1 //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This tool implements a just-in-time compiler for LLVM, allowing direct
11 // execution of LLVM bitcode in an efficient manner.
13 //===----------------------------------------------------------------------===//
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/CodeGen/JITCodeEmitter.h"
23 #include "llvm/CodeGen/MachineCodeInfo.h"
24 #include "llvm/ExecutionEngine/GenericValue.h"
25 #include "llvm/ExecutionEngine/JITEventListener.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetJITInfo.h"
29 #include "llvm/Support/Dwarf.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/ManagedStatic.h"
32 #include "llvm/Support/MutexGuard.h"
33 #include "llvm/Support/DynamicLibrary.h"
34 #include "llvm/Config/config.h"
39 // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
40 // of atexit). It passes the address of linker generated symbol __dso_handle
42 // This configuration change happened at version 5330.
43 # include <AvailabilityMacros.h>
44 # if defined(MAC_OS_X_VERSION_10_4) && \
45 ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
46 (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
47 __APPLE_CC__ >= 5330))
48 # ifndef HAVE___DSO_HANDLE
49 # define HAVE___DSO_HANDLE 1
55 extern void *__dso_handle
__attribute__ ((__visibility__ ("hidden")));
60 static struct RegisterJIT
{
61 RegisterJIT() { JIT::Register(); }
66 extern "C" void LLVMLinkInJIT() {
69 // Determine whether we can register EH tables.
70 #if (defined(__GNUC__) && !defined(__ARM_EABI__) && \
71 !defined(__USING_SJLJ_EXCEPTIONS__))
72 #define HAVE_EHTABLE_SUPPORT 1
74 #define HAVE_EHTABLE_SUPPORT 0
77 #if HAVE_EHTABLE_SUPPORT
79 // libgcc defines the __register_frame function to dynamically register new
80 // dwarf frames for exception handling. This functionality is not portable
81 // across compilers and is only provided by GCC. We use the __register_frame
82 // function here so that code generated by the JIT cooperates with the unwinding
83 // runtime of libgcc. When JITting with exception handling enable, LLVM
84 // generates dwarf frames and registers it to libgcc with __register_frame.
86 // The __register_frame function works with Linux.
88 // Unfortunately, this functionality seems to be in libgcc after the unwinding
89 // library of libgcc for darwin was written. The code for darwin overwrites the
90 // value updated by __register_frame with a value fetched with "keymgr".
91 // "keymgr" is an obsolete functionality, which should be rewritten some day.
92 // In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
93 // need a workaround in LLVM which uses the "keymgr" to dynamically modify the
94 // values of an opaque key, used by libgcc to find dwarf tables.
96 extern "C" void __register_frame(void*);
97 extern "C" void __deregister_frame(void*);
99 #if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
100 # define USE_KEYMGR 1
102 # define USE_KEYMGR 0
109 // LibgccObject - This is the structure defined in libgcc. There is no #include
110 // provided for this structure, so we also define it here. libgcc calls it
111 // "struct object". The structure is undocumented in libgcc.
112 struct LibgccObject
{
117 /// frame - Pointer to the exception table.
120 /// encoding - The encoding of the object?
123 unsigned long sorted
: 1;
124 unsigned long from_array
: 1;
125 unsigned long mixed_encoding
: 1;
126 unsigned long encoding
: 8;
127 unsigned long count
: 21;
132 /// fde_end - libgcc defines this field only if some macro is defined. We
133 /// include this field even if it may not there, to make libgcc happy.
136 /// next - At least we know it's a chained list!
137 struct LibgccObject
*next
;
140 // "kemgr" stuff. Apparently, all frame tables are stored there.
141 extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
142 extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
143 #define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */
145 /// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
146 /// probably contains all dwarf tables that are loaded.
147 struct LibgccObjectInfo
{
149 /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
151 struct LibgccObject
* seenObjects
;
153 /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
155 struct LibgccObject
* unseenObjects
;
160 /// darwin_register_frame - Since __register_frame does not work with darwin's
161 /// libgcc,we provide our own function, which "tricks" libgcc by modifying the
162 /// "Dwarf2 object list" key.
163 void DarwinRegisterFrame(void* FrameBegin
) {
165 LibgccObjectInfo
* LOI
= (struct LibgccObjectInfo
*)
166 _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST
);
167 assert(LOI
&& "This should be preallocated by the runtime");
169 // Allocate a new LibgccObject to represent this frame. Deallocation of this
170 // object may be impossible: since darwin code in libgcc was written after
171 // the ability to dynamically register frames, things may crash if we
173 struct LibgccObject
* ob
= (struct LibgccObject
*)
174 malloc(sizeof(struct LibgccObject
));
176 // Do like libgcc for the values of the field.
177 ob
->unused1
= (void *)-1;
180 ob
->frame
= FrameBegin
;
182 ob
->encoding
.b
.encoding
= llvm::dwarf::DW_EH_PE_omit
;
184 // Put the info on both places, as libgcc uses the first or the second
185 // field. Note that we rely on having two pointers here. If fde_end was a
186 // char, things would get complicated.
187 ob
->fde_end
= (char*)LOI
->unseenObjects
;
188 ob
->next
= LOI
->unseenObjects
;
190 // Update the key's unseenObjects list.
191 LOI
->unseenObjects
= ob
;
193 // Finally update the "key". Apparently, libgcc requires it.
194 _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST
,
201 #endif // HAVE_EHTABLE_SUPPORT
203 /// createJIT - This is the factory method for creating a JIT for the current
204 /// machine, it does not fall back to the interpreter. This takes ownership
206 ExecutionEngine
*JIT::createJIT(Module
*M
,
207 std::string
*ErrorStr
,
208 JITMemoryManager
*JMM
,
209 CodeGenOpt::Level OptLevel
,
212 // Try to register the program as a source of symbols to resolve against.
214 // FIXME: Don't do this here.
215 sys::DynamicLibrary::LoadLibraryPermanently(0, NULL
);
217 // If the target supports JIT code generation, create the JIT.
218 if (TargetJITInfo
*TJ
= TM
->getJITInfo()) {
219 return new JIT(M
, *TM
, *TJ
, JMM
, OptLevel
, GVsWithCode
);
222 *ErrorStr
= "target does not support JIT code generation";
228 /// This class supports the global getPointerToNamedFunction(), which allows
229 /// bugpoint or gdb users to search for a function by name without any context.
231 SmallPtrSet
<JIT
*, 1> JITs
; // Optimize for process containing just 1 JIT.
232 mutable sys::Mutex Lock
;
235 MutexGuard
guard(Lock
);
238 void Remove(JIT
*jit
) {
239 MutexGuard
guard(Lock
);
242 void *getPointerToNamedFunction(const char *Name
) const {
243 MutexGuard
guard(Lock
);
244 assert(JITs
.size() != 0 && "No Jit registered");
245 //search function in every instance of JIT
246 for (SmallPtrSet
<JIT
*, 1>::const_iterator Jit
= JITs
.begin(),
249 if (Function
*F
= (*Jit
)->FindFunctionNamed(Name
))
250 return (*Jit
)->getPointerToFunction(F
);
252 // The function is not available : fallback on the first created (will
253 // search in symbol of the current program/library)
254 return (*JITs
.begin())->getPointerToNamedFunction(Name
);
257 ManagedStatic
<JitPool
> AllJits
;
260 // getPointerToNamedFunction - This function is used as a global wrapper to
261 // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
262 // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
263 // need to resolve function(s) that are being mis-codegenerated, so we need to
264 // resolve their addresses at runtime, and this is the way to do it.
265 void *getPointerToNamedFunction(const char *Name
) {
266 return AllJits
->getPointerToNamedFunction(Name
);
270 JIT::JIT(Module
*M
, TargetMachine
&tm
, TargetJITInfo
&tji
,
271 JITMemoryManager
*JMM
, CodeGenOpt::Level OptLevel
, bool GVsWithCode
)
272 : ExecutionEngine(M
), TM(tm
), TJI(tji
), AllocateGVsWithCode(GVsWithCode
),
273 isAlreadyCodeGenerating(false) {
274 setTargetData(TM
.getTargetData());
276 jitstate
= new JITState(M
);
279 JCE
= createEmitter(*this, JMM
, TM
);
281 // Register in global list of all JITs.
285 MutexGuard
locked(lock
);
286 FunctionPassManager
&PM
= jitstate
->getPM(locked
);
287 PM
.add(new TargetData(*TM
.getTargetData()));
289 // Turn the machine code intermediate representation into bytes in memory that
291 if (TM
.addPassesToEmitMachineCode(PM
, *JCE
, OptLevel
)) {
292 report_fatal_error("Target does not support machine code emission!");
295 // Register routine for informing unwinding runtime about new EH frames
296 #if HAVE_EHTABLE_SUPPORT
298 struct LibgccObjectInfo
* LOI
= (struct LibgccObjectInfo
*)
299 _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST
);
301 // The key is created on demand, and libgcc creates it the first time an
302 // exception occurs. Since we need the key to register frames, we create
305 LOI
= (LibgccObjectInfo
*)calloc(sizeof(struct LibgccObjectInfo
), 1);
306 _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST
, LOI
);
307 InstallExceptionTableRegister(DarwinRegisterFrame
);
308 // Not sure about how to deregister on Darwin.
310 InstallExceptionTableRegister(__register_frame
);
311 InstallExceptionTableDeregister(__deregister_frame
);
313 #endif // HAVE_EHTABLE_SUPPORT
315 // Initialize passes.
316 PM
.doInitialization();
320 // Unregister all exception tables registered by this JIT.
321 DeregisterAllTables();
323 AllJits
->Remove(this);
329 /// addModule - Add a new Module to the JIT. If we previously removed the last
330 /// Module, we need re-initialize jitstate with a valid Module.
331 void JIT::addModule(Module
*M
) {
332 MutexGuard
locked(lock
);
334 if (Modules
.empty()) {
335 assert(!jitstate
&& "jitstate should be NULL if Modules vector is empty!");
337 jitstate
= new JITState(M
);
339 FunctionPassManager
&PM
= jitstate
->getPM(locked
);
340 PM
.add(new TargetData(*TM
.getTargetData()));
342 // Turn the machine code intermediate representation into bytes in memory
343 // that may be executed.
344 if (TM
.addPassesToEmitMachineCode(PM
, *JCE
, CodeGenOpt::Default
)) {
345 report_fatal_error("Target does not support machine code emission!");
348 // Initialize passes.
349 PM
.doInitialization();
352 ExecutionEngine::addModule(M
);
355 /// removeModule - If we are removing the last Module, invalidate the jitstate
356 /// since the PassManager it contains references a released Module.
357 bool JIT::removeModule(Module
*M
) {
358 bool result
= ExecutionEngine::removeModule(M
);
360 MutexGuard
locked(lock
);
362 if (jitstate
->getModule() == M
) {
367 if (!jitstate
&& !Modules
.empty()) {
368 jitstate
= new JITState(Modules
[0]);
370 FunctionPassManager
&PM
= jitstate
->getPM(locked
);
371 PM
.add(new TargetData(*TM
.getTargetData()));
373 // Turn the machine code intermediate representation into bytes in memory
374 // that may be executed.
375 if (TM
.addPassesToEmitMachineCode(PM
, *JCE
, CodeGenOpt::Default
)) {
376 report_fatal_error("Target does not support machine code emission!");
379 // Initialize passes.
380 PM
.doInitialization();
385 /// run - Start execution with the specified function and arguments.
387 GenericValue
JIT::runFunction(Function
*F
,
388 const std::vector
<GenericValue
> &ArgValues
) {
389 assert(F
&& "Function *F was null at entry to run()");
391 void *FPtr
= getPointerToFunction(F
);
392 assert(FPtr
&& "Pointer to fn's code was null after getPointerToFunction");
393 const FunctionType
*FTy
= F
->getFunctionType();
394 const Type
*RetTy
= FTy
->getReturnType();
396 assert((FTy
->getNumParams() == ArgValues
.size() ||
397 (FTy
->isVarArg() && FTy
->getNumParams() <= ArgValues
.size())) &&
398 "Wrong number of arguments passed into function!");
399 assert(FTy
->getNumParams() == ArgValues
.size() &&
400 "This doesn't support passing arguments through varargs (yet)!");
402 // Handle some common cases first. These cases correspond to common `main'
404 if (RetTy
->isIntegerTy(32) || RetTy
->isVoidTy()) {
405 switch (ArgValues
.size()) {
407 if (FTy
->getParamType(0)->isIntegerTy(32) &&
408 FTy
->getParamType(1)->isPointerTy() &&
409 FTy
->getParamType(2)->isPointerTy()) {
410 int (*PF
)(int, char **, const char **) =
411 (int(*)(int, char **, const char **))(intptr_t)FPtr
;
413 // Call the function.
415 rv
.IntVal
= APInt(32, PF(ArgValues
[0].IntVal
.getZExtValue(),
416 (char **)GVTOP(ArgValues
[1]),
417 (const char **)GVTOP(ArgValues
[2])));
422 if (FTy
->getParamType(0)->isIntegerTy(32) &&
423 FTy
->getParamType(1)->isPointerTy()) {
424 int (*PF
)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr
;
426 // Call the function.
428 rv
.IntVal
= APInt(32, PF(ArgValues
[0].IntVal
.getZExtValue(),
429 (char **)GVTOP(ArgValues
[1])));
434 if (FTy
->getNumParams() == 1 &&
435 FTy
->getParamType(0)->isIntegerTy(32)) {
437 int (*PF
)(int) = (int(*)(int))(intptr_t)FPtr
;
438 rv
.IntVal
= APInt(32, PF(ArgValues
[0].IntVal
.getZExtValue()));
445 // Handle cases where no arguments are passed first.
446 if (ArgValues
.empty()) {
448 switch (RetTy
->getTypeID()) {
449 default: llvm_unreachable("Unknown return type for function call!");
450 case Type::IntegerTyID
: {
451 unsigned BitWidth
= cast
<IntegerType
>(RetTy
)->getBitWidth();
453 rv
.IntVal
= APInt(BitWidth
, ((bool(*)())(intptr_t)FPtr
)());
454 else if (BitWidth
<= 8)
455 rv
.IntVal
= APInt(BitWidth
, ((char(*)())(intptr_t)FPtr
)());
456 else if (BitWidth
<= 16)
457 rv
.IntVal
= APInt(BitWidth
, ((short(*)())(intptr_t)FPtr
)());
458 else if (BitWidth
<= 32)
459 rv
.IntVal
= APInt(BitWidth
, ((int(*)())(intptr_t)FPtr
)());
460 else if (BitWidth
<= 64)
461 rv
.IntVal
= APInt(BitWidth
, ((int64_t(*)())(intptr_t)FPtr
)());
463 llvm_unreachable("Integer types > 64 bits not supported");
467 rv
.IntVal
= APInt(32, ((int(*)())(intptr_t)FPtr
)());
469 case Type::FloatTyID
:
470 rv
.FloatVal
= ((float(*)())(intptr_t)FPtr
)();
472 case Type::DoubleTyID
:
473 rv
.DoubleVal
= ((double(*)())(intptr_t)FPtr
)();
475 case Type::X86_FP80TyID
:
476 case Type::FP128TyID
:
477 case Type::PPC_FP128TyID
:
478 llvm_unreachable("long double not supported yet");
480 case Type::PointerTyID
:
481 return PTOGV(((void*(*)())(intptr_t)FPtr
)());
485 // Okay, this is not one of our quick and easy cases. Because we don't have a
486 // full FFI, we have to codegen a nullary stub function that just calls the
487 // function we are interested in, passing in constants for all of the
488 // arguments. Make this function and return.
490 // First, create the function.
491 FunctionType
*STy
=FunctionType::get(RetTy
, false);
492 Function
*Stub
= Function::Create(STy
, Function::InternalLinkage
, "",
495 // Insert a basic block.
496 BasicBlock
*StubBB
= BasicBlock::Create(F
->getContext(), "", Stub
);
498 // Convert all of the GenericValue arguments over to constants. Note that we
499 // currently don't support varargs.
500 SmallVector
<Value
*, 8> Args
;
501 for (unsigned i
= 0, e
= ArgValues
.size(); i
!= e
; ++i
) {
503 const Type
*ArgTy
= FTy
->getParamType(i
);
504 const GenericValue
&AV
= ArgValues
[i
];
505 switch (ArgTy
->getTypeID()) {
506 default: llvm_unreachable("Unknown argument type for function call!");
507 case Type::IntegerTyID
:
508 C
= ConstantInt::get(F
->getContext(), AV
.IntVal
);
510 case Type::FloatTyID
:
511 C
= ConstantFP::get(F
->getContext(), APFloat(AV
.FloatVal
));
513 case Type::DoubleTyID
:
514 C
= ConstantFP::get(F
->getContext(), APFloat(AV
.DoubleVal
));
516 case Type::PPC_FP128TyID
:
517 case Type::X86_FP80TyID
:
518 case Type::FP128TyID
:
519 C
= ConstantFP::get(F
->getContext(), APFloat(AV
.IntVal
));
521 case Type::PointerTyID
:
522 void *ArgPtr
= GVTOP(AV
);
523 if (sizeof(void*) == 4)
524 C
= ConstantInt::get(Type::getInt32Ty(F
->getContext()),
525 (int)(intptr_t)ArgPtr
);
527 C
= ConstantInt::get(Type::getInt64Ty(F
->getContext()),
529 // Cast the integer to pointer
530 C
= ConstantExpr::getIntToPtr(C
, ArgTy
);
536 CallInst
*TheCall
= CallInst::Create(F
, Args
.begin(), Args
.end(),
538 TheCall
->setCallingConv(F
->getCallingConv());
539 TheCall
->setTailCall();
540 if (!TheCall
->getType()->isVoidTy())
541 // Return result of the call.
542 ReturnInst::Create(F
->getContext(), TheCall
, StubBB
);
544 ReturnInst::Create(F
->getContext(), StubBB
); // Just return void.
546 // Finally, call our nullary stub function.
547 GenericValue Result
= runFunction(Stub
, std::vector
<GenericValue
>());
548 // Erase it, since no other function can have a reference to it.
549 Stub
->eraseFromParent();
550 // And return the result.
554 void JIT::RegisterJITEventListener(JITEventListener
*L
) {
557 MutexGuard
locked(lock
);
558 EventListeners
.push_back(L
);
560 void JIT::UnregisterJITEventListener(JITEventListener
*L
) {
563 MutexGuard
locked(lock
);
564 std::vector
<JITEventListener
*>::reverse_iterator I
=
565 std::find(EventListeners
.rbegin(), EventListeners
.rend(), L
);
566 if (I
!= EventListeners
.rend()) {
567 std::swap(*I
, EventListeners
.back());
568 EventListeners
.pop_back();
571 void JIT::NotifyFunctionEmitted(
573 void *Code
, size_t Size
,
574 const JITEvent_EmittedFunctionDetails
&Details
) {
575 MutexGuard
locked(lock
);
576 for (unsigned I
= 0, S
= EventListeners
.size(); I
< S
; ++I
) {
577 EventListeners
[I
]->NotifyFunctionEmitted(F
, Code
, Size
, Details
);
581 void JIT::NotifyFreeingMachineCode(void *OldPtr
) {
582 MutexGuard
locked(lock
);
583 for (unsigned I
= 0, S
= EventListeners
.size(); I
< S
; ++I
) {
584 EventListeners
[I
]->NotifyFreeingMachineCode(OldPtr
);
588 /// runJITOnFunction - Run the FunctionPassManager full of
589 /// just-in-time compilation passes on F, hopefully filling in
590 /// GlobalAddress[F] with the address of F's machine code.
592 void JIT::runJITOnFunction(Function
*F
, MachineCodeInfo
*MCI
) {
593 MutexGuard
locked(lock
);
595 class MCIListener
: public JITEventListener
{
596 MachineCodeInfo
*const MCI
;
598 MCIListener(MachineCodeInfo
*mci
) : MCI(mci
) {}
599 virtual void NotifyFunctionEmitted(const Function
&,
600 void *Code
, size_t Size
,
601 const EmittedFunctionDetails
&) {
602 MCI
->setAddress(Code
);
606 MCIListener
MCIL(MCI
);
608 RegisterJITEventListener(&MCIL
);
610 runJITOnFunctionUnlocked(F
, locked
);
613 UnregisterJITEventListener(&MCIL
);
616 void JIT::runJITOnFunctionUnlocked(Function
*F
, const MutexGuard
&locked
) {
617 assert(!isAlreadyCodeGenerating
&& "Error: Recursive compilation detected!");
619 jitTheFunction(F
, locked
);
621 // If the function referred to another function that had not yet been
622 // read from bitcode, and we are jitting non-lazily, emit it now.
623 while (!jitstate
->getPendingFunctions(locked
).empty()) {
624 Function
*PF
= jitstate
->getPendingFunctions(locked
).back();
625 jitstate
->getPendingFunctions(locked
).pop_back();
627 assert(!PF
->hasAvailableExternallyLinkage() &&
628 "Externally-defined function should not be in pending list.");
630 jitTheFunction(PF
, locked
);
632 // Now that the function has been jitted, ask the JITEmitter to rewrite
633 // the stub with real address of the function.
634 updateFunctionStub(PF
);
638 void JIT::jitTheFunction(Function
*F
, const MutexGuard
&locked
) {
639 isAlreadyCodeGenerating
= true;
640 jitstate
->getPM(locked
).run(*F
);
641 isAlreadyCodeGenerating
= false;
643 // clear basic block addresses after this function is done
644 getBasicBlockAddressMap(locked
).clear();
647 /// getPointerToFunction - This method is used to get the address of the
648 /// specified function, compiling it if necessary.
650 void *JIT::getPointerToFunction(Function
*F
) {
652 if (void *Addr
= getPointerToGlobalIfAvailable(F
))
653 return Addr
; // Check if function already code gen'd
655 MutexGuard
locked(lock
);
657 // Now that this thread owns the lock, make sure we read in the function if it
658 // exists in this Module.
659 std::string ErrorMsg
;
660 if (F
->Materialize(&ErrorMsg
)) {
661 report_fatal_error("Error reading function '" + F
->getName()+
662 "' from bitcode file: " + ErrorMsg
);
665 // ... and check if another thread has already code gen'd the function.
666 if (void *Addr
= getPointerToGlobalIfAvailable(F
))
669 if (F
->isDeclaration() || F
->hasAvailableExternallyLinkage()) {
670 bool AbortOnFailure
= !F
->hasExternalWeakLinkage();
671 void *Addr
= getPointerToNamedFunction(F
->getName(), AbortOnFailure
);
672 addGlobalMapping(F
, Addr
);
676 runJITOnFunctionUnlocked(F
, locked
);
678 void *Addr
= getPointerToGlobalIfAvailable(F
);
679 assert(Addr
&& "Code generation didn't add function to GlobalAddress table!");
683 void JIT::addPointerToBasicBlock(const BasicBlock
*BB
, void *Addr
) {
684 MutexGuard
locked(lock
);
686 BasicBlockAddressMapTy::iterator I
=
687 getBasicBlockAddressMap(locked
).find(BB
);
688 if (I
== getBasicBlockAddressMap(locked
).end()) {
689 getBasicBlockAddressMap(locked
)[BB
] = Addr
;
691 // ignore repeats: some BBs can be split into few MBBs?
695 void JIT::clearPointerToBasicBlock(const BasicBlock
*BB
) {
696 MutexGuard
locked(lock
);
697 getBasicBlockAddressMap(locked
).erase(BB
);
700 void *JIT::getPointerToBasicBlock(BasicBlock
*BB
) {
701 // make sure it's function is compiled by JIT
702 (void)getPointerToFunction(BB
->getParent());
704 // resolve basic block address
705 MutexGuard
locked(lock
);
707 BasicBlockAddressMapTy::iterator I
=
708 getBasicBlockAddressMap(locked
).find(BB
);
709 if (I
!= getBasicBlockAddressMap(locked
).end()) {
712 assert(0 && "JIT does not have BB address for address-of-label, was"
713 " it eliminated by optimizer?");
718 /// getOrEmitGlobalVariable - Return the address of the specified global
719 /// variable, possibly emitting it to memory if needed. This is used by the
721 void *JIT::getOrEmitGlobalVariable(const GlobalVariable
*GV
) {
722 MutexGuard
locked(lock
);
724 void *Ptr
= getPointerToGlobalIfAvailable(GV
);
727 // If the global is external, just remember the address.
728 if (GV
->isDeclaration() || GV
->hasAvailableExternallyLinkage()) {
729 #if HAVE___DSO_HANDLE
730 if (GV
->getName() == "__dso_handle")
731 return (void*)&__dso_handle
;
733 Ptr
= sys::DynamicLibrary::SearchForAddressOfSymbol(GV
->getName());
735 report_fatal_error("Could not resolve external global address: "
738 addGlobalMapping(GV
, Ptr
);
740 // If the global hasn't been emitted to memory yet, allocate space and
741 // emit it into memory.
742 Ptr
= getMemoryForGV(GV
);
743 addGlobalMapping(GV
, Ptr
);
744 EmitGlobalVariable(GV
); // Initialize the variable.
749 /// recompileAndRelinkFunction - This method is used to force a function
750 /// which has already been compiled, to be compiled again, possibly
751 /// after it has been modified. Then the entry to the old copy is overwritten
752 /// with a branch to the new copy. If there was no old copy, this acts
753 /// just like JIT::getPointerToFunction().
755 void *JIT::recompileAndRelinkFunction(Function
*F
) {
756 void *OldAddr
= getPointerToGlobalIfAvailable(F
);
758 // If it's not already compiled there is no reason to patch it up.
759 if (OldAddr
== 0) { return getPointerToFunction(F
); }
761 // Delete the old function mapping.
762 addGlobalMapping(F
, 0);
764 // Recodegen the function
767 // Update state, forward the old function to the new function.
768 void *Addr
= getPointerToGlobalIfAvailable(F
);
769 assert(Addr
&& "Code generation didn't add function to GlobalAddress table!");
770 TJI
.replaceMachineCodeForFunction(OldAddr
, Addr
);
774 /// getMemoryForGV - This method abstracts memory allocation of global
775 /// variable so that the JIT can allocate thread local variables depending
778 char* JIT::getMemoryForGV(const GlobalVariable
* GV
) {
781 // GlobalVariable's which are not "constant" will cause trouble in a server
782 // situation. It's returned in the same block of memory as code which may
784 if (isGVCompilationDisabled() && !GV
->isConstant()) {
785 report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
788 // Some applications require globals and code to live together, so they may
789 // be allocated into the same buffer, but in general globals are allocated
790 // through the memory manager which puts them near the code but not in the
792 const Type
*GlobalType
= GV
->getType()->getElementType();
793 size_t S
= getTargetData()->getTypeAllocSize(GlobalType
);
794 size_t A
= getTargetData()->getPreferredAlignment(GV
);
795 if (GV
->isThreadLocal()) {
796 MutexGuard
locked(lock
);
797 Ptr
= TJI
.allocateThreadLocalMemory(S
);
798 } else if (TJI
.allocateSeparateGVMemory()) {
800 Ptr
= (char*)malloc(S
);
802 // Allocate S+A bytes of memory, then use an aligned pointer within that
804 Ptr
= (char*)malloc(S
+A
);
805 unsigned MisAligned
= ((intptr_t)Ptr
& (A
-1));
806 Ptr
= Ptr
+ (MisAligned
? (A
-MisAligned
) : 0);
808 } else if (AllocateGVsWithCode
) {
809 Ptr
= (char*)JCE
->allocateSpace(S
, A
);
811 Ptr
= (char*)JCE
->allocateGlobal(S
, A
);
816 void JIT::addPendingFunction(Function
*F
) {
817 MutexGuard
locked(lock
);
818 jitstate
->getPendingFunctions(locked
).push_back(F
);
822 JITEventListener::~JITEventListener() {}