Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / ExecutionEngine / Interpreter / Execution.cpp
blob498063bf6555796682e6ac051756d144523a8346
1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the actual instruction interpreter.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "interpreter"
15 #include "Interpreter.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/CodeGen/IntrinsicLowering.h"
20 #include "llvm/Support/GetElementPtrTypeIterator.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include <algorithm>
28 #include <cmath>
29 using namespace llvm;
31 STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
33 static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
34 cl::desc("make the interpreter print every volatile load and store"));
36 //===----------------------------------------------------------------------===//
37 // Various Helper Functions
38 //===----------------------------------------------------------------------===//
40 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
41 SF.Values[V] = Val;
44 //===----------------------------------------------------------------------===//
45 // Binary Instruction Implementations
46 //===----------------------------------------------------------------------===//
48 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
49 case Type::TY##TyID: \
50 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
51 break
53 static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
54 GenericValue Src2, const Type *Ty) {
55 switch (Ty->getTypeID()) {
56 IMPLEMENT_BINARY_OPERATOR(+, Float);
57 IMPLEMENT_BINARY_OPERATOR(+, Double);
58 default:
59 dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
60 llvm_unreachable(0);
64 static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
65 GenericValue Src2, const Type *Ty) {
66 switch (Ty->getTypeID()) {
67 IMPLEMENT_BINARY_OPERATOR(-, Float);
68 IMPLEMENT_BINARY_OPERATOR(-, Double);
69 default:
70 dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
71 llvm_unreachable(0);
75 static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
76 GenericValue Src2, const Type *Ty) {
77 switch (Ty->getTypeID()) {
78 IMPLEMENT_BINARY_OPERATOR(*, Float);
79 IMPLEMENT_BINARY_OPERATOR(*, Double);
80 default:
81 dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
82 llvm_unreachable(0);
86 static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
87 GenericValue Src2, const Type *Ty) {
88 switch (Ty->getTypeID()) {
89 IMPLEMENT_BINARY_OPERATOR(/, Float);
90 IMPLEMENT_BINARY_OPERATOR(/, Double);
91 default:
92 dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
93 llvm_unreachable(0);
97 static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
98 GenericValue Src2, const Type *Ty) {
99 switch (Ty->getTypeID()) {
100 case Type::FloatTyID:
101 Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
102 break;
103 case Type::DoubleTyID:
104 Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
105 break;
106 default:
107 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
108 llvm_unreachable(0);
112 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
113 case Type::IntegerTyID: \
114 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
115 break;
117 // Handle pointers specially because they must be compared with only as much
118 // width as the host has. We _do not_ want to be comparing 64 bit values when
119 // running on a 32-bit target, otherwise the upper 32 bits might mess up
120 // comparisons if they contain garbage.
121 #define IMPLEMENT_POINTER_ICMP(OP) \
122 case Type::PointerTyID: \
123 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
124 (void*)(intptr_t)Src2.PointerVal); \
125 break;
127 static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
128 const Type *Ty) {
129 GenericValue Dest;
130 switch (Ty->getTypeID()) {
131 IMPLEMENT_INTEGER_ICMP(eq,Ty);
132 IMPLEMENT_POINTER_ICMP(==);
133 default:
134 dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
135 llvm_unreachable(0);
137 return Dest;
140 static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
141 const Type *Ty) {
142 GenericValue Dest;
143 switch (Ty->getTypeID()) {
144 IMPLEMENT_INTEGER_ICMP(ne,Ty);
145 IMPLEMENT_POINTER_ICMP(!=);
146 default:
147 dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
148 llvm_unreachable(0);
150 return Dest;
153 static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
154 const Type *Ty) {
155 GenericValue Dest;
156 switch (Ty->getTypeID()) {
157 IMPLEMENT_INTEGER_ICMP(ult,Ty);
158 IMPLEMENT_POINTER_ICMP(<);
159 default:
160 dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
161 llvm_unreachable(0);
163 return Dest;
166 static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
167 const Type *Ty) {
168 GenericValue Dest;
169 switch (Ty->getTypeID()) {
170 IMPLEMENT_INTEGER_ICMP(slt,Ty);
171 IMPLEMENT_POINTER_ICMP(<);
172 default:
173 dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
174 llvm_unreachable(0);
176 return Dest;
179 static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
180 const Type *Ty) {
181 GenericValue Dest;
182 switch (Ty->getTypeID()) {
183 IMPLEMENT_INTEGER_ICMP(ugt,Ty);
184 IMPLEMENT_POINTER_ICMP(>);
185 default:
186 dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
187 llvm_unreachable(0);
189 return Dest;
192 static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
193 const Type *Ty) {
194 GenericValue Dest;
195 switch (Ty->getTypeID()) {
196 IMPLEMENT_INTEGER_ICMP(sgt,Ty);
197 IMPLEMENT_POINTER_ICMP(>);
198 default:
199 dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
200 llvm_unreachable(0);
202 return Dest;
205 static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
206 const Type *Ty) {
207 GenericValue Dest;
208 switch (Ty->getTypeID()) {
209 IMPLEMENT_INTEGER_ICMP(ule,Ty);
210 IMPLEMENT_POINTER_ICMP(<=);
211 default:
212 dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
213 llvm_unreachable(0);
215 return Dest;
218 static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
219 const Type *Ty) {
220 GenericValue Dest;
221 switch (Ty->getTypeID()) {
222 IMPLEMENT_INTEGER_ICMP(sle,Ty);
223 IMPLEMENT_POINTER_ICMP(<=);
224 default:
225 dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
226 llvm_unreachable(0);
228 return Dest;
231 static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
232 const Type *Ty) {
233 GenericValue Dest;
234 switch (Ty->getTypeID()) {
235 IMPLEMENT_INTEGER_ICMP(uge,Ty);
236 IMPLEMENT_POINTER_ICMP(>=);
237 default:
238 dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
239 llvm_unreachable(0);
241 return Dest;
244 static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
245 const Type *Ty) {
246 GenericValue Dest;
247 switch (Ty->getTypeID()) {
248 IMPLEMENT_INTEGER_ICMP(sge,Ty);
249 IMPLEMENT_POINTER_ICMP(>=);
250 default:
251 dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
252 llvm_unreachable(0);
254 return Dest;
257 void Interpreter::visitICmpInst(ICmpInst &I) {
258 ExecutionContext &SF = ECStack.back();
259 const Type *Ty = I.getOperand(0)->getType();
260 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
261 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
262 GenericValue R; // Result
264 switch (I.getPredicate()) {
265 case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
266 case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
267 case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
268 case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
269 case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
270 case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
271 case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
272 case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
273 case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
274 case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
275 default:
276 dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
277 llvm_unreachable(0);
280 SetValue(&I, R, SF);
283 #define IMPLEMENT_FCMP(OP, TY) \
284 case Type::TY##TyID: \
285 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
286 break
288 static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
289 const Type *Ty) {
290 GenericValue Dest;
291 switch (Ty->getTypeID()) {
292 IMPLEMENT_FCMP(==, Float);
293 IMPLEMENT_FCMP(==, Double);
294 default:
295 dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
296 llvm_unreachable(0);
298 return Dest;
301 static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
302 const Type *Ty) {
303 GenericValue Dest;
304 switch (Ty->getTypeID()) {
305 IMPLEMENT_FCMP(!=, Float);
306 IMPLEMENT_FCMP(!=, Double);
308 default:
309 dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
310 llvm_unreachable(0);
312 return Dest;
315 static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
316 const Type *Ty) {
317 GenericValue Dest;
318 switch (Ty->getTypeID()) {
319 IMPLEMENT_FCMP(<=, Float);
320 IMPLEMENT_FCMP(<=, Double);
321 default:
322 dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
323 llvm_unreachable(0);
325 return Dest;
328 static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
329 const Type *Ty) {
330 GenericValue Dest;
331 switch (Ty->getTypeID()) {
332 IMPLEMENT_FCMP(>=, Float);
333 IMPLEMENT_FCMP(>=, Double);
334 default:
335 dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
336 llvm_unreachable(0);
338 return Dest;
341 static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
342 const Type *Ty) {
343 GenericValue Dest;
344 switch (Ty->getTypeID()) {
345 IMPLEMENT_FCMP(<, Float);
346 IMPLEMENT_FCMP(<, Double);
347 default:
348 dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
349 llvm_unreachable(0);
351 return Dest;
354 static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
355 const Type *Ty) {
356 GenericValue Dest;
357 switch (Ty->getTypeID()) {
358 IMPLEMENT_FCMP(>, Float);
359 IMPLEMENT_FCMP(>, Double);
360 default:
361 dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
362 llvm_unreachable(0);
364 return Dest;
367 #define IMPLEMENT_UNORDERED(TY, X,Y) \
368 if (TY->isFloatTy()) { \
369 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
370 Dest.IntVal = APInt(1,true); \
371 return Dest; \
373 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
374 Dest.IntVal = APInt(1,true); \
375 return Dest; \
379 static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
380 const Type *Ty) {
381 GenericValue Dest;
382 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
383 return executeFCMP_OEQ(Src1, Src2, Ty);
386 static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
387 const Type *Ty) {
388 GenericValue Dest;
389 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
390 return executeFCMP_ONE(Src1, Src2, Ty);
393 static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
394 const Type *Ty) {
395 GenericValue Dest;
396 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
397 return executeFCMP_OLE(Src1, Src2, Ty);
400 static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
401 const Type *Ty) {
402 GenericValue Dest;
403 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
404 return executeFCMP_OGE(Src1, Src2, Ty);
407 static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
408 const Type *Ty) {
409 GenericValue Dest;
410 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
411 return executeFCMP_OLT(Src1, Src2, Ty);
414 static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
415 const Type *Ty) {
416 GenericValue Dest;
417 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
418 return executeFCMP_OGT(Src1, Src2, Ty);
421 static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
422 const Type *Ty) {
423 GenericValue Dest;
424 if (Ty->isFloatTy())
425 Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
426 Src2.FloatVal == Src2.FloatVal));
427 else
428 Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
429 Src2.DoubleVal == Src2.DoubleVal));
430 return Dest;
433 static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
434 const Type *Ty) {
435 GenericValue Dest;
436 if (Ty->isFloatTy())
437 Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
438 Src2.FloatVal != Src2.FloatVal));
439 else
440 Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
441 Src2.DoubleVal != Src2.DoubleVal));
442 return Dest;
445 void Interpreter::visitFCmpInst(FCmpInst &I) {
446 ExecutionContext &SF = ECStack.back();
447 const Type *Ty = I.getOperand(0)->getType();
448 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
449 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
450 GenericValue R; // Result
452 switch (I.getPredicate()) {
453 case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
454 case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break;
455 case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
456 case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
457 case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
458 case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
459 case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
460 case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
461 case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
462 case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
463 case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
464 case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
465 case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
466 case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
467 case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
468 case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
469 default:
470 dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
471 llvm_unreachable(0);
474 SetValue(&I, R, SF);
477 static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
478 GenericValue Src2, const Type *Ty) {
479 GenericValue Result;
480 switch (predicate) {
481 case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
482 case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
483 case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
484 case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
485 case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
486 case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
487 case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
488 case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
489 case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
490 case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
491 case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
492 case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
493 case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
494 case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
495 case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
496 case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
497 case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
498 case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
499 case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
500 case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
501 case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
502 case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
503 case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
504 case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
505 case FCmpInst::FCMP_FALSE: {
506 GenericValue Result;
507 Result.IntVal = APInt(1, false);
508 return Result;
510 case FCmpInst::FCMP_TRUE: {
511 GenericValue Result;
512 Result.IntVal = APInt(1, true);
513 return Result;
515 default:
516 dbgs() << "Unhandled Cmp predicate\n";
517 llvm_unreachable(0);
521 void Interpreter::visitBinaryOperator(BinaryOperator &I) {
522 ExecutionContext &SF = ECStack.back();
523 const Type *Ty = I.getOperand(0)->getType();
524 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
525 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
526 GenericValue R; // Result
528 switch (I.getOpcode()) {
529 case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
530 case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
531 case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
532 case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
533 case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
534 case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
535 case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
536 case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
537 case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
538 case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
539 case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
540 case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
541 case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
542 case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
543 case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
544 default:
545 dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
546 llvm_unreachable(0);
549 SetValue(&I, R, SF);
552 static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
553 GenericValue Src3) {
554 return Src1.IntVal == 0 ? Src3 : Src2;
557 void Interpreter::visitSelectInst(SelectInst &I) {
558 ExecutionContext &SF = ECStack.back();
559 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
560 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
561 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
562 GenericValue R = executeSelectInst(Src1, Src2, Src3);
563 SetValue(&I, R, SF);
567 //===----------------------------------------------------------------------===//
568 // Terminator Instruction Implementations
569 //===----------------------------------------------------------------------===//
571 void Interpreter::exitCalled(GenericValue GV) {
572 // runAtExitHandlers() assumes there are no stack frames, but
573 // if exit() was called, then it had a stack frame. Blow away
574 // the stack before interpreting atexit handlers.
575 ECStack.clear();
576 runAtExitHandlers();
577 exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
580 /// Pop the last stack frame off of ECStack and then copy the result
581 /// back into the result variable if we are not returning void. The
582 /// result variable may be the ExitValue, or the Value of the calling
583 /// CallInst if there was a previous stack frame. This method may
584 /// invalidate any ECStack iterators you have. This method also takes
585 /// care of switching to the normal destination BB, if we are returning
586 /// from an invoke.
588 void Interpreter::popStackAndReturnValueToCaller(const Type *RetTy,
589 GenericValue Result) {
590 // Pop the current stack frame.
591 ECStack.pop_back();
593 if (ECStack.empty()) { // Finished main. Put result into exit code...
594 if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
595 ExitValue = Result; // Capture the exit value of the program
596 } else {
597 memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
599 } else {
600 // If we have a previous stack frame, and we have a previous call,
601 // fill in the return value...
602 ExecutionContext &CallingSF = ECStack.back();
603 if (Instruction *I = CallingSF.Caller.getInstruction()) {
604 // Save result...
605 if (!CallingSF.Caller.getType()->isVoidTy())
606 SetValue(I, Result, CallingSF);
607 if (InvokeInst *II = dyn_cast<InvokeInst> (I))
608 SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
609 CallingSF.Caller = CallSite(); // We returned from the call...
614 void Interpreter::visitReturnInst(ReturnInst &I) {
615 ExecutionContext &SF = ECStack.back();
616 const Type *RetTy = Type::getVoidTy(I.getContext());
617 GenericValue Result;
619 // Save away the return value... (if we are not 'ret void')
620 if (I.getNumOperands()) {
621 RetTy = I.getReturnValue()->getType();
622 Result = getOperandValue(I.getReturnValue(), SF);
625 popStackAndReturnValueToCaller(RetTy, Result);
628 void Interpreter::visitUnwindInst(UnwindInst &I) {
629 // Unwind stack
630 Instruction *Inst;
631 do {
632 ECStack.pop_back();
633 if (ECStack.empty())
634 report_fatal_error("Empty stack during unwind!");
635 Inst = ECStack.back().Caller.getInstruction();
636 } while (!(Inst && isa<InvokeInst>(Inst)));
638 // Return from invoke
639 ExecutionContext &InvokingSF = ECStack.back();
640 InvokingSF.Caller = CallSite();
642 // Go to exceptional destination BB of invoke instruction
643 SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF);
646 void Interpreter::visitUnreachableInst(UnreachableInst &I) {
647 report_fatal_error("Program executed an 'unreachable' instruction!");
650 void Interpreter::visitBranchInst(BranchInst &I) {
651 ExecutionContext &SF = ECStack.back();
652 BasicBlock *Dest;
654 Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
655 if (!I.isUnconditional()) {
656 Value *Cond = I.getCondition();
657 if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
658 Dest = I.getSuccessor(1);
660 SwitchToNewBasicBlock(Dest, SF);
663 void Interpreter::visitSwitchInst(SwitchInst &I) {
664 ExecutionContext &SF = ECStack.back();
665 GenericValue CondVal = getOperandValue(I.getOperand(0), SF);
666 const Type *ElTy = I.getOperand(0)->getType();
668 // Check to see if any of the cases match...
669 BasicBlock *Dest = 0;
670 for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2)
671 if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy)
672 .IntVal != 0) {
673 Dest = cast<BasicBlock>(I.getOperand(i+1));
674 break;
677 if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
678 SwitchToNewBasicBlock(Dest, SF);
681 void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
682 ExecutionContext &SF = ECStack.back();
683 void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
684 SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
688 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
689 // This function handles the actual updating of block and instruction iterators
690 // as well as execution of all of the PHI nodes in the destination block.
692 // This method does this because all of the PHI nodes must be executed
693 // atomically, reading their inputs before any of the results are updated. Not
694 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
695 // their inputs. If the input PHI node is updated before it is read, incorrect
696 // results can happen. Thus we use a two phase approach.
698 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
699 BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
700 SF.CurBB = Dest; // Update CurBB to branch destination
701 SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
703 if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
705 // Loop over all of the PHI nodes in the current block, reading their inputs.
706 std::vector<GenericValue> ResultValues;
708 for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
709 // Search for the value corresponding to this previous bb...
710 int i = PN->getBasicBlockIndex(PrevBB);
711 assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
712 Value *IncomingValue = PN->getIncomingValue(i);
714 // Save the incoming value for this PHI node...
715 ResultValues.push_back(getOperandValue(IncomingValue, SF));
718 // Now loop over all of the PHI nodes setting their values...
719 SF.CurInst = SF.CurBB->begin();
720 for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
721 PHINode *PN = cast<PHINode>(SF.CurInst);
722 SetValue(PN, ResultValues[i], SF);
726 //===----------------------------------------------------------------------===//
727 // Memory Instruction Implementations
728 //===----------------------------------------------------------------------===//
730 void Interpreter::visitAllocaInst(AllocaInst &I) {
731 ExecutionContext &SF = ECStack.back();
733 const Type *Ty = I.getType()->getElementType(); // Type to be allocated
735 // Get the number of elements being allocated by the array...
736 unsigned NumElements =
737 getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
739 unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
741 // Avoid malloc-ing zero bytes, use max()...
742 unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
744 // Allocate enough memory to hold the type...
745 void *Memory = malloc(MemToAlloc);
747 DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
748 << NumElements << " (Total: " << MemToAlloc << ") at "
749 << uintptr_t(Memory) << '\n');
751 GenericValue Result = PTOGV(Memory);
752 assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
753 SetValue(&I, Result, SF);
755 if (I.getOpcode() == Instruction::Alloca)
756 ECStack.back().Allocas.add(Memory);
759 // getElementOffset - The workhorse for getelementptr.
761 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
762 gep_type_iterator E,
763 ExecutionContext &SF) {
764 assert(Ptr->getType()->isPointerTy() &&
765 "Cannot getElementOffset of a nonpointer type!");
767 uint64_t Total = 0;
769 for (; I != E; ++I) {
770 if (const StructType *STy = dyn_cast<StructType>(*I)) {
771 const StructLayout *SLO = TD.getStructLayout(STy);
773 const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
774 unsigned Index = unsigned(CPU->getZExtValue());
776 Total += SLO->getElementOffset(Index);
777 } else {
778 const SequentialType *ST = cast<SequentialType>(*I);
779 // Get the index number for the array... which must be long type...
780 GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
782 int64_t Idx;
783 unsigned BitWidth =
784 cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
785 if (BitWidth == 32)
786 Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
787 else {
788 assert(BitWidth == 64 && "Invalid index type for getelementptr");
789 Idx = (int64_t)IdxGV.IntVal.getZExtValue();
791 Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
795 GenericValue Result;
796 Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
797 DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
798 return Result;
801 void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
802 ExecutionContext &SF = ECStack.back();
803 SetValue(&I, executeGEPOperation(I.getPointerOperand(),
804 gep_type_begin(I), gep_type_end(I), SF), SF);
807 void Interpreter::visitLoadInst(LoadInst &I) {
808 ExecutionContext &SF = ECStack.back();
809 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
810 GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
811 GenericValue Result;
812 LoadValueFromMemory(Result, Ptr, I.getType());
813 SetValue(&I, Result, SF);
814 if (I.isVolatile() && PrintVolatile)
815 dbgs() << "Volatile load " << I;
818 void Interpreter::visitStoreInst(StoreInst &I) {
819 ExecutionContext &SF = ECStack.back();
820 GenericValue Val = getOperandValue(I.getOperand(0), SF);
821 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
822 StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
823 I.getOperand(0)->getType());
824 if (I.isVolatile() && PrintVolatile)
825 dbgs() << "Volatile store: " << I;
828 //===----------------------------------------------------------------------===//
829 // Miscellaneous Instruction Implementations
830 //===----------------------------------------------------------------------===//
832 void Interpreter::visitCallSite(CallSite CS) {
833 ExecutionContext &SF = ECStack.back();
835 // Check to see if this is an intrinsic function call...
836 Function *F = CS.getCalledFunction();
837 if (F && F->isDeclaration())
838 switch (F->getIntrinsicID()) {
839 case Intrinsic::not_intrinsic:
840 break;
841 case Intrinsic::vastart: { // va_start
842 GenericValue ArgIndex;
843 ArgIndex.UIntPairVal.first = ECStack.size() - 1;
844 ArgIndex.UIntPairVal.second = 0;
845 SetValue(CS.getInstruction(), ArgIndex, SF);
846 return;
848 case Intrinsic::vaend: // va_end is a noop for the interpreter
849 return;
850 case Intrinsic::vacopy: // va_copy: dest = src
851 SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
852 return;
853 default:
854 // If it is an unknown intrinsic function, use the intrinsic lowering
855 // class to transform it into hopefully tasty LLVM code.
857 BasicBlock::iterator me(CS.getInstruction());
858 BasicBlock *Parent = CS.getInstruction()->getParent();
859 bool atBegin(Parent->begin() == me);
860 if (!atBegin)
861 --me;
862 IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
864 // Restore the CurInst pointer to the first instruction newly inserted, if
865 // any.
866 if (atBegin) {
867 SF.CurInst = Parent->begin();
868 } else {
869 SF.CurInst = me;
870 ++SF.CurInst;
872 return;
876 SF.Caller = CS;
877 std::vector<GenericValue> ArgVals;
878 const unsigned NumArgs = SF.Caller.arg_size();
879 ArgVals.reserve(NumArgs);
880 uint16_t pNum = 1;
881 for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
882 e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
883 Value *V = *i;
884 ArgVals.push_back(getOperandValue(V, SF));
887 // To handle indirect calls, we must get the pointer value from the argument
888 // and treat it as a function pointer.
889 GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
890 callFunction((Function*)GVTOP(SRC), ArgVals);
893 void Interpreter::visitShl(BinaryOperator &I) {
894 ExecutionContext &SF = ECStack.back();
895 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
896 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
897 GenericValue Dest;
898 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
899 Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue());
900 else
901 Dest.IntVal = Src1.IntVal;
903 SetValue(&I, Dest, SF);
906 void Interpreter::visitLShr(BinaryOperator &I) {
907 ExecutionContext &SF = ECStack.back();
908 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
909 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
910 GenericValue Dest;
911 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
912 Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue());
913 else
914 Dest.IntVal = Src1.IntVal;
916 SetValue(&I, Dest, SF);
919 void Interpreter::visitAShr(BinaryOperator &I) {
920 ExecutionContext &SF = ECStack.back();
921 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
922 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
923 GenericValue Dest;
924 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
925 Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue());
926 else
927 Dest.IntVal = Src1.IntVal;
929 SetValue(&I, Dest, SF);
932 GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy,
933 ExecutionContext &SF) {
934 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
935 const IntegerType *DITy = cast<IntegerType>(DstTy);
936 unsigned DBitWidth = DITy->getBitWidth();
937 Dest.IntVal = Src.IntVal.trunc(DBitWidth);
938 return Dest;
941 GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy,
942 ExecutionContext &SF) {
943 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
944 const IntegerType *DITy = cast<IntegerType>(DstTy);
945 unsigned DBitWidth = DITy->getBitWidth();
946 Dest.IntVal = Src.IntVal.sext(DBitWidth);
947 return Dest;
950 GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy,
951 ExecutionContext &SF) {
952 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
953 const IntegerType *DITy = cast<IntegerType>(DstTy);
954 unsigned DBitWidth = DITy->getBitWidth();
955 Dest.IntVal = Src.IntVal.zext(DBitWidth);
956 return Dest;
959 GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy,
960 ExecutionContext &SF) {
961 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
962 assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
963 "Invalid FPTrunc instruction");
964 Dest.FloatVal = (float) Src.DoubleVal;
965 return Dest;
968 GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy,
969 ExecutionContext &SF) {
970 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
971 assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
972 "Invalid FPTrunc instruction");
973 Dest.DoubleVal = (double) Src.FloatVal;
974 return Dest;
977 GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy,
978 ExecutionContext &SF) {
979 const Type *SrcTy = SrcVal->getType();
980 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
981 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
982 assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
984 if (SrcTy->getTypeID() == Type::FloatTyID)
985 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
986 else
987 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
988 return Dest;
991 GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy,
992 ExecutionContext &SF) {
993 const Type *SrcTy = SrcVal->getType();
994 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
995 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
996 assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
998 if (SrcTy->getTypeID() == Type::FloatTyID)
999 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1000 else
1001 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1002 return Dest;
1005 GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy,
1006 ExecutionContext &SF) {
1007 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1008 assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1010 if (DstTy->getTypeID() == Type::FloatTyID)
1011 Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
1012 else
1013 Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
1014 return Dest;
1017 GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy,
1018 ExecutionContext &SF) {
1019 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1020 assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1022 if (DstTy->getTypeID() == Type::FloatTyID)
1023 Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
1024 else
1025 Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
1026 return Dest;
1030 GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy,
1031 ExecutionContext &SF) {
1032 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1033 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1034 assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1036 Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1037 return Dest;
1040 GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy,
1041 ExecutionContext &SF) {
1042 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1043 assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1045 uint32_t PtrSize = TD.getPointerSizeInBits();
1046 if (PtrSize != Src.IntVal.getBitWidth())
1047 Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1049 Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
1050 return Dest;
1053 GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy,
1054 ExecutionContext &SF) {
1056 const Type *SrcTy = SrcVal->getType();
1057 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1058 if (DstTy->isPointerTy()) {
1059 assert(SrcTy->isPointerTy() && "Invalid BitCast");
1060 Dest.PointerVal = Src.PointerVal;
1061 } else if (DstTy->isIntegerTy()) {
1062 if (SrcTy->isFloatTy()) {
1063 Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1064 } else if (SrcTy->isDoubleTy()) {
1065 Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1066 } else if (SrcTy->isIntegerTy()) {
1067 Dest.IntVal = Src.IntVal;
1068 } else
1069 llvm_unreachable("Invalid BitCast");
1070 } else if (DstTy->isFloatTy()) {
1071 if (SrcTy->isIntegerTy())
1072 Dest.FloatVal = Src.IntVal.bitsToFloat();
1073 else
1074 Dest.FloatVal = Src.FloatVal;
1075 } else if (DstTy->isDoubleTy()) {
1076 if (SrcTy->isIntegerTy())
1077 Dest.DoubleVal = Src.IntVal.bitsToDouble();
1078 else
1079 Dest.DoubleVal = Src.DoubleVal;
1080 } else
1081 llvm_unreachable("Invalid Bitcast");
1083 return Dest;
1086 void Interpreter::visitTruncInst(TruncInst &I) {
1087 ExecutionContext &SF = ECStack.back();
1088 SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1091 void Interpreter::visitSExtInst(SExtInst &I) {
1092 ExecutionContext &SF = ECStack.back();
1093 SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1096 void Interpreter::visitZExtInst(ZExtInst &I) {
1097 ExecutionContext &SF = ECStack.back();
1098 SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1101 void Interpreter::visitFPTruncInst(FPTruncInst &I) {
1102 ExecutionContext &SF = ECStack.back();
1103 SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1106 void Interpreter::visitFPExtInst(FPExtInst &I) {
1107 ExecutionContext &SF = ECStack.back();
1108 SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1111 void Interpreter::visitUIToFPInst(UIToFPInst &I) {
1112 ExecutionContext &SF = ECStack.back();
1113 SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1116 void Interpreter::visitSIToFPInst(SIToFPInst &I) {
1117 ExecutionContext &SF = ECStack.back();
1118 SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1121 void Interpreter::visitFPToUIInst(FPToUIInst &I) {
1122 ExecutionContext &SF = ECStack.back();
1123 SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1126 void Interpreter::visitFPToSIInst(FPToSIInst &I) {
1127 ExecutionContext &SF = ECStack.back();
1128 SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1131 void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
1132 ExecutionContext &SF = ECStack.back();
1133 SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1136 void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
1137 ExecutionContext &SF = ECStack.back();
1138 SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1141 void Interpreter::visitBitCastInst(BitCastInst &I) {
1142 ExecutionContext &SF = ECStack.back();
1143 SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1146 #define IMPLEMENT_VAARG(TY) \
1147 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1149 void Interpreter::visitVAArgInst(VAArgInst &I) {
1150 ExecutionContext &SF = ECStack.back();
1152 // Get the incoming valist parameter. LLI treats the valist as a
1153 // (ec-stack-depth var-arg-index) pair.
1154 GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1155 GenericValue Dest;
1156 GenericValue Src = ECStack[VAList.UIntPairVal.first]
1157 .VarArgs[VAList.UIntPairVal.second];
1158 const Type *Ty = I.getType();
1159 switch (Ty->getTypeID()) {
1160 case Type::IntegerTyID: Dest.IntVal = Src.IntVal;
1161 IMPLEMENT_VAARG(Pointer);
1162 IMPLEMENT_VAARG(Float);
1163 IMPLEMENT_VAARG(Double);
1164 default:
1165 dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1166 llvm_unreachable(0);
1169 // Set the Value of this Instruction.
1170 SetValue(&I, Dest, SF);
1172 // Move the pointer to the next vararg.
1173 ++VAList.UIntPairVal.second;
1176 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
1177 ExecutionContext &SF) {
1178 switch (CE->getOpcode()) {
1179 case Instruction::Trunc:
1180 return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
1181 case Instruction::ZExt:
1182 return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
1183 case Instruction::SExt:
1184 return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
1185 case Instruction::FPTrunc:
1186 return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
1187 case Instruction::FPExt:
1188 return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
1189 case Instruction::UIToFP:
1190 return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
1191 case Instruction::SIToFP:
1192 return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
1193 case Instruction::FPToUI:
1194 return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
1195 case Instruction::FPToSI:
1196 return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
1197 case Instruction::PtrToInt:
1198 return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
1199 case Instruction::IntToPtr:
1200 return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
1201 case Instruction::BitCast:
1202 return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
1203 case Instruction::GetElementPtr:
1204 return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
1205 gep_type_end(CE), SF);
1206 case Instruction::FCmp:
1207 case Instruction::ICmp:
1208 return executeCmpInst(CE->getPredicate(),
1209 getOperandValue(CE->getOperand(0), SF),
1210 getOperandValue(CE->getOperand(1), SF),
1211 CE->getOperand(0)->getType());
1212 case Instruction::Select:
1213 return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
1214 getOperandValue(CE->getOperand(1), SF),
1215 getOperandValue(CE->getOperand(2), SF));
1216 default :
1217 break;
1220 // The cases below here require a GenericValue parameter for the result
1221 // so we initialize one, compute it and then return it.
1222 GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
1223 GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
1224 GenericValue Dest;
1225 const Type * Ty = CE->getOperand(0)->getType();
1226 switch (CE->getOpcode()) {
1227 case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
1228 case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
1229 case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
1230 case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
1231 case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
1232 case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
1233 case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
1234 case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
1235 case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
1236 case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
1237 case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
1238 case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
1239 case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
1240 case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
1241 case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
1242 case Instruction::Shl:
1243 Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
1244 break;
1245 case Instruction::LShr:
1246 Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
1247 break;
1248 case Instruction::AShr:
1249 Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
1250 break;
1251 default:
1252 dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
1253 llvm_unreachable(0);
1254 return GenericValue();
1256 return Dest;
1259 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
1260 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1261 return getConstantExprValue(CE, SF);
1262 } else if (Constant *CPV = dyn_cast<Constant>(V)) {
1263 return getConstantValue(CPV);
1264 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1265 return PTOGV(getPointerToGlobal(GV));
1266 } else {
1267 return SF.Values[V];
1271 //===----------------------------------------------------------------------===//
1272 // Dispatch and Execution Code
1273 //===----------------------------------------------------------------------===//
1275 //===----------------------------------------------------------------------===//
1276 // callFunction - Execute the specified function...
1278 void Interpreter::callFunction(Function *F,
1279 const std::vector<GenericValue> &ArgVals) {
1280 assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
1281 ECStack.back().Caller.arg_size() == ArgVals.size()) &&
1282 "Incorrect number of arguments passed into function call!");
1283 // Make a new stack frame... and fill it in.
1284 ECStack.push_back(ExecutionContext());
1285 ExecutionContext &StackFrame = ECStack.back();
1286 StackFrame.CurFunction = F;
1288 // Special handling for external functions.
1289 if (F->isDeclaration()) {
1290 GenericValue Result = callExternalFunction (F, ArgVals);
1291 // Simulate a 'ret' instruction of the appropriate type.
1292 popStackAndReturnValueToCaller (F->getReturnType (), Result);
1293 return;
1296 // Get pointers to first LLVM BB & Instruction in function.
1297 StackFrame.CurBB = F->begin();
1298 StackFrame.CurInst = StackFrame.CurBB->begin();
1300 // Run through the function arguments and initialize their values...
1301 assert((ArgVals.size() == F->arg_size() ||
1302 (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
1303 "Invalid number of values passed to function invocation!");
1305 // Handle non-varargs arguments...
1306 unsigned i = 0;
1307 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1308 AI != E; ++AI, ++i)
1309 SetValue(AI, ArgVals[i], StackFrame);
1311 // Handle varargs arguments...
1312 StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
1316 void Interpreter::run() {
1317 while (!ECStack.empty()) {
1318 // Interpret a single instruction & increment the "PC".
1319 ExecutionContext &SF = ECStack.back(); // Current stack frame
1320 Instruction &I = *SF.CurInst++; // Increment before execute
1322 // Track the number of dynamic instructions executed.
1323 ++NumDynamicInsts;
1325 DEBUG(dbgs() << "About to interpret: " << I);
1326 visit(I); // Dispatch to one of the visit* methods...
1327 #if 0
1328 // This is not safe, as visiting the instruction could lower it and free I.
1329 DEBUG(
1330 if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
1331 I.getType() != Type::VoidTy) {
1332 dbgs() << " --> ";
1333 const GenericValue &Val = SF.Values[&I];
1334 switch (I.getType()->getTypeID()) {
1335 default: llvm_unreachable("Invalid GenericValue Type");
1336 case Type::VoidTyID: dbgs() << "void"; break;
1337 case Type::FloatTyID: dbgs() << "float " << Val.FloatVal; break;
1338 case Type::DoubleTyID: dbgs() << "double " << Val.DoubleVal; break;
1339 case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal);
1340 break;
1341 case Type::IntegerTyID:
1342 dbgs() << "i" << Val.IntVal.getBitWidth() << " "
1343 << Val.IntVal.toStringUnsigned(10)
1344 << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
1345 break;
1348 #endif