1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the actual instruction interpreter.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "interpreter"
15 #include "Interpreter.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/CodeGen/IntrinsicLowering.h"
20 #include "llvm/Support/GetElementPtrTypeIterator.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
31 STATISTIC(NumDynamicInsts
, "Number of dynamic instructions executed");
33 static cl::opt
<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden
,
34 cl::desc("make the interpreter print every volatile load and store"));
36 //===----------------------------------------------------------------------===//
37 // Various Helper Functions
38 //===----------------------------------------------------------------------===//
40 static void SetValue(Value
*V
, GenericValue Val
, ExecutionContext
&SF
) {
44 //===----------------------------------------------------------------------===//
45 // Binary Instruction Implementations
46 //===----------------------------------------------------------------------===//
48 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
49 case Type::TY##TyID: \
50 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
53 static void executeFAddInst(GenericValue
&Dest
, GenericValue Src1
,
54 GenericValue Src2
, const Type
*Ty
) {
55 switch (Ty
->getTypeID()) {
56 IMPLEMENT_BINARY_OPERATOR(+, Float
);
57 IMPLEMENT_BINARY_OPERATOR(+, Double
);
59 dbgs() << "Unhandled type for FAdd instruction: " << *Ty
<< "\n";
64 static void executeFSubInst(GenericValue
&Dest
, GenericValue Src1
,
65 GenericValue Src2
, const Type
*Ty
) {
66 switch (Ty
->getTypeID()) {
67 IMPLEMENT_BINARY_OPERATOR(-, Float
);
68 IMPLEMENT_BINARY_OPERATOR(-, Double
);
70 dbgs() << "Unhandled type for FSub instruction: " << *Ty
<< "\n";
75 static void executeFMulInst(GenericValue
&Dest
, GenericValue Src1
,
76 GenericValue Src2
, const Type
*Ty
) {
77 switch (Ty
->getTypeID()) {
78 IMPLEMENT_BINARY_OPERATOR(*, Float
);
79 IMPLEMENT_BINARY_OPERATOR(*, Double
);
81 dbgs() << "Unhandled type for FMul instruction: " << *Ty
<< "\n";
86 static void executeFDivInst(GenericValue
&Dest
, GenericValue Src1
,
87 GenericValue Src2
, const Type
*Ty
) {
88 switch (Ty
->getTypeID()) {
89 IMPLEMENT_BINARY_OPERATOR(/, Float
);
90 IMPLEMENT_BINARY_OPERATOR(/, Double
);
92 dbgs() << "Unhandled type for FDiv instruction: " << *Ty
<< "\n";
97 static void executeFRemInst(GenericValue
&Dest
, GenericValue Src1
,
98 GenericValue Src2
, const Type
*Ty
) {
99 switch (Ty
->getTypeID()) {
100 case Type::FloatTyID
:
101 Dest
.FloatVal
= fmod(Src1
.FloatVal
, Src2
.FloatVal
);
103 case Type::DoubleTyID
:
104 Dest
.DoubleVal
= fmod(Src1
.DoubleVal
, Src2
.DoubleVal
);
107 dbgs() << "Unhandled type for Rem instruction: " << *Ty
<< "\n";
112 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
113 case Type::IntegerTyID: \
114 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
117 // Handle pointers specially because they must be compared with only as much
118 // width as the host has. We _do not_ want to be comparing 64 bit values when
119 // running on a 32-bit target, otherwise the upper 32 bits might mess up
120 // comparisons if they contain garbage.
121 #define IMPLEMENT_POINTER_ICMP(OP) \
122 case Type::PointerTyID: \
123 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
124 (void*)(intptr_t)Src2.PointerVal); \
127 static GenericValue
executeICMP_EQ(GenericValue Src1
, GenericValue Src2
,
130 switch (Ty
->getTypeID()) {
131 IMPLEMENT_INTEGER_ICMP(eq
,Ty
);
132 IMPLEMENT_POINTER_ICMP(==);
134 dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty
<< "\n";
140 static GenericValue
executeICMP_NE(GenericValue Src1
, GenericValue Src2
,
143 switch (Ty
->getTypeID()) {
144 IMPLEMENT_INTEGER_ICMP(ne
,Ty
);
145 IMPLEMENT_POINTER_ICMP(!=);
147 dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty
<< "\n";
153 static GenericValue
executeICMP_ULT(GenericValue Src1
, GenericValue Src2
,
156 switch (Ty
->getTypeID()) {
157 IMPLEMENT_INTEGER_ICMP(ult
,Ty
);
158 IMPLEMENT_POINTER_ICMP(<);
160 dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty
<< "\n";
166 static GenericValue
executeICMP_SLT(GenericValue Src1
, GenericValue Src2
,
169 switch (Ty
->getTypeID()) {
170 IMPLEMENT_INTEGER_ICMP(slt
,Ty
);
171 IMPLEMENT_POINTER_ICMP(<);
173 dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty
<< "\n";
179 static GenericValue
executeICMP_UGT(GenericValue Src1
, GenericValue Src2
,
182 switch (Ty
->getTypeID()) {
183 IMPLEMENT_INTEGER_ICMP(ugt
,Ty
);
184 IMPLEMENT_POINTER_ICMP(>);
186 dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty
<< "\n";
192 static GenericValue
executeICMP_SGT(GenericValue Src1
, GenericValue Src2
,
195 switch (Ty
->getTypeID()) {
196 IMPLEMENT_INTEGER_ICMP(sgt
,Ty
);
197 IMPLEMENT_POINTER_ICMP(>);
199 dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty
<< "\n";
205 static GenericValue
executeICMP_ULE(GenericValue Src1
, GenericValue Src2
,
208 switch (Ty
->getTypeID()) {
209 IMPLEMENT_INTEGER_ICMP(ule
,Ty
);
210 IMPLEMENT_POINTER_ICMP(<=);
212 dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty
<< "\n";
218 static GenericValue
executeICMP_SLE(GenericValue Src1
, GenericValue Src2
,
221 switch (Ty
->getTypeID()) {
222 IMPLEMENT_INTEGER_ICMP(sle
,Ty
);
223 IMPLEMENT_POINTER_ICMP(<=);
225 dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty
<< "\n";
231 static GenericValue
executeICMP_UGE(GenericValue Src1
, GenericValue Src2
,
234 switch (Ty
->getTypeID()) {
235 IMPLEMENT_INTEGER_ICMP(uge
,Ty
);
236 IMPLEMENT_POINTER_ICMP(>=);
238 dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty
<< "\n";
244 static GenericValue
executeICMP_SGE(GenericValue Src1
, GenericValue Src2
,
247 switch (Ty
->getTypeID()) {
248 IMPLEMENT_INTEGER_ICMP(sge
,Ty
);
249 IMPLEMENT_POINTER_ICMP(>=);
251 dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty
<< "\n";
257 void Interpreter::visitICmpInst(ICmpInst
&I
) {
258 ExecutionContext
&SF
= ECStack
.back();
259 const Type
*Ty
= I
.getOperand(0)->getType();
260 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
261 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
262 GenericValue R
; // Result
264 switch (I
.getPredicate()) {
265 case ICmpInst::ICMP_EQ
: R
= executeICMP_EQ(Src1
, Src2
, Ty
); break;
266 case ICmpInst::ICMP_NE
: R
= executeICMP_NE(Src1
, Src2
, Ty
); break;
267 case ICmpInst::ICMP_ULT
: R
= executeICMP_ULT(Src1
, Src2
, Ty
); break;
268 case ICmpInst::ICMP_SLT
: R
= executeICMP_SLT(Src1
, Src2
, Ty
); break;
269 case ICmpInst::ICMP_UGT
: R
= executeICMP_UGT(Src1
, Src2
, Ty
); break;
270 case ICmpInst::ICMP_SGT
: R
= executeICMP_SGT(Src1
, Src2
, Ty
); break;
271 case ICmpInst::ICMP_ULE
: R
= executeICMP_ULE(Src1
, Src2
, Ty
); break;
272 case ICmpInst::ICMP_SLE
: R
= executeICMP_SLE(Src1
, Src2
, Ty
); break;
273 case ICmpInst::ICMP_UGE
: R
= executeICMP_UGE(Src1
, Src2
, Ty
); break;
274 case ICmpInst::ICMP_SGE
: R
= executeICMP_SGE(Src1
, Src2
, Ty
); break;
276 dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I
;
283 #define IMPLEMENT_FCMP(OP, TY) \
284 case Type::TY##TyID: \
285 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
288 static GenericValue
executeFCMP_OEQ(GenericValue Src1
, GenericValue Src2
,
291 switch (Ty
->getTypeID()) {
292 IMPLEMENT_FCMP(==, Float
);
293 IMPLEMENT_FCMP(==, Double
);
295 dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty
<< "\n";
301 static GenericValue
executeFCMP_ONE(GenericValue Src1
, GenericValue Src2
,
304 switch (Ty
->getTypeID()) {
305 IMPLEMENT_FCMP(!=, Float
);
306 IMPLEMENT_FCMP(!=, Double
);
309 dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty
<< "\n";
315 static GenericValue
executeFCMP_OLE(GenericValue Src1
, GenericValue Src2
,
318 switch (Ty
->getTypeID()) {
319 IMPLEMENT_FCMP(<=, Float
);
320 IMPLEMENT_FCMP(<=, Double
);
322 dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty
<< "\n";
328 static GenericValue
executeFCMP_OGE(GenericValue Src1
, GenericValue Src2
,
331 switch (Ty
->getTypeID()) {
332 IMPLEMENT_FCMP(>=, Float
);
333 IMPLEMENT_FCMP(>=, Double
);
335 dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty
<< "\n";
341 static GenericValue
executeFCMP_OLT(GenericValue Src1
, GenericValue Src2
,
344 switch (Ty
->getTypeID()) {
345 IMPLEMENT_FCMP(<, Float
);
346 IMPLEMENT_FCMP(<, Double
);
348 dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty
<< "\n";
354 static GenericValue
executeFCMP_OGT(GenericValue Src1
, GenericValue Src2
,
357 switch (Ty
->getTypeID()) {
358 IMPLEMENT_FCMP(>, Float
);
359 IMPLEMENT_FCMP(>, Double
);
361 dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty
<< "\n";
367 #define IMPLEMENT_UNORDERED(TY, X,Y) \
368 if (TY->isFloatTy()) { \
369 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
370 Dest.IntVal = APInt(1,true); \
373 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
374 Dest.IntVal = APInt(1,true); \
379 static GenericValue
executeFCMP_UEQ(GenericValue Src1
, GenericValue Src2
,
382 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
383 return executeFCMP_OEQ(Src1
, Src2
, Ty
);
386 static GenericValue
executeFCMP_UNE(GenericValue Src1
, GenericValue Src2
,
389 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
390 return executeFCMP_ONE(Src1
, Src2
, Ty
);
393 static GenericValue
executeFCMP_ULE(GenericValue Src1
, GenericValue Src2
,
396 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
397 return executeFCMP_OLE(Src1
, Src2
, Ty
);
400 static GenericValue
executeFCMP_UGE(GenericValue Src1
, GenericValue Src2
,
403 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
404 return executeFCMP_OGE(Src1
, Src2
, Ty
);
407 static GenericValue
executeFCMP_ULT(GenericValue Src1
, GenericValue Src2
,
410 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
411 return executeFCMP_OLT(Src1
, Src2
, Ty
);
414 static GenericValue
executeFCMP_UGT(GenericValue Src1
, GenericValue Src2
,
417 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
418 return executeFCMP_OGT(Src1
, Src2
, Ty
);
421 static GenericValue
executeFCMP_ORD(GenericValue Src1
, GenericValue Src2
,
425 Dest
.IntVal
= APInt(1,(Src1
.FloatVal
== Src1
.FloatVal
&&
426 Src2
.FloatVal
== Src2
.FloatVal
));
428 Dest
.IntVal
= APInt(1,(Src1
.DoubleVal
== Src1
.DoubleVal
&&
429 Src2
.DoubleVal
== Src2
.DoubleVal
));
433 static GenericValue
executeFCMP_UNO(GenericValue Src1
, GenericValue Src2
,
437 Dest
.IntVal
= APInt(1,(Src1
.FloatVal
!= Src1
.FloatVal
||
438 Src2
.FloatVal
!= Src2
.FloatVal
));
440 Dest
.IntVal
= APInt(1,(Src1
.DoubleVal
!= Src1
.DoubleVal
||
441 Src2
.DoubleVal
!= Src2
.DoubleVal
));
445 void Interpreter::visitFCmpInst(FCmpInst
&I
) {
446 ExecutionContext
&SF
= ECStack
.back();
447 const Type
*Ty
= I
.getOperand(0)->getType();
448 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
449 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
450 GenericValue R
; // Result
452 switch (I
.getPredicate()) {
453 case FCmpInst::FCMP_FALSE
: R
.IntVal
= APInt(1,false); break;
454 case FCmpInst::FCMP_TRUE
: R
.IntVal
= APInt(1,true); break;
455 case FCmpInst::FCMP_ORD
: R
= executeFCMP_ORD(Src1
, Src2
, Ty
); break;
456 case FCmpInst::FCMP_UNO
: R
= executeFCMP_UNO(Src1
, Src2
, Ty
); break;
457 case FCmpInst::FCMP_UEQ
: R
= executeFCMP_UEQ(Src1
, Src2
, Ty
); break;
458 case FCmpInst::FCMP_OEQ
: R
= executeFCMP_OEQ(Src1
, Src2
, Ty
); break;
459 case FCmpInst::FCMP_UNE
: R
= executeFCMP_UNE(Src1
, Src2
, Ty
); break;
460 case FCmpInst::FCMP_ONE
: R
= executeFCMP_ONE(Src1
, Src2
, Ty
); break;
461 case FCmpInst::FCMP_ULT
: R
= executeFCMP_ULT(Src1
, Src2
, Ty
); break;
462 case FCmpInst::FCMP_OLT
: R
= executeFCMP_OLT(Src1
, Src2
, Ty
); break;
463 case FCmpInst::FCMP_UGT
: R
= executeFCMP_UGT(Src1
, Src2
, Ty
); break;
464 case FCmpInst::FCMP_OGT
: R
= executeFCMP_OGT(Src1
, Src2
, Ty
); break;
465 case FCmpInst::FCMP_ULE
: R
= executeFCMP_ULE(Src1
, Src2
, Ty
); break;
466 case FCmpInst::FCMP_OLE
: R
= executeFCMP_OLE(Src1
, Src2
, Ty
); break;
467 case FCmpInst::FCMP_UGE
: R
= executeFCMP_UGE(Src1
, Src2
, Ty
); break;
468 case FCmpInst::FCMP_OGE
: R
= executeFCMP_OGE(Src1
, Src2
, Ty
); break;
470 dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I
;
477 static GenericValue
executeCmpInst(unsigned predicate
, GenericValue Src1
,
478 GenericValue Src2
, const Type
*Ty
) {
481 case ICmpInst::ICMP_EQ
: return executeICMP_EQ(Src1
, Src2
, Ty
);
482 case ICmpInst::ICMP_NE
: return executeICMP_NE(Src1
, Src2
, Ty
);
483 case ICmpInst::ICMP_UGT
: return executeICMP_UGT(Src1
, Src2
, Ty
);
484 case ICmpInst::ICMP_SGT
: return executeICMP_SGT(Src1
, Src2
, Ty
);
485 case ICmpInst::ICMP_ULT
: return executeICMP_ULT(Src1
, Src2
, Ty
);
486 case ICmpInst::ICMP_SLT
: return executeICMP_SLT(Src1
, Src2
, Ty
);
487 case ICmpInst::ICMP_UGE
: return executeICMP_UGE(Src1
, Src2
, Ty
);
488 case ICmpInst::ICMP_SGE
: return executeICMP_SGE(Src1
, Src2
, Ty
);
489 case ICmpInst::ICMP_ULE
: return executeICMP_ULE(Src1
, Src2
, Ty
);
490 case ICmpInst::ICMP_SLE
: return executeICMP_SLE(Src1
, Src2
, Ty
);
491 case FCmpInst::FCMP_ORD
: return executeFCMP_ORD(Src1
, Src2
, Ty
);
492 case FCmpInst::FCMP_UNO
: return executeFCMP_UNO(Src1
, Src2
, Ty
);
493 case FCmpInst::FCMP_OEQ
: return executeFCMP_OEQ(Src1
, Src2
, Ty
);
494 case FCmpInst::FCMP_UEQ
: return executeFCMP_UEQ(Src1
, Src2
, Ty
);
495 case FCmpInst::FCMP_ONE
: return executeFCMP_ONE(Src1
, Src2
, Ty
);
496 case FCmpInst::FCMP_UNE
: return executeFCMP_UNE(Src1
, Src2
, Ty
);
497 case FCmpInst::FCMP_OLT
: return executeFCMP_OLT(Src1
, Src2
, Ty
);
498 case FCmpInst::FCMP_ULT
: return executeFCMP_ULT(Src1
, Src2
, Ty
);
499 case FCmpInst::FCMP_OGT
: return executeFCMP_OGT(Src1
, Src2
, Ty
);
500 case FCmpInst::FCMP_UGT
: return executeFCMP_UGT(Src1
, Src2
, Ty
);
501 case FCmpInst::FCMP_OLE
: return executeFCMP_OLE(Src1
, Src2
, Ty
);
502 case FCmpInst::FCMP_ULE
: return executeFCMP_ULE(Src1
, Src2
, Ty
);
503 case FCmpInst::FCMP_OGE
: return executeFCMP_OGE(Src1
, Src2
, Ty
);
504 case FCmpInst::FCMP_UGE
: return executeFCMP_UGE(Src1
, Src2
, Ty
);
505 case FCmpInst::FCMP_FALSE
: {
507 Result
.IntVal
= APInt(1, false);
510 case FCmpInst::FCMP_TRUE
: {
512 Result
.IntVal
= APInt(1, true);
516 dbgs() << "Unhandled Cmp predicate\n";
521 void Interpreter::visitBinaryOperator(BinaryOperator
&I
) {
522 ExecutionContext
&SF
= ECStack
.back();
523 const Type
*Ty
= I
.getOperand(0)->getType();
524 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
525 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
526 GenericValue R
; // Result
528 switch (I
.getOpcode()) {
529 case Instruction::Add
: R
.IntVal
= Src1
.IntVal
+ Src2
.IntVal
; break;
530 case Instruction::Sub
: R
.IntVal
= Src1
.IntVal
- Src2
.IntVal
; break;
531 case Instruction::Mul
: R
.IntVal
= Src1
.IntVal
* Src2
.IntVal
; break;
532 case Instruction::FAdd
: executeFAddInst(R
, Src1
, Src2
, Ty
); break;
533 case Instruction::FSub
: executeFSubInst(R
, Src1
, Src2
, Ty
); break;
534 case Instruction::FMul
: executeFMulInst(R
, Src1
, Src2
, Ty
); break;
535 case Instruction::FDiv
: executeFDivInst(R
, Src1
, Src2
, Ty
); break;
536 case Instruction::FRem
: executeFRemInst(R
, Src1
, Src2
, Ty
); break;
537 case Instruction::UDiv
: R
.IntVal
= Src1
.IntVal
.udiv(Src2
.IntVal
); break;
538 case Instruction::SDiv
: R
.IntVal
= Src1
.IntVal
.sdiv(Src2
.IntVal
); break;
539 case Instruction::URem
: R
.IntVal
= Src1
.IntVal
.urem(Src2
.IntVal
); break;
540 case Instruction::SRem
: R
.IntVal
= Src1
.IntVal
.srem(Src2
.IntVal
); break;
541 case Instruction::And
: R
.IntVal
= Src1
.IntVal
& Src2
.IntVal
; break;
542 case Instruction::Or
: R
.IntVal
= Src1
.IntVal
| Src2
.IntVal
; break;
543 case Instruction::Xor
: R
.IntVal
= Src1
.IntVal
^ Src2
.IntVal
; break;
545 dbgs() << "Don't know how to handle this binary operator!\n-->" << I
;
552 static GenericValue
executeSelectInst(GenericValue Src1
, GenericValue Src2
,
554 return Src1
.IntVal
== 0 ? Src3
: Src2
;
557 void Interpreter::visitSelectInst(SelectInst
&I
) {
558 ExecutionContext
&SF
= ECStack
.back();
559 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
560 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
561 GenericValue Src3
= getOperandValue(I
.getOperand(2), SF
);
562 GenericValue R
= executeSelectInst(Src1
, Src2
, Src3
);
567 //===----------------------------------------------------------------------===//
568 // Terminator Instruction Implementations
569 //===----------------------------------------------------------------------===//
571 void Interpreter::exitCalled(GenericValue GV
) {
572 // runAtExitHandlers() assumes there are no stack frames, but
573 // if exit() was called, then it had a stack frame. Blow away
574 // the stack before interpreting atexit handlers.
577 exit(GV
.IntVal
.zextOrTrunc(32).getZExtValue());
580 /// Pop the last stack frame off of ECStack and then copy the result
581 /// back into the result variable if we are not returning void. The
582 /// result variable may be the ExitValue, or the Value of the calling
583 /// CallInst if there was a previous stack frame. This method may
584 /// invalidate any ECStack iterators you have. This method also takes
585 /// care of switching to the normal destination BB, if we are returning
588 void Interpreter::popStackAndReturnValueToCaller(const Type
*RetTy
,
589 GenericValue Result
) {
590 // Pop the current stack frame.
593 if (ECStack
.empty()) { // Finished main. Put result into exit code...
594 if (RetTy
&& !RetTy
->isVoidTy()) { // Nonvoid return type?
595 ExitValue
= Result
; // Capture the exit value of the program
597 memset(&ExitValue
.Untyped
, 0, sizeof(ExitValue
.Untyped
));
600 // If we have a previous stack frame, and we have a previous call,
601 // fill in the return value...
602 ExecutionContext
&CallingSF
= ECStack
.back();
603 if (Instruction
*I
= CallingSF
.Caller
.getInstruction()) {
605 if (!CallingSF
.Caller
.getType()->isVoidTy())
606 SetValue(I
, Result
, CallingSF
);
607 if (InvokeInst
*II
= dyn_cast
<InvokeInst
> (I
))
608 SwitchToNewBasicBlock (II
->getNormalDest (), CallingSF
);
609 CallingSF
.Caller
= CallSite(); // We returned from the call...
614 void Interpreter::visitReturnInst(ReturnInst
&I
) {
615 ExecutionContext
&SF
= ECStack
.back();
616 const Type
*RetTy
= Type::getVoidTy(I
.getContext());
619 // Save away the return value... (if we are not 'ret void')
620 if (I
.getNumOperands()) {
621 RetTy
= I
.getReturnValue()->getType();
622 Result
= getOperandValue(I
.getReturnValue(), SF
);
625 popStackAndReturnValueToCaller(RetTy
, Result
);
628 void Interpreter::visitUnwindInst(UnwindInst
&I
) {
634 report_fatal_error("Empty stack during unwind!");
635 Inst
= ECStack
.back().Caller
.getInstruction();
636 } while (!(Inst
&& isa
<InvokeInst
>(Inst
)));
638 // Return from invoke
639 ExecutionContext
&InvokingSF
= ECStack
.back();
640 InvokingSF
.Caller
= CallSite();
642 // Go to exceptional destination BB of invoke instruction
643 SwitchToNewBasicBlock(cast
<InvokeInst
>(Inst
)->getUnwindDest(), InvokingSF
);
646 void Interpreter::visitUnreachableInst(UnreachableInst
&I
) {
647 report_fatal_error("Program executed an 'unreachable' instruction!");
650 void Interpreter::visitBranchInst(BranchInst
&I
) {
651 ExecutionContext
&SF
= ECStack
.back();
654 Dest
= I
.getSuccessor(0); // Uncond branches have a fixed dest...
655 if (!I
.isUnconditional()) {
656 Value
*Cond
= I
.getCondition();
657 if (getOperandValue(Cond
, SF
).IntVal
== 0) // If false cond...
658 Dest
= I
.getSuccessor(1);
660 SwitchToNewBasicBlock(Dest
, SF
);
663 void Interpreter::visitSwitchInst(SwitchInst
&I
) {
664 ExecutionContext
&SF
= ECStack
.back();
665 GenericValue CondVal
= getOperandValue(I
.getOperand(0), SF
);
666 const Type
*ElTy
= I
.getOperand(0)->getType();
668 // Check to see if any of the cases match...
669 BasicBlock
*Dest
= 0;
670 for (unsigned i
= 2, e
= I
.getNumOperands(); i
!= e
; i
+= 2)
671 if (executeICMP_EQ(CondVal
, getOperandValue(I
.getOperand(i
), SF
), ElTy
)
673 Dest
= cast
<BasicBlock
>(I
.getOperand(i
+1));
677 if (!Dest
) Dest
= I
.getDefaultDest(); // No cases matched: use default
678 SwitchToNewBasicBlock(Dest
, SF
);
681 void Interpreter::visitIndirectBrInst(IndirectBrInst
&I
) {
682 ExecutionContext
&SF
= ECStack
.back();
683 void *Dest
= GVTOP(getOperandValue(I
.getAddress(), SF
));
684 SwitchToNewBasicBlock((BasicBlock
*)Dest
, SF
);
688 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
689 // This function handles the actual updating of block and instruction iterators
690 // as well as execution of all of the PHI nodes in the destination block.
692 // This method does this because all of the PHI nodes must be executed
693 // atomically, reading their inputs before any of the results are updated. Not
694 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
695 // their inputs. If the input PHI node is updated before it is read, incorrect
696 // results can happen. Thus we use a two phase approach.
698 void Interpreter::SwitchToNewBasicBlock(BasicBlock
*Dest
, ExecutionContext
&SF
){
699 BasicBlock
*PrevBB
= SF
.CurBB
; // Remember where we came from...
700 SF
.CurBB
= Dest
; // Update CurBB to branch destination
701 SF
.CurInst
= SF
.CurBB
->begin(); // Update new instruction ptr...
703 if (!isa
<PHINode
>(SF
.CurInst
)) return; // Nothing fancy to do
705 // Loop over all of the PHI nodes in the current block, reading their inputs.
706 std::vector
<GenericValue
> ResultValues
;
708 for (; PHINode
*PN
= dyn_cast
<PHINode
>(SF
.CurInst
); ++SF
.CurInst
) {
709 // Search for the value corresponding to this previous bb...
710 int i
= PN
->getBasicBlockIndex(PrevBB
);
711 assert(i
!= -1 && "PHINode doesn't contain entry for predecessor??");
712 Value
*IncomingValue
= PN
->getIncomingValue(i
);
714 // Save the incoming value for this PHI node...
715 ResultValues
.push_back(getOperandValue(IncomingValue
, SF
));
718 // Now loop over all of the PHI nodes setting their values...
719 SF
.CurInst
= SF
.CurBB
->begin();
720 for (unsigned i
= 0; isa
<PHINode
>(SF
.CurInst
); ++SF
.CurInst
, ++i
) {
721 PHINode
*PN
= cast
<PHINode
>(SF
.CurInst
);
722 SetValue(PN
, ResultValues
[i
], SF
);
726 //===----------------------------------------------------------------------===//
727 // Memory Instruction Implementations
728 //===----------------------------------------------------------------------===//
730 void Interpreter::visitAllocaInst(AllocaInst
&I
) {
731 ExecutionContext
&SF
= ECStack
.back();
733 const Type
*Ty
= I
.getType()->getElementType(); // Type to be allocated
735 // Get the number of elements being allocated by the array...
736 unsigned NumElements
=
737 getOperandValue(I
.getOperand(0), SF
).IntVal
.getZExtValue();
739 unsigned TypeSize
= (size_t)TD
.getTypeAllocSize(Ty
);
741 // Avoid malloc-ing zero bytes, use max()...
742 unsigned MemToAlloc
= std::max(1U, NumElements
* TypeSize
);
744 // Allocate enough memory to hold the type...
745 void *Memory
= malloc(MemToAlloc
);
747 DEBUG(dbgs() << "Allocated Type: " << *Ty
<< " (" << TypeSize
<< " bytes) x "
748 << NumElements
<< " (Total: " << MemToAlloc
<< ") at "
749 << uintptr_t(Memory
) << '\n');
751 GenericValue Result
= PTOGV(Memory
);
752 assert(Result
.PointerVal
!= 0 && "Null pointer returned by malloc!");
753 SetValue(&I
, Result
, SF
);
755 if (I
.getOpcode() == Instruction::Alloca
)
756 ECStack
.back().Allocas
.add(Memory
);
759 // getElementOffset - The workhorse for getelementptr.
761 GenericValue
Interpreter::executeGEPOperation(Value
*Ptr
, gep_type_iterator I
,
763 ExecutionContext
&SF
) {
764 assert(Ptr
->getType()->isPointerTy() &&
765 "Cannot getElementOffset of a nonpointer type!");
769 for (; I
!= E
; ++I
) {
770 if (const StructType
*STy
= dyn_cast
<StructType
>(*I
)) {
771 const StructLayout
*SLO
= TD
.getStructLayout(STy
);
773 const ConstantInt
*CPU
= cast
<ConstantInt
>(I
.getOperand());
774 unsigned Index
= unsigned(CPU
->getZExtValue());
776 Total
+= SLO
->getElementOffset(Index
);
778 const SequentialType
*ST
= cast
<SequentialType
>(*I
);
779 // Get the index number for the array... which must be long type...
780 GenericValue IdxGV
= getOperandValue(I
.getOperand(), SF
);
784 cast
<IntegerType
>(I
.getOperand()->getType())->getBitWidth();
786 Idx
= (int64_t)(int32_t)IdxGV
.IntVal
.getZExtValue();
788 assert(BitWidth
== 64 && "Invalid index type for getelementptr");
789 Idx
= (int64_t)IdxGV
.IntVal
.getZExtValue();
791 Total
+= TD
.getTypeAllocSize(ST
->getElementType())*Idx
;
796 Result
.PointerVal
= ((char*)getOperandValue(Ptr
, SF
).PointerVal
) + Total
;
797 DEBUG(dbgs() << "GEP Index " << Total
<< " bytes.\n");
801 void Interpreter::visitGetElementPtrInst(GetElementPtrInst
&I
) {
802 ExecutionContext
&SF
= ECStack
.back();
803 SetValue(&I
, executeGEPOperation(I
.getPointerOperand(),
804 gep_type_begin(I
), gep_type_end(I
), SF
), SF
);
807 void Interpreter::visitLoadInst(LoadInst
&I
) {
808 ExecutionContext
&SF
= ECStack
.back();
809 GenericValue SRC
= getOperandValue(I
.getPointerOperand(), SF
);
810 GenericValue
*Ptr
= (GenericValue
*)GVTOP(SRC
);
812 LoadValueFromMemory(Result
, Ptr
, I
.getType());
813 SetValue(&I
, Result
, SF
);
814 if (I
.isVolatile() && PrintVolatile
)
815 dbgs() << "Volatile load " << I
;
818 void Interpreter::visitStoreInst(StoreInst
&I
) {
819 ExecutionContext
&SF
= ECStack
.back();
820 GenericValue Val
= getOperandValue(I
.getOperand(0), SF
);
821 GenericValue SRC
= getOperandValue(I
.getPointerOperand(), SF
);
822 StoreValueToMemory(Val
, (GenericValue
*)GVTOP(SRC
),
823 I
.getOperand(0)->getType());
824 if (I
.isVolatile() && PrintVolatile
)
825 dbgs() << "Volatile store: " << I
;
828 //===----------------------------------------------------------------------===//
829 // Miscellaneous Instruction Implementations
830 //===----------------------------------------------------------------------===//
832 void Interpreter::visitCallSite(CallSite CS
) {
833 ExecutionContext
&SF
= ECStack
.back();
835 // Check to see if this is an intrinsic function call...
836 Function
*F
= CS
.getCalledFunction();
837 if (F
&& F
->isDeclaration())
838 switch (F
->getIntrinsicID()) {
839 case Intrinsic::not_intrinsic
:
841 case Intrinsic::vastart
: { // va_start
842 GenericValue ArgIndex
;
843 ArgIndex
.UIntPairVal
.first
= ECStack
.size() - 1;
844 ArgIndex
.UIntPairVal
.second
= 0;
845 SetValue(CS
.getInstruction(), ArgIndex
, SF
);
848 case Intrinsic::vaend
: // va_end is a noop for the interpreter
850 case Intrinsic::vacopy
: // va_copy: dest = src
851 SetValue(CS
.getInstruction(), getOperandValue(*CS
.arg_begin(), SF
), SF
);
854 // If it is an unknown intrinsic function, use the intrinsic lowering
855 // class to transform it into hopefully tasty LLVM code.
857 BasicBlock::iterator
me(CS
.getInstruction());
858 BasicBlock
*Parent
= CS
.getInstruction()->getParent();
859 bool atBegin(Parent
->begin() == me
);
862 IL
->LowerIntrinsicCall(cast
<CallInst
>(CS
.getInstruction()));
864 // Restore the CurInst pointer to the first instruction newly inserted, if
867 SF
.CurInst
= Parent
->begin();
877 std::vector
<GenericValue
> ArgVals
;
878 const unsigned NumArgs
= SF
.Caller
.arg_size();
879 ArgVals
.reserve(NumArgs
);
881 for (CallSite::arg_iterator i
= SF
.Caller
.arg_begin(),
882 e
= SF
.Caller
.arg_end(); i
!= e
; ++i
, ++pNum
) {
884 ArgVals
.push_back(getOperandValue(V
, SF
));
887 // To handle indirect calls, we must get the pointer value from the argument
888 // and treat it as a function pointer.
889 GenericValue SRC
= getOperandValue(SF
.Caller
.getCalledValue(), SF
);
890 callFunction((Function
*)GVTOP(SRC
), ArgVals
);
893 void Interpreter::visitShl(BinaryOperator
&I
) {
894 ExecutionContext
&SF
= ECStack
.back();
895 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
896 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
898 if (Src2
.IntVal
.getZExtValue() < Src1
.IntVal
.getBitWidth())
899 Dest
.IntVal
= Src1
.IntVal
.shl(Src2
.IntVal
.getZExtValue());
901 Dest
.IntVal
= Src1
.IntVal
;
903 SetValue(&I
, Dest
, SF
);
906 void Interpreter::visitLShr(BinaryOperator
&I
) {
907 ExecutionContext
&SF
= ECStack
.back();
908 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
909 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
911 if (Src2
.IntVal
.getZExtValue() < Src1
.IntVal
.getBitWidth())
912 Dest
.IntVal
= Src1
.IntVal
.lshr(Src2
.IntVal
.getZExtValue());
914 Dest
.IntVal
= Src1
.IntVal
;
916 SetValue(&I
, Dest
, SF
);
919 void Interpreter::visitAShr(BinaryOperator
&I
) {
920 ExecutionContext
&SF
= ECStack
.back();
921 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
922 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
924 if (Src2
.IntVal
.getZExtValue() < Src1
.IntVal
.getBitWidth())
925 Dest
.IntVal
= Src1
.IntVal
.ashr(Src2
.IntVal
.getZExtValue());
927 Dest
.IntVal
= Src1
.IntVal
;
929 SetValue(&I
, Dest
, SF
);
932 GenericValue
Interpreter::executeTruncInst(Value
*SrcVal
, const Type
*DstTy
,
933 ExecutionContext
&SF
) {
934 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
935 const IntegerType
*DITy
= cast
<IntegerType
>(DstTy
);
936 unsigned DBitWidth
= DITy
->getBitWidth();
937 Dest
.IntVal
= Src
.IntVal
.trunc(DBitWidth
);
941 GenericValue
Interpreter::executeSExtInst(Value
*SrcVal
, const Type
*DstTy
,
942 ExecutionContext
&SF
) {
943 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
944 const IntegerType
*DITy
= cast
<IntegerType
>(DstTy
);
945 unsigned DBitWidth
= DITy
->getBitWidth();
946 Dest
.IntVal
= Src
.IntVal
.sext(DBitWidth
);
950 GenericValue
Interpreter::executeZExtInst(Value
*SrcVal
, const Type
*DstTy
,
951 ExecutionContext
&SF
) {
952 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
953 const IntegerType
*DITy
= cast
<IntegerType
>(DstTy
);
954 unsigned DBitWidth
= DITy
->getBitWidth();
955 Dest
.IntVal
= Src
.IntVal
.zext(DBitWidth
);
959 GenericValue
Interpreter::executeFPTruncInst(Value
*SrcVal
, const Type
*DstTy
,
960 ExecutionContext
&SF
) {
961 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
962 assert(SrcVal
->getType()->isDoubleTy() && DstTy
->isFloatTy() &&
963 "Invalid FPTrunc instruction");
964 Dest
.FloatVal
= (float) Src
.DoubleVal
;
968 GenericValue
Interpreter::executeFPExtInst(Value
*SrcVal
, const Type
*DstTy
,
969 ExecutionContext
&SF
) {
970 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
971 assert(SrcVal
->getType()->isFloatTy() && DstTy
->isDoubleTy() &&
972 "Invalid FPTrunc instruction");
973 Dest
.DoubleVal
= (double) Src
.FloatVal
;
977 GenericValue
Interpreter::executeFPToUIInst(Value
*SrcVal
, const Type
*DstTy
,
978 ExecutionContext
&SF
) {
979 const Type
*SrcTy
= SrcVal
->getType();
980 uint32_t DBitWidth
= cast
<IntegerType
>(DstTy
)->getBitWidth();
981 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
982 assert(SrcTy
->isFloatingPointTy() && "Invalid FPToUI instruction");
984 if (SrcTy
->getTypeID() == Type::FloatTyID
)
985 Dest
.IntVal
= APIntOps::RoundFloatToAPInt(Src
.FloatVal
, DBitWidth
);
987 Dest
.IntVal
= APIntOps::RoundDoubleToAPInt(Src
.DoubleVal
, DBitWidth
);
991 GenericValue
Interpreter::executeFPToSIInst(Value
*SrcVal
, const Type
*DstTy
,
992 ExecutionContext
&SF
) {
993 const Type
*SrcTy
= SrcVal
->getType();
994 uint32_t DBitWidth
= cast
<IntegerType
>(DstTy
)->getBitWidth();
995 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
996 assert(SrcTy
->isFloatingPointTy() && "Invalid FPToSI instruction");
998 if (SrcTy
->getTypeID() == Type::FloatTyID
)
999 Dest
.IntVal
= APIntOps::RoundFloatToAPInt(Src
.FloatVal
, DBitWidth
);
1001 Dest
.IntVal
= APIntOps::RoundDoubleToAPInt(Src
.DoubleVal
, DBitWidth
);
1005 GenericValue
Interpreter::executeUIToFPInst(Value
*SrcVal
, const Type
*DstTy
,
1006 ExecutionContext
&SF
) {
1007 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1008 assert(DstTy
->isFloatingPointTy() && "Invalid UIToFP instruction");
1010 if (DstTy
->getTypeID() == Type::FloatTyID
)
1011 Dest
.FloatVal
= APIntOps::RoundAPIntToFloat(Src
.IntVal
);
1013 Dest
.DoubleVal
= APIntOps::RoundAPIntToDouble(Src
.IntVal
);
1017 GenericValue
Interpreter::executeSIToFPInst(Value
*SrcVal
, const Type
*DstTy
,
1018 ExecutionContext
&SF
) {
1019 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1020 assert(DstTy
->isFloatingPointTy() && "Invalid SIToFP instruction");
1022 if (DstTy
->getTypeID() == Type::FloatTyID
)
1023 Dest
.FloatVal
= APIntOps::RoundSignedAPIntToFloat(Src
.IntVal
);
1025 Dest
.DoubleVal
= APIntOps::RoundSignedAPIntToDouble(Src
.IntVal
);
1030 GenericValue
Interpreter::executePtrToIntInst(Value
*SrcVal
, const Type
*DstTy
,
1031 ExecutionContext
&SF
) {
1032 uint32_t DBitWidth
= cast
<IntegerType
>(DstTy
)->getBitWidth();
1033 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1034 assert(SrcVal
->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1036 Dest
.IntVal
= APInt(DBitWidth
, (intptr_t) Src
.PointerVal
);
1040 GenericValue
Interpreter::executeIntToPtrInst(Value
*SrcVal
, const Type
*DstTy
,
1041 ExecutionContext
&SF
) {
1042 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1043 assert(DstTy
->isPointerTy() && "Invalid PtrToInt instruction");
1045 uint32_t PtrSize
= TD
.getPointerSizeInBits();
1046 if (PtrSize
!= Src
.IntVal
.getBitWidth())
1047 Src
.IntVal
= Src
.IntVal
.zextOrTrunc(PtrSize
);
1049 Dest
.PointerVal
= PointerTy(intptr_t(Src
.IntVal
.getZExtValue()));
1053 GenericValue
Interpreter::executeBitCastInst(Value
*SrcVal
, const Type
*DstTy
,
1054 ExecutionContext
&SF
) {
1056 const Type
*SrcTy
= SrcVal
->getType();
1057 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1058 if (DstTy
->isPointerTy()) {
1059 assert(SrcTy
->isPointerTy() && "Invalid BitCast");
1060 Dest
.PointerVal
= Src
.PointerVal
;
1061 } else if (DstTy
->isIntegerTy()) {
1062 if (SrcTy
->isFloatTy()) {
1063 Dest
.IntVal
= APInt::floatToBits(Src
.FloatVal
);
1064 } else if (SrcTy
->isDoubleTy()) {
1065 Dest
.IntVal
= APInt::doubleToBits(Src
.DoubleVal
);
1066 } else if (SrcTy
->isIntegerTy()) {
1067 Dest
.IntVal
= Src
.IntVal
;
1069 llvm_unreachable("Invalid BitCast");
1070 } else if (DstTy
->isFloatTy()) {
1071 if (SrcTy
->isIntegerTy())
1072 Dest
.FloatVal
= Src
.IntVal
.bitsToFloat();
1074 Dest
.FloatVal
= Src
.FloatVal
;
1075 } else if (DstTy
->isDoubleTy()) {
1076 if (SrcTy
->isIntegerTy())
1077 Dest
.DoubleVal
= Src
.IntVal
.bitsToDouble();
1079 Dest
.DoubleVal
= Src
.DoubleVal
;
1081 llvm_unreachable("Invalid Bitcast");
1086 void Interpreter::visitTruncInst(TruncInst
&I
) {
1087 ExecutionContext
&SF
= ECStack
.back();
1088 SetValue(&I
, executeTruncInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1091 void Interpreter::visitSExtInst(SExtInst
&I
) {
1092 ExecutionContext
&SF
= ECStack
.back();
1093 SetValue(&I
, executeSExtInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1096 void Interpreter::visitZExtInst(ZExtInst
&I
) {
1097 ExecutionContext
&SF
= ECStack
.back();
1098 SetValue(&I
, executeZExtInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1101 void Interpreter::visitFPTruncInst(FPTruncInst
&I
) {
1102 ExecutionContext
&SF
= ECStack
.back();
1103 SetValue(&I
, executeFPTruncInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1106 void Interpreter::visitFPExtInst(FPExtInst
&I
) {
1107 ExecutionContext
&SF
= ECStack
.back();
1108 SetValue(&I
, executeFPExtInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1111 void Interpreter::visitUIToFPInst(UIToFPInst
&I
) {
1112 ExecutionContext
&SF
= ECStack
.back();
1113 SetValue(&I
, executeUIToFPInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1116 void Interpreter::visitSIToFPInst(SIToFPInst
&I
) {
1117 ExecutionContext
&SF
= ECStack
.back();
1118 SetValue(&I
, executeSIToFPInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1121 void Interpreter::visitFPToUIInst(FPToUIInst
&I
) {
1122 ExecutionContext
&SF
= ECStack
.back();
1123 SetValue(&I
, executeFPToUIInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1126 void Interpreter::visitFPToSIInst(FPToSIInst
&I
) {
1127 ExecutionContext
&SF
= ECStack
.back();
1128 SetValue(&I
, executeFPToSIInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1131 void Interpreter::visitPtrToIntInst(PtrToIntInst
&I
) {
1132 ExecutionContext
&SF
= ECStack
.back();
1133 SetValue(&I
, executePtrToIntInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1136 void Interpreter::visitIntToPtrInst(IntToPtrInst
&I
) {
1137 ExecutionContext
&SF
= ECStack
.back();
1138 SetValue(&I
, executeIntToPtrInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1141 void Interpreter::visitBitCastInst(BitCastInst
&I
) {
1142 ExecutionContext
&SF
= ECStack
.back();
1143 SetValue(&I
, executeBitCastInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1146 #define IMPLEMENT_VAARG(TY) \
1147 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1149 void Interpreter::visitVAArgInst(VAArgInst
&I
) {
1150 ExecutionContext
&SF
= ECStack
.back();
1152 // Get the incoming valist parameter. LLI treats the valist as a
1153 // (ec-stack-depth var-arg-index) pair.
1154 GenericValue VAList
= getOperandValue(I
.getOperand(0), SF
);
1156 GenericValue Src
= ECStack
[VAList
.UIntPairVal
.first
]
1157 .VarArgs
[VAList
.UIntPairVal
.second
];
1158 const Type
*Ty
= I
.getType();
1159 switch (Ty
->getTypeID()) {
1160 case Type::IntegerTyID
: Dest
.IntVal
= Src
.IntVal
;
1161 IMPLEMENT_VAARG(Pointer
);
1162 IMPLEMENT_VAARG(Float
);
1163 IMPLEMENT_VAARG(Double
);
1165 dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty
<< "\n";
1166 llvm_unreachable(0);
1169 // Set the Value of this Instruction.
1170 SetValue(&I
, Dest
, SF
);
1172 // Move the pointer to the next vararg.
1173 ++VAList
.UIntPairVal
.second
;
1176 GenericValue
Interpreter::getConstantExprValue (ConstantExpr
*CE
,
1177 ExecutionContext
&SF
) {
1178 switch (CE
->getOpcode()) {
1179 case Instruction::Trunc
:
1180 return executeTruncInst(CE
->getOperand(0), CE
->getType(), SF
);
1181 case Instruction::ZExt
:
1182 return executeZExtInst(CE
->getOperand(0), CE
->getType(), SF
);
1183 case Instruction::SExt
:
1184 return executeSExtInst(CE
->getOperand(0), CE
->getType(), SF
);
1185 case Instruction::FPTrunc
:
1186 return executeFPTruncInst(CE
->getOperand(0), CE
->getType(), SF
);
1187 case Instruction::FPExt
:
1188 return executeFPExtInst(CE
->getOperand(0), CE
->getType(), SF
);
1189 case Instruction::UIToFP
:
1190 return executeUIToFPInst(CE
->getOperand(0), CE
->getType(), SF
);
1191 case Instruction::SIToFP
:
1192 return executeSIToFPInst(CE
->getOperand(0), CE
->getType(), SF
);
1193 case Instruction::FPToUI
:
1194 return executeFPToUIInst(CE
->getOperand(0), CE
->getType(), SF
);
1195 case Instruction::FPToSI
:
1196 return executeFPToSIInst(CE
->getOperand(0), CE
->getType(), SF
);
1197 case Instruction::PtrToInt
:
1198 return executePtrToIntInst(CE
->getOperand(0), CE
->getType(), SF
);
1199 case Instruction::IntToPtr
:
1200 return executeIntToPtrInst(CE
->getOperand(0), CE
->getType(), SF
);
1201 case Instruction::BitCast
:
1202 return executeBitCastInst(CE
->getOperand(0), CE
->getType(), SF
);
1203 case Instruction::GetElementPtr
:
1204 return executeGEPOperation(CE
->getOperand(0), gep_type_begin(CE
),
1205 gep_type_end(CE
), SF
);
1206 case Instruction::FCmp
:
1207 case Instruction::ICmp
:
1208 return executeCmpInst(CE
->getPredicate(),
1209 getOperandValue(CE
->getOperand(0), SF
),
1210 getOperandValue(CE
->getOperand(1), SF
),
1211 CE
->getOperand(0)->getType());
1212 case Instruction::Select
:
1213 return executeSelectInst(getOperandValue(CE
->getOperand(0), SF
),
1214 getOperandValue(CE
->getOperand(1), SF
),
1215 getOperandValue(CE
->getOperand(2), SF
));
1220 // The cases below here require a GenericValue parameter for the result
1221 // so we initialize one, compute it and then return it.
1222 GenericValue Op0
= getOperandValue(CE
->getOperand(0), SF
);
1223 GenericValue Op1
= getOperandValue(CE
->getOperand(1), SF
);
1225 const Type
* Ty
= CE
->getOperand(0)->getType();
1226 switch (CE
->getOpcode()) {
1227 case Instruction::Add
: Dest
.IntVal
= Op0
.IntVal
+ Op1
.IntVal
; break;
1228 case Instruction::Sub
: Dest
.IntVal
= Op0
.IntVal
- Op1
.IntVal
; break;
1229 case Instruction::Mul
: Dest
.IntVal
= Op0
.IntVal
* Op1
.IntVal
; break;
1230 case Instruction::FAdd
: executeFAddInst(Dest
, Op0
, Op1
, Ty
); break;
1231 case Instruction::FSub
: executeFSubInst(Dest
, Op0
, Op1
, Ty
); break;
1232 case Instruction::FMul
: executeFMulInst(Dest
, Op0
, Op1
, Ty
); break;
1233 case Instruction::FDiv
: executeFDivInst(Dest
, Op0
, Op1
, Ty
); break;
1234 case Instruction::FRem
: executeFRemInst(Dest
, Op0
, Op1
, Ty
); break;
1235 case Instruction::SDiv
: Dest
.IntVal
= Op0
.IntVal
.sdiv(Op1
.IntVal
); break;
1236 case Instruction::UDiv
: Dest
.IntVal
= Op0
.IntVal
.udiv(Op1
.IntVal
); break;
1237 case Instruction::URem
: Dest
.IntVal
= Op0
.IntVal
.urem(Op1
.IntVal
); break;
1238 case Instruction::SRem
: Dest
.IntVal
= Op0
.IntVal
.srem(Op1
.IntVal
); break;
1239 case Instruction::And
: Dest
.IntVal
= Op0
.IntVal
& Op1
.IntVal
; break;
1240 case Instruction::Or
: Dest
.IntVal
= Op0
.IntVal
| Op1
.IntVal
; break;
1241 case Instruction::Xor
: Dest
.IntVal
= Op0
.IntVal
^ Op1
.IntVal
; break;
1242 case Instruction::Shl
:
1243 Dest
.IntVal
= Op0
.IntVal
.shl(Op1
.IntVal
.getZExtValue());
1245 case Instruction::LShr
:
1246 Dest
.IntVal
= Op0
.IntVal
.lshr(Op1
.IntVal
.getZExtValue());
1248 case Instruction::AShr
:
1249 Dest
.IntVal
= Op0
.IntVal
.ashr(Op1
.IntVal
.getZExtValue());
1252 dbgs() << "Unhandled ConstantExpr: " << *CE
<< "\n";
1253 llvm_unreachable(0);
1254 return GenericValue();
1259 GenericValue
Interpreter::getOperandValue(Value
*V
, ExecutionContext
&SF
) {
1260 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
1261 return getConstantExprValue(CE
, SF
);
1262 } else if (Constant
*CPV
= dyn_cast
<Constant
>(V
)) {
1263 return getConstantValue(CPV
);
1264 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
1265 return PTOGV(getPointerToGlobal(GV
));
1267 return SF
.Values
[V
];
1271 //===----------------------------------------------------------------------===//
1272 // Dispatch and Execution Code
1273 //===----------------------------------------------------------------------===//
1275 //===----------------------------------------------------------------------===//
1276 // callFunction - Execute the specified function...
1278 void Interpreter::callFunction(Function
*F
,
1279 const std::vector
<GenericValue
> &ArgVals
) {
1280 assert((ECStack
.empty() || ECStack
.back().Caller
.getInstruction() == 0 ||
1281 ECStack
.back().Caller
.arg_size() == ArgVals
.size()) &&
1282 "Incorrect number of arguments passed into function call!");
1283 // Make a new stack frame... and fill it in.
1284 ECStack
.push_back(ExecutionContext());
1285 ExecutionContext
&StackFrame
= ECStack
.back();
1286 StackFrame
.CurFunction
= F
;
1288 // Special handling for external functions.
1289 if (F
->isDeclaration()) {
1290 GenericValue Result
= callExternalFunction (F
, ArgVals
);
1291 // Simulate a 'ret' instruction of the appropriate type.
1292 popStackAndReturnValueToCaller (F
->getReturnType (), Result
);
1296 // Get pointers to first LLVM BB & Instruction in function.
1297 StackFrame
.CurBB
= F
->begin();
1298 StackFrame
.CurInst
= StackFrame
.CurBB
->begin();
1300 // Run through the function arguments and initialize their values...
1301 assert((ArgVals
.size() == F
->arg_size() ||
1302 (ArgVals
.size() > F
->arg_size() && F
->getFunctionType()->isVarArg()))&&
1303 "Invalid number of values passed to function invocation!");
1305 // Handle non-varargs arguments...
1307 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1309 SetValue(AI
, ArgVals
[i
], StackFrame
);
1311 // Handle varargs arguments...
1312 StackFrame
.VarArgs
.assign(ArgVals
.begin()+i
, ArgVals
.end());
1316 void Interpreter::run() {
1317 while (!ECStack
.empty()) {
1318 // Interpret a single instruction & increment the "PC".
1319 ExecutionContext
&SF
= ECStack
.back(); // Current stack frame
1320 Instruction
&I
= *SF
.CurInst
++; // Increment before execute
1322 // Track the number of dynamic instructions executed.
1325 DEBUG(dbgs() << "About to interpret: " << I
);
1326 visit(I
); // Dispatch to one of the visit* methods...
1328 // This is not safe, as visiting the instruction could lower it and free I.
1330 if (!isa
<CallInst
>(I
) && !isa
<InvokeInst
>(I
) &&
1331 I
.getType() != Type::VoidTy
) {
1333 const GenericValue
&Val
= SF
.Values
[&I
];
1334 switch (I
.getType()->getTypeID()) {
1335 default: llvm_unreachable("Invalid GenericValue Type");
1336 case Type::VoidTyID
: dbgs() << "void"; break;
1337 case Type::FloatTyID
: dbgs() << "float " << Val
.FloatVal
; break;
1338 case Type::DoubleTyID
: dbgs() << "double " << Val
.DoubleVal
; break;
1339 case Type::PointerTyID
: dbgs() << "void* " << intptr_t(Val
.PointerVal
);
1341 case Type::IntegerTyID
:
1342 dbgs() << "i" << Val
.IntVal
.getBitWidth() << " "
1343 << Val
.IntVal
.toStringUnsigned(10)
1344 << " (0x" << Val
.IntVal
.toStringUnsigned(16) << ")\n";