Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / Target / ARM / ARMFastISel.cpp
blobf469d7efe11a2974fd8599d6d3619f859414485e
1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ARM-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // ARMGenFastISel.inc, which is #included here.
14 //===----------------------------------------------------------------------===//
16 #include "ARM.h"
17 #include "ARMAddressingModes.h"
18 #include "ARMBaseInstrInfo.h"
19 #include "ARMCallingConv.h"
20 #include "ARMRegisterInfo.h"
21 #include "ARMTargetMachine.h"
22 #include "ARMSubtarget.h"
23 #include "ARMConstantPoolValue.h"
24 #include "llvm/CallingConv.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Instructions.h"
28 #include "llvm/IntrinsicInst.h"
29 #include "llvm/Module.h"
30 #include "llvm/Operator.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FastISel.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineConstantPool.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/PseudoSourceValue.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/GetElementPtrTypeIterator.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetLowering.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 using namespace llvm;
52 static cl::opt<bool>
53 DisableARMFastISel("disable-arm-fast-isel",
54 cl::desc("Turn off experimental ARM fast-isel support"),
55 cl::init(false), cl::Hidden);
57 extern cl::opt<bool> EnableARMLongCalls;
59 namespace {
61 // All possible address modes, plus some.
62 typedef struct Address {
63 enum {
64 RegBase,
65 FrameIndexBase
66 } BaseType;
68 union {
69 unsigned Reg;
70 int FI;
71 } Base;
73 int Offset;
75 // Innocuous defaults for our address.
76 Address()
77 : BaseType(RegBase), Offset(0) {
78 Base.Reg = 0;
80 } Address;
82 class ARMFastISel : public FastISel {
84 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
85 /// make the right decision when generating code for different targets.
86 const ARMSubtarget *Subtarget;
87 const TargetMachine &TM;
88 const TargetInstrInfo &TII;
89 const TargetLowering &TLI;
90 ARMFunctionInfo *AFI;
92 // Convenience variables to avoid some queries.
93 bool isThumb;
94 LLVMContext *Context;
96 public:
97 explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
98 : FastISel(funcInfo),
99 TM(funcInfo.MF->getTarget()),
100 TII(*TM.getInstrInfo()),
101 TLI(*TM.getTargetLowering()) {
102 Subtarget = &TM.getSubtarget<ARMSubtarget>();
103 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
104 isThumb = AFI->isThumbFunction();
105 Context = &funcInfo.Fn->getContext();
108 // Code from FastISel.cpp.
109 virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
110 const TargetRegisterClass *RC);
111 virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
112 const TargetRegisterClass *RC,
113 unsigned Op0, bool Op0IsKill);
114 virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
115 const TargetRegisterClass *RC,
116 unsigned Op0, bool Op0IsKill,
117 unsigned Op1, bool Op1IsKill);
118 virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
119 const TargetRegisterClass *RC,
120 unsigned Op0, bool Op0IsKill,
121 unsigned Op1, bool Op1IsKill,
122 unsigned Op2, bool Op2IsKill);
123 virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
124 const TargetRegisterClass *RC,
125 unsigned Op0, bool Op0IsKill,
126 uint64_t Imm);
127 virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
128 const TargetRegisterClass *RC,
129 unsigned Op0, bool Op0IsKill,
130 const ConstantFP *FPImm);
131 virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
132 const TargetRegisterClass *RC,
133 unsigned Op0, bool Op0IsKill,
134 unsigned Op1, bool Op1IsKill,
135 uint64_t Imm);
136 virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
137 const TargetRegisterClass *RC,
138 uint64_t Imm);
139 virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
140 const TargetRegisterClass *RC,
141 uint64_t Imm1, uint64_t Imm2);
143 virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
144 unsigned Op0, bool Op0IsKill,
145 uint32_t Idx);
147 // Backend specific FastISel code.
148 virtual bool TargetSelectInstruction(const Instruction *I);
149 virtual unsigned TargetMaterializeConstant(const Constant *C);
150 virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
152 #include "ARMGenFastISel.inc"
154 // Instruction selection routines.
155 private:
156 bool SelectLoad(const Instruction *I);
157 bool SelectStore(const Instruction *I);
158 bool SelectBranch(const Instruction *I);
159 bool SelectCmp(const Instruction *I);
160 bool SelectFPExt(const Instruction *I);
161 bool SelectFPTrunc(const Instruction *I);
162 bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
163 bool SelectSIToFP(const Instruction *I);
164 bool SelectFPToSI(const Instruction *I);
165 bool SelectSDiv(const Instruction *I);
166 bool SelectSRem(const Instruction *I);
167 bool SelectCall(const Instruction *I);
168 bool SelectSelect(const Instruction *I);
169 bool SelectRet(const Instruction *I);
170 bool SelectIntCast(const Instruction *I);
172 // Utility routines.
173 private:
174 bool isTypeLegal(const Type *Ty, MVT &VT);
175 bool isLoadTypeLegal(const Type *Ty, MVT &VT);
176 bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr);
177 bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
178 bool ARMComputeAddress(const Value *Obj, Address &Addr);
179 void ARMSimplifyAddress(Address &Addr, EVT VT);
180 unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
181 unsigned ARMMaterializeInt(const Constant *C, EVT VT);
182 unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
183 unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
184 unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
185 unsigned ARMSelectCallOp(const GlobalValue *GV);
187 // Call handling routines.
188 private:
189 bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
190 unsigned &ResultReg);
191 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
192 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
193 SmallVectorImpl<unsigned> &ArgRegs,
194 SmallVectorImpl<MVT> &ArgVTs,
195 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
196 SmallVectorImpl<unsigned> &RegArgs,
197 CallingConv::ID CC,
198 unsigned &NumBytes);
199 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
200 const Instruction *I, CallingConv::ID CC,
201 unsigned &NumBytes);
202 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
204 // OptionalDef handling routines.
205 private:
206 bool isARMNEONPred(const MachineInstr *MI);
207 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
208 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
209 void AddLoadStoreOperands(EVT VT, Address &Addr,
210 const MachineInstrBuilder &MIB,
211 unsigned Flags);
214 } // end anonymous namespace
216 #include "ARMGenCallingConv.inc"
218 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
219 // we don't care about implicit defs here, just places we'll need to add a
220 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
221 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
222 const MCInstrDesc &MCID = MI->getDesc();
223 if (!MCID.hasOptionalDef())
224 return false;
226 // Look to see if our OptionalDef is defining CPSR or CCR.
227 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
228 const MachineOperand &MO = MI->getOperand(i);
229 if (!MO.isReg() || !MO.isDef()) continue;
230 if (MO.getReg() == ARM::CPSR)
231 *CPSR = true;
233 return true;
236 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
237 const MCInstrDesc &MCID = MI->getDesc();
239 // If we're a thumb2 or not NEON function we were handled via isPredicable.
240 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
241 AFI->isThumb2Function())
242 return false;
244 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
245 if (MCID.OpInfo[i].isPredicate())
246 return true;
248 return false;
251 // If the machine is predicable go ahead and add the predicate operands, if
252 // it needs default CC operands add those.
253 // TODO: If we want to support thumb1 then we'll need to deal with optional
254 // CPSR defs that need to be added before the remaining operands. See s_cc_out
255 // for descriptions why.
256 const MachineInstrBuilder &
257 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
258 MachineInstr *MI = &*MIB;
260 // Do we use a predicate? or...
261 // Are we NEON in ARM mode and have a predicate operand? If so, I know
262 // we're not predicable but add it anyways.
263 if (TII.isPredicable(MI) || isARMNEONPred(MI))
264 AddDefaultPred(MIB);
266 // Do we optionally set a predicate? Preds is size > 0 iff the predicate
267 // defines CPSR. All other OptionalDefines in ARM are the CCR register.
268 bool CPSR = false;
269 if (DefinesOptionalPredicate(MI, &CPSR)) {
270 if (CPSR)
271 AddDefaultT1CC(MIB);
272 else
273 AddDefaultCC(MIB);
275 return MIB;
278 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
279 const TargetRegisterClass* RC) {
280 unsigned ResultReg = createResultReg(RC);
281 const MCInstrDesc &II = TII.get(MachineInstOpcode);
283 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
284 return ResultReg;
287 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
288 const TargetRegisterClass *RC,
289 unsigned Op0, bool Op0IsKill) {
290 unsigned ResultReg = createResultReg(RC);
291 const MCInstrDesc &II = TII.get(MachineInstOpcode);
293 if (II.getNumDefs() >= 1)
294 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
295 .addReg(Op0, Op0IsKill * RegState::Kill));
296 else {
297 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
298 .addReg(Op0, Op0IsKill * RegState::Kill));
299 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
300 TII.get(TargetOpcode::COPY), ResultReg)
301 .addReg(II.ImplicitDefs[0]));
303 return ResultReg;
306 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
307 const TargetRegisterClass *RC,
308 unsigned Op0, bool Op0IsKill,
309 unsigned Op1, bool Op1IsKill) {
310 unsigned ResultReg = createResultReg(RC);
311 const MCInstrDesc &II = TII.get(MachineInstOpcode);
313 if (II.getNumDefs() >= 1)
314 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
315 .addReg(Op0, Op0IsKill * RegState::Kill)
316 .addReg(Op1, Op1IsKill * RegState::Kill));
317 else {
318 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
319 .addReg(Op0, Op0IsKill * RegState::Kill)
320 .addReg(Op1, Op1IsKill * RegState::Kill));
321 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
322 TII.get(TargetOpcode::COPY), ResultReg)
323 .addReg(II.ImplicitDefs[0]));
325 return ResultReg;
328 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
329 const TargetRegisterClass *RC,
330 unsigned Op0, bool Op0IsKill,
331 unsigned Op1, bool Op1IsKill,
332 unsigned Op2, bool Op2IsKill) {
333 unsigned ResultReg = createResultReg(RC);
334 const MCInstrDesc &II = TII.get(MachineInstOpcode);
336 if (II.getNumDefs() >= 1)
337 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
338 .addReg(Op0, Op0IsKill * RegState::Kill)
339 .addReg(Op1, Op1IsKill * RegState::Kill)
340 .addReg(Op2, Op2IsKill * RegState::Kill));
341 else {
342 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
343 .addReg(Op0, Op0IsKill * RegState::Kill)
344 .addReg(Op1, Op1IsKill * RegState::Kill)
345 .addReg(Op2, Op2IsKill * RegState::Kill));
346 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
347 TII.get(TargetOpcode::COPY), ResultReg)
348 .addReg(II.ImplicitDefs[0]));
350 return ResultReg;
353 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
354 const TargetRegisterClass *RC,
355 unsigned Op0, bool Op0IsKill,
356 uint64_t Imm) {
357 unsigned ResultReg = createResultReg(RC);
358 const MCInstrDesc &II = TII.get(MachineInstOpcode);
360 if (II.getNumDefs() >= 1)
361 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
362 .addReg(Op0, Op0IsKill * RegState::Kill)
363 .addImm(Imm));
364 else {
365 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
366 .addReg(Op0, Op0IsKill * RegState::Kill)
367 .addImm(Imm));
368 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
369 TII.get(TargetOpcode::COPY), ResultReg)
370 .addReg(II.ImplicitDefs[0]));
372 return ResultReg;
375 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
376 const TargetRegisterClass *RC,
377 unsigned Op0, bool Op0IsKill,
378 const ConstantFP *FPImm) {
379 unsigned ResultReg = createResultReg(RC);
380 const MCInstrDesc &II = TII.get(MachineInstOpcode);
382 if (II.getNumDefs() >= 1)
383 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
384 .addReg(Op0, Op0IsKill * RegState::Kill)
385 .addFPImm(FPImm));
386 else {
387 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
388 .addReg(Op0, Op0IsKill * RegState::Kill)
389 .addFPImm(FPImm));
390 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
391 TII.get(TargetOpcode::COPY), ResultReg)
392 .addReg(II.ImplicitDefs[0]));
394 return ResultReg;
397 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
398 const TargetRegisterClass *RC,
399 unsigned Op0, bool Op0IsKill,
400 unsigned Op1, bool Op1IsKill,
401 uint64_t Imm) {
402 unsigned ResultReg = createResultReg(RC);
403 const MCInstrDesc &II = TII.get(MachineInstOpcode);
405 if (II.getNumDefs() >= 1)
406 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
407 .addReg(Op0, Op0IsKill * RegState::Kill)
408 .addReg(Op1, Op1IsKill * RegState::Kill)
409 .addImm(Imm));
410 else {
411 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
412 .addReg(Op0, Op0IsKill * RegState::Kill)
413 .addReg(Op1, Op1IsKill * RegState::Kill)
414 .addImm(Imm));
415 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
416 TII.get(TargetOpcode::COPY), ResultReg)
417 .addReg(II.ImplicitDefs[0]));
419 return ResultReg;
422 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
423 const TargetRegisterClass *RC,
424 uint64_t Imm) {
425 unsigned ResultReg = createResultReg(RC);
426 const MCInstrDesc &II = TII.get(MachineInstOpcode);
428 if (II.getNumDefs() >= 1)
429 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
430 .addImm(Imm));
431 else {
432 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
433 .addImm(Imm));
434 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
435 TII.get(TargetOpcode::COPY), ResultReg)
436 .addReg(II.ImplicitDefs[0]));
438 return ResultReg;
441 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
442 const TargetRegisterClass *RC,
443 uint64_t Imm1, uint64_t Imm2) {
444 unsigned ResultReg = createResultReg(RC);
445 const MCInstrDesc &II = TII.get(MachineInstOpcode);
447 if (II.getNumDefs() >= 1)
448 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
449 .addImm(Imm1).addImm(Imm2));
450 else {
451 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
452 .addImm(Imm1).addImm(Imm2));
453 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
454 TII.get(TargetOpcode::COPY),
455 ResultReg)
456 .addReg(II.ImplicitDefs[0]));
458 return ResultReg;
461 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
462 unsigned Op0, bool Op0IsKill,
463 uint32_t Idx) {
464 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
465 assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
466 "Cannot yet extract from physregs");
467 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
468 DL, TII.get(TargetOpcode::COPY), ResultReg)
469 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
470 return ResultReg;
473 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
474 // checks from the various callers.
475 unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
476 if (VT == MVT::f64) return 0;
478 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
479 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
480 TII.get(ARM::VMOVRS), MoveReg)
481 .addReg(SrcReg));
482 return MoveReg;
485 unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
486 if (VT == MVT::i64) return 0;
488 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
489 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
490 TII.get(ARM::VMOVSR), MoveReg)
491 .addReg(SrcReg));
492 return MoveReg;
495 // For double width floating point we need to materialize two constants
496 // (the high and the low) into integer registers then use a move to get
497 // the combined constant into an FP reg.
498 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
499 const APFloat Val = CFP->getValueAPF();
500 bool is64bit = VT == MVT::f64;
502 // This checks to see if we can use VFP3 instructions to materialize
503 // a constant, otherwise we have to go through the constant pool.
504 if (TLI.isFPImmLegal(Val, VT)) {
505 unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
506 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
507 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
508 DestReg)
509 .addFPImm(CFP));
510 return DestReg;
513 // Require VFP2 for loading fp constants.
514 if (!Subtarget->hasVFP2()) return false;
516 // MachineConstantPool wants an explicit alignment.
517 unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
518 if (Align == 0) {
519 // TODO: Figure out if this is correct.
520 Align = TD.getTypeAllocSize(CFP->getType());
522 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
523 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
524 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
526 // The extra reg is for addrmode5.
527 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
528 DestReg)
529 .addConstantPoolIndex(Idx)
530 .addReg(0));
531 return DestReg;
534 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
536 // For now 32-bit only.
537 if (VT != MVT::i32) return false;
539 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
541 // If we can do this in a single instruction without a constant pool entry
542 // do so now.
543 const ConstantInt *CI = cast<ConstantInt>(C);
544 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getSExtValue())) {
545 unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16;
546 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
547 TII.get(Opc), DestReg)
548 .addImm(CI->getSExtValue()));
549 return DestReg;
552 // MachineConstantPool wants an explicit alignment.
553 unsigned Align = TD.getPrefTypeAlignment(C->getType());
554 if (Align == 0) {
555 // TODO: Figure out if this is correct.
556 Align = TD.getTypeAllocSize(C->getType());
558 unsigned Idx = MCP.getConstantPoolIndex(C, Align);
560 if (isThumb)
561 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
562 TII.get(ARM::t2LDRpci), DestReg)
563 .addConstantPoolIndex(Idx));
564 else
565 // The extra immediate is for addrmode2.
566 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
567 TII.get(ARM::LDRcp), DestReg)
568 .addConstantPoolIndex(Idx)
569 .addImm(0));
571 return DestReg;
574 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
575 // For now 32-bit only.
576 if (VT != MVT::i32) return 0;
578 Reloc::Model RelocM = TM.getRelocationModel();
580 // TODO: Need more magic for ARM PIC.
581 if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
583 // MachineConstantPool wants an explicit alignment.
584 unsigned Align = TD.getPrefTypeAlignment(GV->getType());
585 if (Align == 0) {
586 // TODO: Figure out if this is correct.
587 Align = TD.getTypeAllocSize(GV->getType());
590 // Grab index.
591 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
592 unsigned Id = AFI->createPICLabelUId();
593 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id,
594 ARMCP::CPValue, PCAdj);
595 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
597 // Load value.
598 MachineInstrBuilder MIB;
599 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
600 if (isThumb) {
601 unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
602 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
603 .addConstantPoolIndex(Idx);
604 if (RelocM == Reloc::PIC_)
605 MIB.addImm(Id);
606 } else {
607 // The extra immediate is for addrmode2.
608 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
609 DestReg)
610 .addConstantPoolIndex(Idx)
611 .addImm(0);
613 AddOptionalDefs(MIB);
615 if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
616 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
617 if (isThumb)
618 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::t2LDRi12),
619 NewDestReg)
620 .addReg(DestReg)
621 .addImm(0);
622 else
623 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
624 NewDestReg)
625 .addReg(DestReg)
626 .addImm(0);
627 DestReg = NewDestReg;
628 AddOptionalDefs(MIB);
631 return DestReg;
634 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
635 EVT VT = TLI.getValueType(C->getType(), true);
637 // Only handle simple types.
638 if (!VT.isSimple()) return 0;
640 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
641 return ARMMaterializeFP(CFP, VT);
642 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
643 return ARMMaterializeGV(GV, VT);
644 else if (isa<ConstantInt>(C))
645 return ARMMaterializeInt(C, VT);
647 return 0;
650 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
651 // Don't handle dynamic allocas.
652 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
654 MVT VT;
655 if (!isLoadTypeLegal(AI->getType(), VT)) return false;
657 DenseMap<const AllocaInst*, int>::iterator SI =
658 FuncInfo.StaticAllocaMap.find(AI);
660 // This will get lowered later into the correct offsets and registers
661 // via rewriteXFrameIndex.
662 if (SI != FuncInfo.StaticAllocaMap.end()) {
663 TargetRegisterClass* RC = TLI.getRegClassFor(VT);
664 unsigned ResultReg = createResultReg(RC);
665 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
666 AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
667 TII.get(Opc), ResultReg)
668 .addFrameIndex(SI->second)
669 .addImm(0));
670 return ResultReg;
673 return 0;
676 bool ARMFastISel::isTypeLegal(const Type *Ty, MVT &VT) {
677 EVT evt = TLI.getValueType(Ty, true);
679 // Only handle simple types.
680 if (evt == MVT::Other || !evt.isSimple()) return false;
681 VT = evt.getSimpleVT();
683 // Handle all legal types, i.e. a register that will directly hold this
684 // value.
685 return TLI.isTypeLegal(VT);
688 bool ARMFastISel::isLoadTypeLegal(const Type *Ty, MVT &VT) {
689 if (isTypeLegal(Ty, VT)) return true;
691 // If this is a type than can be sign or zero-extended to a basic operation
692 // go ahead and accept it now.
693 if (VT == MVT::i8 || VT == MVT::i16)
694 return true;
696 return false;
699 // Computes the address to get to an object.
700 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
701 // Some boilerplate from the X86 FastISel.
702 const User *U = NULL;
703 unsigned Opcode = Instruction::UserOp1;
704 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
705 // Don't walk into other basic blocks unless the object is an alloca from
706 // another block, otherwise it may not have a virtual register assigned.
707 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
708 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
709 Opcode = I->getOpcode();
710 U = I;
712 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
713 Opcode = C->getOpcode();
714 U = C;
717 if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
718 if (Ty->getAddressSpace() > 255)
719 // Fast instruction selection doesn't support the special
720 // address spaces.
721 return false;
723 switch (Opcode) {
724 default:
725 break;
726 case Instruction::BitCast: {
727 // Look through bitcasts.
728 return ARMComputeAddress(U->getOperand(0), Addr);
730 case Instruction::IntToPtr: {
731 // Look past no-op inttoptrs.
732 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
733 return ARMComputeAddress(U->getOperand(0), Addr);
734 break;
736 case Instruction::PtrToInt: {
737 // Look past no-op ptrtoints.
738 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
739 return ARMComputeAddress(U->getOperand(0), Addr);
740 break;
742 case Instruction::GetElementPtr: {
743 Address SavedAddr = Addr;
744 int TmpOffset = Addr.Offset;
746 // Iterate through the GEP folding the constants into offsets where
747 // we can.
748 gep_type_iterator GTI = gep_type_begin(U);
749 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
750 i != e; ++i, ++GTI) {
751 const Value *Op = *i;
752 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
753 const StructLayout *SL = TD.getStructLayout(STy);
754 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
755 TmpOffset += SL->getElementOffset(Idx);
756 } else {
757 uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
758 for (;;) {
759 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
760 // Constant-offset addressing.
761 TmpOffset += CI->getSExtValue() * S;
762 break;
764 if (isa<AddOperator>(Op) &&
765 (!isa<Instruction>(Op) ||
766 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
767 == FuncInfo.MBB) &&
768 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
769 // An add (in the same block) with a constant operand. Fold the
770 // constant.
771 ConstantInt *CI =
772 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
773 TmpOffset += CI->getSExtValue() * S;
774 // Iterate on the other operand.
775 Op = cast<AddOperator>(Op)->getOperand(0);
776 continue;
778 // Unsupported
779 goto unsupported_gep;
784 // Try to grab the base operand now.
785 Addr.Offset = TmpOffset;
786 if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
788 // We failed, restore everything and try the other options.
789 Addr = SavedAddr;
791 unsupported_gep:
792 break;
794 case Instruction::Alloca: {
795 const AllocaInst *AI = cast<AllocaInst>(Obj);
796 DenseMap<const AllocaInst*, int>::iterator SI =
797 FuncInfo.StaticAllocaMap.find(AI);
798 if (SI != FuncInfo.StaticAllocaMap.end()) {
799 Addr.BaseType = Address::FrameIndexBase;
800 Addr.Base.FI = SI->second;
801 return true;
803 break;
807 // Materialize the global variable's address into a reg which can
808 // then be used later to load the variable.
809 if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
810 unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
811 if (Tmp == 0) return false;
813 Addr.Base.Reg = Tmp;
814 return true;
817 // Try to get this in a register if nothing else has worked.
818 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
819 return Addr.Base.Reg != 0;
822 void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) {
824 assert(VT.isSimple() && "Non-simple types are invalid here!");
826 bool needsLowering = false;
827 switch (VT.getSimpleVT().SimpleTy) {
828 default:
829 assert(false && "Unhandled load/store type!");
830 case MVT::i1:
831 case MVT::i8:
832 case MVT::i16:
833 case MVT::i32:
834 // Integer loads/stores handle 12-bit offsets.
835 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
836 break;
837 case MVT::f32:
838 case MVT::f64:
839 // Floating point operands handle 8-bit offsets.
840 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
841 break;
844 // If this is a stack pointer and the offset needs to be simplified then
845 // put the alloca address into a register, set the base type back to
846 // register and continue. This should almost never happen.
847 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
848 TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
849 ARM::GPRRegisterClass;
850 unsigned ResultReg = createResultReg(RC);
851 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
852 AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
853 TII.get(Opc), ResultReg)
854 .addFrameIndex(Addr.Base.FI)
855 .addImm(0));
856 Addr.Base.Reg = ResultReg;
857 Addr.BaseType = Address::RegBase;
860 // Since the offset is too large for the load/store instruction
861 // get the reg+offset into a register.
862 if (needsLowering) {
863 Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
864 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
865 Addr.Offset = 0;
869 void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
870 const MachineInstrBuilder &MIB,
871 unsigned Flags) {
872 // addrmode5 output depends on the selection dag addressing dividing the
873 // offset by 4 that it then later multiplies. Do this here as well.
874 if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
875 VT.getSimpleVT().SimpleTy == MVT::f64)
876 Addr.Offset /= 4;
878 // Frame base works a bit differently. Handle it separately.
879 if (Addr.BaseType == Address::FrameIndexBase) {
880 int FI = Addr.Base.FI;
881 int Offset = Addr.Offset;
882 MachineMemOperand *MMO =
883 FuncInfo.MF->getMachineMemOperand(
884 MachinePointerInfo::getFixedStack(FI, Offset),
885 Flags,
886 MFI.getObjectSize(FI),
887 MFI.getObjectAlignment(FI));
888 // Now add the rest of the operands.
889 MIB.addFrameIndex(FI);
891 // ARM halfword load/stores need an additional operand.
892 if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
894 MIB.addImm(Addr.Offset);
895 MIB.addMemOperand(MMO);
896 } else {
897 // Now add the rest of the operands.
898 MIB.addReg(Addr.Base.Reg);
900 // ARM halfword load/stores need an additional operand.
901 if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
903 MIB.addImm(Addr.Offset);
905 AddOptionalDefs(MIB);
908 bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) {
910 assert(VT.isSimple() && "Non-simple types are invalid here!");
911 unsigned Opc;
912 TargetRegisterClass *RC;
913 switch (VT.getSimpleVT().SimpleTy) {
914 // This is mostly going to be Neon/vector support.
915 default: return false;
916 case MVT::i16:
917 Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
918 RC = ARM::GPRRegisterClass;
919 break;
920 case MVT::i8:
921 Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
922 RC = ARM::GPRRegisterClass;
923 break;
924 case MVT::i32:
925 Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
926 RC = ARM::GPRRegisterClass;
927 break;
928 case MVT::f32:
929 Opc = ARM::VLDRS;
930 RC = TLI.getRegClassFor(VT);
931 break;
932 case MVT::f64:
933 Opc = ARM::VLDRD;
934 RC = TLI.getRegClassFor(VT);
935 break;
937 // Simplify this down to something we can handle.
938 ARMSimplifyAddress(Addr, VT);
940 // Create the base instruction, then add the operands.
941 ResultReg = createResultReg(RC);
942 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
943 TII.get(Opc), ResultReg);
944 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad);
945 return true;
948 bool ARMFastISel::SelectLoad(const Instruction *I) {
949 // Verify we have a legal type before going any further.
950 MVT VT;
951 if (!isLoadTypeLegal(I->getType(), VT))
952 return false;
954 // See if we can handle this address.
955 Address Addr;
956 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
958 unsigned ResultReg;
959 if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
960 UpdateValueMap(I, ResultReg);
961 return true;
964 bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
965 unsigned StrOpc;
966 switch (VT.getSimpleVT().SimpleTy) {
967 // This is mostly going to be Neon/vector support.
968 default: return false;
969 case MVT::i1: {
970 unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass :
971 ARM::GPRRegisterClass);
972 unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
973 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
974 TII.get(Opc), Res)
975 .addReg(SrcReg).addImm(1));
976 SrcReg = Res;
977 } // Fallthrough here.
978 case MVT::i8:
979 StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
980 break;
981 case MVT::i16:
982 StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
983 break;
984 case MVT::i32:
985 StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
986 break;
987 case MVT::f32:
988 if (!Subtarget->hasVFP2()) return false;
989 StrOpc = ARM::VSTRS;
990 break;
991 case MVT::f64:
992 if (!Subtarget->hasVFP2()) return false;
993 StrOpc = ARM::VSTRD;
994 break;
996 // Simplify this down to something we can handle.
997 ARMSimplifyAddress(Addr, VT);
999 // Create the base instruction, then add the operands.
1000 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1001 TII.get(StrOpc))
1002 .addReg(SrcReg, getKillRegState(true));
1003 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore);
1004 return true;
1007 bool ARMFastISel::SelectStore(const Instruction *I) {
1008 Value *Op0 = I->getOperand(0);
1009 unsigned SrcReg = 0;
1011 // Verify we have a legal type before going any further.
1012 MVT VT;
1013 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1014 return false;
1016 // Get the value to be stored into a register.
1017 SrcReg = getRegForValue(Op0);
1018 if (SrcReg == 0) return false;
1020 // See if we can handle this address.
1021 Address Addr;
1022 if (!ARMComputeAddress(I->getOperand(1), Addr))
1023 return false;
1025 if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
1026 return true;
1029 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1030 switch (Pred) {
1031 // Needs two compares...
1032 case CmpInst::FCMP_ONE:
1033 case CmpInst::FCMP_UEQ:
1034 default:
1035 // AL is our "false" for now. The other two need more compares.
1036 return ARMCC::AL;
1037 case CmpInst::ICMP_EQ:
1038 case CmpInst::FCMP_OEQ:
1039 return ARMCC::EQ;
1040 case CmpInst::ICMP_SGT:
1041 case CmpInst::FCMP_OGT:
1042 return ARMCC::GT;
1043 case CmpInst::ICMP_SGE:
1044 case CmpInst::FCMP_OGE:
1045 return ARMCC::GE;
1046 case CmpInst::ICMP_UGT:
1047 case CmpInst::FCMP_UGT:
1048 return ARMCC::HI;
1049 case CmpInst::FCMP_OLT:
1050 return ARMCC::MI;
1051 case CmpInst::ICMP_ULE:
1052 case CmpInst::FCMP_OLE:
1053 return ARMCC::LS;
1054 case CmpInst::FCMP_ORD:
1055 return ARMCC::VC;
1056 case CmpInst::FCMP_UNO:
1057 return ARMCC::VS;
1058 case CmpInst::FCMP_UGE:
1059 return ARMCC::PL;
1060 case CmpInst::ICMP_SLT:
1061 case CmpInst::FCMP_ULT:
1062 return ARMCC::LT;
1063 case CmpInst::ICMP_SLE:
1064 case CmpInst::FCMP_ULE:
1065 return ARMCC::LE;
1066 case CmpInst::FCMP_UNE:
1067 case CmpInst::ICMP_NE:
1068 return ARMCC::NE;
1069 case CmpInst::ICMP_UGE:
1070 return ARMCC::HS;
1071 case CmpInst::ICMP_ULT:
1072 return ARMCC::LO;
1076 bool ARMFastISel::SelectBranch(const Instruction *I) {
1077 const BranchInst *BI = cast<BranchInst>(I);
1078 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1079 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1081 // Simple branch support.
1083 // If we can, avoid recomputing the compare - redoing it could lead to wonky
1084 // behavior.
1085 // TODO: Factor this out.
1086 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1087 MVT SourceVT;
1088 const Type *Ty = CI->getOperand(0)->getType();
1089 if (CI->hasOneUse() && (CI->getParent() == I->getParent())
1090 && isTypeLegal(Ty, SourceVT)) {
1091 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1092 if (isFloat && !Subtarget->hasVFP2())
1093 return false;
1095 unsigned CmpOpc;
1096 switch (SourceVT.SimpleTy) {
1097 default: return false;
1098 // TODO: Verify compares.
1099 case MVT::f32:
1100 CmpOpc = ARM::VCMPES;
1101 break;
1102 case MVT::f64:
1103 CmpOpc = ARM::VCMPED;
1104 break;
1105 case MVT::i32:
1106 CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1107 break;
1110 // Get the compare predicate.
1111 // Try to take advantage of fallthrough opportunities.
1112 CmpInst::Predicate Predicate = CI->getPredicate();
1113 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1114 std::swap(TBB, FBB);
1115 Predicate = CmpInst::getInversePredicate(Predicate);
1118 ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1120 // We may not handle every CC for now.
1121 if (ARMPred == ARMCC::AL) return false;
1123 unsigned Arg1 = getRegForValue(CI->getOperand(0));
1124 if (Arg1 == 0) return false;
1126 unsigned Arg2 = getRegForValue(CI->getOperand(1));
1127 if (Arg2 == 0) return false;
1129 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1130 TII.get(CmpOpc))
1131 .addReg(Arg1).addReg(Arg2));
1133 // For floating point we need to move the result to a comparison register
1134 // that we can then use for branches.
1135 if (isFloat)
1136 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1137 TII.get(ARM::FMSTAT)));
1139 unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1140 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1141 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1142 FastEmitBranch(FBB, DL);
1143 FuncInfo.MBB->addSuccessor(TBB);
1144 return true;
1146 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1147 MVT SourceVT;
1148 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1149 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1150 unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1151 unsigned OpReg = getRegForValue(TI->getOperand(0));
1152 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1153 TII.get(TstOpc))
1154 .addReg(OpReg).addImm(1));
1156 unsigned CCMode = ARMCC::NE;
1157 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1158 std::swap(TBB, FBB);
1159 CCMode = ARMCC::EQ;
1162 unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1163 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1164 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1166 FastEmitBranch(FBB, DL);
1167 FuncInfo.MBB->addSuccessor(TBB);
1168 return true;
1172 unsigned CmpReg = getRegForValue(BI->getCondition());
1173 if (CmpReg == 0) return false;
1175 // We've been divorced from our compare! Our block was split, and
1176 // now our compare lives in a predecessor block. We musn't
1177 // re-compare here, as the children of the compare aren't guaranteed
1178 // live across the block boundary (we *could* check for this).
1179 // Regardless, the compare has been done in the predecessor block,
1180 // and it left a value for us in a virtual register. Ergo, we test
1181 // the one-bit value left in the virtual register.
1182 unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1183 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1184 .addReg(CmpReg).addImm(1));
1186 unsigned CCMode = ARMCC::NE;
1187 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1188 std::swap(TBB, FBB);
1189 CCMode = ARMCC::EQ;
1192 unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1193 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1194 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1195 FastEmitBranch(FBB, DL);
1196 FuncInfo.MBB->addSuccessor(TBB);
1197 return true;
1200 bool ARMFastISel::SelectCmp(const Instruction *I) {
1201 const CmpInst *CI = cast<CmpInst>(I);
1203 MVT VT;
1204 const Type *Ty = CI->getOperand(0)->getType();
1205 if (!isTypeLegal(Ty, VT))
1206 return false;
1208 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1209 if (isFloat && !Subtarget->hasVFP2())
1210 return false;
1212 unsigned CmpOpc;
1213 unsigned CondReg;
1214 switch (VT.SimpleTy) {
1215 default: return false;
1216 // TODO: Verify compares.
1217 case MVT::f32:
1218 CmpOpc = ARM::VCMPES;
1219 CondReg = ARM::FPSCR;
1220 break;
1221 case MVT::f64:
1222 CmpOpc = ARM::VCMPED;
1223 CondReg = ARM::FPSCR;
1224 break;
1225 case MVT::i32:
1226 CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1227 CondReg = ARM::CPSR;
1228 break;
1231 // Get the compare predicate.
1232 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1234 // We may not handle every CC for now.
1235 if (ARMPred == ARMCC::AL) return false;
1237 unsigned Arg1 = getRegForValue(CI->getOperand(0));
1238 if (Arg1 == 0) return false;
1240 unsigned Arg2 = getRegForValue(CI->getOperand(1));
1241 if (Arg2 == 0) return false;
1243 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1244 .addReg(Arg1).addReg(Arg2));
1246 // For floating point we need to move the result to a comparison register
1247 // that we can then use for branches.
1248 if (isFloat)
1249 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1250 TII.get(ARM::FMSTAT)));
1252 // Now set a register based on the comparison. Explicitly set the predicates
1253 // here.
1254 unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1255 TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1256 : ARM::GPRRegisterClass;
1257 unsigned DestReg = createResultReg(RC);
1258 Constant *Zero
1259 = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1260 unsigned ZeroReg = TargetMaterializeConstant(Zero);
1261 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1262 .addReg(ZeroReg).addImm(1)
1263 .addImm(ARMPred).addReg(CondReg);
1265 UpdateValueMap(I, DestReg);
1266 return true;
1269 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1270 // Make sure we have VFP and that we're extending float to double.
1271 if (!Subtarget->hasVFP2()) return false;
1273 Value *V = I->getOperand(0);
1274 if (!I->getType()->isDoubleTy() ||
1275 !V->getType()->isFloatTy()) return false;
1277 unsigned Op = getRegForValue(V);
1278 if (Op == 0) return false;
1280 unsigned Result = createResultReg(ARM::DPRRegisterClass);
1281 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1282 TII.get(ARM::VCVTDS), Result)
1283 .addReg(Op));
1284 UpdateValueMap(I, Result);
1285 return true;
1288 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1289 // Make sure we have VFP and that we're truncating double to float.
1290 if (!Subtarget->hasVFP2()) return false;
1292 Value *V = I->getOperand(0);
1293 if (!(I->getType()->isFloatTy() &&
1294 V->getType()->isDoubleTy())) return false;
1296 unsigned Op = getRegForValue(V);
1297 if (Op == 0) return false;
1299 unsigned Result = createResultReg(ARM::SPRRegisterClass);
1300 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1301 TII.get(ARM::VCVTSD), Result)
1302 .addReg(Op));
1303 UpdateValueMap(I, Result);
1304 return true;
1307 bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1308 // Make sure we have VFP.
1309 if (!Subtarget->hasVFP2()) return false;
1311 MVT DstVT;
1312 const Type *Ty = I->getType();
1313 if (!isTypeLegal(Ty, DstVT))
1314 return false;
1316 // FIXME: Handle sign-extension where necessary.
1317 if (!I->getOperand(0)->getType()->isIntegerTy(32))
1318 return false;
1320 unsigned Op = getRegForValue(I->getOperand(0));
1321 if (Op == 0) return false;
1323 // The conversion routine works on fp-reg to fp-reg and the operand above
1324 // was an integer, move it to the fp registers if possible.
1325 unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1326 if (FP == 0) return false;
1328 unsigned Opc;
1329 if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1330 else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1331 else return 0;
1333 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1334 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1335 ResultReg)
1336 .addReg(FP));
1337 UpdateValueMap(I, ResultReg);
1338 return true;
1341 bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1342 // Make sure we have VFP.
1343 if (!Subtarget->hasVFP2()) return false;
1345 MVT DstVT;
1346 const Type *RetTy = I->getType();
1347 if (!isTypeLegal(RetTy, DstVT))
1348 return false;
1350 unsigned Op = getRegForValue(I->getOperand(0));
1351 if (Op == 0) return false;
1353 unsigned Opc;
1354 const Type *OpTy = I->getOperand(0)->getType();
1355 if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1356 else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1357 else return 0;
1359 // f64->s32 or f32->s32 both need an intermediate f32 reg.
1360 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1361 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1362 ResultReg)
1363 .addReg(Op));
1365 // This result needs to be in an integer register, but the conversion only
1366 // takes place in fp-regs.
1367 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1368 if (IntReg == 0) return false;
1370 UpdateValueMap(I, IntReg);
1371 return true;
1374 bool ARMFastISel::SelectSelect(const Instruction *I) {
1375 MVT VT;
1376 if (!isTypeLegal(I->getType(), VT))
1377 return false;
1379 // Things need to be register sized for register moves.
1380 if (VT != MVT::i32) return false;
1381 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1383 unsigned CondReg = getRegForValue(I->getOperand(0));
1384 if (CondReg == 0) return false;
1385 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1386 if (Op1Reg == 0) return false;
1387 unsigned Op2Reg = getRegForValue(I->getOperand(2));
1388 if (Op2Reg == 0) return false;
1390 unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1391 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1392 .addReg(CondReg).addImm(1));
1393 unsigned ResultReg = createResultReg(RC);
1394 unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1395 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1396 .addReg(Op1Reg).addReg(Op2Reg)
1397 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1398 UpdateValueMap(I, ResultReg);
1399 return true;
1402 bool ARMFastISel::SelectSDiv(const Instruction *I) {
1403 MVT VT;
1404 const Type *Ty = I->getType();
1405 if (!isTypeLegal(Ty, VT))
1406 return false;
1408 // If we have integer div support we should have selected this automagically.
1409 // In case we have a real miss go ahead and return false and we'll pick
1410 // it up later.
1411 if (Subtarget->hasDivide()) return false;
1413 // Otherwise emit a libcall.
1414 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1415 if (VT == MVT::i8)
1416 LC = RTLIB::SDIV_I8;
1417 else if (VT == MVT::i16)
1418 LC = RTLIB::SDIV_I16;
1419 else if (VT == MVT::i32)
1420 LC = RTLIB::SDIV_I32;
1421 else if (VT == MVT::i64)
1422 LC = RTLIB::SDIV_I64;
1423 else if (VT == MVT::i128)
1424 LC = RTLIB::SDIV_I128;
1425 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1427 return ARMEmitLibcall(I, LC);
1430 bool ARMFastISel::SelectSRem(const Instruction *I) {
1431 MVT VT;
1432 const Type *Ty = I->getType();
1433 if (!isTypeLegal(Ty, VT))
1434 return false;
1436 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1437 if (VT == MVT::i8)
1438 LC = RTLIB::SREM_I8;
1439 else if (VT == MVT::i16)
1440 LC = RTLIB::SREM_I16;
1441 else if (VT == MVT::i32)
1442 LC = RTLIB::SREM_I32;
1443 else if (VT == MVT::i64)
1444 LC = RTLIB::SREM_I64;
1445 else if (VT == MVT::i128)
1446 LC = RTLIB::SREM_I128;
1447 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1449 return ARMEmitLibcall(I, LC);
1452 bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1453 EVT VT = TLI.getValueType(I->getType(), true);
1455 // We can get here in the case when we want to use NEON for our fp
1456 // operations, but can't figure out how to. Just use the vfp instructions
1457 // if we have them.
1458 // FIXME: It'd be nice to use NEON instructions.
1459 const Type *Ty = I->getType();
1460 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1461 if (isFloat && !Subtarget->hasVFP2())
1462 return false;
1464 unsigned Op1 = getRegForValue(I->getOperand(0));
1465 if (Op1 == 0) return false;
1467 unsigned Op2 = getRegForValue(I->getOperand(1));
1468 if (Op2 == 0) return false;
1470 unsigned Opc;
1471 bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1472 switch (ISDOpcode) {
1473 default: return false;
1474 case ISD::FADD:
1475 Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1476 break;
1477 case ISD::FSUB:
1478 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1479 break;
1480 case ISD::FMUL:
1481 Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1482 break;
1484 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1485 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1486 TII.get(Opc), ResultReg)
1487 .addReg(Op1).addReg(Op2));
1488 UpdateValueMap(I, ResultReg);
1489 return true;
1492 // Call Handling Code
1494 bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1495 EVT SrcVT, unsigned &ResultReg) {
1496 unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1497 Src, /*TODO: Kill=*/false);
1499 if (RR != 0) {
1500 ResultReg = RR;
1501 return true;
1502 } else
1503 return false;
1506 // This is largely taken directly from CCAssignFnForNode - we don't support
1507 // varargs in FastISel so that part has been removed.
1508 // TODO: We may not support all of this.
1509 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1510 switch (CC) {
1511 default:
1512 llvm_unreachable("Unsupported calling convention");
1513 case CallingConv::Fast:
1514 // Ignore fastcc. Silence compiler warnings.
1515 (void)RetFastCC_ARM_APCS;
1516 (void)FastCC_ARM_APCS;
1517 // Fallthrough
1518 case CallingConv::C:
1519 // Use target triple & subtarget features to do actual dispatch.
1520 if (Subtarget->isAAPCS_ABI()) {
1521 if (Subtarget->hasVFP2() &&
1522 FloatABIType == FloatABI::Hard)
1523 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1524 else
1525 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1526 } else
1527 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1528 case CallingConv::ARM_AAPCS_VFP:
1529 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1530 case CallingConv::ARM_AAPCS:
1531 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1532 case CallingConv::ARM_APCS:
1533 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1537 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1538 SmallVectorImpl<unsigned> &ArgRegs,
1539 SmallVectorImpl<MVT> &ArgVTs,
1540 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1541 SmallVectorImpl<unsigned> &RegArgs,
1542 CallingConv::ID CC,
1543 unsigned &NumBytes) {
1544 SmallVector<CCValAssign, 16> ArgLocs;
1545 CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
1546 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1548 // Get a count of how many bytes are to be pushed on the stack.
1549 NumBytes = CCInfo.getNextStackOffset();
1551 // Issue CALLSEQ_START
1552 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1553 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1554 TII.get(AdjStackDown))
1555 .addImm(NumBytes));
1557 // Process the args.
1558 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1559 CCValAssign &VA = ArgLocs[i];
1560 unsigned Arg = ArgRegs[VA.getValNo()];
1561 MVT ArgVT = ArgVTs[VA.getValNo()];
1563 // We don't handle NEON/vector parameters yet.
1564 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1565 return false;
1567 // Handle arg promotion, etc.
1568 switch (VA.getLocInfo()) {
1569 case CCValAssign::Full: break;
1570 case CCValAssign::SExt: {
1571 bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1572 Arg, ArgVT, Arg);
1573 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
1574 Emitted = true;
1575 ArgVT = VA.getLocVT();
1576 break;
1578 case CCValAssign::ZExt: {
1579 bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1580 Arg, ArgVT, Arg);
1581 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
1582 Emitted = true;
1583 ArgVT = VA.getLocVT();
1584 break;
1586 case CCValAssign::AExt: {
1587 bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1588 Arg, ArgVT, Arg);
1589 if (!Emitted)
1590 Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1591 Arg, ArgVT, Arg);
1592 if (!Emitted)
1593 Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1594 Arg, ArgVT, Arg);
1596 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
1597 ArgVT = VA.getLocVT();
1598 break;
1600 case CCValAssign::BCvt: {
1601 unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1602 /*TODO: Kill=*/false);
1603 assert(BC != 0 && "Failed to emit a bitcast!");
1604 Arg = BC;
1605 ArgVT = VA.getLocVT();
1606 break;
1608 default: llvm_unreachable("Unknown arg promotion!");
1611 // Now copy/store arg to correct locations.
1612 if (VA.isRegLoc() && !VA.needsCustom()) {
1613 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1614 VA.getLocReg())
1615 .addReg(Arg);
1616 RegArgs.push_back(VA.getLocReg());
1617 } else if (VA.needsCustom()) {
1618 // TODO: We need custom lowering for vector (v2f64) args.
1619 if (VA.getLocVT() != MVT::f64) return false;
1621 CCValAssign &NextVA = ArgLocs[++i];
1623 // TODO: Only handle register args for now.
1624 if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1626 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1627 TII.get(ARM::VMOVRRD), VA.getLocReg())
1628 .addReg(NextVA.getLocReg(), RegState::Define)
1629 .addReg(Arg));
1630 RegArgs.push_back(VA.getLocReg());
1631 RegArgs.push_back(NextVA.getLocReg());
1632 } else {
1633 assert(VA.isMemLoc());
1634 // Need to store on the stack.
1635 Address Addr;
1636 Addr.BaseType = Address::RegBase;
1637 Addr.Base.Reg = ARM::SP;
1638 Addr.Offset = VA.getLocMemOffset();
1640 if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1643 return true;
1646 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1647 const Instruction *I, CallingConv::ID CC,
1648 unsigned &NumBytes) {
1649 // Issue CALLSEQ_END
1650 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1651 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1652 TII.get(AdjStackUp))
1653 .addImm(NumBytes).addImm(0));
1655 // Now the return value.
1656 if (RetVT != MVT::isVoid) {
1657 SmallVector<CCValAssign, 16> RVLocs;
1658 CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
1659 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1661 // Copy all of the result registers out of their specified physreg.
1662 if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1663 // For this move we copy into two registers and then move into the
1664 // double fp reg we want.
1665 EVT DestVT = RVLocs[0].getValVT();
1666 TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1667 unsigned ResultReg = createResultReg(DstRC);
1668 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1669 TII.get(ARM::VMOVDRR), ResultReg)
1670 .addReg(RVLocs[0].getLocReg())
1671 .addReg(RVLocs[1].getLocReg()));
1673 UsedRegs.push_back(RVLocs[0].getLocReg());
1674 UsedRegs.push_back(RVLocs[1].getLocReg());
1676 // Finally update the result.
1677 UpdateValueMap(I, ResultReg);
1678 } else {
1679 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1680 EVT CopyVT = RVLocs[0].getValVT();
1681 TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1683 unsigned ResultReg = createResultReg(DstRC);
1684 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1685 ResultReg).addReg(RVLocs[0].getLocReg());
1686 UsedRegs.push_back(RVLocs[0].getLocReg());
1688 // Finally update the result.
1689 UpdateValueMap(I, ResultReg);
1693 return true;
1696 bool ARMFastISel::SelectRet(const Instruction *I) {
1697 const ReturnInst *Ret = cast<ReturnInst>(I);
1698 const Function &F = *I->getParent()->getParent();
1700 if (!FuncInfo.CanLowerReturn)
1701 return false;
1703 if (F.isVarArg())
1704 return false;
1706 CallingConv::ID CC = F.getCallingConv();
1707 if (Ret->getNumOperands() > 0) {
1708 SmallVector<ISD::OutputArg, 4> Outs;
1709 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1710 Outs, TLI);
1712 // Analyze operands of the call, assigning locations to each operand.
1713 SmallVector<CCValAssign, 16> ValLocs;
1714 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, I->getContext());
1715 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1717 const Value *RV = Ret->getOperand(0);
1718 unsigned Reg = getRegForValue(RV);
1719 if (Reg == 0)
1720 return false;
1722 // Only handle a single return value for now.
1723 if (ValLocs.size() != 1)
1724 return false;
1726 CCValAssign &VA = ValLocs[0];
1728 // Don't bother handling odd stuff for now.
1729 if (VA.getLocInfo() != CCValAssign::Full)
1730 return false;
1731 // Only handle register returns for now.
1732 if (!VA.isRegLoc())
1733 return false;
1734 // TODO: For now, don't try to handle cases where getLocInfo()
1735 // says Full but the types don't match.
1736 if (TLI.getValueType(RV->getType()) != VA.getValVT())
1737 return false;
1739 // Make the copy.
1740 unsigned SrcReg = Reg + VA.getValNo();
1741 unsigned DstReg = VA.getLocReg();
1742 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1743 // Avoid a cross-class copy. This is very unlikely.
1744 if (!SrcRC->contains(DstReg))
1745 return false;
1746 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1747 DstReg).addReg(SrcReg);
1749 // Mark the register as live out of the function.
1750 MRI.addLiveOut(VA.getLocReg());
1753 unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
1754 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1755 TII.get(RetOpc)));
1756 return true;
1759 unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
1761 // Darwin needs the r9 versions of the opcodes.
1762 bool isDarwin = Subtarget->isTargetDarwin();
1763 if (isThumb) {
1764 return isDarwin ? ARM::tBLr9 : ARM::tBL;
1765 } else {
1766 return isDarwin ? ARM::BLr9 : ARM::BL;
1770 // A quick function that will emit a call for a named libcall in F with the
1771 // vector of passed arguments for the Instruction in I. We can assume that we
1772 // can emit a call for any libcall we can produce. This is an abridged version
1773 // of the full call infrastructure since we won't need to worry about things
1774 // like computed function pointers or strange arguments at call sites.
1775 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
1776 // with X86.
1777 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1778 CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1780 // Handle *simple* calls for now.
1781 const Type *RetTy = I->getType();
1782 MVT RetVT;
1783 if (RetTy->isVoidTy())
1784 RetVT = MVT::isVoid;
1785 else if (!isTypeLegal(RetTy, RetVT))
1786 return false;
1788 // TODO: For now if we have long calls specified we don't handle the call.
1789 if (EnableARMLongCalls) return false;
1791 // Set up the argument vectors.
1792 SmallVector<Value*, 8> Args;
1793 SmallVector<unsigned, 8> ArgRegs;
1794 SmallVector<MVT, 8> ArgVTs;
1795 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1796 Args.reserve(I->getNumOperands());
1797 ArgRegs.reserve(I->getNumOperands());
1798 ArgVTs.reserve(I->getNumOperands());
1799 ArgFlags.reserve(I->getNumOperands());
1800 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1801 Value *Op = I->getOperand(i);
1802 unsigned Arg = getRegForValue(Op);
1803 if (Arg == 0) return false;
1805 const Type *ArgTy = Op->getType();
1806 MVT ArgVT;
1807 if (!isTypeLegal(ArgTy, ArgVT)) return false;
1809 ISD::ArgFlagsTy Flags;
1810 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1811 Flags.setOrigAlign(OriginalAlignment);
1813 Args.push_back(Op);
1814 ArgRegs.push_back(Arg);
1815 ArgVTs.push_back(ArgVT);
1816 ArgFlags.push_back(Flags);
1819 // Handle the arguments now that we've gotten them.
1820 SmallVector<unsigned, 4> RegArgs;
1821 unsigned NumBytes;
1822 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1823 return false;
1825 // Issue the call, BLr9 for darwin, BL otherwise.
1826 // TODO: Turn this into the table of arm call ops.
1827 MachineInstrBuilder MIB;
1828 unsigned CallOpc = ARMSelectCallOp(NULL);
1829 if(isThumb)
1830 // Explicitly adding the predicate here.
1831 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1832 TII.get(CallOpc)))
1833 .addExternalSymbol(TLI.getLibcallName(Call));
1834 else
1835 // Explicitly adding the predicate here.
1836 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1837 TII.get(CallOpc))
1838 .addExternalSymbol(TLI.getLibcallName(Call)));
1840 // Add implicit physical register uses to the call.
1841 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1842 MIB.addReg(RegArgs[i]);
1844 // Finish off the call including any return values.
1845 SmallVector<unsigned, 4> UsedRegs;
1846 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1848 // Set all unused physreg defs as dead.
1849 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1851 return true;
1854 bool ARMFastISel::SelectCall(const Instruction *I) {
1855 const CallInst *CI = cast<CallInst>(I);
1856 const Value *Callee = CI->getCalledValue();
1858 // Can't handle inline asm or worry about intrinsics yet.
1859 if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1861 // Only handle global variable Callees.
1862 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1863 if (!GV)
1864 return false;
1866 // Check the calling convention.
1867 ImmutableCallSite CS(CI);
1868 CallingConv::ID CC = CS.getCallingConv();
1870 // TODO: Avoid some calling conventions?
1872 // Let SDISel handle vararg functions.
1873 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1874 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1875 if (FTy->isVarArg())
1876 return false;
1878 // Handle *simple* calls for now.
1879 const Type *RetTy = I->getType();
1880 MVT RetVT;
1881 if (RetTy->isVoidTy())
1882 RetVT = MVT::isVoid;
1883 else if (!isTypeLegal(RetTy, RetVT))
1884 return false;
1886 // TODO: For now if we have long calls specified we don't handle the call.
1887 if (EnableARMLongCalls) return false;
1889 // Set up the argument vectors.
1890 SmallVector<Value*, 8> Args;
1891 SmallVector<unsigned, 8> ArgRegs;
1892 SmallVector<MVT, 8> ArgVTs;
1893 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1894 Args.reserve(CS.arg_size());
1895 ArgRegs.reserve(CS.arg_size());
1896 ArgVTs.reserve(CS.arg_size());
1897 ArgFlags.reserve(CS.arg_size());
1898 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1899 i != e; ++i) {
1900 unsigned Arg = getRegForValue(*i);
1902 if (Arg == 0)
1903 return false;
1904 ISD::ArgFlagsTy Flags;
1905 unsigned AttrInd = i - CS.arg_begin() + 1;
1906 if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1907 Flags.setSExt();
1908 if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1909 Flags.setZExt();
1911 // FIXME: Only handle *easy* calls for now.
1912 if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1913 CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1914 CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1915 CS.paramHasAttr(AttrInd, Attribute::ByVal))
1916 return false;
1918 const Type *ArgTy = (*i)->getType();
1919 MVT ArgVT;
1920 if (!isTypeLegal(ArgTy, ArgVT))
1921 return false;
1922 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1923 Flags.setOrigAlign(OriginalAlignment);
1925 Args.push_back(*i);
1926 ArgRegs.push_back(Arg);
1927 ArgVTs.push_back(ArgVT);
1928 ArgFlags.push_back(Flags);
1931 // Handle the arguments now that we've gotten them.
1932 SmallVector<unsigned, 4> RegArgs;
1933 unsigned NumBytes;
1934 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1935 return false;
1937 // Issue the call, BLr9 for darwin, BL otherwise.
1938 // TODO: Turn this into the table of arm call ops.
1939 MachineInstrBuilder MIB;
1940 unsigned CallOpc = ARMSelectCallOp(GV);
1941 // Explicitly adding the predicate here.
1942 if(isThumb)
1943 // Explicitly adding the predicate here.
1944 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1945 TII.get(CallOpc)))
1946 .addGlobalAddress(GV, 0, 0);
1947 else
1948 // Explicitly adding the predicate here.
1949 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1950 TII.get(CallOpc))
1951 .addGlobalAddress(GV, 0, 0));
1953 // Add implicit physical register uses to the call.
1954 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1955 MIB.addReg(RegArgs[i]);
1957 // Finish off the call including any return values.
1958 SmallVector<unsigned, 4> UsedRegs;
1959 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1961 // Set all unused physreg defs as dead.
1962 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1964 return true;
1968 bool ARMFastISel::SelectIntCast(const Instruction *I) {
1969 // On ARM, in general, integer casts don't involve legal types; this code
1970 // handles promotable integers. The high bits for a type smaller than
1971 // the register size are assumed to be undefined.
1972 const Type *DestTy = I->getType();
1973 Value *Op = I->getOperand(0);
1974 const Type *SrcTy = Op->getType();
1976 EVT SrcVT, DestVT;
1977 SrcVT = TLI.getValueType(SrcTy, true);
1978 DestVT = TLI.getValueType(DestTy, true);
1980 if (isa<TruncInst>(I)) {
1981 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1982 return false;
1983 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1984 return false;
1986 unsigned SrcReg = getRegForValue(Op);
1987 if (!SrcReg) return false;
1989 // Because the high bits are undefined, a truncate doesn't generate
1990 // any code.
1991 UpdateValueMap(I, SrcReg);
1992 return true;
1994 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1995 return false;
1997 unsigned Opc;
1998 bool isZext = isa<ZExtInst>(I);
1999 bool isBoolZext = false;
2000 if (!SrcVT.isSimple())
2001 return false;
2002 switch (SrcVT.getSimpleVT().SimpleTy) {
2003 default: return false;
2004 case MVT::i16:
2005 if (isZext)
2006 Opc = isThumb ? ARM::t2UXTHr : ARM::UXTHr;
2007 else
2008 Opc = isThumb ? ARM::t2SXTHr : ARM::SXTHr;
2009 break;
2010 case MVT::i8:
2011 if (isZext)
2012 Opc = isThumb ? ARM::t2UXTBr : ARM::UXTBr;
2013 else
2014 Opc = isThumb ? ARM::t2SXTBr : ARM::SXTBr;
2015 break;
2016 case MVT::i1:
2017 if (isZext) {
2018 Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
2019 isBoolZext = true;
2020 break;
2022 return false;
2025 // FIXME: We could save an instruction in many cases by special-casing
2026 // load instructions.
2027 unsigned SrcReg = getRegForValue(Op);
2028 if (!SrcReg) return false;
2030 unsigned DestReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2031 MachineInstrBuilder MIB;
2032 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
2033 .addReg(SrcReg);
2034 if (isBoolZext)
2035 MIB.addImm(1);
2036 AddOptionalDefs(MIB);
2037 UpdateValueMap(I, DestReg);
2038 return true;
2041 // TODO: SoftFP support.
2042 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2044 switch (I->getOpcode()) {
2045 case Instruction::Load:
2046 return SelectLoad(I);
2047 case Instruction::Store:
2048 return SelectStore(I);
2049 case Instruction::Br:
2050 return SelectBranch(I);
2051 case Instruction::ICmp:
2052 case Instruction::FCmp:
2053 return SelectCmp(I);
2054 case Instruction::FPExt:
2055 return SelectFPExt(I);
2056 case Instruction::FPTrunc:
2057 return SelectFPTrunc(I);
2058 case Instruction::SIToFP:
2059 return SelectSIToFP(I);
2060 case Instruction::FPToSI:
2061 return SelectFPToSI(I);
2062 case Instruction::FAdd:
2063 return SelectBinaryOp(I, ISD::FADD);
2064 case Instruction::FSub:
2065 return SelectBinaryOp(I, ISD::FSUB);
2066 case Instruction::FMul:
2067 return SelectBinaryOp(I, ISD::FMUL);
2068 case Instruction::SDiv:
2069 return SelectSDiv(I);
2070 case Instruction::SRem:
2071 return SelectSRem(I);
2072 case Instruction::Call:
2073 return SelectCall(I);
2074 case Instruction::Select:
2075 return SelectSelect(I);
2076 case Instruction::Ret:
2077 return SelectRet(I);
2078 case Instruction::Trunc:
2079 case Instruction::ZExt:
2080 case Instruction::SExt:
2081 return SelectIntCast(I);
2082 default: break;
2084 return false;
2087 namespace llvm {
2088 llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
2089 // Completely untested on non-darwin.
2090 const TargetMachine &TM = funcInfo.MF->getTarget();
2092 // Darwin and thumb1 only for now.
2093 const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2094 if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
2095 !DisableARMFastISel)
2096 return new ARMFastISel(funcInfo);
2097 return 0;