1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the pass that transforms the ARM machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
17 #include "ARMAddressingModes.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMInstrInfo.h"
20 #include "ARMRelocations.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/PassManager.h"
27 #include "llvm/CodeGen/JITCodeEmitter.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
43 STATISTIC(NumEmitted
, "Number of machine instructions emitted");
47 class ARMCodeEmitter
: public MachineFunctionPass
{
49 const ARMInstrInfo
*II
;
51 const ARMSubtarget
*Subtarget
;
54 MachineModuleInfo
*MMI
;
55 const std::vector
<MachineConstantPoolEntry
> *MCPEs
;
56 const std::vector
<MachineJumpTableEntry
> *MJTEs
;
60 void getAnalysisUsage(AnalysisUsage
&AU
) const {
61 AU
.addRequired
<MachineModuleInfo
>();
62 MachineFunctionPass::getAnalysisUsage(AU
);
67 ARMCodeEmitter(TargetMachine
&tm
, JITCodeEmitter
&mce
)
68 : MachineFunctionPass(ID
), JTI(0),
69 II((const ARMInstrInfo
*)tm
.getInstrInfo()),
70 TD(tm
.getTargetData()), TM(tm
),
71 MCE(mce
), MCPEs(0), MJTEs(0),
72 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
), IsThumb(false) {}
74 /// getBinaryCodeForInstr - This function, generated by the
75 /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76 /// machine instructions.
77 unsigned getBinaryCodeForInstr(const MachineInstr
&MI
) const;
79 bool runOnMachineFunction(MachineFunction
&MF
);
81 virtual const char *getPassName() const {
82 return "ARM Machine Code Emitter";
85 void emitInstruction(const MachineInstr
&MI
);
89 void emitWordLE(unsigned Binary
);
90 void emitDWordLE(uint64_t Binary
);
91 void emitConstPoolInstruction(const MachineInstr
&MI
);
92 void emitMOVi32immInstruction(const MachineInstr
&MI
);
93 void emitMOVi2piecesInstruction(const MachineInstr
&MI
);
94 void emitLEApcrelJTInstruction(const MachineInstr
&MI
);
95 void emitPseudoMoveInstruction(const MachineInstr
&MI
);
96 void addPCLabel(unsigned LabelID
);
97 void emitPseudoInstruction(const MachineInstr
&MI
);
98 unsigned getMachineSoRegOpValue(const MachineInstr
&MI
,
99 const MCInstrDesc
&MCID
,
100 const MachineOperand
&MO
,
103 unsigned getMachineSoImmOpValue(unsigned SoImm
);
104 unsigned getAddrModeSBit(const MachineInstr
&MI
,
105 const MCInstrDesc
&MCID
) const;
107 void emitDataProcessingInstruction(const MachineInstr
&MI
,
108 unsigned ImplicitRd
= 0,
109 unsigned ImplicitRn
= 0);
111 void emitLoadStoreInstruction(const MachineInstr
&MI
,
112 unsigned ImplicitRd
= 0,
113 unsigned ImplicitRn
= 0);
115 void emitMiscLoadStoreInstruction(const MachineInstr
&MI
,
116 unsigned ImplicitRn
= 0);
118 void emitLoadStoreMultipleInstruction(const MachineInstr
&MI
);
120 void emitMulFrmInstruction(const MachineInstr
&MI
);
122 void emitExtendInstruction(const MachineInstr
&MI
);
124 void emitMiscArithInstruction(const MachineInstr
&MI
);
126 void emitSaturateInstruction(const MachineInstr
&MI
);
128 void emitBranchInstruction(const MachineInstr
&MI
);
130 void emitInlineJumpTable(unsigned JTIndex
);
132 void emitMiscBranchInstruction(const MachineInstr
&MI
);
134 void emitVFPArithInstruction(const MachineInstr
&MI
);
136 void emitVFPConversionInstruction(const MachineInstr
&MI
);
138 void emitVFPLoadStoreInstruction(const MachineInstr
&MI
);
140 void emitVFPLoadStoreMultipleInstruction(const MachineInstr
&MI
);
142 void emitNEONLaneInstruction(const MachineInstr
&MI
);
143 void emitNEONDupInstruction(const MachineInstr
&MI
);
144 void emitNEON1RegModImmInstruction(const MachineInstr
&MI
);
145 void emitNEON2RegInstruction(const MachineInstr
&MI
);
146 void emitNEON3RegInstruction(const MachineInstr
&MI
);
148 /// getMachineOpValue - Return binary encoding of operand. If the machine
149 /// operand requires relocation, record the relocation and return zero.
150 unsigned getMachineOpValue(const MachineInstr
&MI
,
151 const MachineOperand
&MO
) const;
152 unsigned getMachineOpValue(const MachineInstr
&MI
, unsigned OpIdx
) const {
153 return getMachineOpValue(MI
, MI
.getOperand(OpIdx
));
156 // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
157 // TableGen'erated getBinaryCodeForInstr() function to encode any
158 // operand values, instead querying getMachineOpValue() directly for
159 // each operand it needs to encode. Thus, any of the new encoder
160 // helper functions can simply return 0 as the values the return
161 // are already handled elsewhere. They are placeholders to allow this
162 // encoder to continue to function until the MC encoder is sufficiently
163 // far along that this one can be eliminated entirely.
164 unsigned NEONThumb2DataIPostEncoder(const MachineInstr
&MI
, unsigned Val
)
166 unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr
&MI
,unsigned Val
)
168 unsigned NEONThumb2DupPostEncoder(const MachineInstr
&MI
,unsigned Val
)
170 unsigned VFPThumb2PostEncoder(const MachineInstr
&MI
, unsigned Val
)
172 unsigned getAdrLabelOpValue(const MachineInstr
&MI
, unsigned Op
)
174 unsigned getThumbAdrLabelOpValue(const MachineInstr
&MI
, unsigned Op
)
176 unsigned getThumbBLTargetOpValue(const MachineInstr
&MI
, unsigned Op
)
178 unsigned getThumbBLXTargetOpValue(const MachineInstr
&MI
, unsigned Op
)
180 unsigned getThumbBRTargetOpValue(const MachineInstr
&MI
, unsigned Op
)
182 unsigned getThumbBCCTargetOpValue(const MachineInstr
&MI
, unsigned Op
)
184 unsigned getThumbCBTargetOpValue(const MachineInstr
&MI
, unsigned Op
)
186 unsigned getBranchTargetOpValue(const MachineInstr
&MI
, unsigned Op
)
188 unsigned getUnconditionalBranchTargetOpValue(const MachineInstr
&MI
,
189 unsigned Op
) const { return 0; }
190 unsigned getARMBranchTargetOpValue(const MachineInstr
&MI
, unsigned Op
)
192 unsigned getCCOutOpValue(const MachineInstr
&MI
, unsigned Op
)
194 unsigned getSOImmOpValue(const MachineInstr
&MI
, unsigned Op
)
196 unsigned getT2SOImmOpValue(const MachineInstr
&MI
, unsigned Op
)
198 unsigned getSORegOpValue(const MachineInstr
&MI
, unsigned Op
)
200 unsigned getThumbAddrModeRegRegOpValue(const MachineInstr
&MI
, unsigned Op
)
202 unsigned getT2AddrModeImm12OpValue(const MachineInstr
&MI
, unsigned Op
)
204 unsigned getT2AddrModeImm8OpValue(const MachineInstr
&MI
, unsigned Op
)
206 unsigned getT2AddrModeImm8s4OpValue(const MachineInstr
&MI
, unsigned Op
)
208 unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr
&MI
, unsigned Op
)
210 unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr
&MI
,unsigned Op
)
212 unsigned getT2AddrModeSORegOpValue(const MachineInstr
&MI
, unsigned Op
)
214 unsigned getT2SORegOpValue(const MachineInstr
&MI
, unsigned Op
)
216 unsigned getRotImmOpValue(const MachineInstr
&MI
, unsigned Op
)
218 unsigned getImmMinusOneOpValue(const MachineInstr
&MI
, unsigned Op
)
220 unsigned getT2AdrLabelOpValue(const MachineInstr
&MI
, unsigned Op
)
222 unsigned getAddrMode6AddressOpValue(const MachineInstr
&MI
, unsigned Op
)
224 unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr
&MI
,
227 unsigned getAddrMode6DupAddressOpValue(const MachineInstr
&MI
, unsigned Op
)
229 unsigned getAddrMode6OffsetOpValue(const MachineInstr
&MI
, unsigned Op
)
231 unsigned getBitfieldInvertedMaskOpValue(const MachineInstr
&MI
,
232 unsigned Op
) const { return 0; }
233 unsigned getMsbOpValue(const MachineInstr
&MI
,
234 unsigned Op
) const { return 0; }
235 unsigned getSsatBitPosValue(const MachineInstr
&MI
,
236 unsigned Op
) const { return 0; }
237 uint32_t getLdStmModeOpValue(const MachineInstr
&MI
, unsigned OpIdx
)
239 uint32_t getLdStSORegOpValue(const MachineInstr
&MI
, unsigned OpIdx
)
242 unsigned getAddrModeImm12OpValue(const MachineInstr
&MI
, unsigned Op
)
245 // {12} = (U)nsigned (add == '1', sub == '0')
247 const MachineOperand
&MO
= MI
.getOperand(Op
);
248 const MachineOperand
&MO1
= MI
.getOperand(Op
+ 1);
250 emitConstPoolAddress(MO
.getIndex(), ARM::reloc_arm_cp_entry
);
253 unsigned Reg
= getARMRegisterNumbering(MO
.getReg());
254 int32_t Imm12
= MO1
.getImm();
256 Binary
= Imm12
& 0xfff;
259 Binary
|= (Reg
<< 13);
263 unsigned getHiLo16ImmOpValue(const MachineInstr
&MI
, unsigned Op
) const {
267 uint32_t getAddrMode2OpValue(const MachineInstr
&MI
, unsigned OpIdx
)
269 uint32_t getAddrMode2OffsetOpValue(const MachineInstr
&MI
, unsigned OpIdx
)
271 uint32_t getAddrMode3OffsetOpValue(const MachineInstr
&MI
, unsigned OpIdx
)
273 uint32_t getAddrMode3OpValue(const MachineInstr
&MI
, unsigned Op
)
275 uint32_t getAddrModeThumbSPOpValue(const MachineInstr
&MI
, unsigned Op
)
277 uint32_t getAddrModeSOpValue(const MachineInstr
&MI
, unsigned Op
)
279 uint32_t getAddrModeISOpValue(const MachineInstr
&MI
, unsigned Op
)
281 uint32_t getAddrModePCOpValue(const MachineInstr
&MI
, unsigned Op
)
283 uint32_t getAddrMode5OpValue(const MachineInstr
&MI
, unsigned Op
) const {
285 // {12} = (U)nsigned (add == '1', sub == '0')
287 const MachineOperand
&MO
= MI
.getOperand(Op
);
288 const MachineOperand
&MO1
= MI
.getOperand(Op
+ 1);
290 emitConstPoolAddress(MO
.getIndex(), ARM::reloc_arm_cp_entry
);
293 unsigned Reg
= getARMRegisterNumbering(MO
.getReg());
294 int32_t Imm12
= MO1
.getImm();
296 // Special value for #-0
297 if (Imm12
== INT32_MIN
)
300 // Immediate is always encoded as positive. The 'U' bit controls add vs
308 uint32_t Binary
= Imm12
& 0xfff;
311 Binary
|= (Reg
<< 13);
314 unsigned getNEONVcvtImm32OpValue(const MachineInstr
&MI
, unsigned Op
)
317 unsigned getRegisterListOpValue(const MachineInstr
&MI
, unsigned Op
)
320 unsigned getShiftRight8Imm(const MachineInstr
&MI
, unsigned Op
)
322 unsigned getShiftRight16Imm(const MachineInstr
&MI
, unsigned Op
)
324 unsigned getShiftRight32Imm(const MachineInstr
&MI
, unsigned Op
)
326 unsigned getShiftRight64Imm(const MachineInstr
&MI
, unsigned Op
)
329 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
330 /// machine operand requires relocation, record the relocation and return
332 unsigned getMovi32Value(const MachineInstr
&MI
,const MachineOperand
&MO
,
335 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
337 unsigned getShiftOp(unsigned Imm
) const ;
339 /// Routines that handle operands which add machine relocations which are
340 /// fixed up by the relocation stage.
341 void emitGlobalAddress(const GlobalValue
*GV
, unsigned Reloc
,
342 bool MayNeedFarStub
, bool Indirect
,
343 intptr_t ACPV
= 0) const;
344 void emitExternalSymbolAddress(const char *ES
, unsigned Reloc
) const;
345 void emitConstPoolAddress(unsigned CPI
, unsigned Reloc
) const;
346 void emitJumpTableAddress(unsigned JTIndex
, unsigned Reloc
) const;
347 void emitMachineBasicBlock(MachineBasicBlock
*BB
, unsigned Reloc
,
348 intptr_t JTBase
= 0) const;
352 char ARMCodeEmitter::ID
= 0;
354 /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
355 /// code to the specified MCE object.
356 FunctionPass
*llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine
&TM
,
357 JITCodeEmitter
&JCE
) {
358 return new ARMCodeEmitter(TM
, JCE
);
361 bool ARMCodeEmitter::runOnMachineFunction(MachineFunction
&MF
) {
362 assert((MF
.getTarget().getRelocationModel() != Reloc::Default
||
363 MF
.getTarget().getRelocationModel() != Reloc::Static
) &&
364 "JIT relocation model must be set to static or default!");
365 JTI
= ((ARMTargetMachine
&)MF
.getTarget()).getJITInfo();
366 II
= ((const ARMTargetMachine
&)MF
.getTarget()).getInstrInfo();
367 TD
= ((const ARMTargetMachine
&)MF
.getTarget()).getTargetData();
368 Subtarget
= &TM
.getSubtarget
<ARMSubtarget
>();
369 MCPEs
= &MF
.getConstantPool()->getConstants();
371 if (MF
.getJumpTableInfo()) MJTEs
= &MF
.getJumpTableInfo()->getJumpTables();
372 IsPIC
= TM
.getRelocationModel() == Reloc::PIC_
;
373 IsThumb
= MF
.getInfo
<ARMFunctionInfo
>()->isThumbFunction();
374 JTI
->Initialize(MF
, IsPIC
);
375 MMI
= &getAnalysis
<MachineModuleInfo
>();
376 MCE
.setModuleInfo(MMI
);
379 DEBUG(errs() << "JITTing function '"
380 << MF
.getFunction()->getName() << "'\n");
381 MCE
.startFunction(MF
);
382 for (MachineFunction::iterator MBB
= MF
.begin(), E
= MF
.end();
384 MCE
.StartMachineBasicBlock(MBB
);
385 for (MachineBasicBlock::const_iterator I
= MBB
->begin(), E
= MBB
->end();
389 } while (MCE
.finishFunction(MF
));
394 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
396 unsigned ARMCodeEmitter::getShiftOp(unsigned Imm
) const {
397 switch (ARM_AM::getAM2ShiftOpc(Imm
)) {
398 default: llvm_unreachable("Unknown shift opc!");
399 case ARM_AM::asr
: return 2;
400 case ARM_AM::lsl
: return 0;
401 case ARM_AM::lsr
: return 1;
403 case ARM_AM::rrx
: return 3;
408 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
409 /// machine operand requires relocation, record the relocation and return zero.
410 unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr
&MI
,
411 const MachineOperand
&MO
,
413 assert(((Reloc
== ARM::reloc_arm_movt
) || (Reloc
== ARM::reloc_arm_movw
))
414 && "Relocation to this function should be for movt or movw");
417 return static_cast<unsigned>(MO
.getImm());
418 else if (MO
.isGlobal())
419 emitGlobalAddress(MO
.getGlobal(), Reloc
, true, false);
420 else if (MO
.isSymbol())
421 emitExternalSymbolAddress(MO
.getSymbolName(), Reloc
);
423 emitMachineBasicBlock(MO
.getMBB(), Reloc
);
428 llvm_unreachable("Unsupported operand type for movw/movt");
433 /// getMachineOpValue - Return binary encoding of operand. If the machine
434 /// operand requires relocation, record the relocation and return zero.
435 unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr
&MI
,
436 const MachineOperand
&MO
) const {
438 return getARMRegisterNumbering(MO
.getReg());
440 return static_cast<unsigned>(MO
.getImm());
441 else if (MO
.isGlobal())
442 emitGlobalAddress(MO
.getGlobal(), ARM::reloc_arm_branch
, true, false);
443 else if (MO
.isSymbol())
444 emitExternalSymbolAddress(MO
.getSymbolName(), ARM::reloc_arm_branch
);
445 else if (MO
.isCPI()) {
446 const MCInstrDesc
&MCID
= MI
.getDesc();
447 // For VFP load, the immediate offset is multiplied by 4.
448 unsigned Reloc
= ((MCID
.TSFlags
& ARMII::FormMask
) == ARMII::VFPLdStFrm
)
449 ? ARM::reloc_arm_vfp_cp_entry
: ARM::reloc_arm_cp_entry
;
450 emitConstPoolAddress(MO
.getIndex(), Reloc
);
451 } else if (MO
.isJTI())
452 emitJumpTableAddress(MO
.getIndex(), ARM::reloc_arm_relative
);
454 emitMachineBasicBlock(MO
.getMBB(), ARM::reloc_arm_branch
);
456 llvm_unreachable("Unable to encode MachineOperand!");
460 /// emitGlobalAddress - Emit the specified address to the code stream.
462 void ARMCodeEmitter::emitGlobalAddress(const GlobalValue
*GV
, unsigned Reloc
,
463 bool MayNeedFarStub
, bool Indirect
,
464 intptr_t ACPV
) const {
465 MachineRelocation MR
= Indirect
466 ? MachineRelocation::getIndirectSymbol(MCE
.getCurrentPCOffset(), Reloc
,
467 const_cast<GlobalValue
*>(GV
),
468 ACPV
, MayNeedFarStub
)
469 : MachineRelocation::getGV(MCE
.getCurrentPCOffset(), Reloc
,
470 const_cast<GlobalValue
*>(GV
), ACPV
,
472 MCE
.addRelocation(MR
);
475 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
476 /// be emitted to the current location in the function, and allow it to be PC
478 void ARMCodeEmitter::
479 emitExternalSymbolAddress(const char *ES
, unsigned Reloc
) const {
480 MCE
.addRelocation(MachineRelocation::getExtSym(MCE
.getCurrentPCOffset(),
484 /// emitConstPoolAddress - Arrange for the address of an constant pool
485 /// to be emitted to the current location in the function, and allow it to be PC
487 void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI
, unsigned Reloc
) const {
488 // Tell JIT emitter we'll resolve the address.
489 MCE
.addRelocation(MachineRelocation::getConstPool(MCE
.getCurrentPCOffset(),
490 Reloc
, CPI
, 0, true));
493 /// emitJumpTableAddress - Arrange for the address of a jump table to
494 /// be emitted to the current location in the function, and allow it to be PC
496 void ARMCodeEmitter::
497 emitJumpTableAddress(unsigned JTIndex
, unsigned Reloc
) const {
498 MCE
.addRelocation(MachineRelocation::getJumpTable(MCE
.getCurrentPCOffset(),
499 Reloc
, JTIndex
, 0, true));
502 /// emitMachineBasicBlock - Emit the specified address basic block.
503 void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock
*BB
,
505 intptr_t JTBase
) const {
506 MCE
.addRelocation(MachineRelocation::getBB(MCE
.getCurrentPCOffset(),
510 void ARMCodeEmitter::emitWordLE(unsigned Binary
) {
511 DEBUG(errs() << " 0x";
512 errs().write_hex(Binary
) << "\n");
513 MCE
.emitWordLE(Binary
);
516 void ARMCodeEmitter::emitDWordLE(uint64_t Binary
) {
517 DEBUG(errs() << " 0x";
518 errs().write_hex(Binary
) << "\n");
519 MCE
.emitDWordLE(Binary
);
522 void ARMCodeEmitter::emitInstruction(const MachineInstr
&MI
) {
523 DEBUG(errs() << "JIT: " << (void*)MCE
.getCurrentPCValue() << ":\t" << MI
);
525 MCE
.processDebugLoc(MI
.getDebugLoc(), true);
527 ++NumEmitted
; // Keep track of the # of mi's emitted
528 switch (MI
.getDesc().TSFlags
& ARMII::FormMask
) {
530 llvm_unreachable("Unhandled instruction encoding format!");
534 if (MI
.getOpcode() == ARM::LEApcrelJT
) {
535 // Materialize jumptable address.
536 emitLEApcrelJTInstruction(MI
);
539 llvm_unreachable("Unhandled instruction encoding!");
542 emitPseudoInstruction(MI
);
545 case ARMII::DPSoRegFrm
:
546 emitDataProcessingInstruction(MI
);
550 emitLoadStoreInstruction(MI
);
552 case ARMII::LdMiscFrm
:
553 case ARMII::StMiscFrm
:
554 emitMiscLoadStoreInstruction(MI
);
556 case ARMII::LdStMulFrm
:
557 emitLoadStoreMultipleInstruction(MI
);
560 emitMulFrmInstruction(MI
);
563 emitExtendInstruction(MI
);
565 case ARMII::ArithMiscFrm
:
566 emitMiscArithInstruction(MI
);
569 emitSaturateInstruction(MI
);
572 emitBranchInstruction(MI
);
574 case ARMII::BrMiscFrm
:
575 emitMiscBranchInstruction(MI
);
578 case ARMII::VFPUnaryFrm
:
579 case ARMII::VFPBinaryFrm
:
580 emitVFPArithInstruction(MI
);
582 case ARMII::VFPConv1Frm
:
583 case ARMII::VFPConv2Frm
:
584 case ARMII::VFPConv3Frm
:
585 case ARMII::VFPConv4Frm
:
586 case ARMII::VFPConv5Frm
:
587 emitVFPConversionInstruction(MI
);
589 case ARMII::VFPLdStFrm
:
590 emitVFPLoadStoreInstruction(MI
);
592 case ARMII::VFPLdStMulFrm
:
593 emitVFPLoadStoreMultipleInstruction(MI
);
596 // NEON instructions.
597 case ARMII::NGetLnFrm
:
598 case ARMII::NSetLnFrm
:
599 emitNEONLaneInstruction(MI
);
602 emitNEONDupInstruction(MI
);
604 case ARMII::N1RegModImmFrm
:
605 emitNEON1RegModImmInstruction(MI
);
607 case ARMII::N2RegFrm
:
608 emitNEON2RegInstruction(MI
);
610 case ARMII::N3RegFrm
:
611 emitNEON3RegInstruction(MI
);
614 MCE
.processDebugLoc(MI
.getDebugLoc(), false);
617 void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr
&MI
) {
618 unsigned CPI
= MI
.getOperand(0).getImm(); // CP instruction index.
619 unsigned CPIndex
= MI
.getOperand(1).getIndex(); // Actual cp entry index.
620 const MachineConstantPoolEntry
&MCPE
= (*MCPEs
)[CPIndex
];
622 // Remember the CONSTPOOL_ENTRY address for later relocation.
623 JTI
->addConstantPoolEntryAddr(CPI
, MCE
.getCurrentPCValue());
625 // Emit constpool island entry. In most cases, the actual values will be
626 // resolved and relocated after code emission.
627 if (MCPE
.isMachineConstantPoolEntry()) {
628 ARMConstantPoolValue
*ACPV
=
629 static_cast<ARMConstantPoolValue
*>(MCPE
.Val
.MachineCPVal
);
631 DEBUG(errs() << " ** ARM constant pool #" << CPI
<< " @ "
632 << (void*)MCE
.getCurrentPCValue() << " " << *ACPV
<< '\n');
634 assert(ACPV
->isGlobalValue() && "unsupported constant pool value");
635 const GlobalValue
*GV
= ACPV
->getGV();
637 Reloc::Model RelocM
= TM
.getRelocationModel();
638 emitGlobalAddress(GV
, ARM::reloc_arm_machine_cp_entry
,
640 Subtarget
->GVIsIndirectSymbol(GV
, RelocM
),
643 emitExternalSymbolAddress(ACPV
->getSymbol(), ARM::reloc_arm_absolute
);
647 const Constant
*CV
= MCPE
.Val
.ConstVal
;
650 errs() << " ** Constant pool #" << CPI
<< " @ "
651 << (void*)MCE
.getCurrentPCValue() << " ";
652 if (const Function
*F
= dyn_cast
<Function
>(CV
))
653 errs() << F
->getName();
659 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
)) {
660 emitGlobalAddress(GV
, ARM::reloc_arm_absolute
, isa
<Function
>(GV
), false);
662 } else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
663 uint32_t Val
= uint32_t(*CI
->getValue().getRawData());
665 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
666 if (CFP
->getType()->isFloatTy())
667 emitWordLE(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
668 else if (CFP
->getType()->isDoubleTy())
669 emitDWordLE(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
671 llvm_unreachable("Unable to handle this constantpool entry!");
674 llvm_unreachable("Unable to handle this constantpool entry!");
679 void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr
&MI
) {
680 const MachineOperand
&MO0
= MI
.getOperand(0);
681 const MachineOperand
&MO1
= MI
.getOperand(1);
683 // Emit the 'movw' instruction.
684 unsigned Binary
= 0x30 << 20; // mov: Insts{27-20} = 0b00110000
686 unsigned Lo16
= getMovi32Value(MI
, MO1
, ARM::reloc_arm_movw
) & 0xFFFF;
688 // Set the conditional execution predicate.
689 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
692 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRdShift
;
694 // Encode imm16 as imm4:imm12
695 Binary
|= Lo16
& 0xFFF; // Insts{11-0} = imm12
696 Binary
|= ((Lo16
>> 12) & 0xF) << 16; // Insts{19-16} = imm4
699 unsigned Hi16
= getMovi32Value(MI
, MO1
, ARM::reloc_arm_movt
) >> 16;
700 // Emit the 'movt' instruction.
701 Binary
= 0x34 << 20; // movt: Insts{27-20} = 0b00110100
703 // Set the conditional execution predicate.
704 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
707 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRdShift
;
709 // Encode imm16 as imm4:imm1, same as movw above.
710 Binary
|= Hi16
& 0xFFF;
711 Binary
|= ((Hi16
>> 12) & 0xF) << 16;
715 void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr
&MI
) {
716 const MachineOperand
&MO0
= MI
.getOperand(0);
717 const MachineOperand
&MO1
= MI
.getOperand(1);
718 assert(MO1
.isImm() && ARM_AM::isSOImmTwoPartVal(MO1
.getImm()) &&
719 "Not a valid so_imm value!");
720 unsigned V1
= ARM_AM::getSOImmTwoPartFirst(MO1
.getImm());
721 unsigned V2
= ARM_AM::getSOImmTwoPartSecond(MO1
.getImm());
723 // Emit the 'mov' instruction.
724 unsigned Binary
= 0xd << 21; // mov: Insts{24-21} = 0b1101
726 // Set the conditional execution predicate.
727 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
730 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRdShift
;
733 // Set bit I(25) to identify this is the immediate form of <shifter_op>
734 Binary
|= 1 << ARMII::I_BitShift
;
735 Binary
|= getMachineSoImmOpValue(V1
);
738 // Now the 'orr' instruction.
739 Binary
= 0xc << 21; // orr: Insts{24-21} = 0b1100
741 // Set the conditional execution predicate.
742 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
745 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRdShift
;
748 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRnShift
;
751 // Set bit I(25) to identify this is the immediate form of <shifter_op>
752 Binary
|= 1 << ARMII::I_BitShift
;
753 Binary
|= getMachineSoImmOpValue(V2
);
757 void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr
&MI
) {
758 // It's basically add r, pc, (LJTI - $+8)
760 const MCInstrDesc
&MCID
= MI
.getDesc();
762 // Emit the 'add' instruction.
763 unsigned Binary
= 0x4 << 21; // add: Insts{24-21} = 0b0100
765 // Set the conditional execution predicate
766 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
768 // Encode S bit if MI modifies CPSR.
769 Binary
|= getAddrModeSBit(MI
, MCID
);
772 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRdShift
;
774 // Encode Rn which is PC.
775 Binary
|= getARMRegisterNumbering(ARM::PC
) << ARMII::RegRnShift
;
777 // Encode the displacement.
778 Binary
|= 1 << ARMII::I_BitShift
;
779 emitJumpTableAddress(MI
.getOperand(1).getIndex(), ARM::reloc_arm_jt_base
);
784 void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr
&MI
) {
785 unsigned Opcode
= MI
.getDesc().Opcode
;
787 // Part of binary is determined by TableGn.
788 unsigned Binary
= getBinaryCodeForInstr(MI
);
790 // Set the conditional execution predicate
791 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
793 // Encode S bit if MI modifies CPSR.
794 if (Opcode
== ARM::MOVsrl_flag
|| Opcode
== ARM::MOVsra_flag
)
795 Binary
|= 1 << ARMII::S_BitShift
;
797 // Encode register def if there is one.
798 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRdShift
;
800 // Encode the shift operation.
807 case ARM::MOVsrl_flag
:
809 Binary
|= (0x2 << 4) | (1 << 7);
811 case ARM::MOVsra_flag
:
813 Binary
|= (0x4 << 4) | (1 << 7);
817 // Encode register Rm.
818 Binary
|= getMachineOpValue(MI
, 1);
823 void ARMCodeEmitter::addPCLabel(unsigned LabelID
) {
824 DEBUG(errs() << " ** LPC" << LabelID
<< " @ "
825 << (void*)MCE
.getCurrentPCValue() << '\n');
826 JTI
->addPCLabelAddr(LabelID
, MCE
.getCurrentPCValue());
829 void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr
&MI
) {
830 unsigned Opcode
= MI
.getDesc().Opcode
;
833 llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
835 case ARM::BMOVPCRX_CALL
:
837 case ARM::BMOVPCRXr9_CALL
: {
838 // First emit mov lr, pc
839 unsigned Binary
= 0x01a0e00f;
840 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
843 // and then emit the branch.
844 emitMiscBranchInstruction(MI
);
847 case TargetOpcode::INLINEASM
: {
848 // We allow inline assembler nodes with empty bodies - they can
849 // implicitly define registers, which is ok for JIT.
850 if (MI
.getOperand(0).getSymbolName()[0]) {
851 report_fatal_error("JIT does not support inline asm!");
855 case TargetOpcode::PROLOG_LABEL
:
856 case TargetOpcode::EH_LABEL
:
857 MCE
.emitLabel(MI
.getOperand(0).getMCSymbol());
859 case TargetOpcode::IMPLICIT_DEF
:
860 case TargetOpcode::KILL
:
863 case ARM::CONSTPOOL_ENTRY
:
864 emitConstPoolInstruction(MI
);
867 // Remember of the address of the PC label for relocation later.
868 addPCLabel(MI
.getOperand(2).getImm());
869 // PICADD is just an add instruction that implicitly read pc.
870 emitDataProcessingInstruction(MI
, 0, ARM::PC
);
877 // Remember of the address of the PC label for relocation later.
878 addPCLabel(MI
.getOperand(2).getImm());
879 // These are just load / store instructions that implicitly read pc.
880 emitLoadStoreInstruction(MI
, 0, ARM::PC
);
887 // Remember of the address of the PC label for relocation later.
888 addPCLabel(MI
.getOperand(2).getImm());
889 // These are just load / store instructions that implicitly read pc.
890 emitMiscLoadStoreInstruction(MI
, ARM::PC
);
895 // Two instructions to materialize a constant.
896 if (Subtarget
->hasV6T2Ops())
897 emitMOVi32immInstruction(MI
);
899 emitMOVi2piecesInstruction(MI
);
902 case ARM::LEApcrelJT
:
903 // Materialize jumptable address.
904 emitLEApcrelJTInstruction(MI
);
907 case ARM::MOVsrl_flag
:
908 case ARM::MOVsra_flag
:
909 emitPseudoMoveInstruction(MI
);
914 unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr
&MI
,
915 const MCInstrDesc
&MCID
,
916 const MachineOperand
&MO
,
918 unsigned Binary
= getMachineOpValue(MI
, MO
);
920 const MachineOperand
&MO1
= MI
.getOperand(OpIdx
+ 1);
921 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
+ 2);
922 ARM_AM::ShiftOpc SOpc
= ARM_AM::getSORegShOp(MO2
.getImm());
924 // Encode the shift opcode.
926 unsigned Rs
= MO1
.getReg();
928 // Set shift operand (bit[7:4]).
933 // RRX - 0110 and bit[11:8] clear.
935 default: llvm_unreachable("Unknown shift opc!");
936 case ARM_AM::lsl
: SBits
= 0x1; break;
937 case ARM_AM::lsr
: SBits
= 0x3; break;
938 case ARM_AM::asr
: SBits
= 0x5; break;
939 case ARM_AM::ror
: SBits
= 0x7; break;
940 case ARM_AM::rrx
: SBits
= 0x6; break;
943 // Set shift operand (bit[6:4]).
949 default: llvm_unreachable("Unknown shift opc!");
950 case ARM_AM::lsl
: SBits
= 0x0; break;
951 case ARM_AM::lsr
: SBits
= 0x2; break;
952 case ARM_AM::asr
: SBits
= 0x4; break;
953 case ARM_AM::ror
: SBits
= 0x6; break;
956 Binary
|= SBits
<< 4;
957 if (SOpc
== ARM_AM::rrx
)
960 // Encode the shift operation Rs or shift_imm (except rrx).
962 // Encode Rs bit[11:8].
963 assert(ARM_AM::getSORegOffset(MO2
.getImm()) == 0);
964 return Binary
| (getARMRegisterNumbering(Rs
) << ARMII::RegRsShift
);
967 // Encode shift_imm bit[11:7].
968 return Binary
| ARM_AM::getSORegOffset(MO2
.getImm()) << 7;
971 unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm
) {
972 int SoImmVal
= ARM_AM::getSOImmVal(SoImm
);
973 assert(SoImmVal
!= -1 && "Not a valid so_imm value!");
975 // Encode rotate_imm.
976 unsigned Binary
= (ARM_AM::getSOImmValRot((unsigned)SoImmVal
) >> 1)
977 << ARMII::SoRotImmShift
;
980 Binary
|= ARM_AM::getSOImmValImm((unsigned)SoImmVal
);
984 unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr
&MI
,
985 const MCInstrDesc
&MCID
) const {
986 for (unsigned i
= MI
.getNumOperands(), e
= MCID
.getNumOperands(); i
>= e
; --i
){
987 const MachineOperand
&MO
= MI
.getOperand(i
-1);
988 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
)
989 return 1 << ARMII::S_BitShift
;
994 void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr
&MI
,
996 unsigned ImplicitRn
) {
997 const MCInstrDesc
&MCID
= MI
.getDesc();
999 // Part of binary is determined by TableGn.
1000 unsigned Binary
= getBinaryCodeForInstr(MI
);
1002 // Set the conditional execution predicate
1003 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1005 // Encode S bit if MI modifies CPSR.
1006 Binary
|= getAddrModeSBit(MI
, MCID
);
1008 // Encode register def if there is one.
1009 unsigned NumDefs
= MCID
.getNumDefs();
1012 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1013 else if (ImplicitRd
)
1014 // Special handling for implicit use (e.g. PC).
1015 Binary
|= (getARMRegisterNumbering(ImplicitRd
) << ARMII::RegRdShift
);
1017 if (MCID
.Opcode
== ARM::MOVi16
) {
1018 // Get immediate from MI.
1019 unsigned Lo16
= getMovi32Value(MI
, MI
.getOperand(OpIdx
),
1020 ARM::reloc_arm_movw
);
1021 // Encode imm which is the same as in emitMOVi32immInstruction().
1022 Binary
|= Lo16
& 0xFFF;
1023 Binary
|= ((Lo16
>> 12) & 0xF) << 16;
1026 } else if(MCID
.Opcode
== ARM::MOVTi16
) {
1027 unsigned Hi16
= (getMovi32Value(MI
, MI
.getOperand(OpIdx
),
1028 ARM::reloc_arm_movt
) >> 16);
1029 Binary
|= Hi16
& 0xFFF;
1030 Binary
|= ((Hi16
>> 12) & 0xF) << 16;
1033 } else if ((MCID
.Opcode
== ARM::BFC
) || (MCID
.Opcode
== ARM::BFI
)) {
1034 uint32_t v
= ~MI
.getOperand(2).getImm();
1035 int32_t lsb
= CountTrailingZeros_32(v
);
1036 int32_t msb
= (32 - CountLeadingZeros_32(v
)) - 1;
1037 // Instr{20-16} = msb, Instr{11-7} = lsb
1038 Binary
|= (msb
& 0x1F) << 16;
1039 Binary
|= (lsb
& 0x1F) << 7;
1042 } else if ((MCID
.Opcode
== ARM::UBFX
) || (MCID
.Opcode
== ARM::SBFX
)) {
1043 // Encode Rn in Instr{0-3}
1044 Binary
|= getMachineOpValue(MI
, OpIdx
++);
1046 uint32_t lsb
= MI
.getOperand(OpIdx
++).getImm();
1047 uint32_t widthm1
= MI
.getOperand(OpIdx
++).getImm() - 1;
1049 // Instr{20-16} = widthm1, Instr{11-7} = lsb
1050 Binary
|= (widthm1
& 0x1F) << 16;
1051 Binary
|= (lsb
& 0x1F) << 7;
1056 // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1057 if (MCID
.getOperandConstraint(OpIdx
, MCOI::TIED_TO
) != -1)
1060 // Encode first non-shifter register operand if there is one.
1061 bool isUnary
= MCID
.TSFlags
& ARMII::UnaryDP
;
1064 // Special handling for implicit use (e.g. PC).
1065 Binary
|= (getARMRegisterNumbering(ImplicitRn
) << ARMII::RegRnShift
);
1067 Binary
|= getMachineOpValue(MI
, OpIdx
) << ARMII::RegRnShift
;
1072 // Encode shifter operand.
1073 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
1074 if ((MCID
.TSFlags
& ARMII::FormMask
) == ARMII::DPSoRegFrm
) {
1076 emitWordLE(Binary
| getMachineSoRegOpValue(MI
, MCID
, MO
, OpIdx
));
1081 // Encode register Rm.
1082 emitWordLE(Binary
| getARMRegisterNumbering(MO
.getReg()));
1087 Binary
|= getMachineSoImmOpValue((unsigned)MO
.getImm());
1092 void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr
&MI
,
1093 unsigned ImplicitRd
,
1094 unsigned ImplicitRn
) {
1095 const MCInstrDesc
&MCID
= MI
.getDesc();
1096 unsigned Form
= MCID
.TSFlags
& ARMII::FormMask
;
1097 bool IsPrePost
= (MCID
.TSFlags
& ARMII::IndexModeMask
) != 0;
1099 // Part of binary is determined by TableGn.
1100 unsigned Binary
= getBinaryCodeForInstr(MI
);
1102 // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1103 if (MI
.getOpcode() == ARM::LDRi12
|| MI
.getOpcode() == ARM::LDRcp
||
1104 MI
.getOpcode() == ARM::STRi12
) {
1109 // Set the conditional execution predicate
1110 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1114 // Operand 0 of a pre- and post-indexed store is the address base
1115 // writeback. Skip it.
1116 bool Skipped
= false;
1117 if (IsPrePost
&& Form
== ARMII::StFrm
) {
1122 // Set first operand
1124 // Special handling for implicit use (e.g. PC).
1125 Binary
|= (getARMRegisterNumbering(ImplicitRd
) << ARMII::RegRdShift
);
1127 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1129 // Set second operand
1131 // Special handling for implicit use (e.g. PC).
1132 Binary
|= (getARMRegisterNumbering(ImplicitRn
) << ARMII::RegRnShift
);
1134 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRnShift
;
1136 // If this is a two-address operand, skip it. e.g. LDR_PRE.
1137 if (!Skipped
&& MCID
.getOperandConstraint(OpIdx
, MCOI::TIED_TO
) != -1)
1140 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
1141 unsigned AM2Opc
= (ImplicitRn
== ARM::PC
)
1142 ? 0 : MI
.getOperand(OpIdx
+1).getImm();
1144 // Set bit U(23) according to sign of immed value (positive or negative).
1145 Binary
|= ((ARM_AM::getAM2Op(AM2Opc
) == ARM_AM::add
? 1 : 0) <<
1147 if (!MO2
.getReg()) { // is immediate
1148 if (ARM_AM::getAM2Offset(AM2Opc
))
1149 // Set the value of offset_12 field
1150 Binary
|= ARM_AM::getAM2Offset(AM2Opc
);
1155 // Set bit I(25), because this is not in immediate encoding.
1156 Binary
|= 1 << ARMII::I_BitShift
;
1157 assert(TargetRegisterInfo::isPhysicalRegister(MO2
.getReg()));
1158 // Set bit[3:0] to the corresponding Rm register
1159 Binary
|= getARMRegisterNumbering(MO2
.getReg());
1161 // If this instr is in scaled register offset/index instruction, set
1162 // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1163 if (unsigned ShImm
= ARM_AM::getAM2Offset(AM2Opc
)) {
1164 Binary
|= getShiftOp(AM2Opc
) << ARMII::ShiftImmShift
; // shift
1165 Binary
|= ShImm
<< ARMII::ShiftShift
; // shift_immed
1171 void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr
&MI
,
1172 unsigned ImplicitRn
) {
1173 const MCInstrDesc
&MCID
= MI
.getDesc();
1174 unsigned Form
= MCID
.TSFlags
& ARMII::FormMask
;
1175 bool IsPrePost
= (MCID
.TSFlags
& ARMII::IndexModeMask
) != 0;
1177 // Part of binary is determined by TableGn.
1178 unsigned Binary
= getBinaryCodeForInstr(MI
);
1180 // Set the conditional execution predicate
1181 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1185 // Operand 0 of a pre- and post-indexed store is the address base
1186 // writeback. Skip it.
1187 bool Skipped
= false;
1188 if (IsPrePost
&& Form
== ARMII::StMiscFrm
) {
1193 // Set first operand
1194 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1196 // Skip LDRD and STRD's second operand.
1197 if (MCID
.Opcode
== ARM::LDRD
|| MCID
.Opcode
== ARM::STRD
)
1200 // Set second operand
1202 // Special handling for implicit use (e.g. PC).
1203 Binary
|= (getARMRegisterNumbering(ImplicitRn
) << ARMII::RegRnShift
);
1205 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRnShift
;
1207 // If this is a two-address operand, skip it. e.g. LDRH_POST.
1208 if (!Skipped
&& MCID
.getOperandConstraint(OpIdx
, MCOI::TIED_TO
) != -1)
1211 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
1212 unsigned AM3Opc
= (ImplicitRn
== ARM::PC
)
1213 ? 0 : MI
.getOperand(OpIdx
+1).getImm();
1215 // Set bit U(23) according to sign of immed value (positive or negative)
1216 Binary
|= ((ARM_AM::getAM3Op(AM3Opc
) == ARM_AM::add
? 1 : 0) <<
1219 // If this instr is in register offset/index encoding, set bit[3:0]
1220 // to the corresponding Rm register.
1222 Binary
|= getARMRegisterNumbering(MO2
.getReg());
1227 // This instr is in immediate offset/index encoding, set bit 22 to 1.
1228 Binary
|= 1 << ARMII::AM3_I_BitShift
;
1229 if (unsigned ImmOffs
= ARM_AM::getAM3Offset(AM3Opc
)) {
1231 Binary
|= (ImmOffs
>> 4) << ARMII::ImmHiShift
; // immedH
1232 Binary
|= (ImmOffs
& 0xF); // immedL
1238 static unsigned getAddrModeUPBits(unsigned Mode
) {
1239 unsigned Binary
= 0;
1241 // Set addressing mode by modifying bits U(23) and P(24)
1242 // IA - Increment after - bit U = 1 and bit P = 0
1243 // IB - Increment before - bit U = 1 and bit P = 1
1244 // DA - Decrement after - bit U = 0 and bit P = 0
1245 // DB - Decrement before - bit U = 0 and bit P = 1
1247 default: llvm_unreachable("Unknown addressing sub-mode!");
1248 case ARM_AM::da
: break;
1249 case ARM_AM::db
: Binary
|= 0x1 << ARMII::P_BitShift
; break;
1250 case ARM_AM::ia
: Binary
|= 0x1 << ARMII::U_BitShift
; break;
1251 case ARM_AM::ib
: Binary
|= 0x3 << ARMII::U_BitShift
; break;
1257 void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr
&MI
) {
1258 const MCInstrDesc
&MCID
= MI
.getDesc();
1259 bool IsUpdating
= (MCID
.TSFlags
& ARMII::IndexModeMask
) != 0;
1261 // Part of binary is determined by TableGn.
1262 unsigned Binary
= getBinaryCodeForInstr(MI
);
1264 // Set the conditional execution predicate
1265 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1267 // Skip operand 0 of an instruction with base register update.
1272 // Set base address operand
1273 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRnShift
;
1275 // Set addressing mode by modifying bits U(23) and P(24)
1276 ARM_AM::AMSubMode Mode
= ARM_AM::getLoadStoreMultipleSubMode(MI
.getOpcode());
1277 Binary
|= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode
));
1281 Binary
|= 0x1 << ARMII::W_BitShift
;
1284 for (unsigned i
= OpIdx
+2, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1285 const MachineOperand
&MO
= MI
.getOperand(i
);
1286 if (!MO
.isReg() || MO
.isImplicit())
1288 unsigned RegNum
= getARMRegisterNumbering(MO
.getReg());
1289 assert(TargetRegisterInfo::isPhysicalRegister(MO
.getReg()) &&
1291 Binary
|= 0x1 << RegNum
;
1297 void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr
&MI
) {
1298 const MCInstrDesc
&MCID
= MI
.getDesc();
1300 // Part of binary is determined by TableGn.
1301 unsigned Binary
= getBinaryCodeForInstr(MI
);
1303 // Set the conditional execution predicate
1304 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1306 // Encode S bit if MI modifies CPSR.
1307 Binary
|= getAddrModeSBit(MI
, MCID
);
1309 // 32x32->64bit operations have two destination registers. The number
1310 // of register definitions will tell us if that's what we're dealing with.
1312 if (MCID
.getNumDefs() == 2)
1313 Binary
|= getMachineOpValue (MI
, OpIdx
++) << ARMII::RegRdLoShift
;
1316 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdHiShift
;
1319 Binary
|= getMachineOpValue(MI
, OpIdx
++);
1322 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRsShift
;
1324 // Many multiple instructions (e.g. MLA) have three src operands. Encode
1325 // it as Rn (for multiply, that's in the same offset as RdLo.
1326 if (MCID
.getNumOperands() > OpIdx
&&
1327 !MCID
.OpInfo
[OpIdx
].isPredicate() &&
1328 !MCID
.OpInfo
[OpIdx
].isOptionalDef())
1329 Binary
|= getMachineOpValue(MI
, OpIdx
) << ARMII::RegRdLoShift
;
1334 void ARMCodeEmitter::emitExtendInstruction(const MachineInstr
&MI
) {
1335 const MCInstrDesc
&MCID
= MI
.getDesc();
1337 // Part of binary is determined by TableGn.
1338 unsigned Binary
= getBinaryCodeForInstr(MI
);
1340 // Set the conditional execution predicate
1341 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1346 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1348 const MachineOperand
&MO1
= MI
.getOperand(OpIdx
++);
1349 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
1351 // Two register operand form.
1353 Binary
|= getMachineOpValue(MI
, MO1
) << ARMII::RegRnShift
;
1356 Binary
|= getMachineOpValue(MI
, MO2
);
1359 Binary
|= getMachineOpValue(MI
, MO1
);
1362 // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1363 if (MI
.getOperand(OpIdx
).isImm() &&
1364 !MCID
.OpInfo
[OpIdx
].isPredicate() &&
1365 !MCID
.OpInfo
[OpIdx
].isOptionalDef())
1366 Binary
|= (getMachineOpValue(MI
, OpIdx
) / 8) << ARMII::ExtRotImmShift
;
1371 void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr
&MI
) {
1372 const MCInstrDesc
&MCID
= MI
.getDesc();
1374 // Part of binary is determined by TableGn.
1375 unsigned Binary
= getBinaryCodeForInstr(MI
);
1377 // Set the conditional execution predicate
1378 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1380 // PKH instructions are finished at this point
1381 if (MCID
.Opcode
== ARM::PKHBT
|| MCID
.Opcode
== ARM::PKHTB
) {
1389 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1391 const MachineOperand
&MO
= MI
.getOperand(OpIdx
++);
1392 if (OpIdx
== MCID
.getNumOperands() ||
1393 MCID
.OpInfo
[OpIdx
].isPredicate() ||
1394 MCID
.OpInfo
[OpIdx
].isOptionalDef()) {
1395 // Encode Rm and it's done.
1396 Binary
|= getMachineOpValue(MI
, MO
);
1402 Binary
|= getMachineOpValue(MI
, MO
) << ARMII::RegRnShift
;
1405 Binary
|= getMachineOpValue(MI
, OpIdx
++);
1407 // Encode shift_imm.
1408 unsigned ShiftAmt
= MI
.getOperand(OpIdx
).getImm();
1409 if (MCID
.Opcode
== ARM::PKHTB
) {
1410 assert(ShiftAmt
!= 0 && "PKHTB shift_imm is 0!");
1414 assert(ShiftAmt
< 32 && "shift_imm range is 0 to 31!");
1415 Binary
|= ShiftAmt
<< ARMII::ShiftShift
;
1420 void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr
&MI
) {
1421 const MCInstrDesc
&MCID
= MI
.getDesc();
1423 // Part of binary is determined by TableGen.
1424 unsigned Binary
= getBinaryCodeForInstr(MI
);
1426 // Set the conditional execution predicate
1427 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1430 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRdShift
;
1432 // Encode saturate bit position.
1433 unsigned Pos
= MI
.getOperand(1).getImm();
1434 if (MCID
.Opcode
== ARM::SSAT
|| MCID
.Opcode
== ARM::SSAT16
)
1436 assert((Pos
< 16 || (Pos
< 32 &&
1437 MCID
.Opcode
!= ARM::SSAT16
&&
1438 MCID
.Opcode
!= ARM::USAT16
)) &&
1439 "saturate bit position out of range");
1440 Binary
|= Pos
<< 16;
1443 Binary
|= getMachineOpValue(MI
, 2);
1445 // Encode shift_imm.
1446 if (MCID
.getNumOperands() == 4) {
1447 unsigned ShiftOp
= MI
.getOperand(3).getImm();
1448 ARM_AM::ShiftOpc Opc
= ARM_AM::getSORegShOp(ShiftOp
);
1449 if (Opc
== ARM_AM::asr
)
1451 unsigned ShiftAmt
= MI
.getOperand(3).getImm();
1452 if (ShiftAmt
== 32 && Opc
== ARM_AM::asr
)
1454 assert(ShiftAmt
< 32 && "shift_imm range is 0 to 31!");
1455 Binary
|= ShiftAmt
<< ARMII::ShiftShift
;
1461 void ARMCodeEmitter::emitBranchInstruction(const MachineInstr
&MI
) {
1462 const MCInstrDesc
&MCID
= MI
.getDesc();
1464 if (MCID
.Opcode
== ARM::TPsoft
) {
1465 llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1468 // Part of binary is determined by TableGn.
1469 unsigned Binary
= getBinaryCodeForInstr(MI
);
1471 // Set the conditional execution predicate
1472 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1474 // Set signed_immed_24 field
1475 Binary
|= getMachineOpValue(MI
, 0);
1480 void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex
) {
1481 // Remember the base address of the inline jump table.
1482 uintptr_t JTBase
= MCE
.getCurrentPCValue();
1483 JTI
->addJumpTableBaseAddr(JTIndex
, JTBase
);
1484 DEBUG(errs() << " ** Jump Table #" << JTIndex
<< " @ " << (void*)JTBase
1487 // Now emit the jump table entries.
1488 const std::vector
<MachineBasicBlock
*> &MBBs
= (*MJTEs
)[JTIndex
].MBBs
;
1489 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
) {
1491 // DestBB address - JT base.
1492 emitMachineBasicBlock(MBBs
[i
], ARM::reloc_arm_pic_jt
, JTBase
);
1494 // Absolute DestBB address.
1495 emitMachineBasicBlock(MBBs
[i
], ARM::reloc_arm_absolute
);
1500 void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr
&MI
) {
1501 const MCInstrDesc
&MCID
= MI
.getDesc();
1503 // Handle jump tables.
1504 if (MCID
.Opcode
== ARM::BR_JTr
|| MCID
.Opcode
== ARM::BR_JTadd
) {
1505 // First emit a ldr pc, [] instruction.
1506 emitDataProcessingInstruction(MI
, ARM::PC
);
1508 // Then emit the inline jump table.
1510 (MCID
.Opcode
== ARM::BR_JTr
)
1511 ? MI
.getOperand(1).getIndex() : MI
.getOperand(2).getIndex();
1512 emitInlineJumpTable(JTIndex
);
1514 } else if (MCID
.Opcode
== ARM::BR_JTm
) {
1515 // First emit a ldr pc, [] instruction.
1516 emitLoadStoreInstruction(MI
, ARM::PC
);
1518 // Then emit the inline jump table.
1519 emitInlineJumpTable(MI
.getOperand(3).getIndex());
1523 // Part of binary is determined by TableGn.
1524 unsigned Binary
= getBinaryCodeForInstr(MI
);
1526 // Set the conditional execution predicate
1527 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1529 if (MCID
.Opcode
== ARM::BX_RET
|| MCID
.Opcode
== ARM::MOVPCLR
)
1530 // The return register is LR.
1531 Binary
|= getARMRegisterNumbering(ARM::LR
);
1533 // otherwise, set the return register
1534 Binary
|= getMachineOpValue(MI
, 0);
1539 static unsigned encodeVFPRd(const MachineInstr
&MI
, unsigned OpIdx
) {
1540 unsigned RegD
= MI
.getOperand(OpIdx
).getReg();
1541 unsigned Binary
= 0;
1542 bool isSPVFP
= ARM::SPRRegisterClass
->contains(RegD
);
1543 RegD
= getARMRegisterNumbering(RegD
);
1545 Binary
|= RegD
<< ARMII::RegRdShift
;
1547 Binary
|= ((RegD
& 0x1E) >> 1) << ARMII::RegRdShift
;
1548 Binary
|= (RegD
& 0x01) << ARMII::D_BitShift
;
1553 static unsigned encodeVFPRn(const MachineInstr
&MI
, unsigned OpIdx
) {
1554 unsigned RegN
= MI
.getOperand(OpIdx
).getReg();
1555 unsigned Binary
= 0;
1556 bool isSPVFP
= ARM::SPRRegisterClass
->contains(RegN
);
1557 RegN
= getARMRegisterNumbering(RegN
);
1559 Binary
|= RegN
<< ARMII::RegRnShift
;
1561 Binary
|= ((RegN
& 0x1E) >> 1) << ARMII::RegRnShift
;
1562 Binary
|= (RegN
& 0x01) << ARMII::N_BitShift
;
1567 static unsigned encodeVFPRm(const MachineInstr
&MI
, unsigned OpIdx
) {
1568 unsigned RegM
= MI
.getOperand(OpIdx
).getReg();
1569 unsigned Binary
= 0;
1570 bool isSPVFP
= ARM::SPRRegisterClass
->contains(RegM
);
1571 RegM
= getARMRegisterNumbering(RegM
);
1575 Binary
|= ((RegM
& 0x1E) >> 1);
1576 Binary
|= (RegM
& 0x01) << ARMII::M_BitShift
;
1581 void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr
&MI
) {
1582 const MCInstrDesc
&MCID
= MI
.getDesc();
1584 // Part of binary is determined by TableGn.
1585 unsigned Binary
= getBinaryCodeForInstr(MI
);
1587 // Set the conditional execution predicate
1588 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1591 assert((Binary
& ARMII::D_BitShift
) == 0 &&
1592 (Binary
& ARMII::N_BitShift
) == 0 &&
1593 (Binary
& ARMII::M_BitShift
) == 0 && "VFP encoding bug!");
1596 Binary
|= encodeVFPRd(MI
, OpIdx
++);
1598 // If this is a two-address operand, skip it, e.g. FMACD.
1599 if (MCID
.getOperandConstraint(OpIdx
, MCOI::TIED_TO
) != -1)
1603 if ((MCID
.TSFlags
& ARMII::FormMask
) == ARMII::VFPBinaryFrm
)
1604 Binary
|= encodeVFPRn(MI
, OpIdx
++);
1606 if (OpIdx
== MCID
.getNumOperands() ||
1607 MCID
.OpInfo
[OpIdx
].isPredicate() ||
1608 MCID
.OpInfo
[OpIdx
].isOptionalDef()) {
1609 // FCMPEZD etc. has only one operand.
1615 Binary
|= encodeVFPRm(MI
, OpIdx
);
1620 void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr
&MI
) {
1621 const MCInstrDesc
&MCID
= MI
.getDesc();
1622 unsigned Form
= MCID
.TSFlags
& ARMII::FormMask
;
1624 // Part of binary is determined by TableGn.
1625 unsigned Binary
= getBinaryCodeForInstr(MI
);
1627 // Set the conditional execution predicate
1628 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1632 case ARMII::VFPConv1Frm
:
1633 case ARMII::VFPConv2Frm
:
1634 case ARMII::VFPConv3Frm
:
1636 Binary
|= encodeVFPRd(MI
, 0);
1638 case ARMII::VFPConv4Frm
:
1640 Binary
|= encodeVFPRn(MI
, 0);
1642 case ARMII::VFPConv5Frm
:
1644 Binary
|= encodeVFPRm(MI
, 0);
1650 case ARMII::VFPConv1Frm
:
1652 Binary
|= encodeVFPRm(MI
, 1);
1654 case ARMII::VFPConv2Frm
:
1655 case ARMII::VFPConv3Frm
:
1657 Binary
|= encodeVFPRn(MI
, 1);
1659 case ARMII::VFPConv4Frm
:
1660 case ARMII::VFPConv5Frm
:
1662 Binary
|= encodeVFPRd(MI
, 1);
1666 if (Form
== ARMII::VFPConv5Frm
)
1668 Binary
|= encodeVFPRn(MI
, 2);
1669 else if (Form
== ARMII::VFPConv3Frm
)
1671 Binary
|= encodeVFPRm(MI
, 2);
1676 void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr
&MI
) {
1677 // Part of binary is determined by TableGn.
1678 unsigned Binary
= getBinaryCodeForInstr(MI
);
1680 // Set the conditional execution predicate
1681 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1686 Binary
|= encodeVFPRd(MI
, OpIdx
++);
1688 // Encode address base.
1689 const MachineOperand
&Base
= MI
.getOperand(OpIdx
++);
1690 Binary
|= getMachineOpValue(MI
, Base
) << ARMII::RegRnShift
;
1692 // If there is a non-zero immediate offset, encode it.
1694 const MachineOperand
&Offset
= MI
.getOperand(OpIdx
);
1695 if (unsigned ImmOffs
= ARM_AM::getAM5Offset(Offset
.getImm())) {
1696 if (ARM_AM::getAM5Op(Offset
.getImm()) == ARM_AM::add
)
1697 Binary
|= 1 << ARMII::U_BitShift
;
1704 // If immediate offset is omitted, default to +0.
1705 Binary
|= 1 << ARMII::U_BitShift
;
1711 ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr
&MI
) {
1712 const MCInstrDesc
&MCID
= MI
.getDesc();
1713 bool IsUpdating
= (MCID
.TSFlags
& ARMII::IndexModeMask
) != 0;
1715 // Part of binary is determined by TableGn.
1716 unsigned Binary
= getBinaryCodeForInstr(MI
);
1718 // Set the conditional execution predicate
1719 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1721 // Skip operand 0 of an instruction with base register update.
1726 // Set base address operand
1727 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRnShift
;
1729 // Set addressing mode by modifying bits U(23) and P(24)
1730 ARM_AM::AMSubMode Mode
= ARM_AM::getLoadStoreMultipleSubMode(MI
.getOpcode());
1731 Binary
|= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode
));
1735 Binary
|= 0x1 << ARMII::W_BitShift
;
1737 // First register is encoded in Dd.
1738 Binary
|= encodeVFPRd(MI
, OpIdx
+2);
1740 // Count the number of registers.
1741 unsigned NumRegs
= 1;
1742 for (unsigned i
= OpIdx
+3, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1743 const MachineOperand
&MO
= MI
.getOperand(i
);
1744 if (!MO
.isReg() || MO
.isImplicit())
1748 // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1749 // Otherwise, it will be 0, in the case of 32-bit registers.
1751 Binary
|= NumRegs
* 2;
1758 static unsigned encodeNEONRd(const MachineInstr
&MI
, unsigned OpIdx
) {
1759 unsigned RegD
= MI
.getOperand(OpIdx
).getReg();
1760 unsigned Binary
= 0;
1761 RegD
= getARMRegisterNumbering(RegD
);
1762 Binary
|= (RegD
& 0xf) << ARMII::RegRdShift
;
1763 Binary
|= ((RegD
>> 4) & 1) << ARMII::D_BitShift
;
1767 static unsigned encodeNEONRn(const MachineInstr
&MI
, unsigned OpIdx
) {
1768 unsigned RegN
= MI
.getOperand(OpIdx
).getReg();
1769 unsigned Binary
= 0;
1770 RegN
= getARMRegisterNumbering(RegN
);
1771 Binary
|= (RegN
& 0xf) << ARMII::RegRnShift
;
1772 Binary
|= ((RegN
>> 4) & 1) << ARMII::N_BitShift
;
1776 static unsigned encodeNEONRm(const MachineInstr
&MI
, unsigned OpIdx
) {
1777 unsigned RegM
= MI
.getOperand(OpIdx
).getReg();
1778 unsigned Binary
= 0;
1779 RegM
= getARMRegisterNumbering(RegM
);
1780 Binary
|= (RegM
& 0xf);
1781 Binary
|= ((RegM
>> 4) & 1) << ARMII::M_BitShift
;
1785 /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1786 /// data-processing instruction to the corresponding Thumb encoding.
1787 static unsigned convertNEONDataProcToThumb(unsigned Binary
) {
1788 assert((Binary
& 0xfe000000) == 0xf2000000 &&
1789 "not an ARM NEON data-processing instruction");
1790 unsigned UBit
= (Binary
>> 24) & 1;
1791 return 0xef000000 | (UBit
<< 28) | (Binary
& 0xffffff);
1794 void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr
&MI
) {
1795 unsigned Binary
= getBinaryCodeForInstr(MI
);
1797 unsigned RegTOpIdx
, RegNOpIdx
, LnOpIdx
;
1798 const MCInstrDesc
&MCID
= MI
.getDesc();
1799 if ((MCID
.TSFlags
& ARMII::FormMask
) == ARMII::NGetLnFrm
) {
1803 } else { // ARMII::NSetLnFrm
1809 // Set the conditional execution predicate
1810 Binary
|= (IsThumb
? ARMCC::AL
: II
->getPredicate(&MI
)) << ARMII::CondShift
;
1812 unsigned RegT
= MI
.getOperand(RegTOpIdx
).getReg();
1813 RegT
= getARMRegisterNumbering(RegT
);
1814 Binary
|= (RegT
<< ARMII::RegRdShift
);
1815 Binary
|= encodeNEONRn(MI
, RegNOpIdx
);
1818 if ((Binary
& (1 << 22)) != 0)
1819 LaneShift
= 0; // 8-bit elements
1820 else if ((Binary
& (1 << 5)) != 0)
1821 LaneShift
= 1; // 16-bit elements
1823 LaneShift
= 2; // 32-bit elements
1825 unsigned Lane
= MI
.getOperand(LnOpIdx
).getImm() << LaneShift
;
1826 unsigned Opc1
= Lane
>> 2;
1827 unsigned Opc2
= Lane
& 3;
1828 assert((Opc1
& 3) == 0 && "out-of-range lane number operand");
1829 Binary
|= (Opc1
<< 21);
1830 Binary
|= (Opc2
<< 5);
1835 void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr
&MI
) {
1836 unsigned Binary
= getBinaryCodeForInstr(MI
);
1838 // Set the conditional execution predicate
1839 Binary
|= (IsThumb
? ARMCC::AL
: II
->getPredicate(&MI
)) << ARMII::CondShift
;
1841 unsigned RegT
= MI
.getOperand(1).getReg();
1842 RegT
= getARMRegisterNumbering(RegT
);
1843 Binary
|= (RegT
<< ARMII::RegRdShift
);
1844 Binary
|= encodeNEONRn(MI
, 0);
1848 void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr
&MI
) {
1849 unsigned Binary
= getBinaryCodeForInstr(MI
);
1850 // Destination register is encoded in Dd.
1851 Binary
|= encodeNEONRd(MI
, 0);
1852 // Immediate fields: Op, Cmode, I, Imm3, Imm4
1853 unsigned Imm
= MI
.getOperand(1).getImm();
1854 unsigned Op
= (Imm
>> 12) & 1;
1855 unsigned Cmode
= (Imm
>> 8) & 0xf;
1856 unsigned I
= (Imm
>> 7) & 1;
1857 unsigned Imm3
= (Imm
>> 4) & 0x7;
1858 unsigned Imm4
= Imm
& 0xf;
1859 Binary
|= (I
<< 24) | (Imm3
<< 16) | (Cmode
<< 8) | (Op
<< 5) | Imm4
;
1861 Binary
= convertNEONDataProcToThumb(Binary
);
1865 void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr
&MI
) {
1866 const MCInstrDesc
&MCID
= MI
.getDesc();
1867 unsigned Binary
= getBinaryCodeForInstr(MI
);
1868 // Destination register is encoded in Dd; source register in Dm.
1870 Binary
|= encodeNEONRd(MI
, OpIdx
++);
1871 if (MCID
.getOperandConstraint(OpIdx
, MCOI::TIED_TO
) != -1)
1873 Binary
|= encodeNEONRm(MI
, OpIdx
);
1875 Binary
= convertNEONDataProcToThumb(Binary
);
1876 // FIXME: This does not handle VDUPfdf or VDUPfqf.
1880 void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr
&MI
) {
1881 const MCInstrDesc
&MCID
= MI
.getDesc();
1882 unsigned Binary
= getBinaryCodeForInstr(MI
);
1883 // Destination register is encoded in Dd; source registers in Dn and Dm.
1885 Binary
|= encodeNEONRd(MI
, OpIdx
++);
1886 if (MCID
.getOperandConstraint(OpIdx
, MCOI::TIED_TO
) != -1)
1888 Binary
|= encodeNEONRn(MI
, OpIdx
++);
1889 if (MCID
.getOperandConstraint(OpIdx
, MCOI::TIED_TO
) != -1)
1891 Binary
|= encodeNEONRm(MI
, OpIdx
);
1893 Binary
= convertNEONDataProcToThumb(Binary
);
1894 // FIXME: This does not handle VMOVDneon or VMOVQ.
1898 #include "ARMGenCodeEmitter.inc"