Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / ExecutionEngine / JIT / JITEmitter.cpp
blobd046b8aea641016714bfc23a80dc5e2096ac24b1
1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a MachineCodeEmitter object that is used by the JIT to
11 // write machine code to memory and remember where relocatable values are.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "JIT.h"
17 #include "JITDebugRegisterer.h"
18 #include "JITDwarfEmitter.h"
19 #include "llvm/ADT/OwningPtr.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Module.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/Analysis/DebugInfo.h"
24 #include "llvm/CodeGen/JITCodeEmitter.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineCodeInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfo.h"
30 #include "llvm/CodeGen/MachineRelocation.h"
31 #include "llvm/ExecutionEngine/GenericValue.h"
32 #include "llvm/ExecutionEngine/JITEventListener.h"
33 #include "llvm/ExecutionEngine/JITMemoryManager.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetJITInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/ManagedStatic.h"
42 #include "llvm/Support/MutexGuard.h"
43 #include "llvm/Support/ValueHandle.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Support/Disassembler.h"
46 #include "llvm/Support/Memory.h"
47 #include "llvm/ADT/DenseMap.h"
48 #include "llvm/ADT/SmallPtrSet.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/ADT/ValueMap.h"
52 #include <algorithm>
53 #ifndef NDEBUG
54 #include <iomanip>
55 #endif
56 using namespace llvm;
58 STATISTIC(NumBytes, "Number of bytes of machine code compiled");
59 STATISTIC(NumRelos, "Number of relocations applied");
60 STATISTIC(NumRetries, "Number of retries with more memory");
63 // A declaration may stop being a declaration once it's fully read from bitcode.
64 // This function returns true if F is fully read and is still a declaration.
65 static bool isNonGhostDeclaration(const Function *F) {
66 return F->isDeclaration() && !F->isMaterializable();
69 //===----------------------------------------------------------------------===//
70 // JIT lazy compilation code.
72 namespace {
73 class JITEmitter;
74 class JITResolverState;
76 template<typename ValueTy>
77 struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
78 typedef JITResolverState *ExtraData;
79 static void onRAUW(JITResolverState *, Value *Old, Value *New) {
80 assert(false && "The JIT doesn't know how to handle a"
81 " RAUW on a value it has emitted.");
85 struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
86 typedef JITResolverState *ExtraData;
87 static void onDelete(JITResolverState *JRS, Function *F);
90 class JITResolverState {
91 public:
92 typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
93 FunctionToLazyStubMapTy;
94 typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
95 typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
96 CallSiteValueMapConfig> FunctionToCallSitesMapTy;
97 typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
98 private:
99 /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
100 /// particular function so that we can reuse them if necessary.
101 FunctionToLazyStubMapTy FunctionToLazyStubMap;
103 /// CallSiteToFunctionMap - Keep track of the function that each lazy call
104 /// site corresponds to, and vice versa.
105 CallSiteToFunctionMapTy CallSiteToFunctionMap;
106 FunctionToCallSitesMapTy FunctionToCallSitesMap;
108 /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
109 /// particular GlobalVariable so that we can reuse them if necessary.
110 GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
112 /// Instance of the JIT this ResolverState serves.
113 JIT *TheJIT;
115 public:
116 JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
117 FunctionToCallSitesMap(this),
118 TheJIT(jit) {}
120 FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
121 const MutexGuard& locked) {
122 assert(locked.holds(TheJIT->lock));
123 return FunctionToLazyStubMap;
126 GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) {
127 assert(lck.holds(TheJIT->lock));
128 return GlobalToIndirectSymMap;
131 std::pair<void *, Function *> LookupFunctionFromCallSite(
132 const MutexGuard &locked, void *CallSite) const {
133 assert(locked.holds(TheJIT->lock));
135 // The address given to us for the stub may not be exactly right, it
136 // might be a little bit after the stub. As such, use upper_bound to
137 // find it.
138 CallSiteToFunctionMapTy::const_iterator I =
139 CallSiteToFunctionMap.upper_bound(CallSite);
140 assert(I != CallSiteToFunctionMap.begin() &&
141 "This is not a known call site!");
142 --I;
143 return *I;
146 void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
147 assert(locked.holds(TheJIT->lock));
149 bool Inserted = CallSiteToFunctionMap.insert(
150 std::make_pair(CallSite, F)).second;
151 (void)Inserted;
152 assert(Inserted && "Pair was already in CallSiteToFunctionMap");
153 FunctionToCallSitesMap[F].insert(CallSite);
156 void EraseAllCallSitesForPrelocked(Function *F);
158 // Erases _all_ call sites regardless of their function. This is used to
159 // unregister the stub addresses from the StubToResolverMap in
160 // ~JITResolver().
161 void EraseAllCallSitesPrelocked();
164 /// JITResolver - Keep track of, and resolve, call sites for functions that
165 /// have not yet been compiled.
166 class JITResolver {
167 typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
168 typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
169 typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
171 /// LazyResolverFn - The target lazy resolver function that we actually
172 /// rewrite instructions to use.
173 TargetJITInfo::LazyResolverFn LazyResolverFn;
175 JITResolverState state;
177 /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
178 /// for external functions. TODO: Of course, external functions don't need
179 /// a lazy stub. It's actually here to make it more likely that far calls
180 /// succeed, but no single stub can guarantee that. I'll remove this in a
181 /// subsequent checkin when I actually fix far calls.
182 std::map<void*, void*> ExternalFnToStubMap;
184 /// revGOTMap - map addresses to indexes in the GOT
185 std::map<void*, unsigned> revGOTMap;
186 unsigned nextGOTIndex;
188 JITEmitter &JE;
190 /// Instance of JIT corresponding to this Resolver.
191 JIT *TheJIT;
193 public:
194 explicit JITResolver(JIT &jit, JITEmitter &je)
195 : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
196 LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
199 ~JITResolver();
201 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
202 /// lazy-compilation stub if it has already been created.
203 void *getLazyFunctionStubIfAvailable(Function *F);
205 /// getLazyFunctionStub - This returns a pointer to a function's
206 /// lazy-compilation stub, creating one on demand as needed.
207 void *getLazyFunctionStub(Function *F);
209 /// getExternalFunctionStub - Return a stub for the function at the
210 /// specified address, created lazily on demand.
211 void *getExternalFunctionStub(void *FnAddr);
213 /// getGlobalValueIndirectSym - Return an indirect symbol containing the
214 /// specified GV address.
215 void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
217 /// getGOTIndexForAddress - Return a new or existing index in the GOT for
218 /// an address. This function only manages slots, it does not manage the
219 /// contents of the slots or the memory associated with the GOT.
220 unsigned getGOTIndexForAddr(void *addr);
222 /// JITCompilerFn - This function is called to resolve a stub to a compiled
223 /// address. If the LLVM Function corresponding to the stub has not yet
224 /// been compiled, this function compiles it first.
225 static void *JITCompilerFn(void *Stub);
228 class StubToResolverMapTy {
229 /// Map a stub address to a specific instance of a JITResolver so that
230 /// lazily-compiled functions can find the right resolver to use.
232 /// Guarded by Lock.
233 std::map<void*, JITResolver*> Map;
235 /// Guards Map from concurrent accesses.
236 mutable sys::Mutex Lock;
238 public:
239 /// Registers a Stub to be resolved by Resolver.
240 void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
241 MutexGuard guard(Lock);
242 Map.insert(std::make_pair(Stub, Resolver));
244 /// Unregisters the Stub when it's invalidated.
245 void UnregisterStubResolver(void *Stub) {
246 MutexGuard guard(Lock);
247 Map.erase(Stub);
249 /// Returns the JITResolver instance that owns the Stub.
250 JITResolver *getResolverFromStub(void *Stub) const {
251 MutexGuard guard(Lock);
252 // The address given to us for the stub may not be exactly right, it might
253 // be a little bit after the stub. As such, use upper_bound to find it.
254 // This is the same trick as in LookupFunctionFromCallSite from
255 // JITResolverState.
256 std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
257 assert(I != Map.begin() && "This is not a known stub!");
258 --I;
259 return I->second;
261 /// True if any stubs refer to the given resolver. Only used in an assert().
262 /// O(N)
263 bool ResolverHasStubs(JITResolver* Resolver) const {
264 MutexGuard guard(Lock);
265 for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
266 E = Map.end(); I != E; ++I) {
267 if (I->second == Resolver)
268 return true;
270 return false;
273 /// This needs to be static so that a lazy call stub can access it with no
274 /// context except the address of the stub.
275 ManagedStatic<StubToResolverMapTy> StubToResolverMap;
277 /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
278 /// used to output functions to memory for execution.
279 class JITEmitter : public JITCodeEmitter {
280 JITMemoryManager *MemMgr;
282 // When outputting a function stub in the context of some other function, we
283 // save BufferBegin/BufferEnd/CurBufferPtr here.
284 uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
286 // When reattempting to JIT a function after running out of space, we store
287 // the estimated size of the function we're trying to JIT here, so we can
288 // ask the memory manager for at least this much space. When we
289 // successfully emit the function, we reset this back to zero.
290 uintptr_t SizeEstimate;
292 /// Relocations - These are the relocations that the function needs, as
293 /// emitted.
294 std::vector<MachineRelocation> Relocations;
296 /// MBBLocations - This vector is a mapping from MBB ID's to their address.
297 /// It is filled in by the StartMachineBasicBlock callback and queried by
298 /// the getMachineBasicBlockAddress callback.
299 std::vector<uintptr_t> MBBLocations;
301 /// ConstantPool - The constant pool for the current function.
303 MachineConstantPool *ConstantPool;
305 /// ConstantPoolBase - A pointer to the first entry in the constant pool.
307 void *ConstantPoolBase;
309 /// ConstPoolAddresses - Addresses of individual constant pool entries.
311 SmallVector<uintptr_t, 8> ConstPoolAddresses;
313 /// JumpTable - The jump tables for the current function.
315 MachineJumpTableInfo *JumpTable;
317 /// JumpTableBase - A pointer to the first entry in the jump table.
319 void *JumpTableBase;
321 /// Resolver - This contains info about the currently resolved functions.
322 JITResolver Resolver;
324 /// DE - The dwarf emitter for the jit.
325 OwningPtr<JITDwarfEmitter> DE;
327 /// DR - The debug registerer for the jit.
328 OwningPtr<JITDebugRegisterer> DR;
330 /// LabelLocations - This vector is a mapping from Label ID's to their
331 /// address.
332 DenseMap<MCSymbol*, uintptr_t> LabelLocations;
334 /// MMI - Machine module info for exception informations
335 MachineModuleInfo* MMI;
337 // CurFn - The llvm function being emitted. Only valid during
338 // finishFunction().
339 const Function *CurFn;
341 /// Information about emitted code, which is passed to the
342 /// JITEventListeners. This is reset in startFunction and used in
343 /// finishFunction.
344 JITEvent_EmittedFunctionDetails EmissionDetails;
346 struct EmittedCode {
347 void *FunctionBody; // Beginning of the function's allocation.
348 void *Code; // The address the function's code actually starts at.
349 void *ExceptionTable;
350 EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
352 struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
353 typedef JITEmitter *ExtraData;
354 static void onDelete(JITEmitter *, const Function*);
355 static void onRAUW(JITEmitter *, const Function*, const Function*);
357 ValueMap<const Function *, EmittedCode,
358 EmittedFunctionConfig> EmittedFunctions;
360 DebugLoc PrevDL;
362 /// Instance of the JIT
363 JIT *TheJIT;
365 public:
366 JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
367 : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
368 EmittedFunctions(this), TheJIT(&jit) {
369 MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
370 if (jit.getJITInfo().needsGOT()) {
371 MemMgr->AllocateGOT();
372 DEBUG(dbgs() << "JIT is managing a GOT\n");
375 if (JITExceptionHandling || JITEmitDebugInfo) {
376 DE.reset(new JITDwarfEmitter(jit));
378 if (JITEmitDebugInfo) {
379 DR.reset(new JITDebugRegisterer(TM));
382 ~JITEmitter() {
383 delete MemMgr;
386 /// classof - Methods for support type inquiry through isa, cast, and
387 /// dyn_cast:
389 static inline bool classof(const MachineCodeEmitter*) { return true; }
391 JITResolver &getJITResolver() { return Resolver; }
393 virtual void startFunction(MachineFunction &F);
394 virtual bool finishFunction(MachineFunction &F);
396 void emitConstantPool(MachineConstantPool *MCP);
397 void initJumpTableInfo(MachineJumpTableInfo *MJTI);
398 void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
400 void startGVStub(const GlobalValue* GV,
401 unsigned StubSize, unsigned Alignment = 1);
402 void startGVStub(void *Buffer, unsigned StubSize);
403 void finishGVStub();
404 virtual void *allocIndirectGV(const GlobalValue *GV,
405 const uint8_t *Buffer, size_t Size,
406 unsigned Alignment);
408 /// allocateSpace - Reserves space in the current block if any, or
409 /// allocate a new one of the given size.
410 virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
412 /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace,
413 /// this method does not allocate memory in the current output buffer,
414 /// because a global may live longer than the current function.
415 virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
417 virtual void addRelocation(const MachineRelocation &MR) {
418 Relocations.push_back(MR);
421 virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
422 if (MBBLocations.size() <= (unsigned)MBB->getNumber())
423 MBBLocations.resize((MBB->getNumber()+1)*2);
424 MBBLocations[MBB->getNumber()] = getCurrentPCValue();
425 if (MBB->hasAddressTaken())
426 TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
427 (void*)getCurrentPCValue());
428 DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
429 << (void*) getCurrentPCValue() << "]\n");
432 virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
433 virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
435 virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
436 assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
437 MBBLocations[MBB->getNumber()] && "MBB not emitted!");
438 return MBBLocations[MBB->getNumber()];
441 /// retryWithMoreMemory - Log a retry and deallocate all memory for the
442 /// given function. Increase the minimum allocation size so that we get
443 /// more memory next time.
444 void retryWithMoreMemory(MachineFunction &F);
446 /// deallocateMemForFunction - Deallocate all memory for the specified
447 /// function body.
448 void deallocateMemForFunction(const Function *F);
450 virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
452 virtual void emitLabel(MCSymbol *Label) {
453 LabelLocations[Label] = getCurrentPCValue();
456 virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
457 return &LabelLocations;
460 virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
461 assert(LabelLocations.count(Label) && "Label not emitted!");
462 return LabelLocations.find(Label)->second;
465 virtual void setModuleInfo(MachineModuleInfo* Info) {
466 MMI = Info;
467 if (DE.get()) DE->setModuleInfo(Info);
470 private:
471 void *getPointerToGlobal(GlobalValue *GV, void *Reference,
472 bool MayNeedFarStub);
473 void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
477 void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
478 JRS->EraseAllCallSitesForPrelocked(F);
481 void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
482 FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
483 if (F2C == FunctionToCallSitesMap.end())
484 return;
485 StubToResolverMapTy &S2RMap = *StubToResolverMap;
486 for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
487 E = F2C->second.end(); I != E; ++I) {
488 S2RMap.UnregisterStubResolver(*I);
489 bool Erased = CallSiteToFunctionMap.erase(*I);
490 (void)Erased;
491 assert(Erased && "Missing call site->function mapping");
493 FunctionToCallSitesMap.erase(F2C);
496 void JITResolverState::EraseAllCallSitesPrelocked() {
497 StubToResolverMapTy &S2RMap = *StubToResolverMap;
498 for (CallSiteToFunctionMapTy::const_iterator
499 I = CallSiteToFunctionMap.begin(),
500 E = CallSiteToFunctionMap.end(); I != E; ++I) {
501 S2RMap.UnregisterStubResolver(I->first);
503 CallSiteToFunctionMap.clear();
504 FunctionToCallSitesMap.clear();
507 JITResolver::~JITResolver() {
508 // No need to lock because we're in the destructor, and state isn't shared.
509 state.EraseAllCallSitesPrelocked();
510 assert(!StubToResolverMap->ResolverHasStubs(this) &&
511 "Resolver destroyed with stubs still alive.");
514 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
515 /// if it has already been created.
516 void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
517 MutexGuard locked(TheJIT->lock);
519 // If we already have a stub for this function, recycle it.
520 return state.getFunctionToLazyStubMap(locked).lookup(F);
523 /// getFunctionStub - This returns a pointer to a function stub, creating
524 /// one on demand as needed.
525 void *JITResolver::getLazyFunctionStub(Function *F) {
526 MutexGuard locked(TheJIT->lock);
528 // If we already have a lazy stub for this function, recycle it.
529 void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
530 if (Stub) return Stub;
532 // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we
533 // must resolve the symbol now.
534 void *Actual = TheJIT->isCompilingLazily()
535 ? (void *)(intptr_t)LazyResolverFn : (void *)0;
537 // If this is an external declaration, attempt to resolve the address now
538 // to place in the stub.
539 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
540 Actual = TheJIT->getPointerToFunction(F);
542 // If we resolved the symbol to a null address (eg. a weak external)
543 // don't emit a stub. Return a null pointer to the application.
544 if (!Actual) return 0;
547 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
548 JE.startGVStub(F, SL.Size, SL.Alignment);
549 // Codegen a new stub, calling the lazy resolver or the actual address of the
550 // external function, if it was resolved.
551 Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
552 JE.finishGVStub();
554 if (Actual != (void*)(intptr_t)LazyResolverFn) {
555 // If we are getting the stub for an external function, we really want the
556 // address of the stub in the GlobalAddressMap for the JIT, not the address
557 // of the external function.
558 TheJIT->updateGlobalMapping(F, Stub);
561 DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
562 << F->getName() << "'\n");
564 if (TheJIT->isCompilingLazily()) {
565 // Register this JITResolver as the one corresponding to this call site so
566 // JITCompilerFn will be able to find it.
567 StubToResolverMap->RegisterStubResolver(Stub, this);
569 // Finally, keep track of the stub-to-Function mapping so that the
570 // JITCompilerFn knows which function to compile!
571 state.AddCallSite(locked, Stub, F);
572 } else if (!Actual) {
573 // If we are JIT'ing non-lazily but need to call a function that does not
574 // exist yet, add it to the JIT's work list so that we can fill in the
575 // stub address later.
576 assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
577 "'Actual' should have been set above.");
578 TheJIT->addPendingFunction(F);
581 return Stub;
584 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
585 /// GV address.
586 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
587 MutexGuard locked(TheJIT->lock);
589 // If we already have a stub for this global variable, recycle it.
590 void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
591 if (IndirectSym) return IndirectSym;
593 // Otherwise, codegen a new indirect symbol.
594 IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
595 JE);
597 DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
598 << "] for GV '" << GV->getName() << "'\n");
600 return IndirectSym;
603 /// getExternalFunctionStub - Return a stub for the function at the
604 /// specified address, created lazily on demand.
605 void *JITResolver::getExternalFunctionStub(void *FnAddr) {
606 // If we already have a stub for this function, recycle it.
607 void *&Stub = ExternalFnToStubMap[FnAddr];
608 if (Stub) return Stub;
610 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
611 JE.startGVStub(0, SL.Size, SL.Alignment);
612 Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
613 JE.finishGVStub();
615 DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
616 << "] for external function at '" << FnAddr << "'\n");
617 return Stub;
620 unsigned JITResolver::getGOTIndexForAddr(void* addr) {
621 unsigned idx = revGOTMap[addr];
622 if (!idx) {
623 idx = ++nextGOTIndex;
624 revGOTMap[addr] = idx;
625 DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
626 << addr << "]\n");
628 return idx;
631 /// JITCompilerFn - This function is called when a lazy compilation stub has
632 /// been entered. It looks up which function this stub corresponds to, compiles
633 /// it if necessary, then returns the resultant function pointer.
634 void *JITResolver::JITCompilerFn(void *Stub) {
635 JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
636 assert(JR && "Unable to find the corresponding JITResolver to the call site");
638 Function* F = 0;
639 void* ActualPtr = 0;
642 // Only lock for getting the Function. The call getPointerToFunction made
643 // in this function might trigger function materializing, which requires
644 // JIT lock to be unlocked.
645 MutexGuard locked(JR->TheJIT->lock);
647 // The address given to us for the stub may not be exactly right, it might
648 // be a little bit after the stub. As such, use upper_bound to find it.
649 std::pair<void*, Function*> I =
650 JR->state.LookupFunctionFromCallSite(locked, Stub);
651 F = I.second;
652 ActualPtr = I.first;
655 // If we have already code generated the function, just return the address.
656 void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
658 if (!Result) {
659 // Otherwise we don't have it, do lazy compilation now.
661 // If lazy compilation is disabled, emit a useful error message and abort.
662 if (!JR->TheJIT->isCompilingLazily()) {
663 report_fatal_error("LLVM JIT requested to do lazy compilation of"
664 " function '"
665 + F->getName() + "' when lazy compiles are disabled!");
668 DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
669 << "' In stub ptr = " << Stub << " actual ptr = "
670 << ActualPtr << "\n");
672 Result = JR->TheJIT->getPointerToFunction(F);
675 // Reacquire the lock to update the GOT map.
676 MutexGuard locked(JR->TheJIT->lock);
678 // We might like to remove the call site from the CallSiteToFunction map, but
679 // we can't do that! Multiple threads could be stuck, waiting to acquire the
680 // lock above. As soon as the 1st function finishes compiling the function,
681 // the next one will be released, and needs to be able to find the function it
682 // needs to call.
684 // FIXME: We could rewrite all references to this stub if we knew them.
686 // What we will do is set the compiled function address to map to the
687 // same GOT entry as the stub so that later clients may update the GOT
688 // if they see it still using the stub address.
689 // Note: this is done so the Resolver doesn't have to manage GOT memory
690 // Do this without allocating map space if the target isn't using a GOT
691 if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
692 JR->revGOTMap[Result] = JR->revGOTMap[Stub];
694 return Result;
697 //===----------------------------------------------------------------------===//
698 // JITEmitter code.
700 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
701 bool MayNeedFarStub) {
702 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
703 return TheJIT->getOrEmitGlobalVariable(GV);
705 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
706 return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
708 // If we have already compiled the function, return a pointer to its body.
709 Function *F = cast<Function>(V);
711 void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
712 if (FnStub) {
713 // Return the function stub if it's already created. We do this first so
714 // that we're returning the same address for the function as any previous
715 // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
716 // close enough to call.
717 return FnStub;
720 // If we know the target can handle arbitrary-distance calls, try to
721 // return a direct pointer.
722 if (!MayNeedFarStub) {
723 // If we have code, go ahead and return that.
724 void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
725 if (ResultPtr) return ResultPtr;
727 // If this is an external function pointer, we can force the JIT to
728 // 'compile' it, which really just adds it to the map.
729 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
730 return TheJIT->getPointerToFunction(F);
733 // Otherwise, we may need a to emit a stub, and, conservatively, we always do
734 // so. Note that it's possible to return null from getLazyFunctionStub in the
735 // case of a weak extern that fails to resolve.
736 return Resolver.getLazyFunctionStub(F);
739 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
740 // Make sure GV is emitted first, and create a stub containing the fully
741 // resolved address.
742 void *GVAddress = getPointerToGlobal(V, Reference, false);
743 void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
744 return StubAddr;
747 void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
748 if (DL.isUnknown()) return;
749 if (!BeforePrintingInsn) return;
751 const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
753 if (DL.getScope(Context) != 0 && PrevDL != DL) {
754 JITEvent_EmittedFunctionDetails::LineStart NextLine;
755 NextLine.Address = getCurrentPCValue();
756 NextLine.Loc = DL;
757 EmissionDetails.LineStarts.push_back(NextLine);
760 PrevDL = DL;
763 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
764 const TargetData *TD) {
765 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
766 if (Constants.empty()) return 0;
768 unsigned Size = 0;
769 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
770 MachineConstantPoolEntry CPE = Constants[i];
771 unsigned AlignMask = CPE.getAlignment() - 1;
772 Size = (Size + AlignMask) & ~AlignMask;
773 const Type *Ty = CPE.getType();
774 Size += TD->getTypeAllocSize(Ty);
776 return Size;
779 void JITEmitter::startFunction(MachineFunction &F) {
780 DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
781 << F.getFunction()->getName() << "\n");
783 uintptr_t ActualSize = 0;
784 // Set the memory writable, if it's not already
785 MemMgr->setMemoryWritable();
787 if (SizeEstimate > 0) {
788 // SizeEstimate will be non-zero on reallocation attempts.
789 ActualSize = SizeEstimate;
792 BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
793 ActualSize);
794 BufferEnd = BufferBegin+ActualSize;
795 EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
797 // Ensure the constant pool/jump table info is at least 4-byte aligned.
798 emitAlignment(16);
800 emitConstantPool(F.getConstantPool());
801 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
802 initJumpTableInfo(MJTI);
804 // About to start emitting the machine code for the function.
805 emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
806 TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
807 EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
809 MBBLocations.clear();
811 EmissionDetails.MF = &F;
812 EmissionDetails.LineStarts.clear();
815 bool JITEmitter::finishFunction(MachineFunction &F) {
816 if (CurBufferPtr == BufferEnd) {
817 // We must call endFunctionBody before retrying, because
818 // deallocateMemForFunction requires it.
819 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
820 retryWithMoreMemory(F);
821 return true;
824 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
825 emitJumpTableInfo(MJTI);
827 // FnStart is the start of the text, not the start of the constant pool and
828 // other per-function data.
829 uint8_t *FnStart =
830 (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
832 // FnEnd is the end of the function's machine code.
833 uint8_t *FnEnd = CurBufferPtr;
835 if (!Relocations.empty()) {
836 CurFn = F.getFunction();
837 NumRelos += Relocations.size();
839 // Resolve the relocations to concrete pointers.
840 for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
841 MachineRelocation &MR = Relocations[i];
842 void *ResultPtr = 0;
843 if (!MR.letTargetResolve()) {
844 if (MR.isExternalSymbol()) {
845 ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
846 false);
847 DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
848 << ResultPtr << "]\n");
850 // If the target REALLY wants a stub for this function, emit it now.
851 if (MR.mayNeedFarStub()) {
852 ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
854 } else if (MR.isGlobalValue()) {
855 ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
856 BufferBegin+MR.getMachineCodeOffset(),
857 MR.mayNeedFarStub());
858 } else if (MR.isIndirectSymbol()) {
859 ResultPtr = getPointerToGVIndirectSym(
860 MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
861 } else if (MR.isBasicBlock()) {
862 ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
863 } else if (MR.isConstantPoolIndex()) {
864 ResultPtr =
865 (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
866 } else {
867 assert(MR.isJumpTableIndex());
868 ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
871 MR.setResultPointer(ResultPtr);
874 // if we are managing the GOT and the relocation wants an index,
875 // give it one
876 if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
877 unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
878 MR.setGOTIndex(idx);
879 if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
880 DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
881 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
882 << "\n");
883 ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
888 CurFn = 0;
889 TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
890 Relocations.size(), MemMgr->getGOTBase());
893 // Update the GOT entry for F to point to the new code.
894 if (MemMgr->isManagingGOT()) {
895 unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
896 if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
897 DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
898 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
899 << "\n");
900 ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
904 // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
905 // global variables that were referenced in the relocations.
906 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
908 if (CurBufferPtr == BufferEnd) {
909 retryWithMoreMemory(F);
910 return true;
911 } else {
912 // Now that we've succeeded in emitting the function, reset the
913 // SizeEstimate back down to zero.
914 SizeEstimate = 0;
917 BufferBegin = CurBufferPtr = 0;
918 NumBytes += FnEnd-FnStart;
920 // Invalidate the icache if necessary.
921 sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
923 TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
924 EmissionDetails);
926 // Reset the previous debug location.
927 PrevDL = DebugLoc();
929 DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
930 << "] Function: " << F.getFunction()->getName()
931 << ": " << (FnEnd-FnStart) << " bytes of text, "
932 << Relocations.size() << " relocations\n");
934 Relocations.clear();
935 ConstPoolAddresses.clear();
937 // Mark code region readable and executable if it's not so already.
938 MemMgr->setMemoryExecutable();
940 DEBUG({
941 if (sys::hasDisassembler()) {
942 dbgs() << "JIT: Disassembled code:\n";
943 dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
944 (uintptr_t)FnStart);
945 } else {
946 dbgs() << "JIT: Binary code:\n";
947 uint8_t* q = FnStart;
948 for (int i = 0; q < FnEnd; q += 4, ++i) {
949 if (i == 4)
950 i = 0;
951 if (i == 0)
952 dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
953 bool Done = false;
954 for (int j = 3; j >= 0; --j) {
955 if (q + j >= FnEnd)
956 Done = true;
957 else
958 dbgs() << (unsigned short)q[j];
960 if (Done)
961 break;
962 dbgs() << ' ';
963 if (i == 3)
964 dbgs() << '\n';
966 dbgs()<< '\n';
970 if (JITExceptionHandling || JITEmitDebugInfo) {
971 uintptr_t ActualSize = 0;
972 SavedBufferBegin = BufferBegin;
973 SavedBufferEnd = BufferEnd;
974 SavedCurBufferPtr = CurBufferPtr;
976 BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
977 ActualSize);
978 BufferEnd = BufferBegin+ActualSize;
979 EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
980 uint8_t *EhStart;
981 uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
982 EhStart);
983 MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
984 FrameRegister);
985 uint8_t *EhEnd = CurBufferPtr;
986 BufferBegin = SavedBufferBegin;
987 BufferEnd = SavedBufferEnd;
988 CurBufferPtr = SavedCurBufferPtr;
990 if (JITExceptionHandling) {
991 TheJIT->RegisterTable(F.getFunction(), FrameRegister);
994 if (JITEmitDebugInfo) {
995 DebugInfo I;
996 I.FnStart = FnStart;
997 I.FnEnd = FnEnd;
998 I.EhStart = EhStart;
999 I.EhEnd = EhEnd;
1000 DR->RegisterFunction(F.getFunction(), I);
1004 if (MMI)
1005 MMI->EndFunction();
1007 return false;
1010 void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
1011 DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n");
1012 Relocations.clear(); // Clear the old relocations or we'll reapply them.
1013 ConstPoolAddresses.clear();
1014 ++NumRetries;
1015 deallocateMemForFunction(F.getFunction());
1016 // Try again with at least twice as much free space.
1017 SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
1019 for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
1020 if (MBB->hasAddressTaken())
1021 TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
1025 /// deallocateMemForFunction - Deallocate all memory for the specified
1026 /// function body. Also drop any references the function has to stubs.
1027 /// May be called while the Function is being destroyed inside ~Value().
1028 void JITEmitter::deallocateMemForFunction(const Function *F) {
1029 ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
1030 Emitted = EmittedFunctions.find(F);
1031 if (Emitted != EmittedFunctions.end()) {
1032 MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
1033 MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
1034 TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
1036 EmittedFunctions.erase(Emitted);
1039 if(JITExceptionHandling) {
1040 TheJIT->DeregisterTable(F);
1043 if (JITEmitDebugInfo) {
1044 DR->UnregisterFunction(F);
1049 void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
1050 if (BufferBegin)
1051 return JITCodeEmitter::allocateSpace(Size, Alignment);
1053 // create a new memory block if there is no active one.
1054 // care must be taken so that BufferBegin is invalidated when a
1055 // block is trimmed
1056 BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1057 BufferEnd = BufferBegin+Size;
1058 return CurBufferPtr;
1061 void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1062 // Delegate this call through the memory manager.
1063 return MemMgr->allocateGlobal(Size, Alignment);
1066 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1067 if (TheJIT->getJITInfo().hasCustomConstantPool())
1068 return;
1070 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1071 if (Constants.empty()) return;
1073 unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1074 unsigned Align = MCP->getConstantPoolAlignment();
1075 ConstantPoolBase = allocateSpace(Size, Align);
1076 ConstantPool = MCP;
1078 if (ConstantPoolBase == 0) return; // Buffer overflow.
1080 DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
1081 << "] (size: " << Size << ", alignment: " << Align << ")\n");
1083 // Initialize the memory for all of the constant pool entries.
1084 unsigned Offset = 0;
1085 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1086 MachineConstantPoolEntry CPE = Constants[i];
1087 unsigned AlignMask = CPE.getAlignment() - 1;
1088 Offset = (Offset + AlignMask) & ~AlignMask;
1090 uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1091 ConstPoolAddresses.push_back(CAddr);
1092 if (CPE.isMachineConstantPoolEntry()) {
1093 // FIXME: add support to lower machine constant pool values into bytes!
1094 report_fatal_error("Initialize memory with machine specific constant pool"
1095 "entry has not been implemented!");
1097 TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1098 DEBUG(dbgs() << "JIT: CP" << i << " at [0x";
1099 dbgs().write_hex(CAddr) << "]\n");
1101 const Type *Ty = CPE.Val.ConstVal->getType();
1102 Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
1106 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1107 if (TheJIT->getJITInfo().hasCustomJumpTables())
1108 return;
1109 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
1110 return;
1112 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1113 if (JT.empty()) return;
1115 unsigned NumEntries = 0;
1116 for (unsigned i = 0, e = JT.size(); i != e; ++i)
1117 NumEntries += JT[i].MBBs.size();
1119 unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData());
1121 // Just allocate space for all the jump tables now. We will fix up the actual
1122 // MBB entries in the tables after we emit the code for each block, since then
1123 // we will know the final locations of the MBBs in memory.
1124 JumpTable = MJTI;
1125 JumpTableBase = allocateSpace(NumEntries * EntrySize,
1126 MJTI->getEntryAlignment(*TheJIT->getTargetData()));
1129 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1130 if (TheJIT->getJITInfo().hasCustomJumpTables())
1131 return;
1133 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1134 if (JT.empty() || JumpTableBase == 0) return;
1137 switch (MJTI->getEntryKind()) {
1138 case MachineJumpTableInfo::EK_Inline:
1139 return;
1140 case MachineJumpTableInfo::EK_BlockAddress: {
1141 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1142 // .word LBB123
1143 assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) &&
1144 "Cross JIT'ing?");
1146 // For each jump table, map each target in the jump table to the address of
1147 // an emitted MachineBasicBlock.
1148 intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1150 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1151 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1152 // Store the address of the basic block for this jump table slot in the
1153 // memory we allocated for the jump table in 'initJumpTableInfo'
1154 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1155 *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1157 break;
1160 case MachineJumpTableInfo::EK_Custom32:
1161 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1162 case MachineJumpTableInfo::EK_LabelDifference32: {
1163 assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?");
1164 // For each jump table, place the offset from the beginning of the table
1165 // to the target address.
1166 int *SlotPtr = (int*)JumpTableBase;
1168 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1169 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1170 // Store the offset of the basic block for this jump table slot in the
1171 // memory we allocated for the jump table in 'initJumpTableInfo'
1172 uintptr_t Base = (uintptr_t)SlotPtr;
1173 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1174 uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1175 /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
1176 *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1179 break;
1184 void JITEmitter::startGVStub(const GlobalValue* GV,
1185 unsigned StubSize, unsigned Alignment) {
1186 SavedBufferBegin = BufferBegin;
1187 SavedBufferEnd = BufferEnd;
1188 SavedCurBufferPtr = CurBufferPtr;
1190 BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1191 BufferEnd = BufferBegin+StubSize+1;
1194 void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
1195 SavedBufferBegin = BufferBegin;
1196 SavedBufferEnd = BufferEnd;
1197 SavedCurBufferPtr = CurBufferPtr;
1199 BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1200 BufferEnd = BufferBegin+StubSize+1;
1203 void JITEmitter::finishGVStub() {
1204 assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
1205 NumBytes += getCurrentPCOffset();
1206 BufferBegin = SavedBufferBegin;
1207 BufferEnd = SavedBufferEnd;
1208 CurBufferPtr = SavedCurBufferPtr;
1211 void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
1212 const uint8_t *Buffer, size_t Size,
1213 unsigned Alignment) {
1214 uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
1215 memcpy(IndGV, Buffer, Size);
1216 return IndGV;
1219 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1220 // in the constant pool that was last emitted with the 'emitConstantPool'
1221 // method.
1223 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1224 assert(ConstantNum < ConstantPool->getConstants().size() &&
1225 "Invalid ConstantPoolIndex!");
1226 return ConstPoolAddresses[ConstantNum];
1229 // getJumpTableEntryAddress - Return the address of the JumpTable with index
1230 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1232 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1233 const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1234 assert(Index < JT.size() && "Invalid jump table index!");
1236 unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData());
1238 unsigned Offset = 0;
1239 for (unsigned i = 0; i < Index; ++i)
1240 Offset += JT[i].MBBs.size();
1242 Offset *= EntrySize;
1244 return (uintptr_t)((char *)JumpTableBase + Offset);
1247 void JITEmitter::EmittedFunctionConfig::onDelete(
1248 JITEmitter *Emitter, const Function *F) {
1249 Emitter->deallocateMemForFunction(F);
1251 void JITEmitter::EmittedFunctionConfig::onRAUW(
1252 JITEmitter *, const Function*, const Function*) {
1253 llvm_unreachable("The JIT doesn't know how to handle a"
1254 " RAUW on a value it has emitted.");
1258 //===----------------------------------------------------------------------===//
1259 // Public interface to this file
1260 //===----------------------------------------------------------------------===//
1262 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
1263 TargetMachine &tm) {
1264 return new JITEmitter(jit, JMM, tm);
1267 // getPointerToFunctionOrStub - If the specified function has been
1268 // code-gen'd, return a pointer to the function. If not, compile it, or use
1269 // a stub to implement lazy compilation if available.
1271 void *JIT::getPointerToFunctionOrStub(Function *F) {
1272 // If we have already code generated the function, just return the address.
1273 if (void *Addr = getPointerToGlobalIfAvailable(F))
1274 return Addr;
1276 // Get a stub if the target supports it.
1277 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1278 JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1279 return JE->getJITResolver().getLazyFunctionStub(F);
1282 void JIT::updateFunctionStub(Function *F) {
1283 // Get the empty stub we generated earlier.
1284 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1285 JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1286 void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
1287 void *Addr = getPointerToGlobalIfAvailable(F);
1288 assert(Addr != Stub && "Function must have non-stub address to be updated.");
1290 // Tell the target jit info to rewrite the stub at the specified address,
1291 // rather than creating a new one.
1292 TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
1293 JE->startGVStub(Stub, layout.Size);
1294 getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
1295 JE->finishGVStub();
1298 /// freeMachineCodeForFunction - release machine code memory for given Function.
1300 void JIT::freeMachineCodeForFunction(Function *F) {
1301 // Delete translation for this from the ExecutionEngine, so it will get
1302 // retranslated next time it is used.
1303 updateGlobalMapping(F, 0);
1305 // Free the actual memory for the function body and related stuff.
1306 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1307 cast<JITEmitter>(JCE)->deallocateMemForFunction(F);