Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / ExecutionEngine / Interpreter / ExternalFunctions.cpp
blobf7e2a4df951ed1ff73377885f838da397e7050b7
1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains both code to deal with invoking "external" functions, but
11 // also contains code that implements "exported" external functions.
13 // There are currently two mechanisms for handling external functions in the
14 // Interpreter. The first is to implement lle_* wrapper functions that are
15 // specific to well-known library functions which manually translate the
16 // arguments from GenericValues and make the call. If such a wrapper does
17 // not exist, and libffi is available, then the Interpreter will attempt to
18 // invoke the function using libffi, after finding its address.
20 //===----------------------------------------------------------------------===//
22 #include "Interpreter.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/Module.h"
25 #include "llvm/Config/config.h" // Detect libffi
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/DynamicLibrary.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Support/ManagedStatic.h"
30 #include "llvm/Support/Mutex.h"
31 #include <csignal>
32 #include <cstdio>
33 #include <map>
34 #include <cmath>
35 #include <cstring>
37 #ifdef HAVE_FFI_CALL
38 #ifdef HAVE_FFI_H
39 #include <ffi.h>
40 #define USE_LIBFFI
41 #elif HAVE_FFI_FFI_H
42 #include <ffi/ffi.h>
43 #define USE_LIBFFI
44 #endif
45 #endif
47 using namespace llvm;
49 static ManagedStatic<sys::Mutex> FunctionsLock;
51 typedef GenericValue (*ExFunc)(const FunctionType *,
52 const std::vector<GenericValue> &);
53 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
54 static std::map<std::string, ExFunc> FuncNames;
56 #ifdef USE_LIBFFI
57 typedef void (*RawFunc)();
58 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
59 #endif
61 static Interpreter *TheInterpreter;
63 static char getTypeID(const Type *Ty) {
64 switch (Ty->getTypeID()) {
65 case Type::VoidTyID: return 'V';
66 case Type::IntegerTyID:
67 switch (cast<IntegerType>(Ty)->getBitWidth()) {
68 case 1: return 'o';
69 case 8: return 'B';
70 case 16: return 'S';
71 case 32: return 'I';
72 case 64: return 'L';
73 default: return 'N';
75 case Type::FloatTyID: return 'F';
76 case Type::DoubleTyID: return 'D';
77 case Type::PointerTyID: return 'P';
78 case Type::FunctionTyID:return 'M';
79 case Type::StructTyID: return 'T';
80 case Type::ArrayTyID: return 'A';
81 default: return 'U';
85 // Try to find address of external function given a Function object.
86 // Please note, that interpreter doesn't know how to assemble a
87 // real call in general case (this is JIT job), that's why it assumes,
88 // that all external functions has the same (and pretty "general") signature.
89 // The typical example of such functions are "lle_X_" ones.
90 static ExFunc lookupFunction(const Function *F) {
91 // Function not found, look it up... start by figuring out what the
92 // composite function name should be.
93 std::string ExtName = "lle_";
94 const FunctionType *FT = F->getFunctionType();
95 for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
96 ExtName += getTypeID(FT->getContainedType(i));
97 ExtName + "_" + F->getNameStr();
99 sys::ScopedLock Writer(*FunctionsLock);
100 ExFunc FnPtr = FuncNames[ExtName];
101 if (FnPtr == 0)
102 FnPtr = FuncNames["lle_X_" + F->getNameStr()];
103 if (FnPtr == 0) // Try calling a generic function... if it exists...
104 FnPtr = (ExFunc)(intptr_t)
105 sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_"+F->getNameStr());
106 if (FnPtr != 0)
107 ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
108 return FnPtr;
111 #ifdef USE_LIBFFI
112 static ffi_type *ffiTypeFor(const Type *Ty) {
113 switch (Ty->getTypeID()) {
114 case Type::VoidTyID: return &ffi_type_void;
115 case Type::IntegerTyID:
116 switch (cast<IntegerType>(Ty)->getBitWidth()) {
117 case 8: return &ffi_type_sint8;
118 case 16: return &ffi_type_sint16;
119 case 32: return &ffi_type_sint32;
120 case 64: return &ffi_type_sint64;
122 case Type::FloatTyID: return &ffi_type_float;
123 case Type::DoubleTyID: return &ffi_type_double;
124 case Type::PointerTyID: return &ffi_type_pointer;
125 default: break;
127 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
128 report_fatal_error("Type could not be mapped for use with libffi.");
129 return NULL;
132 static void *ffiValueFor(const Type *Ty, const GenericValue &AV,
133 void *ArgDataPtr) {
134 switch (Ty->getTypeID()) {
135 case Type::IntegerTyID:
136 switch (cast<IntegerType>(Ty)->getBitWidth()) {
137 case 8: {
138 int8_t *I8Ptr = (int8_t *) ArgDataPtr;
139 *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
140 return ArgDataPtr;
142 case 16: {
143 int16_t *I16Ptr = (int16_t *) ArgDataPtr;
144 *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
145 return ArgDataPtr;
147 case 32: {
148 int32_t *I32Ptr = (int32_t *) ArgDataPtr;
149 *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
150 return ArgDataPtr;
152 case 64: {
153 int64_t *I64Ptr = (int64_t *) ArgDataPtr;
154 *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
155 return ArgDataPtr;
158 case Type::FloatTyID: {
159 float *FloatPtr = (float *) ArgDataPtr;
160 *FloatPtr = AV.FloatVal;
161 return ArgDataPtr;
163 case Type::DoubleTyID: {
164 double *DoublePtr = (double *) ArgDataPtr;
165 *DoublePtr = AV.DoubleVal;
166 return ArgDataPtr;
168 case Type::PointerTyID: {
169 void **PtrPtr = (void **) ArgDataPtr;
170 *PtrPtr = GVTOP(AV);
171 return ArgDataPtr;
173 default: break;
175 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
176 report_fatal_error("Type value could not be mapped for use with libffi.");
177 return NULL;
180 static bool ffiInvoke(RawFunc Fn, Function *F,
181 const std::vector<GenericValue> &ArgVals,
182 const TargetData *TD, GenericValue &Result) {
183 ffi_cif cif;
184 const FunctionType *FTy = F->getFunctionType();
185 const unsigned NumArgs = F->arg_size();
187 // TODO: We don't have type information about the remaining arguments, because
188 // this information is never passed into ExecutionEngine::runFunction().
189 if (ArgVals.size() > NumArgs && F->isVarArg()) {
190 report_fatal_error("Calling external var arg function '" + F->getName()
191 + "' is not supported by the Interpreter.");
194 unsigned ArgBytes = 0;
196 std::vector<ffi_type*> args(NumArgs);
197 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
198 A != E; ++A) {
199 const unsigned ArgNo = A->getArgNo();
200 const Type *ArgTy = FTy->getParamType(ArgNo);
201 args[ArgNo] = ffiTypeFor(ArgTy);
202 ArgBytes += TD->getTypeStoreSize(ArgTy);
205 SmallVector<uint8_t, 128> ArgData;
206 ArgData.resize(ArgBytes);
207 uint8_t *ArgDataPtr = ArgData.data();
208 SmallVector<void*, 16> values(NumArgs);
209 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
210 A != E; ++A) {
211 const unsigned ArgNo = A->getArgNo();
212 const Type *ArgTy = FTy->getParamType(ArgNo);
213 values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
214 ArgDataPtr += TD->getTypeStoreSize(ArgTy);
217 const Type *RetTy = FTy->getReturnType();
218 ffi_type *rtype = ffiTypeFor(RetTy);
220 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
221 SmallVector<uint8_t, 128> ret;
222 if (RetTy->getTypeID() != Type::VoidTyID)
223 ret.resize(TD->getTypeStoreSize(RetTy));
224 ffi_call(&cif, Fn, ret.data(), values.data());
225 switch (RetTy->getTypeID()) {
226 case Type::IntegerTyID:
227 switch (cast<IntegerType>(RetTy)->getBitWidth()) {
228 case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
229 case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
230 case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
231 case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
233 break;
234 case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break;
235 case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break;
236 case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
237 default: break;
239 return true;
242 return false;
244 #endif // USE_LIBFFI
246 GenericValue Interpreter::callExternalFunction(Function *F,
247 const std::vector<GenericValue> &ArgVals) {
248 TheInterpreter = this;
250 FunctionsLock->acquire();
252 // Do a lookup to see if the function is in our cache... this should just be a
253 // deferred annotation!
254 std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
255 if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
256 : FI->second) {
257 FunctionsLock->release();
258 return Fn(F->getFunctionType(), ArgVals);
261 #ifdef USE_LIBFFI
262 std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
263 RawFunc RawFn;
264 if (RF == RawFunctions->end()) {
265 RawFn = (RawFunc)(intptr_t)
266 sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
267 if (!RawFn)
268 RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
269 if (RawFn != 0)
270 RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
271 } else {
272 RawFn = RF->second;
275 FunctionsLock->release();
277 GenericValue Result;
278 if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result))
279 return Result;
280 #endif // USE_LIBFFI
282 if (F->getName() == "__main")
283 errs() << "Tried to execute an unknown external function: "
284 << *F->getType() << " __main\n";
285 else
286 report_fatal_error("Tried to execute an unknown external function: " +
287 F->getName());
288 #ifndef USE_LIBFFI
289 errs() << "Recompiling LLVM with --enable-libffi might help.\n";
290 #endif
291 return GenericValue();
295 //===----------------------------------------------------------------------===//
296 // Functions "exported" to the running application...
299 // Visual Studio warns about returning GenericValue in extern "C" linkage
300 #ifdef _MSC_VER
301 #pragma warning(disable : 4190)
302 #endif
304 extern "C" { // Don't add C++ manglings to llvm mangling :)
306 // void atexit(Function*)
307 GenericValue lle_X_atexit(const FunctionType *FT,
308 const std::vector<GenericValue> &Args) {
309 assert(Args.size() == 1);
310 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
311 GenericValue GV;
312 GV.IntVal = 0;
313 return GV;
316 // void exit(int)
317 GenericValue lle_X_exit(const FunctionType *FT,
318 const std::vector<GenericValue> &Args) {
319 TheInterpreter->exitCalled(Args[0]);
320 return GenericValue();
323 // void abort(void)
324 GenericValue lle_X_abort(const FunctionType *FT,
325 const std::vector<GenericValue> &Args) {
326 //FIXME: should we report or raise here?
327 //report_fatal_error("Interpreted program raised SIGABRT");
328 raise (SIGABRT);
329 return GenericValue();
332 // int sprintf(char *, const char *, ...) - a very rough implementation to make
333 // output useful.
334 GenericValue lle_X_sprintf(const FunctionType *FT,
335 const std::vector<GenericValue> &Args) {
336 char *OutputBuffer = (char *)GVTOP(Args[0]);
337 const char *FmtStr = (const char *)GVTOP(Args[1]);
338 unsigned ArgNo = 2;
340 // printf should return # chars printed. This is completely incorrect, but
341 // close enough for now.
342 GenericValue GV;
343 GV.IntVal = APInt(32, strlen(FmtStr));
344 while (1) {
345 switch (*FmtStr) {
346 case 0: return GV; // Null terminator...
347 default: // Normal nonspecial character
348 sprintf(OutputBuffer++, "%c", *FmtStr++);
349 break;
350 case '\\': { // Handle escape codes
351 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
352 FmtStr += 2; OutputBuffer += 2;
353 break;
355 case '%': { // Handle format specifiers
356 char FmtBuf[100] = "", Buffer[1000] = "";
357 char *FB = FmtBuf;
358 *FB++ = *FmtStr++;
359 char Last = *FB++ = *FmtStr++;
360 unsigned HowLong = 0;
361 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
362 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
363 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
364 Last != 'p' && Last != 's' && Last != '%') {
365 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
366 Last = *FB++ = *FmtStr++;
368 *FB = 0;
370 switch (Last) {
371 case '%':
372 memcpy(Buffer, "%", 2); break;
373 case 'c':
374 sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
375 break;
376 case 'd': case 'i':
377 case 'u': case 'o':
378 case 'x': case 'X':
379 if (HowLong >= 1) {
380 if (HowLong == 1 &&
381 TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 &&
382 sizeof(long) < sizeof(int64_t)) {
383 // Make sure we use %lld with a 64 bit argument because we might be
384 // compiling LLI on a 32 bit compiler.
385 unsigned Size = strlen(FmtBuf);
386 FmtBuf[Size] = FmtBuf[Size-1];
387 FmtBuf[Size+1] = 0;
388 FmtBuf[Size-1] = 'l';
390 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
391 } else
392 sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
393 break;
394 case 'e': case 'E': case 'g': case 'G': case 'f':
395 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
396 case 'p':
397 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
398 case 's':
399 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
400 default:
401 errs() << "<unknown printf code '" << *FmtStr << "'!>";
402 ArgNo++; break;
404 size_t Len = strlen(Buffer);
405 memcpy(OutputBuffer, Buffer, Len + 1);
406 OutputBuffer += Len;
408 break;
411 return GV;
414 // int printf(const char *, ...) - a very rough implementation to make output
415 // useful.
416 GenericValue lle_X_printf(const FunctionType *FT,
417 const std::vector<GenericValue> &Args) {
418 char Buffer[10000];
419 std::vector<GenericValue> NewArgs;
420 NewArgs.push_back(PTOGV((void*)&Buffer[0]));
421 NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
422 GenericValue GV = lle_X_sprintf(FT, NewArgs);
423 outs() << Buffer;
424 return GV;
427 // int sscanf(const char *format, ...);
428 GenericValue lle_X_sscanf(const FunctionType *FT,
429 const std::vector<GenericValue> &args) {
430 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
432 char *Args[10];
433 for (unsigned i = 0; i < args.size(); ++i)
434 Args[i] = (char*)GVTOP(args[i]);
436 GenericValue GV;
437 GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
438 Args[5], Args[6], Args[7], Args[8], Args[9]));
439 return GV;
442 // int scanf(const char *format, ...);
443 GenericValue lle_X_scanf(const FunctionType *FT,
444 const std::vector<GenericValue> &args) {
445 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
447 char *Args[10];
448 for (unsigned i = 0; i < args.size(); ++i)
449 Args[i] = (char*)GVTOP(args[i]);
451 GenericValue GV;
452 GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
453 Args[5], Args[6], Args[7], Args[8], Args[9]));
454 return GV;
457 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make
458 // output useful.
459 GenericValue lle_X_fprintf(const FunctionType *FT,
460 const std::vector<GenericValue> &Args) {
461 assert(Args.size() >= 2);
462 char Buffer[10000];
463 std::vector<GenericValue> NewArgs;
464 NewArgs.push_back(PTOGV(Buffer));
465 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
466 GenericValue GV = lle_X_sprintf(FT, NewArgs);
468 fputs(Buffer, (FILE *) GVTOP(Args[0]));
469 return GV;
472 } // End extern "C"
474 // Done with externals; turn the warning back on
475 #ifdef _MSC_VER
476 #pragma warning(default: 4190)
477 #endif
480 void Interpreter::initializeExternalFunctions() {
481 sys::ScopedLock Writer(*FunctionsLock);
482 FuncNames["lle_X_atexit"] = lle_X_atexit;
483 FuncNames["lle_X_exit"] = lle_X_exit;
484 FuncNames["lle_X_abort"] = lle_X_abort;
486 FuncNames["lle_X_printf"] = lle_X_printf;
487 FuncNames["lle_X_sprintf"] = lle_X_sprintf;
488 FuncNames["lle_X_sscanf"] = lle_X_sscanf;
489 FuncNames["lle_X_scanf"] = lle_X_scanf;
490 FuncNames["lle_X_fprintf"] = lle_X_fprintf;