Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / Target / ARM / ARMAsmPrinter.cpp
blobdbc3ee41f3da8536d4a791f718acd55d71cb1407
1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format ARM assembly language.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "asm-printer"
16 #include "ARM.h"
17 #include "ARMAsmPrinter.h"
18 #include "ARMAddressingModes.h"
19 #include "ARMBuildAttrs.h"
20 #include "ARMBaseRegisterInfo.h"
21 #include "ARMConstantPoolValue.h"
22 #include "ARMMachineFunctionInfo.h"
23 #include "ARMMCExpr.h"
24 #include "ARMTargetMachine.h"
25 #include "ARMTargetObjectFile.h"
26 #include "InstPrinter/ARMInstPrinter.h"
27 #include "llvm/Analysis/DebugInfo.h"
28 #include "llvm/Constants.h"
29 #include "llvm/Module.h"
30 #include "llvm/Type.h"
31 #include "llvm/Assembly/Writer.h"
32 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCAssembler.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCExpr.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCSectionMachO.h"
41 #include "llvm/MC/MCObjectStreamer.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/Target/Mangler.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include "llvm/Target/TargetRegistry.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallString.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <cctype>
57 using namespace llvm;
59 namespace {
61 // Per section and per symbol attributes are not supported.
62 // To implement them we would need the ability to delay this emission
63 // until the assembly file is fully parsed/generated as only then do we
64 // know the symbol and section numbers.
65 class AttributeEmitter {
66 public:
67 virtual void MaybeSwitchVendor(StringRef Vendor) = 0;
68 virtual void EmitAttribute(unsigned Attribute, unsigned Value) = 0;
69 virtual void EmitTextAttribute(unsigned Attribute, StringRef String) = 0;
70 virtual void Finish() = 0;
71 virtual ~AttributeEmitter() {}
74 class AsmAttributeEmitter : public AttributeEmitter {
75 MCStreamer &Streamer;
77 public:
78 AsmAttributeEmitter(MCStreamer &Streamer_) : Streamer(Streamer_) {}
79 void MaybeSwitchVendor(StringRef Vendor) { }
81 void EmitAttribute(unsigned Attribute, unsigned Value) {
82 Streamer.EmitRawText("\t.eabi_attribute " +
83 Twine(Attribute) + ", " + Twine(Value));
86 void EmitTextAttribute(unsigned Attribute, StringRef String) {
87 switch (Attribute) {
88 case ARMBuildAttrs::CPU_name:
89 Streamer.EmitRawText(StringRef("\t.cpu ") + LowercaseString(String));
90 break;
91 /* GAS requires .fpu to be emitted regardless of EABI attribute */
92 case ARMBuildAttrs::Advanced_SIMD_arch:
93 case ARMBuildAttrs::VFP_arch:
94 Streamer.EmitRawText(StringRef("\t.fpu ") + LowercaseString(String));
95 break;
96 default: assert(0 && "Unsupported Text attribute in ASM Mode"); break;
99 void Finish() { }
102 class ObjectAttributeEmitter : public AttributeEmitter {
103 MCObjectStreamer &Streamer;
104 StringRef CurrentVendor;
105 SmallString<64> Contents;
107 public:
108 ObjectAttributeEmitter(MCObjectStreamer &Streamer_) :
109 Streamer(Streamer_), CurrentVendor("") { }
111 void MaybeSwitchVendor(StringRef Vendor) {
112 assert(!Vendor.empty() && "Vendor cannot be empty.");
114 if (CurrentVendor.empty())
115 CurrentVendor = Vendor;
116 else if (CurrentVendor == Vendor)
117 return;
118 else
119 Finish();
121 CurrentVendor = Vendor;
123 assert(Contents.size() == 0);
126 void EmitAttribute(unsigned Attribute, unsigned Value) {
127 // FIXME: should be ULEB
128 Contents += Attribute;
129 Contents += Value;
132 void EmitTextAttribute(unsigned Attribute, StringRef String) {
133 Contents += Attribute;
134 Contents += UppercaseString(String);
135 Contents += 0;
138 void Finish() {
139 const size_t ContentsSize = Contents.size();
141 // Vendor size + Vendor name + '\0'
142 const size_t VendorHeaderSize = 4 + CurrentVendor.size() + 1;
144 // Tag + Tag Size
145 const size_t TagHeaderSize = 1 + 4;
147 Streamer.EmitIntValue(VendorHeaderSize + TagHeaderSize + ContentsSize, 4);
148 Streamer.EmitBytes(CurrentVendor, 0);
149 Streamer.EmitIntValue(0, 1); // '\0'
151 Streamer.EmitIntValue(ARMBuildAttrs::File, 1);
152 Streamer.EmitIntValue(TagHeaderSize + ContentsSize, 4);
154 Streamer.EmitBytes(Contents, 0);
156 Contents.clear();
160 } // end of anonymous namespace
162 MachineLocation ARMAsmPrinter::
163 getDebugValueLocation(const MachineInstr *MI) const {
164 MachineLocation Location;
165 assert(MI->getNumOperands() == 4 && "Invalid no. of machine operands!");
166 // Frame address. Currently handles register +- offset only.
167 if (MI->getOperand(0).isReg() && MI->getOperand(1).isImm())
168 Location.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm());
169 else {
170 DEBUG(dbgs() << "DBG_VALUE instruction ignored! " << *MI << "\n");
172 return Location;
175 /// EmitDwarfRegOp - Emit dwarf register operation.
176 void ARMAsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
177 const TargetRegisterInfo *RI = TM.getRegisterInfo();
178 if (RI->getDwarfRegNum(MLoc.getReg(), false) != -1)
179 AsmPrinter::EmitDwarfRegOp(MLoc);
180 else {
181 unsigned Reg = MLoc.getReg();
182 if (Reg >= ARM::S0 && Reg <= ARM::S31) {
183 assert(ARM::S0 + 31 == ARM::S31 && "Unexpected ARM S register numbering");
184 // S registers are described as bit-pieces of a register
185 // S[2x] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 0)
186 // S[2x+1] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 32)
188 unsigned SReg = Reg - ARM::S0;
189 bool odd = SReg & 0x1;
190 unsigned Rx = 256 + (SReg >> 1);
192 OutStreamer.AddComment("DW_OP_regx for S register");
193 EmitInt8(dwarf::DW_OP_regx);
195 OutStreamer.AddComment(Twine(SReg));
196 EmitULEB128(Rx);
198 if (odd) {
199 OutStreamer.AddComment("DW_OP_bit_piece 32 32");
200 EmitInt8(dwarf::DW_OP_bit_piece);
201 EmitULEB128(32);
202 EmitULEB128(32);
203 } else {
204 OutStreamer.AddComment("DW_OP_bit_piece 32 0");
205 EmitInt8(dwarf::DW_OP_bit_piece);
206 EmitULEB128(32);
207 EmitULEB128(0);
209 } else if (Reg >= ARM::Q0 && Reg <= ARM::Q15) {
210 assert(ARM::Q0 + 15 == ARM::Q15 && "Unexpected ARM Q register numbering");
211 // Q registers Q0-Q15 are described by composing two D registers together.
212 // Qx = DW_OP_regx(256+2x) DW_OP_piece(8) DW_OP_regx(256+2x+1) DW_OP_piece(8)
214 unsigned QReg = Reg - ARM::Q0;
215 unsigned D1 = 256 + 2 * QReg;
216 unsigned D2 = D1 + 1;
218 OutStreamer.AddComment("DW_OP_regx for Q register: D1");
219 EmitInt8(dwarf::DW_OP_regx);
220 EmitULEB128(D1);
221 OutStreamer.AddComment("DW_OP_piece 8");
222 EmitInt8(dwarf::DW_OP_piece);
223 EmitULEB128(8);
225 OutStreamer.AddComment("DW_OP_regx for Q register: D2");
226 EmitInt8(dwarf::DW_OP_regx);
227 EmitULEB128(D2);
228 OutStreamer.AddComment("DW_OP_piece 8");
229 EmitInt8(dwarf::DW_OP_piece);
230 EmitULEB128(8);
235 void ARMAsmPrinter::EmitFunctionEntryLabel() {
236 if (AFI->isThumbFunction()) {
237 OutStreamer.EmitAssemblerFlag(MCAF_Code16);
238 OutStreamer.EmitThumbFunc(CurrentFnSym);
241 OutStreamer.EmitLabel(CurrentFnSym);
244 /// runOnMachineFunction - This uses the EmitInstruction()
245 /// method to print assembly for each instruction.
247 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
248 AFI = MF.getInfo<ARMFunctionInfo>();
249 MCP = MF.getConstantPool();
251 return AsmPrinter::runOnMachineFunction(MF);
254 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
255 raw_ostream &O, const char *Modifier) {
256 const MachineOperand &MO = MI->getOperand(OpNum);
257 unsigned TF = MO.getTargetFlags();
259 switch (MO.getType()) {
260 default:
261 assert(0 && "<unknown operand type>");
262 case MachineOperand::MO_Register: {
263 unsigned Reg = MO.getReg();
264 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
265 assert(!MO.getSubReg() && "Subregs should be eliminated!");
266 O << ARMInstPrinter::getRegisterName(Reg);
267 break;
269 case MachineOperand::MO_Immediate: {
270 int64_t Imm = MO.getImm();
271 O << '#';
272 if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
273 (TF == ARMII::MO_LO16))
274 O << ":lower16:";
275 else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
276 (TF == ARMII::MO_HI16))
277 O << ":upper16:";
278 O << Imm;
279 break;
281 case MachineOperand::MO_MachineBasicBlock:
282 O << *MO.getMBB()->getSymbol();
283 return;
284 case MachineOperand::MO_GlobalAddress: {
285 const GlobalValue *GV = MO.getGlobal();
286 if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
287 (TF & ARMII::MO_LO16))
288 O << ":lower16:";
289 else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
290 (TF & ARMII::MO_HI16))
291 O << ":upper16:";
292 O << *Mang->getSymbol(GV);
294 printOffset(MO.getOffset(), O);
295 if (TF == ARMII::MO_PLT)
296 O << "(PLT)";
297 break;
299 case MachineOperand::MO_ExternalSymbol: {
300 O << *GetExternalSymbolSymbol(MO.getSymbolName());
301 if (TF == ARMII::MO_PLT)
302 O << "(PLT)";
303 break;
305 case MachineOperand::MO_ConstantPoolIndex:
306 O << *GetCPISymbol(MO.getIndex());
307 break;
308 case MachineOperand::MO_JumpTableIndex:
309 O << *GetJTISymbol(MO.getIndex());
310 break;
314 //===--------------------------------------------------------------------===//
316 MCSymbol *ARMAsmPrinter::
317 GetARMSetPICJumpTableLabel2(unsigned uid, unsigned uid2,
318 const MachineBasicBlock *MBB) const {
319 SmallString<60> Name;
320 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix()
321 << getFunctionNumber() << '_' << uid << '_' << uid2
322 << "_set_" << MBB->getNumber();
323 return OutContext.GetOrCreateSymbol(Name.str());
326 MCSymbol *ARMAsmPrinter::
327 GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
328 SmallString<60> Name;
329 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "JTI"
330 << getFunctionNumber() << '_' << uid << '_' << uid2;
331 return OutContext.GetOrCreateSymbol(Name.str());
335 MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel(void) const {
336 SmallString<60> Name;
337 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "SJLJEH"
338 << getFunctionNumber();
339 return OutContext.GetOrCreateSymbol(Name.str());
342 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
343 unsigned AsmVariant, const char *ExtraCode,
344 raw_ostream &O) {
345 // Does this asm operand have a single letter operand modifier?
346 if (ExtraCode && ExtraCode[0]) {
347 if (ExtraCode[1] != 0) return true; // Unknown modifier.
349 switch (ExtraCode[0]) {
350 default: return true; // Unknown modifier.
351 case 'a': // Print as a memory address.
352 if (MI->getOperand(OpNum).isReg()) {
353 O << "["
354 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
355 << "]";
356 return false;
358 // Fallthrough
359 case 'c': // Don't print "#" before an immediate operand.
360 if (!MI->getOperand(OpNum).isImm())
361 return true;
362 O << MI->getOperand(OpNum).getImm();
363 return false;
364 case 'P': // Print a VFP double precision register.
365 case 'q': // Print a NEON quad precision register.
366 printOperand(MI, OpNum, O);
367 return false;
368 case 'y': // Print a VFP single precision register as indexed double.
369 // This uses the ordering of the alias table to get the first 'd' register
370 // that overlaps the 's' register. Also, s0 is an odd register, hence the
371 // odd modulus check below.
372 if (MI->getOperand(OpNum).isReg()) {
373 unsigned Reg = MI->getOperand(OpNum).getReg();
374 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
375 O << ARMInstPrinter::getRegisterName(TRI->getAliasSet(Reg)[0]) <<
376 (((Reg % 2) == 1) ? "[0]" : "[1]");
377 return false;
379 return true;
380 case 'B': // Bitwise inverse of integer or symbol without a preceding #.
381 if (!MI->getOperand(OpNum).isImm())
382 return true;
383 O << ~(MI->getOperand(OpNum).getImm());
384 return false;
385 case 'L': // The low 16 bits of an immediate constant.
386 if (!MI->getOperand(OpNum).isImm())
387 return true;
388 O << (MI->getOperand(OpNum).getImm() & 0xffff);
389 return false;
390 case 'M': { // A register range suitable for LDM/STM.
391 if (!MI->getOperand(OpNum).isReg())
392 return true;
393 const MachineOperand &MO = MI->getOperand(OpNum);
394 unsigned RegBegin = MO.getReg();
395 // This takes advantage of the 2 operand-ness of ldm/stm and that we've
396 // already got the operands in registers that are operands to the
397 // inline asm statement.
399 O << "{" << ARMInstPrinter::getRegisterName(RegBegin);
401 // FIXME: The register allocator not only may not have given us the
402 // registers in sequence, but may not be in ascending registers. This
403 // will require changes in the register allocator that'll need to be
404 // propagated down here if the operands change.
405 unsigned RegOps = OpNum + 1;
406 while (MI->getOperand(RegOps).isReg()) {
407 O << ", "
408 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
409 RegOps++;
412 O << "}";
414 return false;
416 // These modifiers are not yet supported.
417 case 'p': // The high single-precision register of a VFP double-precision
418 // register.
419 case 'e': // The low doubleword register of a NEON quad register.
420 case 'f': // The high doubleword register of a NEON quad register.
421 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
422 case 'Q': // The least significant register of a pair.
423 case 'R': // The most significant register of a pair.
424 case 'H': // The highest-numbered register of a pair.
425 return true;
429 printOperand(MI, OpNum, O);
430 return false;
433 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
434 unsigned OpNum, unsigned AsmVariant,
435 const char *ExtraCode,
436 raw_ostream &O) {
437 // Does this asm operand have a single letter operand modifier?
438 if (ExtraCode && ExtraCode[0]) {
439 if (ExtraCode[1] != 0) return true; // Unknown modifier.
441 switch (ExtraCode[0]) {
442 case 'A': // A memory operand for a VLD1/VST1 instruction.
443 default: return true; // Unknown modifier.
444 case 'm': // The base register of a memory operand.
445 if (!MI->getOperand(OpNum).isReg())
446 return true;
447 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
448 return false;
452 const MachineOperand &MO = MI->getOperand(OpNum);
453 assert(MO.isReg() && "unexpected inline asm memory operand");
454 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
455 return false;
458 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
459 if (Subtarget->isTargetDarwin()) {
460 Reloc::Model RelocM = TM.getRelocationModel();
461 if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
462 // Declare all the text sections up front (before the DWARF sections
463 // emitted by AsmPrinter::doInitialization) so the assembler will keep
464 // them together at the beginning of the object file. This helps
465 // avoid out-of-range branches that are due a fundamental limitation of
466 // the way symbol offsets are encoded with the current Darwin ARM
467 // relocations.
468 const TargetLoweringObjectFileMachO &TLOFMacho =
469 static_cast<const TargetLoweringObjectFileMachO &>(
470 getObjFileLowering());
471 OutStreamer.SwitchSection(TLOFMacho.getTextSection());
472 OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection());
473 OutStreamer.SwitchSection(TLOFMacho.getConstTextCoalSection());
474 if (RelocM == Reloc::DynamicNoPIC) {
475 const MCSection *sect =
476 OutContext.getMachOSection("__TEXT", "__symbol_stub4",
477 MCSectionMachO::S_SYMBOL_STUBS,
478 12, SectionKind::getText());
479 OutStreamer.SwitchSection(sect);
480 } else {
481 const MCSection *sect =
482 OutContext.getMachOSection("__TEXT", "__picsymbolstub4",
483 MCSectionMachO::S_SYMBOL_STUBS,
484 16, SectionKind::getText());
485 OutStreamer.SwitchSection(sect);
487 const MCSection *StaticInitSect =
488 OutContext.getMachOSection("__TEXT", "__StaticInit",
489 MCSectionMachO::S_REGULAR |
490 MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
491 SectionKind::getText());
492 OutStreamer.SwitchSection(StaticInitSect);
496 // Use unified assembler syntax.
497 OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified);
499 // Emit ARM Build Attributes
500 if (Subtarget->isTargetELF()) {
502 emitAttributes();
507 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
508 if (Subtarget->isTargetDarwin()) {
509 // All darwin targets use mach-o.
510 const TargetLoweringObjectFileMachO &TLOFMacho =
511 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
512 MachineModuleInfoMachO &MMIMacho =
513 MMI->getObjFileInfo<MachineModuleInfoMachO>();
515 // Output non-lazy-pointers for external and common global variables.
516 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
518 if (!Stubs.empty()) {
519 // Switch with ".non_lazy_symbol_pointer" directive.
520 OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
521 EmitAlignment(2);
522 for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
523 // L_foo$stub:
524 OutStreamer.EmitLabel(Stubs[i].first);
525 // .indirect_symbol _foo
526 MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
527 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol);
529 if (MCSym.getInt())
530 // External to current translation unit.
531 OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
532 else
533 // Internal to current translation unit.
535 // When we place the LSDA into the TEXT section, the type info
536 // pointers need to be indirect and pc-rel. We accomplish this by
537 // using NLPs; however, sometimes the types are local to the file.
538 // We need to fill in the value for the NLP in those cases.
539 OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(),
540 OutContext),
541 4/*size*/, 0/*addrspace*/);
544 Stubs.clear();
545 OutStreamer.AddBlankLine();
548 Stubs = MMIMacho.GetHiddenGVStubList();
549 if (!Stubs.empty()) {
550 OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
551 EmitAlignment(2);
552 for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
553 // L_foo$stub:
554 OutStreamer.EmitLabel(Stubs[i].first);
555 // .long _foo
556 OutStreamer.EmitValue(MCSymbolRefExpr::
557 Create(Stubs[i].second.getPointer(),
558 OutContext),
559 4/*size*/, 0/*addrspace*/);
562 Stubs.clear();
563 OutStreamer.AddBlankLine();
566 // Funny Darwin hack: This flag tells the linker that no global symbols
567 // contain code that falls through to other global symbols (e.g. the obvious
568 // implementation of multiple entry points). If this doesn't occur, the
569 // linker can safely perform dead code stripping. Since LLVM never
570 // generates code that does this, it is always safe to set.
571 OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
575 //===----------------------------------------------------------------------===//
576 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
577 // FIXME:
578 // The following seem like one-off assembler flags, but they actually need
579 // to appear in the .ARM.attributes section in ELF.
580 // Instead of subclassing the MCELFStreamer, we do the work here.
582 void ARMAsmPrinter::emitAttributes() {
584 emitARMAttributeSection();
586 /* GAS expect .fpu to be emitted, regardless of VFP build attribute */
587 bool emitFPU = false;
588 AttributeEmitter *AttrEmitter;
589 if (OutStreamer.hasRawTextSupport()) {
590 AttrEmitter = new AsmAttributeEmitter(OutStreamer);
591 emitFPU = true;
592 } else {
593 MCObjectStreamer &O = static_cast<MCObjectStreamer&>(OutStreamer);
594 AttrEmitter = new ObjectAttributeEmitter(O);
597 AttrEmitter->MaybeSwitchVendor("aeabi");
599 std::string CPUString = Subtarget->getCPUString();
601 if (CPUString == "cortex-a8" ||
602 Subtarget->isCortexA8()) {
603 AttrEmitter->EmitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a8");
604 AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v7);
605 AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch_profile,
606 ARMBuildAttrs::ApplicationProfile);
607 AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
608 ARMBuildAttrs::Allowed);
609 AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
610 ARMBuildAttrs::AllowThumb32);
611 // Fixme: figure out when this is emitted.
612 //AttrEmitter->EmitAttribute(ARMBuildAttrs::WMMX_arch,
613 // ARMBuildAttrs::AllowWMMXv1);
616 /// ADD additional Else-cases here!
617 } else if (CPUString == "xscale") {
618 AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5TEJ);
619 AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
620 ARMBuildAttrs::Allowed);
621 AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
622 ARMBuildAttrs::Allowed);
623 } else if (CPUString == "generic") {
624 // FIXME: Why these defaults?
625 AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v4T);
626 AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
627 ARMBuildAttrs::Allowed);
628 AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
629 ARMBuildAttrs::Allowed);
632 if (Subtarget->hasNEON() && emitFPU) {
633 /* NEON is not exactly a VFP architecture, but GAS emit one of
634 * neon/vfpv3/vfpv2 for .fpu parameters */
635 AttrEmitter->EmitTextAttribute(ARMBuildAttrs::Advanced_SIMD_arch, "neon");
636 /* If emitted for NEON, omit from VFP below, since you can have both
637 * NEON and VFP in build attributes but only one .fpu */
638 emitFPU = false;
641 /* VFPv3 + .fpu */
642 if (Subtarget->hasVFP3()) {
643 AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
644 ARMBuildAttrs::AllowFPv3A);
645 if (emitFPU)
646 AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv3");
648 /* VFPv2 + .fpu */
649 } else if (Subtarget->hasVFP2()) {
650 AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
651 ARMBuildAttrs::AllowFPv2);
652 if (emitFPU)
653 AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv2");
656 /* TODO: ARMBuildAttrs::Allowed is not completely accurate,
657 * since NEON can have 1 (allowed) or 2 (MAC operations) */
658 if (Subtarget->hasNEON()) {
659 AttrEmitter->EmitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
660 ARMBuildAttrs::Allowed);
663 // Signal various FP modes.
664 if (!UnsafeFPMath) {
665 AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_denormal,
666 ARMBuildAttrs::Allowed);
667 AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
668 ARMBuildAttrs::Allowed);
671 if (NoInfsFPMath && NoNaNsFPMath)
672 AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model,
673 ARMBuildAttrs::Allowed);
674 else
675 AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model,
676 ARMBuildAttrs::AllowIEE754);
678 // FIXME: add more flags to ARMBuildAttrs.h
679 // 8-bytes alignment stuff.
680 AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_needed, 1);
681 AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_preserved, 1);
683 // Hard float. Use both S and D registers and conform to AAPCS-VFP.
684 if (Subtarget->isAAPCS_ABI() && FloatABIType == FloatABI::Hard) {
685 AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_HardFP_use, 3);
686 AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_VFP_args, 1);
688 // FIXME: Should we signal R9 usage?
690 if (Subtarget->hasDivide())
691 AttrEmitter->EmitAttribute(ARMBuildAttrs::DIV_use, 1);
693 AttrEmitter->Finish();
694 delete AttrEmitter;
697 void ARMAsmPrinter::emitARMAttributeSection() {
698 // <format-version>
699 // [ <section-length> "vendor-name"
700 // [ <file-tag> <size> <attribute>*
701 // | <section-tag> <size> <section-number>* 0 <attribute>*
702 // | <symbol-tag> <size> <symbol-number>* 0 <attribute>*
703 // ]+
704 // ]*
706 if (OutStreamer.hasRawTextSupport())
707 return;
709 const ARMElfTargetObjectFile &TLOFELF =
710 static_cast<const ARMElfTargetObjectFile &>
711 (getObjFileLowering());
713 OutStreamer.SwitchSection(TLOFELF.getAttributesSection());
715 // Format version
716 OutStreamer.EmitIntValue(0x41, 1);
719 //===----------------------------------------------------------------------===//
721 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
722 unsigned LabelId, MCContext &Ctx) {
724 MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix)
725 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
726 return Label;
729 static MCSymbolRefExpr::VariantKind
730 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
731 switch (Modifier) {
732 default: llvm_unreachable("Unknown modifier!");
733 case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None;
734 case ARMCP::TLSGD: return MCSymbolRefExpr::VK_ARM_TLSGD;
735 case ARMCP::TPOFF: return MCSymbolRefExpr::VK_ARM_TPOFF;
736 case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_ARM_GOTTPOFF;
737 case ARMCP::GOT: return MCSymbolRefExpr::VK_ARM_GOT;
738 case ARMCP::GOTOFF: return MCSymbolRefExpr::VK_ARM_GOTOFF;
740 return MCSymbolRefExpr::VK_None;
743 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV) {
744 bool isIndirect = Subtarget->isTargetDarwin() &&
745 Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
746 if (!isIndirect)
747 return Mang->getSymbol(GV);
749 // FIXME: Remove this when Darwin transition to @GOT like syntax.
750 MCSymbol *MCSym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
751 MachineModuleInfoMachO &MMIMachO =
752 MMI->getObjFileInfo<MachineModuleInfoMachO>();
753 MachineModuleInfoImpl::StubValueTy &StubSym =
754 GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym) :
755 MMIMachO.getGVStubEntry(MCSym);
756 if (StubSym.getPointer() == 0)
757 StubSym = MachineModuleInfoImpl::
758 StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage());
759 return MCSym;
762 void ARMAsmPrinter::
763 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
764 int Size = TM.getTargetData()->getTypeAllocSize(MCPV->getType());
766 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
768 MCSymbol *MCSym;
769 if (ACPV->isLSDA()) {
770 SmallString<128> Str;
771 raw_svector_ostream OS(Str);
772 OS << MAI->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber();
773 MCSym = OutContext.GetOrCreateSymbol(OS.str());
774 } else if (ACPV->isBlockAddress()) {
775 MCSym = GetBlockAddressSymbol(ACPV->getBlockAddress());
776 } else if (ACPV->isGlobalValue()) {
777 const GlobalValue *GV = ACPV->getGV();
778 MCSym = GetARMGVSymbol(GV);
779 } else {
780 assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
781 MCSym = GetExternalSymbolSymbol(ACPV->getSymbol());
784 // Create an MCSymbol for the reference.
785 const MCExpr *Expr =
786 MCSymbolRefExpr::Create(MCSym, getModifierVariantKind(ACPV->getModifier()),
787 OutContext);
789 if (ACPV->getPCAdjustment()) {
790 MCSymbol *PCLabel = getPICLabel(MAI->getPrivateGlobalPrefix(),
791 getFunctionNumber(),
792 ACPV->getLabelId(),
793 OutContext);
794 const MCExpr *PCRelExpr = MCSymbolRefExpr::Create(PCLabel, OutContext);
795 PCRelExpr =
796 MCBinaryExpr::CreateAdd(PCRelExpr,
797 MCConstantExpr::Create(ACPV->getPCAdjustment(),
798 OutContext),
799 OutContext);
800 if (ACPV->mustAddCurrentAddress()) {
801 // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
802 // label, so just emit a local label end reference that instead.
803 MCSymbol *DotSym = OutContext.CreateTempSymbol();
804 OutStreamer.EmitLabel(DotSym);
805 const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
806 PCRelExpr = MCBinaryExpr::CreateSub(PCRelExpr, DotExpr, OutContext);
808 Expr = MCBinaryExpr::CreateSub(Expr, PCRelExpr, OutContext);
810 OutStreamer.EmitValue(Expr, Size);
813 void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) {
814 unsigned Opcode = MI->getOpcode();
815 int OpNum = 1;
816 if (Opcode == ARM::BR_JTadd)
817 OpNum = 2;
818 else if (Opcode == ARM::BR_JTm)
819 OpNum = 3;
821 const MachineOperand &MO1 = MI->getOperand(OpNum);
822 const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
823 unsigned JTI = MO1.getIndex();
825 // Emit a label for the jump table.
826 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
827 OutStreamer.EmitLabel(JTISymbol);
829 // Emit each entry of the table.
830 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
831 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
832 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
834 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
835 MachineBasicBlock *MBB = JTBBs[i];
836 // Construct an MCExpr for the entry. We want a value of the form:
837 // (BasicBlockAddr - TableBeginAddr)
839 // For example, a table with entries jumping to basic blocks BB0 and BB1
840 // would look like:
841 // LJTI_0_0:
842 // .word (LBB0 - LJTI_0_0)
843 // .word (LBB1 - LJTI_0_0)
844 const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
846 if (TM.getRelocationModel() == Reloc::PIC_)
847 Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol,
848 OutContext),
849 OutContext);
850 OutStreamer.EmitValue(Expr, 4);
854 void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) {
855 unsigned Opcode = MI->getOpcode();
856 int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1;
857 const MachineOperand &MO1 = MI->getOperand(OpNum);
858 const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
859 unsigned JTI = MO1.getIndex();
861 // Emit a label for the jump table.
862 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
863 OutStreamer.EmitLabel(JTISymbol);
865 // Emit each entry of the table.
866 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
867 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
868 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
869 unsigned OffsetWidth = 4;
870 if (MI->getOpcode() == ARM::t2TBB_JT)
871 OffsetWidth = 1;
872 else if (MI->getOpcode() == ARM::t2TBH_JT)
873 OffsetWidth = 2;
875 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
876 MachineBasicBlock *MBB = JTBBs[i];
877 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(),
878 OutContext);
879 // If this isn't a TBB or TBH, the entries are direct branch instructions.
880 if (OffsetWidth == 4) {
881 MCInst BrInst;
882 BrInst.setOpcode(ARM::t2B);
883 BrInst.addOperand(MCOperand::CreateExpr(MBBSymbolExpr));
884 OutStreamer.EmitInstruction(BrInst);
885 continue;
887 // Otherwise it's an offset from the dispatch instruction. Construct an
888 // MCExpr for the entry. We want a value of the form:
889 // (BasicBlockAddr - TableBeginAddr) / 2
891 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
892 // would look like:
893 // LJTI_0_0:
894 // .byte (LBB0 - LJTI_0_0) / 2
895 // .byte (LBB1 - LJTI_0_0) / 2
896 const MCExpr *Expr =
897 MCBinaryExpr::CreateSub(MBBSymbolExpr,
898 MCSymbolRefExpr::Create(JTISymbol, OutContext),
899 OutContext);
900 Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext),
901 OutContext);
902 OutStreamer.EmitValue(Expr, OffsetWidth);
906 void ARMAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
907 raw_ostream &OS) {
908 unsigned NOps = MI->getNumOperands();
909 assert(NOps==4);
910 OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: ";
911 // cast away const; DIetc do not take const operands for some reason.
912 DIVariable V(const_cast<MDNode *>(MI->getOperand(NOps-1).getMetadata()));
913 OS << V.getName();
914 OS << " <- ";
915 // Frame address. Currently handles register +- offset only.
916 assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm());
917 OS << '['; printOperand(MI, 0, OS); OS << '+'; printOperand(MI, 1, OS);
918 OS << ']';
919 OS << "+";
920 printOperand(MI, NOps-2, OS);
923 static void populateADROperands(MCInst &Inst, unsigned Dest,
924 const MCSymbol *Label,
925 unsigned pred, unsigned ccreg,
926 MCContext &Ctx) {
927 const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, Ctx);
928 Inst.addOperand(MCOperand::CreateReg(Dest));
929 Inst.addOperand(MCOperand::CreateExpr(SymbolExpr));
930 // Add predicate operands.
931 Inst.addOperand(MCOperand::CreateImm(pred));
932 Inst.addOperand(MCOperand::CreateReg(ccreg));
935 void ARMAsmPrinter::EmitPatchedInstruction(const MachineInstr *MI,
936 unsigned Opcode) {
937 MCInst TmpInst;
939 // Emit the instruction as usual, just patch the opcode.
940 LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
941 TmpInst.setOpcode(Opcode);
942 OutStreamer.EmitInstruction(TmpInst);
945 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
946 assert(MI->getFlag(MachineInstr::FrameSetup) &&
947 "Only instruction which are involved into frame setup code are allowed");
949 const MachineFunction &MF = *MI->getParent()->getParent();
950 const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
951 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
953 unsigned FramePtr = RegInfo->getFrameRegister(MF);
954 unsigned Opc = MI->getOpcode();
955 unsigned SrcReg, DstReg;
957 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
958 // Two special cases:
959 // 1) tPUSH does not have src/dst regs.
960 // 2) for Thumb1 code we sometimes materialize the constant via constpool
961 // load. Yes, this is pretty fragile, but for now I don't see better
962 // way... :(
963 SrcReg = DstReg = ARM::SP;
964 } else {
965 SrcReg = MI->getOperand(1).getReg();
966 DstReg = MI->getOperand(0).getReg();
969 // Try to figure out the unwinding opcode out of src / dst regs.
970 if (MI->getDesc().mayStore()) {
971 // Register saves.
972 assert(DstReg == ARM::SP &&
973 "Only stack pointer as a destination reg is supported");
975 SmallVector<unsigned, 4> RegList;
976 // Skip src & dst reg, and pred ops.
977 unsigned StartOp = 2 + 2;
978 // Use all the operands.
979 unsigned NumOffset = 0;
981 switch (Opc) {
982 default:
983 MI->dump();
984 assert(0 && "Unsupported opcode for unwinding information");
985 case ARM::tPUSH:
986 // Special case here: no src & dst reg, but two extra imp ops.
987 StartOp = 2; NumOffset = 2;
988 case ARM::STMDB_UPD:
989 case ARM::t2STMDB_UPD:
990 case ARM::VSTMDDB_UPD:
991 assert(SrcReg == ARM::SP &&
992 "Only stack pointer as a source reg is supported");
993 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
994 i != NumOps; ++i)
995 RegList.push_back(MI->getOperand(i).getReg());
996 break;
997 case ARM::STR_PRE:
998 assert(MI->getOperand(2).getReg() == ARM::SP &&
999 "Only stack pointer as a source reg is supported");
1000 RegList.push_back(SrcReg);
1001 break;
1003 OutStreamer.EmitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1004 } else {
1005 // Changes of stack / frame pointer.
1006 if (SrcReg == ARM::SP) {
1007 int64_t Offset = 0;
1008 switch (Opc) {
1009 default:
1010 MI->dump();
1011 assert(0 && "Unsupported opcode for unwinding information");
1012 case ARM::MOVr:
1013 Offset = 0;
1014 break;
1015 case ARM::ADDri:
1016 Offset = -MI->getOperand(2).getImm();
1017 break;
1018 case ARM::SUBri:
1019 Offset = MI->getOperand(2).getImm();
1020 break;
1021 case ARM::tSUBspi:
1022 Offset = MI->getOperand(2).getImm()*4;
1023 break;
1024 case ARM::tADDspi:
1025 case ARM::tADDrSPi:
1026 Offset = -MI->getOperand(2).getImm()*4;
1027 break;
1028 case ARM::tLDRpci: {
1029 // Grab the constpool index and check, whether it corresponds to
1030 // original or cloned constpool entry.
1031 unsigned CPI = MI->getOperand(1).getIndex();
1032 const MachineConstantPool *MCP = MF.getConstantPool();
1033 if (CPI >= MCP->getConstants().size())
1034 CPI = AFI.getOriginalCPIdx(CPI);
1035 assert(CPI != -1U && "Invalid constpool index");
1037 // Derive the actual offset.
1038 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1039 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1040 // FIXME: Check for user, it should be "add" instruction!
1041 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1042 break;
1046 if (DstReg == FramePtr && FramePtr != ARM::SP)
1047 // Set-up of the frame pointer. Positive values correspond to "add"
1048 // instruction.
1049 OutStreamer.EmitSetFP(FramePtr, ARM::SP, -Offset);
1050 else if (DstReg == ARM::SP) {
1051 // Change of SP by an offset. Positive values correspond to "sub"
1052 // instruction.
1053 OutStreamer.EmitPad(Offset);
1054 } else {
1055 MI->dump();
1056 assert(0 && "Unsupported opcode for unwinding information");
1058 } else if (DstReg == ARM::SP) {
1059 // FIXME: .movsp goes here
1060 MI->dump();
1061 assert(0 && "Unsupported opcode for unwinding information");
1063 else {
1064 MI->dump();
1065 assert(0 && "Unsupported opcode for unwinding information");
1070 extern cl::opt<bool> EnableARMEHABI;
1072 // Simple pseudo-instructions have their lowering (with expansion to real
1073 // instructions) auto-generated.
1074 #include "ARMGenMCPseudoLowering.inc"
1076 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
1077 // Do any auto-generated pseudo lowerings.
1078 if (emitPseudoExpansionLowering(OutStreamer, MI))
1079 return;
1081 // Check for manual lowerings.
1082 unsigned Opc = MI->getOpcode();
1083 switch (Opc) {
1084 case ARM::t2MOVi32imm: assert(0 && "Should be lowered by thumb2it pass");
1085 case ARM::DBG_VALUE: {
1086 if (isVerbose() && OutStreamer.hasRawTextSupport()) {
1087 SmallString<128> TmpStr;
1088 raw_svector_ostream OS(TmpStr);
1089 PrintDebugValueComment(MI, OS);
1090 OutStreamer.EmitRawText(StringRef(OS.str()));
1092 return;
1094 case ARM::LEApcrel:
1095 case ARM::tLEApcrel:
1096 case ARM::t2LEApcrel: {
1097 // FIXME: Need to also handle globals and externals
1098 MCInst TmpInst;
1099 TmpInst.setOpcode(MI->getOpcode() == ARM::t2LEApcrel ? ARM::t2ADR
1100 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1101 : ARM::ADR));
1102 populateADROperands(TmpInst, MI->getOperand(0).getReg(),
1103 GetCPISymbol(MI->getOperand(1).getIndex()),
1104 MI->getOperand(2).getImm(), MI->getOperand(3).getReg(),
1105 OutContext);
1106 OutStreamer.EmitInstruction(TmpInst);
1107 return;
1109 case ARM::LEApcrelJT:
1110 case ARM::tLEApcrelJT:
1111 case ARM::t2LEApcrelJT: {
1112 MCInst TmpInst;
1113 TmpInst.setOpcode(MI->getOpcode() == ARM::t2LEApcrelJT ? ARM::t2ADR
1114 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1115 : ARM::ADR));
1116 populateADROperands(TmpInst, MI->getOperand(0).getReg(),
1117 GetARMJTIPICJumpTableLabel2(MI->getOperand(1).getIndex(),
1118 MI->getOperand(2).getImm()),
1119 MI->getOperand(3).getImm(), MI->getOperand(4).getReg(),
1120 OutContext);
1121 OutStreamer.EmitInstruction(TmpInst);
1122 return;
1124 // Darwin call instructions are just normal call instructions with different
1125 // clobber semantics (they clobber R9).
1126 case ARM::BXr9_CALL:
1127 case ARM::BX_CALL: {
1129 MCInst TmpInst;
1130 TmpInst.setOpcode(ARM::MOVr);
1131 TmpInst.addOperand(MCOperand::CreateReg(ARM::LR));
1132 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1133 // Add predicate operands.
1134 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1135 TmpInst.addOperand(MCOperand::CreateReg(0));
1136 // Add 's' bit operand (always reg0 for this)
1137 TmpInst.addOperand(MCOperand::CreateReg(0));
1138 OutStreamer.EmitInstruction(TmpInst);
1141 MCInst TmpInst;
1142 TmpInst.setOpcode(ARM::BX);
1143 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1144 OutStreamer.EmitInstruction(TmpInst);
1146 return;
1148 case ARM::tBXr9_CALL:
1149 case ARM::tBX_CALL: {
1151 MCInst TmpInst;
1152 TmpInst.setOpcode(ARM::tMOVr);
1153 TmpInst.addOperand(MCOperand::CreateReg(ARM::LR));
1154 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1155 // Add predicate operands.
1156 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1157 TmpInst.addOperand(MCOperand::CreateReg(0));
1158 OutStreamer.EmitInstruction(TmpInst);
1161 MCInst TmpInst;
1162 TmpInst.setOpcode(ARM::tBX);
1163 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1164 // Add predicate operands.
1165 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1166 TmpInst.addOperand(MCOperand::CreateReg(0));
1167 OutStreamer.EmitInstruction(TmpInst);
1169 return;
1171 case ARM::BMOVPCRXr9_CALL:
1172 case ARM::BMOVPCRX_CALL: {
1174 MCInst TmpInst;
1175 TmpInst.setOpcode(ARM::MOVr);
1176 TmpInst.addOperand(MCOperand::CreateReg(ARM::LR));
1177 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1178 // Add predicate operands.
1179 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1180 TmpInst.addOperand(MCOperand::CreateReg(0));
1181 // Add 's' bit operand (always reg0 for this)
1182 TmpInst.addOperand(MCOperand::CreateReg(0));
1183 OutStreamer.EmitInstruction(TmpInst);
1186 MCInst TmpInst;
1187 TmpInst.setOpcode(ARM::MOVr);
1188 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1189 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1190 // Add predicate operands.
1191 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1192 TmpInst.addOperand(MCOperand::CreateReg(0));
1193 // Add 's' bit operand (always reg0 for this)
1194 TmpInst.addOperand(MCOperand::CreateReg(0));
1195 OutStreamer.EmitInstruction(TmpInst);
1197 return;
1199 case ARM::MOVi16_ga_pcrel:
1200 case ARM::t2MOVi16_ga_pcrel: {
1201 MCInst TmpInst;
1202 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1203 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1205 unsigned TF = MI->getOperand(1).getTargetFlags();
1206 bool isPIC = TF == ARMII::MO_LO16_NONLAZY_PIC;
1207 const GlobalValue *GV = MI->getOperand(1).getGlobal();
1208 MCSymbol *GVSym = GetARMGVSymbol(GV);
1209 const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
1210 if (isPIC) {
1211 MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(),
1212 getFunctionNumber(),
1213 MI->getOperand(2).getImm(), OutContext);
1214 const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
1215 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1216 const MCExpr *PCRelExpr =
1217 ARMMCExpr::CreateLower16(MCBinaryExpr::CreateSub(GVSymExpr,
1218 MCBinaryExpr::CreateAdd(LabelSymExpr,
1219 MCConstantExpr::Create(PCAdj, OutContext),
1220 OutContext), OutContext), OutContext);
1221 TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
1222 } else {
1223 const MCExpr *RefExpr= ARMMCExpr::CreateLower16(GVSymExpr, OutContext);
1224 TmpInst.addOperand(MCOperand::CreateExpr(RefExpr));
1227 // Add predicate operands.
1228 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1229 TmpInst.addOperand(MCOperand::CreateReg(0));
1230 // Add 's' bit operand (always reg0 for this)
1231 TmpInst.addOperand(MCOperand::CreateReg(0));
1232 OutStreamer.EmitInstruction(TmpInst);
1233 return;
1235 case ARM::MOVTi16_ga_pcrel:
1236 case ARM::t2MOVTi16_ga_pcrel: {
1237 MCInst TmpInst;
1238 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1239 ? ARM::MOVTi16 : ARM::t2MOVTi16);
1240 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1241 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
1243 unsigned TF = MI->getOperand(2).getTargetFlags();
1244 bool isPIC = TF == ARMII::MO_HI16_NONLAZY_PIC;
1245 const GlobalValue *GV = MI->getOperand(2).getGlobal();
1246 MCSymbol *GVSym = GetARMGVSymbol(GV);
1247 const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
1248 if (isPIC) {
1249 MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(),
1250 getFunctionNumber(),
1251 MI->getOperand(3).getImm(), OutContext);
1252 const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
1253 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1254 const MCExpr *PCRelExpr =
1255 ARMMCExpr::CreateUpper16(MCBinaryExpr::CreateSub(GVSymExpr,
1256 MCBinaryExpr::CreateAdd(LabelSymExpr,
1257 MCConstantExpr::Create(PCAdj, OutContext),
1258 OutContext), OutContext), OutContext);
1259 TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
1260 } else {
1261 const MCExpr *RefExpr= ARMMCExpr::CreateUpper16(GVSymExpr, OutContext);
1262 TmpInst.addOperand(MCOperand::CreateExpr(RefExpr));
1264 // Add predicate operands.
1265 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1266 TmpInst.addOperand(MCOperand::CreateReg(0));
1267 // Add 's' bit operand (always reg0 for this)
1268 TmpInst.addOperand(MCOperand::CreateReg(0));
1269 OutStreamer.EmitInstruction(TmpInst);
1270 return;
1272 case ARM::tPICADD: {
1273 // This is a pseudo op for a label + instruction sequence, which looks like:
1274 // LPC0:
1275 // add r0, pc
1276 // This adds the address of LPC0 to r0.
1278 // Emit the label.
1279 OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
1280 getFunctionNumber(), MI->getOperand(2).getImm(),
1281 OutContext));
1283 // Form and emit the add.
1284 MCInst AddInst;
1285 AddInst.setOpcode(ARM::tADDhirr);
1286 AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1287 AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1288 AddInst.addOperand(MCOperand::CreateReg(ARM::PC));
1289 // Add predicate operands.
1290 AddInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1291 AddInst.addOperand(MCOperand::CreateReg(0));
1292 OutStreamer.EmitInstruction(AddInst);
1293 return;
1295 case ARM::PICADD: {
1296 // This is a pseudo op for a label + instruction sequence, which looks like:
1297 // LPC0:
1298 // add r0, pc, r0
1299 // This adds the address of LPC0 to r0.
1301 // Emit the label.
1302 OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
1303 getFunctionNumber(), MI->getOperand(2).getImm(),
1304 OutContext));
1306 // Form and emit the add.
1307 MCInst AddInst;
1308 AddInst.setOpcode(ARM::ADDrr);
1309 AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1310 AddInst.addOperand(MCOperand::CreateReg(ARM::PC));
1311 AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
1312 // Add predicate operands.
1313 AddInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm()));
1314 AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(4).getReg()));
1315 // Add 's' bit operand (always reg0 for this)
1316 AddInst.addOperand(MCOperand::CreateReg(0));
1317 OutStreamer.EmitInstruction(AddInst);
1318 return;
1320 case ARM::PICSTR:
1321 case ARM::PICSTRB:
1322 case ARM::PICSTRH:
1323 case ARM::PICLDR:
1324 case ARM::PICLDRB:
1325 case ARM::PICLDRH:
1326 case ARM::PICLDRSB:
1327 case ARM::PICLDRSH: {
1328 // This is a pseudo op for a label + instruction sequence, which looks like:
1329 // LPC0:
1330 // OP r0, [pc, r0]
1331 // The LCP0 label is referenced by a constant pool entry in order to get
1332 // a PC-relative address at the ldr instruction.
1334 // Emit the label.
1335 OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
1336 getFunctionNumber(), MI->getOperand(2).getImm(),
1337 OutContext));
1339 // Form and emit the load
1340 unsigned Opcode;
1341 switch (MI->getOpcode()) {
1342 default:
1343 llvm_unreachable("Unexpected opcode!");
1344 case ARM::PICSTR: Opcode = ARM::STRrs; break;
1345 case ARM::PICSTRB: Opcode = ARM::STRBrs; break;
1346 case ARM::PICSTRH: Opcode = ARM::STRH; break;
1347 case ARM::PICLDR: Opcode = ARM::LDRrs; break;
1348 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break;
1349 case ARM::PICLDRH: Opcode = ARM::LDRH; break;
1350 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1351 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1353 MCInst LdStInst;
1354 LdStInst.setOpcode(Opcode);
1355 LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1356 LdStInst.addOperand(MCOperand::CreateReg(ARM::PC));
1357 LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
1358 LdStInst.addOperand(MCOperand::CreateImm(0));
1359 // Add predicate operands.
1360 LdStInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm()));
1361 LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(4).getReg()));
1362 OutStreamer.EmitInstruction(LdStInst);
1364 return;
1366 case ARM::CONSTPOOL_ENTRY: {
1367 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1368 /// in the function. The first operand is the ID# for this instruction, the
1369 /// second is the index into the MachineConstantPool that this is, the third
1370 /// is the size in bytes of this constant pool entry.
1371 unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1372 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
1374 EmitAlignment(2);
1375 OutStreamer.EmitLabel(GetCPISymbol(LabelId));
1377 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1378 if (MCPE.isMachineConstantPoolEntry())
1379 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1380 else
1381 EmitGlobalConstant(MCPE.Val.ConstVal);
1383 return;
1385 case ARM::t2BR_JT: {
1386 // Lower and emit the instruction itself, then the jump table following it.
1387 MCInst TmpInst;
1388 TmpInst.setOpcode(ARM::tMOVr);
1389 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1390 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1391 // Add predicate operands.
1392 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1393 TmpInst.addOperand(MCOperand::CreateReg(0));
1394 OutStreamer.EmitInstruction(TmpInst);
1395 // Output the data for the jump table itself
1396 EmitJump2Table(MI);
1397 return;
1399 case ARM::t2TBB_JT: {
1400 // Lower and emit the instruction itself, then the jump table following it.
1401 MCInst TmpInst;
1403 TmpInst.setOpcode(ARM::t2TBB);
1404 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1405 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1406 // Add predicate operands.
1407 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1408 TmpInst.addOperand(MCOperand::CreateReg(0));
1409 OutStreamer.EmitInstruction(TmpInst);
1410 // Output the data for the jump table itself
1411 EmitJump2Table(MI);
1412 // Make sure the next instruction is 2-byte aligned.
1413 EmitAlignment(1);
1414 return;
1416 case ARM::t2TBH_JT: {
1417 // Lower and emit the instruction itself, then the jump table following it.
1418 MCInst TmpInst;
1420 TmpInst.setOpcode(ARM::t2TBH);
1421 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1422 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1423 // Add predicate operands.
1424 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1425 TmpInst.addOperand(MCOperand::CreateReg(0));
1426 OutStreamer.EmitInstruction(TmpInst);
1427 // Output the data for the jump table itself
1428 EmitJump2Table(MI);
1429 return;
1431 case ARM::tBR_JTr:
1432 case ARM::BR_JTr: {
1433 // Lower and emit the instruction itself, then the jump table following it.
1434 // mov pc, target
1435 MCInst TmpInst;
1436 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1437 ARM::MOVr : ARM::tMOVr;
1438 TmpInst.setOpcode(Opc);
1439 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1440 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1441 // Add predicate operands.
1442 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1443 TmpInst.addOperand(MCOperand::CreateReg(0));
1444 // Add 's' bit operand (always reg0 for this)
1445 if (Opc == ARM::MOVr)
1446 TmpInst.addOperand(MCOperand::CreateReg(0));
1447 OutStreamer.EmitInstruction(TmpInst);
1449 // Make sure the Thumb jump table is 4-byte aligned.
1450 if (Opc == ARM::tMOVr)
1451 EmitAlignment(2);
1453 // Output the data for the jump table itself
1454 EmitJumpTable(MI);
1455 return;
1457 case ARM::BR_JTm: {
1458 // Lower and emit the instruction itself, then the jump table following it.
1459 // ldr pc, target
1460 MCInst TmpInst;
1461 if (MI->getOperand(1).getReg() == 0) {
1462 // literal offset
1463 TmpInst.setOpcode(ARM::LDRi12);
1464 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1465 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1466 TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
1467 } else {
1468 TmpInst.setOpcode(ARM::LDRrs);
1469 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1470 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1471 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
1472 TmpInst.addOperand(MCOperand::CreateImm(0));
1474 // Add predicate operands.
1475 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1476 TmpInst.addOperand(MCOperand::CreateReg(0));
1477 OutStreamer.EmitInstruction(TmpInst);
1479 // Output the data for the jump table itself
1480 EmitJumpTable(MI);
1481 return;
1483 case ARM::BR_JTadd: {
1484 // Lower and emit the instruction itself, then the jump table following it.
1485 // add pc, target, idx
1486 MCInst TmpInst;
1487 TmpInst.setOpcode(ARM::ADDrr);
1488 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1489 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1490 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
1491 // Add predicate operands.
1492 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1493 TmpInst.addOperand(MCOperand::CreateReg(0));
1494 // Add 's' bit operand (always reg0 for this)
1495 TmpInst.addOperand(MCOperand::CreateReg(0));
1496 OutStreamer.EmitInstruction(TmpInst);
1498 // Output the data for the jump table itself
1499 EmitJumpTable(MI);
1500 return;
1502 case ARM::TRAP: {
1503 // Non-Darwin binutils don't yet support the "trap" mnemonic.
1504 // FIXME: Remove this special case when they do.
1505 if (!Subtarget->isTargetDarwin()) {
1506 //.long 0xe7ffdefe @ trap
1507 uint32_t Val = 0xe7ffdefeUL;
1508 OutStreamer.AddComment("trap");
1509 OutStreamer.EmitIntValue(Val, 4);
1510 return;
1512 break;
1514 case ARM::tTRAP: {
1515 // Non-Darwin binutils don't yet support the "trap" mnemonic.
1516 // FIXME: Remove this special case when they do.
1517 if (!Subtarget->isTargetDarwin()) {
1518 //.short 57086 @ trap
1519 uint16_t Val = 0xdefe;
1520 OutStreamer.AddComment("trap");
1521 OutStreamer.EmitIntValue(Val, 2);
1522 return;
1524 break;
1526 case ARM::t2Int_eh_sjlj_setjmp:
1527 case ARM::t2Int_eh_sjlj_setjmp_nofp:
1528 case ARM::tInt_eh_sjlj_setjmp: {
1529 // Two incoming args: GPR:$src, GPR:$val
1530 // mov $val, pc
1531 // adds $val, #7
1532 // str $val, [$src, #4]
1533 // movs r0, #0
1534 // b 1f
1535 // movs r0, #1
1536 // 1:
1537 unsigned SrcReg = MI->getOperand(0).getReg();
1538 unsigned ValReg = MI->getOperand(1).getReg();
1539 MCSymbol *Label = GetARMSJLJEHLabel();
1541 MCInst TmpInst;
1542 TmpInst.setOpcode(ARM::tMOVr);
1543 TmpInst.addOperand(MCOperand::CreateReg(ValReg));
1544 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1545 // Predicate.
1546 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1547 TmpInst.addOperand(MCOperand::CreateReg(0));
1548 OutStreamer.AddComment("eh_setjmp begin");
1549 OutStreamer.EmitInstruction(TmpInst);
1552 MCInst TmpInst;
1553 TmpInst.setOpcode(ARM::tADDi3);
1554 TmpInst.addOperand(MCOperand::CreateReg(ValReg));
1555 // 's' bit operand
1556 TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
1557 TmpInst.addOperand(MCOperand::CreateReg(ValReg));
1558 TmpInst.addOperand(MCOperand::CreateImm(7));
1559 // Predicate.
1560 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1561 TmpInst.addOperand(MCOperand::CreateReg(0));
1562 OutStreamer.EmitInstruction(TmpInst);
1565 MCInst TmpInst;
1566 TmpInst.setOpcode(ARM::tSTRi);
1567 TmpInst.addOperand(MCOperand::CreateReg(ValReg));
1568 TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
1569 // The offset immediate is #4. The operand value is scaled by 4 for the
1570 // tSTR instruction.
1571 TmpInst.addOperand(MCOperand::CreateImm(1));
1572 // Predicate.
1573 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1574 TmpInst.addOperand(MCOperand::CreateReg(0));
1575 OutStreamer.EmitInstruction(TmpInst);
1578 MCInst TmpInst;
1579 TmpInst.setOpcode(ARM::tMOVi8);
1580 TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
1581 TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
1582 TmpInst.addOperand(MCOperand::CreateImm(0));
1583 // Predicate.
1584 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1585 TmpInst.addOperand(MCOperand::CreateReg(0));
1586 OutStreamer.EmitInstruction(TmpInst);
1589 const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext);
1590 MCInst TmpInst;
1591 TmpInst.setOpcode(ARM::tB);
1592 TmpInst.addOperand(MCOperand::CreateExpr(SymbolExpr));
1593 OutStreamer.EmitInstruction(TmpInst);
1596 MCInst TmpInst;
1597 TmpInst.setOpcode(ARM::tMOVi8);
1598 TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
1599 TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
1600 TmpInst.addOperand(MCOperand::CreateImm(1));
1601 // Predicate.
1602 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1603 TmpInst.addOperand(MCOperand::CreateReg(0));
1604 OutStreamer.AddComment("eh_setjmp end");
1605 OutStreamer.EmitInstruction(TmpInst);
1607 OutStreamer.EmitLabel(Label);
1608 return;
1611 case ARM::Int_eh_sjlj_setjmp_nofp:
1612 case ARM::Int_eh_sjlj_setjmp: {
1613 // Two incoming args: GPR:$src, GPR:$val
1614 // add $val, pc, #8
1615 // str $val, [$src, #+4]
1616 // mov r0, #0
1617 // add pc, pc, #0
1618 // mov r0, #1
1619 unsigned SrcReg = MI->getOperand(0).getReg();
1620 unsigned ValReg = MI->getOperand(1).getReg();
1623 MCInst TmpInst;
1624 TmpInst.setOpcode(ARM::ADDri);
1625 TmpInst.addOperand(MCOperand::CreateReg(ValReg));
1626 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1627 TmpInst.addOperand(MCOperand::CreateImm(8));
1628 // Predicate.
1629 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1630 TmpInst.addOperand(MCOperand::CreateReg(0));
1631 // 's' bit operand (always reg0 for this).
1632 TmpInst.addOperand(MCOperand::CreateReg(0));
1633 OutStreamer.AddComment("eh_setjmp begin");
1634 OutStreamer.EmitInstruction(TmpInst);
1637 MCInst TmpInst;
1638 TmpInst.setOpcode(ARM::STRi12);
1639 TmpInst.addOperand(MCOperand::CreateReg(ValReg));
1640 TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
1641 TmpInst.addOperand(MCOperand::CreateImm(4));
1642 // Predicate.
1643 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1644 TmpInst.addOperand(MCOperand::CreateReg(0));
1645 OutStreamer.EmitInstruction(TmpInst);
1648 MCInst TmpInst;
1649 TmpInst.setOpcode(ARM::MOVi);
1650 TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
1651 TmpInst.addOperand(MCOperand::CreateImm(0));
1652 // Predicate.
1653 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1654 TmpInst.addOperand(MCOperand::CreateReg(0));
1655 // 's' bit operand (always reg0 for this).
1656 TmpInst.addOperand(MCOperand::CreateReg(0));
1657 OutStreamer.EmitInstruction(TmpInst);
1660 MCInst TmpInst;
1661 TmpInst.setOpcode(ARM::ADDri);
1662 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1663 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1664 TmpInst.addOperand(MCOperand::CreateImm(0));
1665 // Predicate.
1666 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1667 TmpInst.addOperand(MCOperand::CreateReg(0));
1668 // 's' bit operand (always reg0 for this).
1669 TmpInst.addOperand(MCOperand::CreateReg(0));
1670 OutStreamer.EmitInstruction(TmpInst);
1673 MCInst TmpInst;
1674 TmpInst.setOpcode(ARM::MOVi);
1675 TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
1676 TmpInst.addOperand(MCOperand::CreateImm(1));
1677 // Predicate.
1678 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1679 TmpInst.addOperand(MCOperand::CreateReg(0));
1680 // 's' bit operand (always reg0 for this).
1681 TmpInst.addOperand(MCOperand::CreateReg(0));
1682 OutStreamer.AddComment("eh_setjmp end");
1683 OutStreamer.EmitInstruction(TmpInst);
1685 return;
1687 case ARM::Int_eh_sjlj_longjmp: {
1688 // ldr sp, [$src, #8]
1689 // ldr $scratch, [$src, #4]
1690 // ldr r7, [$src]
1691 // bx $scratch
1692 unsigned SrcReg = MI->getOperand(0).getReg();
1693 unsigned ScratchReg = MI->getOperand(1).getReg();
1695 MCInst TmpInst;
1696 TmpInst.setOpcode(ARM::LDRi12);
1697 TmpInst.addOperand(MCOperand::CreateReg(ARM::SP));
1698 TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
1699 TmpInst.addOperand(MCOperand::CreateImm(8));
1700 // Predicate.
1701 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1702 TmpInst.addOperand(MCOperand::CreateReg(0));
1703 OutStreamer.EmitInstruction(TmpInst);
1706 MCInst TmpInst;
1707 TmpInst.setOpcode(ARM::LDRi12);
1708 TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
1709 TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
1710 TmpInst.addOperand(MCOperand::CreateImm(4));
1711 // Predicate.
1712 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1713 TmpInst.addOperand(MCOperand::CreateReg(0));
1714 OutStreamer.EmitInstruction(TmpInst);
1717 MCInst TmpInst;
1718 TmpInst.setOpcode(ARM::LDRi12);
1719 TmpInst.addOperand(MCOperand::CreateReg(ARM::R7));
1720 TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
1721 TmpInst.addOperand(MCOperand::CreateImm(0));
1722 // Predicate.
1723 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1724 TmpInst.addOperand(MCOperand::CreateReg(0));
1725 OutStreamer.EmitInstruction(TmpInst);
1728 MCInst TmpInst;
1729 TmpInst.setOpcode(ARM::BX);
1730 TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
1731 // Predicate.
1732 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1733 TmpInst.addOperand(MCOperand::CreateReg(0));
1734 OutStreamer.EmitInstruction(TmpInst);
1736 return;
1738 case ARM::tInt_eh_sjlj_longjmp: {
1739 // ldr $scratch, [$src, #8]
1740 // mov sp, $scratch
1741 // ldr $scratch, [$src, #4]
1742 // ldr r7, [$src]
1743 // bx $scratch
1744 unsigned SrcReg = MI->getOperand(0).getReg();
1745 unsigned ScratchReg = MI->getOperand(1).getReg();
1747 MCInst TmpInst;
1748 TmpInst.setOpcode(ARM::tLDRi);
1749 TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
1750 TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
1751 // The offset immediate is #8. The operand value is scaled by 4 for the
1752 // tLDR instruction.
1753 TmpInst.addOperand(MCOperand::CreateImm(2));
1754 // Predicate.
1755 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1756 TmpInst.addOperand(MCOperand::CreateReg(0));
1757 OutStreamer.EmitInstruction(TmpInst);
1760 MCInst TmpInst;
1761 TmpInst.setOpcode(ARM::tMOVr);
1762 TmpInst.addOperand(MCOperand::CreateReg(ARM::SP));
1763 TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
1764 // Predicate.
1765 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1766 TmpInst.addOperand(MCOperand::CreateReg(0));
1767 OutStreamer.EmitInstruction(TmpInst);
1770 MCInst TmpInst;
1771 TmpInst.setOpcode(ARM::tLDRi);
1772 TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
1773 TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
1774 TmpInst.addOperand(MCOperand::CreateImm(1));
1775 // Predicate.
1776 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1777 TmpInst.addOperand(MCOperand::CreateReg(0));
1778 OutStreamer.EmitInstruction(TmpInst);
1781 MCInst TmpInst;
1782 TmpInst.setOpcode(ARM::tLDRr);
1783 TmpInst.addOperand(MCOperand::CreateReg(ARM::R7));
1784 TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
1785 TmpInst.addOperand(MCOperand::CreateReg(0));
1786 // Predicate.
1787 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1788 TmpInst.addOperand(MCOperand::CreateReg(0));
1789 OutStreamer.EmitInstruction(TmpInst);
1792 MCInst TmpInst;
1793 TmpInst.setOpcode(ARM::tBX);
1794 TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
1795 // Predicate.
1796 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1797 TmpInst.addOperand(MCOperand::CreateReg(0));
1798 OutStreamer.EmitInstruction(TmpInst);
1800 return;
1804 MCInst TmpInst;
1805 LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
1807 // Emit unwinding stuff for frame-related instructions
1808 if (EnableARMEHABI && MI->getFlag(MachineInstr::FrameSetup))
1809 EmitUnwindingInstruction(MI);
1811 OutStreamer.EmitInstruction(TmpInst);
1814 //===----------------------------------------------------------------------===//
1815 // Target Registry Stuff
1816 //===----------------------------------------------------------------------===//
1818 static MCInstPrinter *createARMMCInstPrinter(const Target &T,
1819 unsigned SyntaxVariant,
1820 const MCAsmInfo &MAI) {
1821 if (SyntaxVariant == 0)
1822 return new ARMInstPrinter(MAI);
1823 return 0;
1826 // Force static initialization.
1827 extern "C" void LLVMInitializeARMAsmPrinter() {
1828 RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget);
1829 RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget);
1831 TargetRegistry::RegisterMCInstPrinter(TheARMTarget, createARMMCInstPrinter);
1832 TargetRegistry::RegisterMCInstPrinter(TheThumbTarget, createARMMCInstPrinter);