1 //===- ARMAddressingModes.h - ARM Addressing Modes --------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the ARM addressing mode implementation stuff.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
15 #define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
17 #include "llvm/CodeGen/SelectionDAGNodes.h"
18 #include "llvm/Support/MathExtras.h"
23 /// ARM_AM - ARM Addressing Mode Stuff
38 static inline const char *getAddrOpcStr(AddrOpc Op
) {
39 return Op
== sub
? "-" : "";
42 static inline const char *getShiftOpcStr(ShiftOpc Op
) {
44 default: assert(0 && "Unknown shift opc!");
45 case ARM_AM::asr
: return "asr";
46 case ARM_AM::lsl
: return "lsl";
47 case ARM_AM::lsr
: return "lsr";
48 case ARM_AM::ror
: return "ror";
49 case ARM_AM::rrx
: return "rrx";
53 static inline unsigned getShiftOpcEncoding(ShiftOpc Op
) {
55 default: assert(0 && "Unknown shift opc!");
56 case ARM_AM::asr
: return 2;
57 case ARM_AM::lsl
: return 0;
58 case ARM_AM::lsr
: return 1;
59 case ARM_AM::ror
: return 3;
63 static inline ShiftOpc
getShiftOpcForNode(SDValue N
) {
64 switch (N
.getOpcode()) {
65 default: return ARM_AM::no_shift
;
66 case ISD::SHL
: return ARM_AM::lsl
;
67 case ISD::SRL
: return ARM_AM::lsr
;
68 case ISD::SRA
: return ARM_AM::asr
;
69 case ISD::ROTR
: return ARM_AM::ror
;
70 //case ISD::ROTL: // Only if imm -> turn into ROTR.
71 // Can't handle RRX here, because it would require folding a flag into
72 // the addressing mode. :( This causes us to miss certain things.
73 //case ARMISD::RRX: return ARM_AM::rrx;
85 static inline const char *getAMSubModeStr(AMSubMode Mode
) {
87 default: assert(0 && "Unknown addressing sub-mode!");
88 case ARM_AM::ia
: return "ia";
89 case ARM_AM::ib
: return "ib";
90 case ARM_AM::da
: return "da";
91 case ARM_AM::db
: return "db";
95 /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
97 static inline unsigned rotr32(unsigned Val
, unsigned Amt
) {
98 assert(Amt
< 32 && "Invalid rotate amount");
99 return (Val
>> Amt
) | (Val
<< ((32-Amt
)&31));
102 /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
104 static inline unsigned rotl32(unsigned Val
, unsigned Amt
) {
105 assert(Amt
< 32 && "Invalid rotate amount");
106 return (Val
<< Amt
) | (Val
>> ((32-Amt
)&31));
109 //===--------------------------------------------------------------------===//
110 // Addressing Mode #1: shift_operand with registers
111 //===--------------------------------------------------------------------===//
113 // This 'addressing mode' is used for arithmetic instructions. It can
114 // represent things like:
116 // reg [asr|lsl|lsr|ror|rrx] reg
117 // reg [asr|lsl|lsr|ror|rrx] imm
119 // This is stored three operands [rega, regb, opc]. The first is the base
120 // reg, the second is the shift amount (or reg0 if not present or imm). The
121 // third operand encodes the shift opcode and the imm if a reg isn't present.
123 static inline unsigned getSORegOpc(ShiftOpc ShOp
, unsigned Imm
) {
124 return ShOp
| (Imm
<< 3);
126 static inline unsigned getSORegOffset(unsigned Op
) {
129 static inline ShiftOpc
getSORegShOp(unsigned Op
) {
130 return (ShiftOpc
)(Op
& 7);
133 /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
134 /// the 8-bit imm value.
135 static inline unsigned getSOImmValImm(unsigned Imm
) {
138 /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
139 /// the rotate amount.
140 static inline unsigned getSOImmValRot(unsigned Imm
) {
141 return (Imm
>> 8) * 2;
144 /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
145 /// computing the rotate amount to use. If this immediate value cannot be
146 /// handled with a single shifter-op, determine a good rotate amount that will
147 /// take a maximal chunk of bits out of the immediate.
148 static inline unsigned getSOImmValRotate(unsigned Imm
) {
149 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
151 if ((Imm
& ~255U) == 0) return 0;
153 // Use CTZ to compute the rotate amount.
154 unsigned TZ
= CountTrailingZeros_32(Imm
);
156 // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
158 unsigned RotAmt
= TZ
& ~1;
160 // If we can handle this spread, return it.
161 if ((rotr32(Imm
, RotAmt
) & ~255U) == 0)
162 return (32-RotAmt
)&31; // HW rotates right, not left.
164 // For values like 0xF000000F, we should ignore the low 6 bits, then
167 unsigned TZ2
= CountTrailingZeros_32(Imm
& ~63U);
168 unsigned RotAmt2
= TZ2
& ~1;
169 if ((rotr32(Imm
, RotAmt2
) & ~255U) == 0)
170 return (32-RotAmt2
)&31; // HW rotates right, not left.
173 // Otherwise, we have no way to cover this span of bits with a single
174 // shifter_op immediate. Return a chunk of bits that will be useful to
176 return (32-RotAmt
)&31; // HW rotates right, not left.
179 /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
180 /// into an shifter_operand immediate operand, return the 12-bit encoding for
181 /// it. If not, return -1.
182 static inline int getSOImmVal(unsigned Arg
) {
183 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
185 if ((Arg
& ~255U) == 0) return Arg
;
187 unsigned RotAmt
= getSOImmValRotate(Arg
);
189 // If this cannot be handled with a single shifter_op, bail out.
190 if (rotr32(~255U, RotAmt
) & Arg
)
193 // Encode this correctly.
194 return rotl32(Arg
, RotAmt
) | ((RotAmt
>>1) << 8);
197 /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
198 /// or'ing together two SOImmVal's.
199 static inline bool isSOImmTwoPartVal(unsigned V
) {
200 // If this can be handled with a single shifter_op, bail out.
201 V
= rotr32(~255U, getSOImmValRotate(V
)) & V
;
205 // If this can be handled with two shifter_op's, accept.
206 V
= rotr32(~255U, getSOImmValRotate(V
)) & V
;
210 /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
211 /// return the first chunk of it.
212 static inline unsigned getSOImmTwoPartFirst(unsigned V
) {
213 return rotr32(255U, getSOImmValRotate(V
)) & V
;
216 /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
217 /// return the second chunk of it.
218 static inline unsigned getSOImmTwoPartSecond(unsigned V
) {
219 // Mask out the first hunk.
220 V
= rotr32(~255U, getSOImmValRotate(V
)) & V
;
223 assert(V
== (rotr32(255U, getSOImmValRotate(V
)) & V
));
227 /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
228 /// by a left shift. Returns the shift amount to use.
229 static inline unsigned getThumbImmValShift(unsigned Imm
) {
230 // 8-bit (or less) immediates are trivially immediate operand with a shift
232 if ((Imm
& ~255U) == 0) return 0;
234 // Use CTZ to compute the shift amount.
235 return CountTrailingZeros_32(Imm
);
238 /// isThumbImmShiftedVal - Return true if the specified value can be obtained
239 /// by left shifting a 8-bit immediate.
240 static inline bool isThumbImmShiftedVal(unsigned V
) {
241 // If this can be handled with
242 V
= (~255U << getThumbImmValShift(V
)) & V
;
246 /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
247 /// by a left shift. Returns the shift amount to use.
248 static inline unsigned getThumbImm16ValShift(unsigned Imm
) {
249 // 16-bit (or less) immediates are trivially immediate operand with a shift
251 if ((Imm
& ~65535U) == 0) return 0;
253 // Use CTZ to compute the shift amount.
254 return CountTrailingZeros_32(Imm
);
257 /// isThumbImm16ShiftedVal - Return true if the specified value can be
258 /// obtained by left shifting a 16-bit immediate.
259 static inline bool isThumbImm16ShiftedVal(unsigned V
) {
260 // If this can be handled with
261 V
= (~65535U << getThumbImm16ValShift(V
)) & V
;
265 /// getThumbImmNonShiftedVal - If V is a value that satisfies
266 /// isThumbImmShiftedVal, return the non-shiftd value.
267 static inline unsigned getThumbImmNonShiftedVal(unsigned V
) {
268 return V
>> getThumbImmValShift(V
);
272 /// getT2SOImmValSplat - Return the 12-bit encoded representation
273 /// if the specified value can be obtained by splatting the low 8 bits
274 /// into every other byte or every byte of a 32-bit value. i.e.,
275 /// 00000000 00000000 00000000 abcdefgh control = 0
276 /// 00000000 abcdefgh 00000000 abcdefgh control = 1
277 /// abcdefgh 00000000 abcdefgh 00000000 control = 2
278 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
279 /// Return -1 if none of the above apply.
280 /// See ARM Reference Manual A6.3.2.
281 static inline int getT2SOImmValSplatVal(unsigned V
) {
284 if ((V
& 0xffffff00) == 0)
287 // If the value is zeroes in the first byte, just shift those off
288 Vs
= ((V
& 0xff) == 0) ? V
>> 8 : V
;
289 // Any passing value only has 8 bits of payload, splatted across the word
291 // Likewise, any passing values have the payload splatted into the 3rd byte
292 u
= Imm
| (Imm
<< 16);
296 return (((Vs
== V
) ? 1 : 2) << 8) | Imm
;
299 if (Vs
== (u
| (u
<< 8)))
300 return (3 << 8) | Imm
;
305 /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
306 /// specified value is a rotated 8-bit value. Return -1 if no rotation
307 /// encoding is possible.
308 /// See ARM Reference Manual A6.3.2.
309 static inline int getT2SOImmValRotateVal(unsigned V
) {
310 unsigned RotAmt
= CountLeadingZeros_32(V
);
314 // If 'Arg' can be handled with a single shifter_op return the value.
315 if ((rotr32(0xff000000U
, RotAmt
) & V
) == V
)
316 return (rotr32(V
, 24 - RotAmt
) & 0x7f) | ((RotAmt
+ 8) << 7);
321 /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
322 /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
323 /// encoding for it. If not, return -1.
324 /// See ARM Reference Manual A6.3.2.
325 static inline int getT2SOImmVal(unsigned Arg
) {
326 // If 'Arg' is an 8-bit splat, then get the encoded value.
327 int Splat
= getT2SOImmValSplatVal(Arg
);
331 // If 'Arg' can be handled with a single shifter_op return the value.
332 int Rot
= getT2SOImmValRotateVal(Arg
);
339 static inline unsigned getT2SOImmValRotate(unsigned V
) {
340 if ((V
& ~255U) == 0) return 0;
341 // Use CTZ to compute the rotate amount.
342 unsigned RotAmt
= CountTrailingZeros_32(V
);
343 return (32 - RotAmt
) & 31;
346 static inline bool isT2SOImmTwoPartVal (unsigned Imm
) {
348 // Passing values can be any combination of splat values and shifter
349 // values. If this can be handled with a single shifter or splat, bail
350 // out. Those should be handled directly, not with a two-part val.
351 if (getT2SOImmValSplatVal(V
) != -1)
353 V
= rotr32 (~255U, getT2SOImmValRotate(V
)) & V
;
357 // If this can be handled as an immediate, accept.
358 if (getT2SOImmVal(V
) != -1) return true;
360 // Likewise, try masking out a splat value first.
362 if (getT2SOImmValSplatVal(V
& 0xff00ff00U
) != -1)
364 else if (getT2SOImmValSplatVal(V
& 0x00ff00ffU
) != -1)
366 // If what's left can be handled as an immediate, accept.
367 if (getT2SOImmVal(V
) != -1) return true;
369 // Otherwise, do not accept.
373 static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm
) {
374 assert (isT2SOImmTwoPartVal(Imm
) &&
375 "Immedate cannot be encoded as two part immediate!");
376 // Try a shifter operand as one part
377 unsigned V
= rotr32 (~255, getT2SOImmValRotate(Imm
)) & Imm
;
378 // If the rest is encodable as an immediate, then return it.
379 if (getT2SOImmVal(V
) != -1) return V
;
381 // Try masking out a splat value first.
382 if (getT2SOImmValSplatVal(Imm
& 0xff00ff00U
) != -1)
383 return Imm
& 0xff00ff00U
;
385 // The other splat is all that's left as an option.
386 assert (getT2SOImmValSplatVal(Imm
& 0x00ff00ffU
) != -1);
387 return Imm
& 0x00ff00ffU
;
390 static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm
) {
391 // Mask out the first hunk
392 Imm
^= getT2SOImmTwoPartFirst(Imm
);
393 // Return what's left
394 assert (getT2SOImmVal(Imm
) != -1 &&
395 "Unable to encode second part of T2 two part SO immediate");
400 //===--------------------------------------------------------------------===//
401 // Addressing Mode #2
402 //===--------------------------------------------------------------------===//
404 // This is used for most simple load/store instructions.
406 // addrmode2 := reg +/- reg shop imm
407 // addrmode2 := reg +/- imm12
409 // The first operand is always a Reg. The second operand is a reg if in
410 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
411 // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
412 // fourth operand 16-17 encodes the index mode.
414 // If this addressing mode is a frame index (before prolog/epilog insertion
415 // and code rewriting), this operand will have the form: FI#, reg0, <offs>
416 // with no shift amount for the frame offset.
418 static inline unsigned getAM2Opc(AddrOpc Opc
, unsigned Imm12
, ShiftOpc SO
,
419 unsigned IdxMode
= 0) {
420 assert(Imm12
< (1 << 12) && "Imm too large!");
421 bool isSub
= Opc
== sub
;
422 return Imm12
| ((int)isSub
<< 12) | (SO
<< 13) | (IdxMode
<< 16) ;
424 static inline unsigned getAM2Offset(unsigned AM2Opc
) {
425 return AM2Opc
& ((1 << 12)-1);
427 static inline AddrOpc
getAM2Op(unsigned AM2Opc
) {
428 return ((AM2Opc
>> 12) & 1) ? sub
: add
;
430 static inline ShiftOpc
getAM2ShiftOpc(unsigned AM2Opc
) {
431 return (ShiftOpc
)((AM2Opc
>> 13) & 7);
433 static inline unsigned getAM2IdxMode(unsigned AM2Opc
) {
434 return (AM2Opc
>> 16);
438 //===--------------------------------------------------------------------===//
439 // Addressing Mode #3
440 //===--------------------------------------------------------------------===//
442 // This is used for sign-extending loads, and load/store-pair instructions.
444 // addrmode3 := reg +/- reg
445 // addrmode3 := reg +/- imm8
447 // The first operand is always a Reg. The second operand is a reg if in
448 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
449 // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
452 /// getAM3Opc - This function encodes the addrmode3 opc field.
453 static inline unsigned getAM3Opc(AddrOpc Opc
, unsigned char Offset
,
454 unsigned IdxMode
= 0) {
455 bool isSub
= Opc
== sub
;
456 return ((int)isSub
<< 8) | Offset
| (IdxMode
<< 9);
458 static inline unsigned char getAM3Offset(unsigned AM3Opc
) {
459 return AM3Opc
& 0xFF;
461 static inline AddrOpc
getAM3Op(unsigned AM3Opc
) {
462 return ((AM3Opc
>> 8) & 1) ? sub
: add
;
464 static inline unsigned getAM3IdxMode(unsigned AM3Opc
) {
465 return (AM3Opc
>> 9);
468 //===--------------------------------------------------------------------===//
469 // Addressing Mode #4
470 //===--------------------------------------------------------------------===//
472 // This is used for load / store multiple instructions.
474 // addrmode4 := reg, <mode>
476 // The four modes are:
477 // IA - Increment after
478 // IB - Increment before
479 // DA - Decrement after
480 // DB - Decrement before
481 // For VFP instructions, only the IA and DB modes are valid.
483 static inline AMSubMode
getAM4SubMode(unsigned Mode
) {
484 return (AMSubMode
)(Mode
& 0x7);
487 static inline unsigned getAM4ModeImm(AMSubMode SubMode
) {
491 //===--------------------------------------------------------------------===//
492 // Addressing Mode #5
493 //===--------------------------------------------------------------------===//
495 // This is used for coprocessor instructions, such as FP load/stores.
497 // addrmode5 := reg +/- imm8*4
499 // The first operand is always a Reg. The second operand encodes the
500 // operation in bit 8 and the immediate in bits 0-7.
502 /// getAM5Opc - This function encodes the addrmode5 opc field.
503 static inline unsigned getAM5Opc(AddrOpc Opc
, unsigned char Offset
) {
504 bool isSub
= Opc
== sub
;
505 return ((int)isSub
<< 8) | Offset
;
507 static inline unsigned char getAM5Offset(unsigned AM5Opc
) {
508 return AM5Opc
& 0xFF;
510 static inline AddrOpc
getAM5Op(unsigned AM5Opc
) {
511 return ((AM5Opc
>> 8) & 1) ? sub
: add
;
514 //===--------------------------------------------------------------------===//
515 // Addressing Mode #6
516 //===--------------------------------------------------------------------===//
518 // This is used for NEON load / store instructions.
520 // addrmode6 := reg with optional alignment
522 // This is stored in two operands [regaddr, align]. The first is the
523 // address register. The second operand is the value of the alignment
524 // specifier in bytes or zero if no explicit alignment.
525 // Valid alignments depend on the specific instruction.
527 //===--------------------------------------------------------------------===//
528 // NEON Modified Immediates
529 //===--------------------------------------------------------------------===//
531 // Several NEON instructions (e.g., VMOV) take a "modified immediate"
532 // vector operand, where a small immediate encoded in the instruction
533 // specifies a full NEON vector value. These modified immediates are
534 // represented here as encoded integers. The low 8 bits hold the immediate
535 // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
536 // the "Cmode" field of the instruction. The interfaces below treat the
537 // Op and Cmode values as a single 5-bit value.
539 static inline unsigned createNEONModImm(unsigned OpCmode
, unsigned Val
) {
540 return (OpCmode
<< 8) | Val
;
542 static inline unsigned getNEONModImmOpCmode(unsigned ModImm
) {
543 return (ModImm
>> 8) & 0x1f;
545 static inline unsigned getNEONModImmVal(unsigned ModImm
) {
546 return ModImm
& 0xff;
549 /// decodeNEONModImm - Decode a NEON modified immediate value into the
550 /// element value and the element size in bits. (If the element size is
551 /// smaller than the vector, it is splatted into all the elements.)
552 static inline uint64_t decodeNEONModImm(unsigned ModImm
, unsigned &EltBits
) {
553 unsigned OpCmode
= getNEONModImmOpCmode(ModImm
);
554 unsigned Imm8
= getNEONModImmVal(ModImm
);
557 if (OpCmode
== 0xe) {
558 // 8-bit vector elements
561 } else if ((OpCmode
& 0xc) == 0x8) {
562 // 16-bit vector elements
563 unsigned ByteNum
= (OpCmode
& 0x6) >> 1;
564 Val
= Imm8
<< (8 * ByteNum
);
566 } else if ((OpCmode
& 0x8) == 0) {
567 // 32-bit vector elements, zero with one byte set
568 unsigned ByteNum
= (OpCmode
& 0x6) >> 1;
569 Val
= Imm8
<< (8 * ByteNum
);
571 } else if ((OpCmode
& 0xe) == 0xc) {
572 // 32-bit vector elements, one byte with low bits set
573 unsigned ByteNum
= 1 + (OpCmode
& 0x1);
574 Val
= (Imm8
<< (8 * ByteNum
)) | (0xffff >> (8 * (2 - ByteNum
)));
576 } else if (OpCmode
== 0x1e) {
577 // 64-bit vector elements
578 for (unsigned ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
579 if ((ModImm
>> ByteNum
) & 1)
580 Val
|= (uint64_t)0xff << (8 * ByteNum
);
584 assert(false && "Unsupported NEON immediate");
589 AMSubMode
getLoadStoreMultipleSubMode(int Opcode
);
591 } // end namespace ARM_AM
592 } // end namespace llvm