ConstantFP>(CallOperandVal))
3053 weight = CW_Constant;
3054 break;
3055 case '<': // memory operand with autodecrement.
3056 case '>': // memory operand with autoincrement.
3057 case 'm': // memory operand.
3058 case 'o': // offsettable memory operand
3059 case 'V': // non-offsettable memory operand
3060 weight = CW_Memory;
3061 break;
3062 case 'r': // general register.
3063 case 'g': // general register, memory operand or immediate integer.
3064 // note: Clang converts "g" to "imr".
3065 if (CallOperandVal->getType()->isIntegerTy())
3066 weight = CW_Register;
3067 break;
3068 case 'X': // any operand.
3069 default:
3070 weight = CW_Default;
3071 break;
3073 return weight;
3076 /// ChooseConstraint - If there are multiple different constraints that we
3077 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3078 /// This is somewhat tricky: constraints fall into four classes:
3079 /// Other -> immediates and magic values
3080 /// Register -> one specific register
3081 /// RegisterClass -> a group of regs
3082 /// Memory -> memory
3083 /// Ideally, we would pick the most specific constraint possible: if we have
3084 /// something that fits into a register, we would pick it. The problem here
3085 /// is that if we have something that could either be in a register or in
3086 /// memory that use of the register could cause selection of *other*
3087 /// operands to fail: they might only succeed if we pick memory. Because of
3088 /// this the heuristic we use is:
3090 /// 1) If there is an 'other' constraint, and if the operand is valid for
3091 /// that constraint, use it. This makes us take advantage of 'i'
3092 /// constraints when available.
3093 /// 2) Otherwise, pick the most general constraint present. This prefers
3094 /// 'm' over 'r', for example.
3096 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3097 const TargetLowering &TLI,
3098 SDValue Op, SelectionDAG *DAG) {
3099 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3100 unsigned BestIdx = 0;
3101 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3102 int BestGenerality = -1;
3104 // Loop over the options, keeping track of the most general one.
3105 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3106 TargetLowering::ConstraintType CType =
3107 TLI.getConstraintType(OpInfo.Codes[i]);
3109 // If this is an 'other' constraint, see if the operand is valid for it.
3110 // For example, on X86 we might have an 'rI' constraint. If the operand
3111 // is an integer in the range [0..31] we want to use I (saving a load
3112 // of a register), otherwise we must use 'r'.
3113 if (CType == TargetLowering::C_Other && Op.getNode()) {
3114 assert(OpInfo.Codes[i].size() == 1 &&
3115 "Unhandled multi-letter 'other' constraint");
3116 std::vector<SDValue> ResultOps;
3117 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3118 ResultOps, *DAG);
3119 if (!ResultOps.empty()) {
3120 BestType = CType;
3121 BestIdx = i;
3122 break;
3126 // Things with matching constraints can only be registers, per gcc
3127 // documentation. This mainly affects "g" constraints.
3128 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3129 continue;
3131 // This constraint letter is more general than the previous one, use it.
3132 int Generality = getConstraintGenerality(CType);
3133 if (Generality > BestGenerality) {
3134 BestType = CType;
3135 BestIdx = i;
3136 BestGenerality = Generality;
3140 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3141 OpInfo.ConstraintType = BestType;
3144 /// ComputeConstraintToUse - Determines the constraint code and constraint
3145 /// type to use for the specific AsmOperandInfo, setting
3146 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3147 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3148 SDValue Op,
3149 SelectionDAG *DAG) const {
3150 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3152 // Single-letter constraints ('r') are very common.
3153 if (OpInfo.Codes.size() == 1) {
3154 OpInfo.ConstraintCode = OpInfo.Codes[0];
3155 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3156 } else {
3157 ChooseConstraint(OpInfo, *this, Op, DAG);
3160 // 'X' matches anything.
3161 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3162 // Labels and constants are handled elsewhere ('X' is the only thing
3163 // that matches labels). For Functions, the type here is the type of
3164 // the result, which is not what we want to look at; leave them alone.
3165 Value *v = OpInfo.CallOperandVal;
3166 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3167 OpInfo.CallOperandVal = v;
3168 return;
3171 // Otherwise, try to resolve it to something we know about by looking at
3172 // the actual operand type.
3173 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3174 OpInfo.ConstraintCode = Repl;
3175 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3180 //===----------------------------------------------------------------------===//
3181 // Loop Strength Reduction hooks
3182 //===----------------------------------------------------------------------===//
3184 /// isLegalAddressingMode - Return true if the addressing mode represented
3185 /// by AM is legal for this target, for a load/store of the specified type.
3186 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3187 const Type *Ty) const {
3188 // The default implementation of this implements a conservative RISCy, r+r and
3189 // r+i addr mode.
3191 // Allows a sign-extended 16-bit immediate field.
3192 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3193 return false;
3195 // No global is ever allowed as a base.
3196 if (AM.BaseGV)
3197 return false;
3199 // Only support r+r,
3200 switch (AM.Scale) {
3201 case 0: // "r+i" or just "i", depending on HasBaseReg.
3202 break;
3203 case 1:
3204 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3205 return false;
3206 // Otherwise we have r+r or r+i.
3207 break;
3208 case 2:
3209 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3210 return false;
3211 // Allow 2*r as r+r.
3212 break;
3215 return true;
3218 /// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
3219 /// with the multiplicative inverse of the constant.
3220 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
3221 SelectionDAG &DAG) const {
3222 ConstantSDNode *C = cast<ConstantSDNode>(Op2);
3223 APInt d = C->getAPIntValue();
3224 assert(d != 0 && "Division by zero!");
3226 // Shift the value upfront if it is even, so the LSB is one.
3227 unsigned ShAmt = d.countTrailingZeros();
3228 if (ShAmt) {
3229 // TODO: For UDIV use SRL instead of SRA.
3230 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
3231 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
3232 d = d.ashr(ShAmt);
3235 // Calculate the multiplicative inverse, using Newton's method.
3236 APInt t, xn = d;
3237 while ((t = d*xn) != 1)
3238 xn *= APInt(d.getBitWidth(), 2) - t;
3240 Op2 = DAG.getConstant(xn, Op1.getValueType());
3241 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
3244 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3245 /// return a DAG expression to select that will generate the same value by
3246 /// multiplying by a magic number. See:
3247 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3248 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3249 std::vector<SDNode*>* Created) const {
3250 EVT VT = N->getValueType(0);
3251 DebugLoc dl= N->getDebugLoc();
3253 // Check to see if we can do this.
3254 // FIXME: We should be more aggressive here.
3255 if (!isTypeLegal(VT))
3256 return SDValue();
3258 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3259 APInt::ms magics = d.magic();
3261 // Multiply the numerator (operand 0) by the magic value
3262 // FIXME: We should support doing a MUL in a wider type
3263 SDValue Q;
3264 if (isOperationLegalOrCustom(ISD::MULHS, VT))
3265 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3266 DAG.getConstant(magics.m, VT));
3267 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3268 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3269 N->getOperand(0),
3270 DAG.getConstant(magics.m, VT)).getNode(), 1);
3271 else
3272 return SDValue(); // No mulhs or equvialent
3273 // If d > 0 and m < 0, add the numerator
3274 if (d.isStrictlyPositive() && magics.m.isNegative()) {
3275 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3276 if (Created)
3277 Created->push_back(Q.getNode());
3279 // If d < 0 and m > 0, subtract the numerator.
3280 if (d.isNegative() && magics.m.isStrictlyPositive()) {
3281 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3282 if (Created)
3283 Created->push_back(Q.getNode());
3285 // Shift right algebraic if shift value is nonzero
3286 if (magics.s > 0) {
3287 Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3288 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3289 if (Created)
3290 Created->push_back(Q.getNode());
3292 // Extract the sign bit and add it to the quotient
3293 SDValue T =
3294 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3295 getShiftAmountTy(Q.getValueType())));
3296 if (Created)
3297 Created->push_back(T.getNode());
3298 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3301 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3302 /// return a DAG expression to select that will generate the same value by
3303 /// multiplying by a magic number. See:
3304 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3305 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3306 std::vector<SDNode*>* Created) const {
3307 EVT VT = N->getValueType(0);
3308 DebugLoc dl = N->getDebugLoc();
3310 // Check to see if we can do this.
3311 // FIXME: We should be more aggressive here.
3312 if (!isTypeLegal(VT))
3313 return SDValue();
3315 // FIXME: We should use a narrower constant when the upper
3316 // bits are known to be zero.
3317 const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3318 APInt::mu magics = N1C.magicu();
3320 SDValue Q = N->getOperand(0);
3322 // If the divisor is even, we can avoid using the expensive fixup by shifting
3323 // the divided value upfront.
3324 if (magics.a != 0 && !N1C[0]) {
3325 unsigned Shift = N1C.countTrailingZeros();
3326 Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3327 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3328 if (Created)
3329 Created->push_back(Q.getNode());
3331 // Get magic number for the shifted divisor.
3332 magics = N1C.lshr(Shift).magicu(Shift);
3333 assert(magics.a == 0 && "Should use cheap fixup now");
3336 // Multiply the numerator (operand 0) by the magic value
3337 // FIXME: We should support doing a MUL in a wider type
3338 if (isOperationLegalOrCustom(ISD::MULHU, VT))
3339 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3340 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3341 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3342 DAG.getConstant(magics.m, VT)).getNode(), 1);
3343 else
3344 return SDValue(); // No mulhu or equvialent
3345 if (Created)
3346 Created->push_back(Q.getNode());
3348 if (magics.a == 0) {
3349 assert(magics.s < N1C.getBitWidth() &&
3350 "We shouldn't generate an undefined shift!");
3351 return DAG.getNode(ISD::SRL, dl, VT, Q,
3352 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3353 } else {
3354 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3355 if (Created)
3356 Created->push_back(NPQ.getNode());
3357 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3358 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3359 if (Created)
3360 Created->push_back(NPQ.getNode());
3361 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3362 if (Created)
3363 Created->push_back(NPQ.getNode());
3364 return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3365 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));