1 //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines an instruction selector for the ARM target.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "arm-isel"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMAddressingModes.h"
18 #include "ARMTargetMachine.h"
19 #include "llvm/CallingConv.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/LLVMContext.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGISel.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
41 DisableShifterOp("disable-shifter-op", cl::Hidden
,
42 cl::desc("Disable isel of shifter-op"),
46 CheckVMLxHazard("check-vmlx-hazard", cl::Hidden
,
47 cl::desc("Check fp vmla / vmls hazard at isel time"),
50 //===--------------------------------------------------------------------===//
51 /// ARMDAGToDAGISel - ARM specific code to select ARM machine
52 /// instructions for SelectionDAG operations.
57 AM2_BASE
, // Simple AM2 (+-imm12)
58 AM2_SHOP
// Shifter-op AM2
61 class ARMDAGToDAGISel
: public SelectionDAGISel
{
62 ARMBaseTargetMachine
&TM
;
63 const ARMBaseInstrInfo
*TII
;
65 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
66 /// make the right decision when generating code for different targets.
67 const ARMSubtarget
*Subtarget
;
70 explicit ARMDAGToDAGISel(ARMBaseTargetMachine
&tm
,
71 CodeGenOpt::Level OptLevel
)
72 : SelectionDAGISel(tm
, OptLevel
), TM(tm
),
73 TII(static_cast<const ARMBaseInstrInfo
*>(TM
.getInstrInfo())),
74 Subtarget(&TM
.getSubtarget
<ARMSubtarget
>()) {
77 virtual const char *getPassName() const {
78 return "ARM Instruction Selection";
81 /// getI32Imm - Return a target constant of type i32 with the specified
83 inline SDValue
getI32Imm(unsigned Imm
) {
84 return CurDAG
->getTargetConstant(Imm
, MVT::i32
);
87 SDNode
*Select(SDNode
*N
);
90 bool hasNoVMLxHazardUse(SDNode
*N
) const;
91 bool isShifterOpProfitable(const SDValue
&Shift
,
92 ARM_AM::ShiftOpc ShOpcVal
, unsigned ShAmt
);
93 bool SelectShifterOperandReg(SDValue N
, SDValue
&A
,
94 SDValue
&B
, SDValue
&C
,
95 bool CheckProfitability
= true);
96 bool SelectShiftShifterOperandReg(SDValue N
, SDValue
&A
,
97 SDValue
&B
, SDValue
&C
) {
98 // Don't apply the profitability check
99 return SelectShifterOperandReg(N
, A
, B
, C
, false);
102 bool SelectAddrModeImm12(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
103 bool SelectLdStSOReg(SDValue N
, SDValue
&Base
, SDValue
&Offset
, SDValue
&Opc
);
105 AddrMode2Type
SelectAddrMode2Worker(SDValue N
, SDValue
&Base
,
106 SDValue
&Offset
, SDValue
&Opc
);
107 bool SelectAddrMode2Base(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
109 return SelectAddrMode2Worker(N
, Base
, Offset
, Opc
) == AM2_BASE
;
112 bool SelectAddrMode2ShOp(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
114 return SelectAddrMode2Worker(N
, Base
, Offset
, Opc
) == AM2_SHOP
;
117 bool SelectAddrMode2(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
119 SelectAddrMode2Worker(N
, Base
, Offset
, Opc
);
120 // return SelectAddrMode2ShOp(N, Base, Offset, Opc);
121 // This always matches one way or another.
125 bool SelectAddrMode2Offset(SDNode
*Op
, SDValue N
,
126 SDValue
&Offset
, SDValue
&Opc
);
127 bool SelectAddrMode3(SDValue N
, SDValue
&Base
,
128 SDValue
&Offset
, SDValue
&Opc
);
129 bool SelectAddrMode3Offset(SDNode
*Op
, SDValue N
,
130 SDValue
&Offset
, SDValue
&Opc
);
131 bool SelectAddrMode5(SDValue N
, SDValue
&Base
,
133 bool SelectAddrMode6(SDNode
*Parent
, SDValue N
, SDValue
&Addr
,SDValue
&Align
);
134 bool SelectAddrMode6Offset(SDNode
*Op
, SDValue N
, SDValue
&Offset
);
136 bool SelectAddrModePC(SDValue N
, SDValue
&Offset
, SDValue
&Label
);
138 // Thumb Addressing Modes:
139 bool SelectThumbAddrModeRR(SDValue N
, SDValue
&Base
, SDValue
&Offset
);
140 bool SelectThumbAddrModeRI(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
142 bool SelectThumbAddrModeRI5S1(SDValue N
, SDValue
&Base
, SDValue
&Offset
);
143 bool SelectThumbAddrModeRI5S2(SDValue N
, SDValue
&Base
, SDValue
&Offset
);
144 bool SelectThumbAddrModeRI5S4(SDValue N
, SDValue
&Base
, SDValue
&Offset
);
145 bool SelectThumbAddrModeImm5S(SDValue N
, unsigned Scale
, SDValue
&Base
,
147 bool SelectThumbAddrModeImm5S1(SDValue N
, SDValue
&Base
,
149 bool SelectThumbAddrModeImm5S2(SDValue N
, SDValue
&Base
,
151 bool SelectThumbAddrModeImm5S4(SDValue N
, SDValue
&Base
,
153 bool SelectThumbAddrModeSP(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
155 // Thumb 2 Addressing Modes:
156 bool SelectT2ShifterOperandReg(SDValue N
,
157 SDValue
&BaseReg
, SDValue
&Opc
);
158 bool SelectT2AddrModeImm12(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
159 bool SelectT2AddrModeImm8(SDValue N
, SDValue
&Base
,
161 bool SelectT2AddrModeImm8Offset(SDNode
*Op
, SDValue N
,
163 bool SelectT2AddrModeSoReg(SDValue N
, SDValue
&Base
,
164 SDValue
&OffReg
, SDValue
&ShImm
);
166 inline bool is_so_imm(unsigned Imm
) const {
167 return ARM_AM::getSOImmVal(Imm
) != -1;
170 inline bool is_so_imm_not(unsigned Imm
) const {
171 return ARM_AM::getSOImmVal(~Imm
) != -1;
174 inline bool is_t2_so_imm(unsigned Imm
) const {
175 return ARM_AM::getT2SOImmVal(Imm
) != -1;
178 inline bool is_t2_so_imm_not(unsigned Imm
) const {
179 return ARM_AM::getT2SOImmVal(~Imm
) != -1;
182 // Include the pieces autogenerated from the target description.
183 #include "ARMGenDAGISel.inc"
186 /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
188 SDNode
*SelectARMIndexedLoad(SDNode
*N
);
189 SDNode
*SelectT2IndexedLoad(SDNode
*N
);
191 /// SelectVLD - Select NEON load intrinsics. NumVecs should be
192 /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for
193 /// loads of D registers and even subregs and odd subregs of Q registers.
194 /// For NumVecs <= 2, QOpcodes1 is not used.
195 SDNode
*SelectVLD(SDNode
*N
, bool isUpdating
, unsigned NumVecs
,
197 unsigned *QOpcodes0
, unsigned *QOpcodes1
);
199 /// SelectVST - Select NEON store intrinsics. NumVecs should
200 /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for
201 /// stores of D registers and even subregs and odd subregs of Q registers.
202 /// For NumVecs <= 2, QOpcodes1 is not used.
203 SDNode
*SelectVST(SDNode
*N
, bool isUpdating
, unsigned NumVecs
,
205 unsigned *QOpcodes0
, unsigned *QOpcodes1
);
207 /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
208 /// be 2, 3 or 4. The opcode arrays specify the instructions used for
209 /// load/store of D registers and Q registers.
210 SDNode
*SelectVLDSTLane(SDNode
*N
, bool IsLoad
,
211 bool isUpdating
, unsigned NumVecs
,
212 unsigned *DOpcodes
, unsigned *QOpcodes
);
214 /// SelectVLDDup - Select NEON load-duplicate intrinsics. NumVecs
215 /// should be 2, 3 or 4. The opcode array specifies the instructions used
216 /// for loading D registers. (Q registers are not supported.)
217 SDNode
*SelectVLDDup(SDNode
*N
, bool isUpdating
, unsigned NumVecs
,
220 /// SelectVTBL - Select NEON VTBL and VTBX intrinsics. NumVecs should be 2,
221 /// 3 or 4. These are custom-selected so that a REG_SEQUENCE can be
222 /// generated to force the table registers to be consecutive.
223 SDNode
*SelectVTBL(SDNode
*N
, bool IsExt
, unsigned NumVecs
, unsigned Opc
);
225 /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
226 SDNode
*SelectV6T2BitfieldExtractOp(SDNode
*N
, bool isSigned
);
228 /// SelectCMOVOp - Select CMOV instructions for ARM.
229 SDNode
*SelectCMOVOp(SDNode
*N
);
230 SDNode
*SelectT2CMOVShiftOp(SDNode
*N
, SDValue FalseVal
, SDValue TrueVal
,
231 ARMCC::CondCodes CCVal
, SDValue CCR
,
233 SDNode
*SelectARMCMOVShiftOp(SDNode
*N
, SDValue FalseVal
, SDValue TrueVal
,
234 ARMCC::CondCodes CCVal
, SDValue CCR
,
236 SDNode
*SelectT2CMOVImmOp(SDNode
*N
, SDValue FalseVal
, SDValue TrueVal
,
237 ARMCC::CondCodes CCVal
, SDValue CCR
,
239 SDNode
*SelectARMCMOVImmOp(SDNode
*N
, SDValue FalseVal
, SDValue TrueVal
,
240 ARMCC::CondCodes CCVal
, SDValue CCR
,
243 SDNode
*SelectConcatVector(SDNode
*N
);
245 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
246 /// inline asm expressions.
247 virtual bool SelectInlineAsmMemoryOperand(const SDValue
&Op
,
249 std::vector
<SDValue
> &OutOps
);
251 // Form pairs of consecutive S, D, or Q registers.
252 SDNode
*PairSRegs(EVT VT
, SDValue V0
, SDValue V1
);
253 SDNode
*PairDRegs(EVT VT
, SDValue V0
, SDValue V1
);
254 SDNode
*PairQRegs(EVT VT
, SDValue V0
, SDValue V1
);
256 // Form sequences of 4 consecutive S, D, or Q registers.
257 SDNode
*QuadSRegs(EVT VT
, SDValue V0
, SDValue V1
, SDValue V2
, SDValue V3
);
258 SDNode
*QuadDRegs(EVT VT
, SDValue V0
, SDValue V1
, SDValue V2
, SDValue V3
);
259 SDNode
*QuadQRegs(EVT VT
, SDValue V0
, SDValue V1
, SDValue V2
, SDValue V3
);
261 // Get the alignment operand for a NEON VLD or VST instruction.
262 SDValue
GetVLDSTAlign(SDValue Align
, unsigned NumVecs
, bool is64BitVector
);
266 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
267 /// operand. If so Imm will receive the 32-bit value.
268 static bool isInt32Immediate(SDNode
*N
, unsigned &Imm
) {
269 if (N
->getOpcode() == ISD::Constant
&& N
->getValueType(0) == MVT::i32
) {
270 Imm
= cast
<ConstantSDNode
>(N
)->getZExtValue();
276 // isInt32Immediate - This method tests to see if a constant operand.
277 // If so Imm will receive the 32 bit value.
278 static bool isInt32Immediate(SDValue N
, unsigned &Imm
) {
279 return isInt32Immediate(N
.getNode(), Imm
);
282 // isOpcWithIntImmediate - This method tests to see if the node is a specific
283 // opcode and that it has a immediate integer right operand.
284 // If so Imm will receive the 32 bit value.
285 static bool isOpcWithIntImmediate(SDNode
*N
, unsigned Opc
, unsigned& Imm
) {
286 return N
->getOpcode() == Opc
&&
287 isInt32Immediate(N
->getOperand(1).getNode(), Imm
);
290 /// \brief Check whether a particular node is a constant value representable as
291 /// (N * Scale) where (N in [\arg RangeMin, \arg RangeMax).
293 /// \param ScaledConstant [out] - On success, the pre-scaled constant value.
294 static bool isScaledConstantInRange(SDValue Node
, unsigned Scale
,
295 int RangeMin
, int RangeMax
,
296 int &ScaledConstant
) {
297 assert(Scale
&& "Invalid scale!");
299 // Check that this is a constant.
300 const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Node
);
304 ScaledConstant
= (int) C
->getZExtValue();
305 if ((ScaledConstant
% Scale
) != 0)
308 ScaledConstant
/= Scale
;
309 return ScaledConstant
>= RangeMin
&& ScaledConstant
< RangeMax
;
312 /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
313 /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
314 /// least on current ARM implementations) which should be avoidded.
315 bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode
*N
) const {
316 if (OptLevel
== CodeGenOpt::None
)
319 if (!CheckVMLxHazard
)
322 if (!Subtarget
->isCortexA8() && !Subtarget
->isCortexA9())
328 SDNode
*Use
= *N
->use_begin();
329 if (Use
->getOpcode() == ISD::CopyToReg
)
331 if (Use
->isMachineOpcode()) {
332 const MCInstrDesc
&MCID
= TII
->get(Use
->getMachineOpcode());
335 unsigned Opcode
= MCID
.getOpcode();
336 if (Opcode
== ARM::VMOVRS
|| Opcode
== ARM::VMOVRRD
)
338 // vmlx feeding into another vmlx. We actually want to unfold
339 // the use later in the MLxExpansion pass. e.g.
341 // vmla (stall 8 cycles)
346 // This adds up to about 18 - 19 cycles.
349 // vmul (stall 4 cycles)
350 // vadd adds up to about 14 cycles.
351 return TII
->isFpMLxInstruction(Opcode
);
357 bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue
&Shift
,
358 ARM_AM::ShiftOpc ShOpcVal
,
360 if (!Subtarget
->isCortexA9())
362 if (Shift
.hasOneUse())
365 return ShOpcVal
== ARM_AM::lsl
&& ShAmt
== 2;
368 bool ARMDAGToDAGISel::SelectShifterOperandReg(SDValue N
,
372 bool CheckProfitability
) {
373 if (DisableShifterOp
)
376 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(N
);
378 // Don't match base register only case. That is matched to a separate
379 // lower complexity pattern with explicit register operand.
380 if (ShOpcVal
== ARM_AM::no_shift
) return false;
382 BaseReg
= N
.getOperand(0);
383 unsigned ShImmVal
= 0;
384 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
385 ShReg
= CurDAG
->getRegister(0, MVT::i32
);
386 ShImmVal
= RHS
->getZExtValue() & 31;
388 ShReg
= N
.getOperand(1);
389 if (CheckProfitability
&& !isShifterOpProfitable(N
, ShOpcVal
, ShImmVal
))
392 Opc
= CurDAG
->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal
, ShImmVal
),
397 bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N
,
400 // Match simple R + imm12 operands.
403 if (N
.getOpcode() != ISD::ADD
&& N
.getOpcode() != ISD::SUB
&&
404 !CurDAG
->isBaseWithConstantOffset(N
)) {
405 if (N
.getOpcode() == ISD::FrameIndex
) {
406 // Match frame index.
407 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
408 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
.getPointerTy());
409 OffImm
= CurDAG
->getTargetConstant(0, MVT::i32
);
413 if (N
.getOpcode() == ARMISD::Wrapper
&&
414 !(Subtarget
->useMovt() &&
415 N
.getOperand(0).getOpcode() == ISD::TargetGlobalAddress
)) {
416 Base
= N
.getOperand(0);
419 OffImm
= CurDAG
->getTargetConstant(0, MVT::i32
);
423 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
424 int RHSC
= (int)RHS
->getZExtValue();
425 if (N
.getOpcode() == ISD::SUB
)
428 if (RHSC
>= 0 && RHSC
< 0x1000) { // 12 bits (unsigned)
429 Base
= N
.getOperand(0);
430 if (Base
.getOpcode() == ISD::FrameIndex
) {
431 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
432 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
.getPointerTy());
434 OffImm
= CurDAG
->getTargetConstant(RHSC
, MVT::i32
);
441 OffImm
= CurDAG
->getTargetConstant(0, MVT::i32
);
447 bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
449 if (N
.getOpcode() == ISD::MUL
&&
450 (!Subtarget
->isCortexA9() || N
.hasOneUse())) {
451 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
452 // X * [3,5,9] -> X + X * [2,4,8] etc.
453 int RHSC
= (int)RHS
->getZExtValue();
456 ARM_AM::AddrOpc AddSub
= ARM_AM::add
;
458 AddSub
= ARM_AM::sub
;
461 if (isPowerOf2_32(RHSC
)) {
462 unsigned ShAmt
= Log2_32(RHSC
);
463 Base
= Offset
= N
.getOperand(0);
464 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, ShAmt
,
473 if (N
.getOpcode() != ISD::ADD
&& N
.getOpcode() != ISD::SUB
&&
474 // ISD::OR that is equivalent to an ISD::ADD.
475 !CurDAG
->isBaseWithConstantOffset(N
))
478 // Leave simple R +/- imm12 operands for LDRi12
479 if (N
.getOpcode() == ISD::ADD
|| N
.getOpcode() == ISD::OR
) {
481 if (isScaledConstantInRange(N
.getOperand(1), /*Scale=*/1,
482 -0x1000+1, 0x1000, RHSC
)) // 12 bits.
486 if (Subtarget
->isCortexA9() && !N
.hasOneUse())
487 // Compute R +/- (R << N) and reuse it.
490 // Otherwise this is R +/- [possibly shifted] R.
491 ARM_AM::AddrOpc AddSub
= N
.getOpcode() == ISD::SUB
? ARM_AM::sub
:ARM_AM::add
;
492 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(N
.getOperand(1));
495 Base
= N
.getOperand(0);
496 Offset
= N
.getOperand(1);
498 if (ShOpcVal
!= ARM_AM::no_shift
) {
499 // Check to see if the RHS of the shift is a constant, if not, we can't fold
501 if (ConstantSDNode
*Sh
=
502 dyn_cast
<ConstantSDNode
>(N
.getOperand(1).getOperand(1))) {
503 ShAmt
= Sh
->getZExtValue();
504 if (isShifterOpProfitable(Offset
, ShOpcVal
, ShAmt
))
505 Offset
= N
.getOperand(1).getOperand(0);
508 ShOpcVal
= ARM_AM::no_shift
;
511 ShOpcVal
= ARM_AM::no_shift
;
515 // Try matching (R shl C) + (R).
516 if (N
.getOpcode() != ISD::SUB
&& ShOpcVal
== ARM_AM::no_shift
&&
517 !(Subtarget
->isCortexA9() || N
.getOperand(0).hasOneUse())) {
518 ShOpcVal
= ARM_AM::getShiftOpcForNode(N
.getOperand(0));
519 if (ShOpcVal
!= ARM_AM::no_shift
) {
520 // Check to see if the RHS of the shift is a constant, if not, we can't
522 if (ConstantSDNode
*Sh
=
523 dyn_cast
<ConstantSDNode
>(N
.getOperand(0).getOperand(1))) {
524 ShAmt
= Sh
->getZExtValue();
525 if (!Subtarget
->isCortexA9() ||
527 isShifterOpProfitable(N
.getOperand(0), ShOpcVal
, ShAmt
))) {
528 Offset
= N
.getOperand(0).getOperand(0);
529 Base
= N
.getOperand(1);
532 ShOpcVal
= ARM_AM::no_shift
;
535 ShOpcVal
= ARM_AM::no_shift
;
540 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, ShAmt
, ShOpcVal
),
550 AddrMode2Type
ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N
,
554 if (N
.getOpcode() == ISD::MUL
&&
555 (!Subtarget
->isCortexA9() || N
.hasOneUse())) {
556 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
557 // X * [3,5,9] -> X + X * [2,4,8] etc.
558 int RHSC
= (int)RHS
->getZExtValue();
561 ARM_AM::AddrOpc AddSub
= ARM_AM::add
;
563 AddSub
= ARM_AM::sub
;
566 if (isPowerOf2_32(RHSC
)) {
567 unsigned ShAmt
= Log2_32(RHSC
);
568 Base
= Offset
= N
.getOperand(0);
569 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, ShAmt
,
578 if (N
.getOpcode() != ISD::ADD
&& N
.getOpcode() != ISD::SUB
&&
579 // ISD::OR that is equivalent to an ADD.
580 !CurDAG
->isBaseWithConstantOffset(N
)) {
582 if (N
.getOpcode() == ISD::FrameIndex
) {
583 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
584 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
.getPointerTy());
585 } else if (N
.getOpcode() == ARMISD::Wrapper
&&
586 !(Subtarget
->useMovt() &&
587 N
.getOperand(0).getOpcode() == ISD::TargetGlobalAddress
)) {
588 Base
= N
.getOperand(0);
590 Offset
= CurDAG
->getRegister(0, MVT::i32
);
591 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add
, 0,
597 // Match simple R +/- imm12 operands.
598 if (N
.getOpcode() != ISD::SUB
) {
600 if (isScaledConstantInRange(N
.getOperand(1), /*Scale=*/1,
601 -0x1000+1, 0x1000, RHSC
)) { // 12 bits.
602 Base
= N
.getOperand(0);
603 if (Base
.getOpcode() == ISD::FrameIndex
) {
604 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
605 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
.getPointerTy());
607 Offset
= CurDAG
->getRegister(0, MVT::i32
);
609 ARM_AM::AddrOpc AddSub
= ARM_AM::add
;
611 AddSub
= ARM_AM::sub
;
614 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, RHSC
,
621 if (Subtarget
->isCortexA9() && !N
.hasOneUse()) {
622 // Compute R +/- (R << N) and reuse it.
624 Offset
= CurDAG
->getRegister(0, MVT::i32
);
625 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add
, 0,
631 // Otherwise this is R +/- [possibly shifted] R.
632 ARM_AM::AddrOpc AddSub
= N
.getOpcode() != ISD::SUB
? ARM_AM::add
:ARM_AM::sub
;
633 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(N
.getOperand(1));
636 Base
= N
.getOperand(0);
637 Offset
= N
.getOperand(1);
639 if (ShOpcVal
!= ARM_AM::no_shift
) {
640 // Check to see if the RHS of the shift is a constant, if not, we can't fold
642 if (ConstantSDNode
*Sh
=
643 dyn_cast
<ConstantSDNode
>(N
.getOperand(1).getOperand(1))) {
644 ShAmt
= Sh
->getZExtValue();
645 if (isShifterOpProfitable(Offset
, ShOpcVal
, ShAmt
))
646 Offset
= N
.getOperand(1).getOperand(0);
649 ShOpcVal
= ARM_AM::no_shift
;
652 ShOpcVal
= ARM_AM::no_shift
;
656 // Try matching (R shl C) + (R).
657 if (N
.getOpcode() != ISD::SUB
&& ShOpcVal
== ARM_AM::no_shift
&&
658 !(Subtarget
->isCortexA9() || N
.getOperand(0).hasOneUse())) {
659 ShOpcVal
= ARM_AM::getShiftOpcForNode(N
.getOperand(0));
660 if (ShOpcVal
!= ARM_AM::no_shift
) {
661 // Check to see if the RHS of the shift is a constant, if not, we can't
663 if (ConstantSDNode
*Sh
=
664 dyn_cast
<ConstantSDNode
>(N
.getOperand(0).getOperand(1))) {
665 ShAmt
= Sh
->getZExtValue();
666 if (!Subtarget
->isCortexA9() ||
668 isShifterOpProfitable(N
.getOperand(0), ShOpcVal
, ShAmt
))) {
669 Offset
= N
.getOperand(0).getOperand(0);
670 Base
= N
.getOperand(1);
673 ShOpcVal
= ARM_AM::no_shift
;
676 ShOpcVal
= ARM_AM::no_shift
;
681 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, ShAmt
, ShOpcVal
),
686 bool ARMDAGToDAGISel::SelectAddrMode2Offset(SDNode
*Op
, SDValue N
,
687 SDValue
&Offset
, SDValue
&Opc
) {
688 unsigned Opcode
= Op
->getOpcode();
689 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
690 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
691 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
692 ARM_AM::AddrOpc AddSub
= (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
)
693 ? ARM_AM::add
: ARM_AM::sub
;
695 if (isScaledConstantInRange(N
, /*Scale=*/1, 0, 0x1000, Val
)) { // 12 bits.
696 Offset
= CurDAG
->getRegister(0, MVT::i32
);
697 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, Val
,
704 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(N
);
706 if (ShOpcVal
!= ARM_AM::no_shift
) {
707 // Check to see if the RHS of the shift is a constant, if not, we can't fold
709 if (ConstantSDNode
*Sh
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
710 ShAmt
= Sh
->getZExtValue();
711 if (isShifterOpProfitable(N
, ShOpcVal
, ShAmt
))
712 Offset
= N
.getOperand(0);
715 ShOpcVal
= ARM_AM::no_shift
;
718 ShOpcVal
= ARM_AM::no_shift
;
722 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, ShAmt
, ShOpcVal
),
728 bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N
,
729 SDValue
&Base
, SDValue
&Offset
,
731 if (N
.getOpcode() == ISD::SUB
) {
732 // X - C is canonicalize to X + -C, no need to handle it here.
733 Base
= N
.getOperand(0);
734 Offset
= N
.getOperand(1);
735 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub
, 0),MVT::i32
);
739 if (!CurDAG
->isBaseWithConstantOffset(N
)) {
741 if (N
.getOpcode() == ISD::FrameIndex
) {
742 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
743 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
.getPointerTy());
745 Offset
= CurDAG
->getRegister(0, MVT::i32
);
746 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add
, 0),MVT::i32
);
750 // If the RHS is +/- imm8, fold into addr mode.
752 if (isScaledConstantInRange(N
.getOperand(1), /*Scale=*/1,
753 -256 + 1, 256, RHSC
)) { // 8 bits.
754 Base
= N
.getOperand(0);
755 if (Base
.getOpcode() == ISD::FrameIndex
) {
756 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
757 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
.getPointerTy());
759 Offset
= CurDAG
->getRegister(0, MVT::i32
);
761 ARM_AM::AddrOpc AddSub
= ARM_AM::add
;
763 AddSub
= ARM_AM::sub
;
766 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(AddSub
, RHSC
),MVT::i32
);
770 Base
= N
.getOperand(0);
771 Offset
= N
.getOperand(1);
772 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add
, 0), MVT::i32
);
776 bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode
*Op
, SDValue N
,
777 SDValue
&Offset
, SDValue
&Opc
) {
778 unsigned Opcode
= Op
->getOpcode();
779 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
780 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
781 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
782 ARM_AM::AddrOpc AddSub
= (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
)
783 ? ARM_AM::add
: ARM_AM::sub
;
785 if (isScaledConstantInRange(N
, /*Scale=*/1, 0, 256, Val
)) { // 12 bits.
786 Offset
= CurDAG
->getRegister(0, MVT::i32
);
787 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(AddSub
, Val
), MVT::i32
);
792 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(AddSub
, 0), MVT::i32
);
796 bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N
,
797 SDValue
&Base
, SDValue
&Offset
) {
798 if (!CurDAG
->isBaseWithConstantOffset(N
)) {
800 if (N
.getOpcode() == ISD::FrameIndex
) {
801 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
802 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
.getPointerTy());
803 } else if (N
.getOpcode() == ARMISD::Wrapper
&&
804 !(Subtarget
->useMovt() &&
805 N
.getOperand(0).getOpcode() == ISD::TargetGlobalAddress
)) {
806 Base
= N
.getOperand(0);
808 Offset
= CurDAG
->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add
, 0),
813 // If the RHS is +/- imm8, fold into addr mode.
815 if (isScaledConstantInRange(N
.getOperand(1), /*Scale=*/4,
816 -256 + 1, 256, RHSC
)) {
817 Base
= N
.getOperand(0);
818 if (Base
.getOpcode() == ISD::FrameIndex
) {
819 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
820 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
.getPointerTy());
823 ARM_AM::AddrOpc AddSub
= ARM_AM::add
;
825 AddSub
= ARM_AM::sub
;
828 Offset
= CurDAG
->getTargetConstant(ARM_AM::getAM5Opc(AddSub
, RHSC
),
834 Offset
= CurDAG
->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add
, 0),
839 bool ARMDAGToDAGISel::SelectAddrMode6(SDNode
*Parent
, SDValue N
, SDValue
&Addr
,
843 unsigned Alignment
= 0;
844 if (LSBaseSDNode
*LSN
= dyn_cast
<LSBaseSDNode
>(Parent
)) {
845 // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
846 // The maximum alignment is equal to the memory size being referenced.
847 unsigned LSNAlign
= LSN
->getAlignment();
848 unsigned MemSize
= LSN
->getMemoryVT().getSizeInBits() / 8;
849 if (LSNAlign
> MemSize
&& MemSize
> 1)
852 // All other uses of addrmode6 are for intrinsics. For now just record
853 // the raw alignment value; it will be refined later based on the legal
854 // alignment operands for the intrinsic.
855 Alignment
= cast
<MemIntrinsicSDNode
>(Parent
)->getAlignment();
858 Align
= CurDAG
->getTargetConstant(Alignment
, MVT::i32
);
862 bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode
*Op
, SDValue N
,
864 LSBaseSDNode
*LdSt
= cast
<LSBaseSDNode
>(Op
);
865 ISD::MemIndexedMode AM
= LdSt
->getAddressingMode();
866 if (AM
!= ISD::POST_INC
)
869 if (ConstantSDNode
*NC
= dyn_cast
<ConstantSDNode
>(N
)) {
870 if (NC
->getZExtValue() * 8 == LdSt
->getMemoryVT().getSizeInBits())
871 Offset
= CurDAG
->getRegister(0, MVT::i32
);
876 bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N
,
877 SDValue
&Offset
, SDValue
&Label
) {
878 if (N
.getOpcode() == ARMISD::PIC_ADD
&& N
.hasOneUse()) {
879 Offset
= N
.getOperand(0);
880 SDValue N1
= N
.getOperand(1);
881 Label
= CurDAG
->getTargetConstant(cast
<ConstantSDNode
>(N1
)->getZExtValue(),
890 //===----------------------------------------------------------------------===//
891 // Thumb Addressing Modes
892 //===----------------------------------------------------------------------===//
894 bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N
,
895 SDValue
&Base
, SDValue
&Offset
){
896 if (N
.getOpcode() != ISD::ADD
&& !CurDAG
->isBaseWithConstantOffset(N
)) {
897 ConstantSDNode
*NC
= dyn_cast
<ConstantSDNode
>(N
);
898 if (!NC
|| !NC
->isNullValue())
905 Base
= N
.getOperand(0);
906 Offset
= N
.getOperand(1);
911 ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N
, SDValue
&Base
,
912 SDValue
&Offset
, unsigned Scale
) {
914 SDValue TmpBase
, TmpOffImm
;
915 if (SelectThumbAddrModeSP(N
, TmpBase
, TmpOffImm
))
916 return false; // We want to select tLDRspi / tSTRspi instead.
918 if (N
.getOpcode() == ARMISD::Wrapper
&&
919 N
.getOperand(0).getOpcode() == ISD::TargetConstantPool
)
920 return false; // We want to select tLDRpci instead.
923 if (!CurDAG
->isBaseWithConstantOffset(N
))
926 // Thumb does not have [sp, r] address mode.
927 RegisterSDNode
*LHSR
= dyn_cast
<RegisterSDNode
>(N
.getOperand(0));
928 RegisterSDNode
*RHSR
= dyn_cast
<RegisterSDNode
>(N
.getOperand(1));
929 if ((LHSR
&& LHSR
->getReg() == ARM::SP
) ||
930 (RHSR
&& RHSR
->getReg() == ARM::SP
))
933 // FIXME: Why do we explicitly check for a match here and then return false?
934 // Presumably to allow something else to match, but shouldn't this be
937 if (isScaledConstantInRange(N
.getOperand(1), Scale
, 0, 32, RHSC
))
940 Base
= N
.getOperand(0);
941 Offset
= N
.getOperand(1);
946 ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N
,
949 return SelectThumbAddrModeRI(N
, Base
, Offset
, 1);
953 ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N
,
956 return SelectThumbAddrModeRI(N
, Base
, Offset
, 2);
960 ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N
,
963 return SelectThumbAddrModeRI(N
, Base
, Offset
, 4);
967 ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N
, unsigned Scale
,
968 SDValue
&Base
, SDValue
&OffImm
) {
970 SDValue TmpBase
, TmpOffImm
;
971 if (SelectThumbAddrModeSP(N
, TmpBase
, TmpOffImm
))
972 return false; // We want to select tLDRspi / tSTRspi instead.
974 if (N
.getOpcode() == ARMISD::Wrapper
&&
975 N
.getOperand(0).getOpcode() == ISD::TargetConstantPool
)
976 return false; // We want to select tLDRpci instead.
979 if (!CurDAG
->isBaseWithConstantOffset(N
)) {
980 if (N
.getOpcode() == ARMISD::Wrapper
&&
981 !(Subtarget
->useMovt() &&
982 N
.getOperand(0).getOpcode() == ISD::TargetGlobalAddress
)) {
983 Base
= N
.getOperand(0);
988 OffImm
= CurDAG
->getTargetConstant(0, MVT::i32
);
992 RegisterSDNode
*LHSR
= dyn_cast
<RegisterSDNode
>(N
.getOperand(0));
993 RegisterSDNode
*RHSR
= dyn_cast
<RegisterSDNode
>(N
.getOperand(1));
994 if ((LHSR
&& LHSR
->getReg() == ARM::SP
) ||
995 (RHSR
&& RHSR
->getReg() == ARM::SP
)) {
996 ConstantSDNode
*LHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(0));
997 ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
998 unsigned LHSC
= LHS
? LHS
->getZExtValue() : 0;
999 unsigned RHSC
= RHS
? RHS
->getZExtValue() : 0;
1001 // Thumb does not have [sp, #imm5] address mode for non-zero imm5.
1002 if (LHSC
!= 0 || RHSC
!= 0) return false;
1005 OffImm
= CurDAG
->getTargetConstant(0, MVT::i32
);
1009 // If the RHS is + imm5 * scale, fold into addr mode.
1011 if (isScaledConstantInRange(N
.getOperand(1), Scale
, 0, 32, RHSC
)) {
1012 Base
= N
.getOperand(0);
1013 OffImm
= CurDAG
->getTargetConstant(RHSC
, MVT::i32
);
1017 Base
= N
.getOperand(0);
1018 OffImm
= CurDAG
->getTargetConstant(0, MVT::i32
);
1023 ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N
, SDValue
&Base
,
1025 return SelectThumbAddrModeImm5S(N
, 4, Base
, OffImm
);
1029 ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N
, SDValue
&Base
,
1031 return SelectThumbAddrModeImm5S(N
, 2, Base
, OffImm
);
1035 ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N
, SDValue
&Base
,
1037 return SelectThumbAddrModeImm5S(N
, 1, Base
, OffImm
);
1040 bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N
,
1041 SDValue
&Base
, SDValue
&OffImm
) {
1042 if (N
.getOpcode() == ISD::FrameIndex
) {
1043 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
1044 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
.getPointerTy());
1045 OffImm
= CurDAG
->getTargetConstant(0, MVT::i32
);
1049 if (!CurDAG
->isBaseWithConstantOffset(N
))
1052 RegisterSDNode
*LHSR
= dyn_cast
<RegisterSDNode
>(N
.getOperand(0));
1053 if (N
.getOperand(0).getOpcode() == ISD::FrameIndex
||
1054 (LHSR
&& LHSR
->getReg() == ARM::SP
)) {
1055 // If the RHS is + imm8 * scale, fold into addr mode.
1057 if (isScaledConstantInRange(N
.getOperand(1), /*Scale=*/4, 0, 256, RHSC
)) {
1058 Base
= N
.getOperand(0);
1059 if (Base
.getOpcode() == ISD::FrameIndex
) {
1060 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
1061 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
.getPointerTy());
1063 OffImm
= CurDAG
->getTargetConstant(RHSC
, MVT::i32
);
1072 //===----------------------------------------------------------------------===//
1073 // Thumb 2 Addressing Modes
1074 //===----------------------------------------------------------------------===//
1077 bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N
, SDValue
&BaseReg
,
1079 if (DisableShifterOp
)
1082 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(N
);
1084 // Don't match base register only case. That is matched to a separate
1085 // lower complexity pattern with explicit register operand.
1086 if (ShOpcVal
== ARM_AM::no_shift
) return false;
1088 BaseReg
= N
.getOperand(0);
1089 unsigned ShImmVal
= 0;
1090 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
1091 ShImmVal
= RHS
->getZExtValue() & 31;
1092 Opc
= getI32Imm(ARM_AM::getSORegOpc(ShOpcVal
, ShImmVal
));
1099 bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N
,
1100 SDValue
&Base
, SDValue
&OffImm
) {
1101 // Match simple R + imm12 operands.
1104 if (N
.getOpcode() != ISD::ADD
&& N
.getOpcode() != ISD::SUB
&&
1105 !CurDAG
->isBaseWithConstantOffset(N
)) {
1106 if (N
.getOpcode() == ISD::FrameIndex
) {
1107 // Match frame index.
1108 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
1109 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
.getPointerTy());
1110 OffImm
= CurDAG
->getTargetConstant(0, MVT::i32
);
1114 if (N
.getOpcode() == ARMISD::Wrapper
&&
1115 !(Subtarget
->useMovt() &&
1116 N
.getOperand(0).getOpcode() == ISD::TargetGlobalAddress
)) {
1117 Base
= N
.getOperand(0);
1118 if (Base
.getOpcode() == ISD::TargetConstantPool
)
1119 return false; // We want to select t2LDRpci instead.
1122 OffImm
= CurDAG
->getTargetConstant(0, MVT::i32
);
1126 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
1127 if (SelectT2AddrModeImm8(N
, Base
, OffImm
))
1128 // Let t2LDRi8 handle (R - imm8).
1131 int RHSC
= (int)RHS
->getZExtValue();
1132 if (N
.getOpcode() == ISD::SUB
)
1135 if (RHSC
>= 0 && RHSC
< 0x1000) { // 12 bits (unsigned)
1136 Base
= N
.getOperand(0);
1137 if (Base
.getOpcode() == ISD::FrameIndex
) {
1138 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
1139 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
.getPointerTy());
1141 OffImm
= CurDAG
->getTargetConstant(RHSC
, MVT::i32
);
1148 OffImm
= CurDAG
->getTargetConstant(0, MVT::i32
);
1152 bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N
,
1153 SDValue
&Base
, SDValue
&OffImm
) {
1154 // Match simple R - imm8 operands.
1155 if (N
.getOpcode() != ISD::ADD
&& N
.getOpcode() != ISD::SUB
&&
1156 !CurDAG
->isBaseWithConstantOffset(N
))
1159 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
1160 int RHSC
= (int)RHS
->getSExtValue();
1161 if (N
.getOpcode() == ISD::SUB
)
1164 if ((RHSC
>= -255) && (RHSC
< 0)) { // 8 bits (always negative)
1165 Base
= N
.getOperand(0);
1166 if (Base
.getOpcode() == ISD::FrameIndex
) {
1167 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
1168 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
.getPointerTy());
1170 OffImm
= CurDAG
->getTargetConstant(RHSC
, MVT::i32
);
1178 bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode
*Op
, SDValue N
,
1180 unsigned Opcode
= Op
->getOpcode();
1181 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
1182 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
1183 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
1185 if (isScaledConstantInRange(N
, /*Scale=*/1, 0, 0x100, RHSC
)) { // 8 bits.
1186 OffImm
= ((AM
== ISD::PRE_INC
) || (AM
== ISD::POST_INC
))
1187 ? CurDAG
->getTargetConstant(RHSC
, MVT::i32
)
1188 : CurDAG
->getTargetConstant(-RHSC
, MVT::i32
);
1195 bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N
,
1197 SDValue
&OffReg
, SDValue
&ShImm
) {
1198 // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
1199 if (N
.getOpcode() != ISD::ADD
&& !CurDAG
->isBaseWithConstantOffset(N
))
1202 // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
1203 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
1204 int RHSC
= (int)RHS
->getZExtValue();
1205 if (RHSC
>= 0 && RHSC
< 0x1000) // 12 bits (unsigned)
1207 else if (RHSC
< 0 && RHSC
>= -255) // 8 bits
1211 if (Subtarget
->isCortexA9() && !N
.hasOneUse()) {
1212 // Compute R + (R << [1,2,3]) and reuse it.
1217 // Look for (R + R) or (R + (R << [1,2,3])).
1219 Base
= N
.getOperand(0);
1220 OffReg
= N
.getOperand(1);
1222 // Swap if it is ((R << c) + R).
1223 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(OffReg
);
1224 if (ShOpcVal
!= ARM_AM::lsl
) {
1225 ShOpcVal
= ARM_AM::getShiftOpcForNode(Base
);
1226 if (ShOpcVal
== ARM_AM::lsl
)
1227 std::swap(Base
, OffReg
);
1230 if (ShOpcVal
== ARM_AM::lsl
) {
1231 // Check to see if the RHS of the shift is a constant, if not, we can't fold
1233 if (ConstantSDNode
*Sh
= dyn_cast
<ConstantSDNode
>(OffReg
.getOperand(1))) {
1234 ShAmt
= Sh
->getZExtValue();
1235 if (ShAmt
< 4 && isShifterOpProfitable(OffReg
, ShOpcVal
, ShAmt
))
1236 OffReg
= OffReg
.getOperand(0);
1239 ShOpcVal
= ARM_AM::no_shift
;
1242 ShOpcVal
= ARM_AM::no_shift
;
1246 ShImm
= CurDAG
->getTargetConstant(ShAmt
, MVT::i32
);
1251 //===--------------------------------------------------------------------===//
1253 /// getAL - Returns a ARMCC::AL immediate node.
1254 static inline SDValue
getAL(SelectionDAG
*CurDAG
) {
1255 return CurDAG
->getTargetConstant((uint64_t)ARMCC::AL
, MVT::i32
);
1258 SDNode
*ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode
*N
) {
1259 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1260 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
1261 if (AM
== ISD::UNINDEXED
)
1264 EVT LoadedVT
= LD
->getMemoryVT();
1265 SDValue Offset
, AMOpc
;
1266 bool isPre
= (AM
== ISD::PRE_INC
) || (AM
== ISD::PRE_DEC
);
1267 unsigned Opcode
= 0;
1269 if (LoadedVT
== MVT::i32
&&
1270 SelectAddrMode2Offset(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1271 Opcode
= isPre
? ARM::LDR_PRE
: ARM::LDR_POST
;
1273 } else if (LoadedVT
== MVT::i16
&&
1274 SelectAddrMode3Offset(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1276 Opcode
= (LD
->getExtensionType() == ISD::SEXTLOAD
)
1277 ? (isPre
? ARM::LDRSH_PRE
: ARM::LDRSH_POST
)
1278 : (isPre
? ARM::LDRH_PRE
: ARM::LDRH_POST
);
1279 } else if (LoadedVT
== MVT::i8
|| LoadedVT
== MVT::i1
) {
1280 if (LD
->getExtensionType() == ISD::SEXTLOAD
) {
1281 if (SelectAddrMode3Offset(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1283 Opcode
= isPre
? ARM::LDRSB_PRE
: ARM::LDRSB_POST
;
1286 if (SelectAddrMode2Offset(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1288 Opcode
= isPre
? ARM::LDRB_PRE
: ARM::LDRB_POST
;
1294 SDValue Chain
= LD
->getChain();
1295 SDValue Base
= LD
->getBasePtr();
1296 SDValue Ops
[]= { Base
, Offset
, AMOpc
, getAL(CurDAG
),
1297 CurDAG
->getRegister(0, MVT::i32
), Chain
};
1298 return CurDAG
->getMachineNode(Opcode
, N
->getDebugLoc(), MVT::i32
, MVT::i32
,
1299 MVT::Other
, Ops
, 6);
1305 SDNode
*ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode
*N
) {
1306 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1307 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
1308 if (AM
== ISD::UNINDEXED
)
1311 EVT LoadedVT
= LD
->getMemoryVT();
1312 bool isSExtLd
= LD
->getExtensionType() == ISD::SEXTLOAD
;
1314 bool isPre
= (AM
== ISD::PRE_INC
) || (AM
== ISD::PRE_DEC
);
1315 unsigned Opcode
= 0;
1317 if (SelectT2AddrModeImm8Offset(N
, LD
->getOffset(), Offset
)) {
1318 switch (LoadedVT
.getSimpleVT().SimpleTy
) {
1320 Opcode
= isPre
? ARM::t2LDR_PRE
: ARM::t2LDR_POST
;
1324 Opcode
= isPre
? ARM::t2LDRSH_PRE
: ARM::t2LDRSH_POST
;
1326 Opcode
= isPre
? ARM::t2LDRH_PRE
: ARM::t2LDRH_POST
;
1331 Opcode
= isPre
? ARM::t2LDRSB_PRE
: ARM::t2LDRSB_POST
;
1333 Opcode
= isPre
? ARM::t2LDRB_PRE
: ARM::t2LDRB_POST
;
1342 SDValue Chain
= LD
->getChain();
1343 SDValue Base
= LD
->getBasePtr();
1344 SDValue Ops
[]= { Base
, Offset
, getAL(CurDAG
),
1345 CurDAG
->getRegister(0, MVT::i32
), Chain
};
1346 return CurDAG
->getMachineNode(Opcode
, N
->getDebugLoc(), MVT::i32
, MVT::i32
,
1347 MVT::Other
, Ops
, 5);
1353 /// PairSRegs - Form a D register from a pair of S registers.
1355 SDNode
*ARMDAGToDAGISel::PairSRegs(EVT VT
, SDValue V0
, SDValue V1
) {
1356 DebugLoc dl
= V0
.getNode()->getDebugLoc();
1358 CurDAG
->getTargetConstant(ARM::DPR_VFP2RegClassID
, MVT::i32
);
1359 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::ssub_0
, MVT::i32
);
1360 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::ssub_1
, MVT::i32
);
1361 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
};
1362 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
, 5);
1365 /// PairDRegs - Form a quad register from a pair of D registers.
1367 SDNode
*ARMDAGToDAGISel::PairDRegs(EVT VT
, SDValue V0
, SDValue V1
) {
1368 DebugLoc dl
= V0
.getNode()->getDebugLoc();
1369 SDValue RegClass
= CurDAG
->getTargetConstant(ARM::QPRRegClassID
, MVT::i32
);
1370 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::dsub_0
, MVT::i32
);
1371 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::dsub_1
, MVT::i32
);
1372 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
};
1373 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
, 5);
1376 /// PairQRegs - Form 4 consecutive D registers from a pair of Q registers.
1378 SDNode
*ARMDAGToDAGISel::PairQRegs(EVT VT
, SDValue V0
, SDValue V1
) {
1379 DebugLoc dl
= V0
.getNode()->getDebugLoc();
1380 SDValue RegClass
= CurDAG
->getTargetConstant(ARM::QQPRRegClassID
, MVT::i32
);
1381 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::qsub_0
, MVT::i32
);
1382 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::qsub_1
, MVT::i32
);
1383 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
};
1384 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
, 5);
1387 /// QuadSRegs - Form 4 consecutive S registers.
1389 SDNode
*ARMDAGToDAGISel::QuadSRegs(EVT VT
, SDValue V0
, SDValue V1
,
1390 SDValue V2
, SDValue V3
) {
1391 DebugLoc dl
= V0
.getNode()->getDebugLoc();
1393 CurDAG
->getTargetConstant(ARM::QPR_VFP2RegClassID
, MVT::i32
);
1394 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::ssub_0
, MVT::i32
);
1395 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::ssub_1
, MVT::i32
);
1396 SDValue SubReg2
= CurDAG
->getTargetConstant(ARM::ssub_2
, MVT::i32
);
1397 SDValue SubReg3
= CurDAG
->getTargetConstant(ARM::ssub_3
, MVT::i32
);
1398 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
,
1399 V2
, SubReg2
, V3
, SubReg3
};
1400 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
, 9);
1403 /// QuadDRegs - Form 4 consecutive D registers.
1405 SDNode
*ARMDAGToDAGISel::QuadDRegs(EVT VT
, SDValue V0
, SDValue V1
,
1406 SDValue V2
, SDValue V3
) {
1407 DebugLoc dl
= V0
.getNode()->getDebugLoc();
1408 SDValue RegClass
= CurDAG
->getTargetConstant(ARM::QQPRRegClassID
, MVT::i32
);
1409 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::dsub_0
, MVT::i32
);
1410 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::dsub_1
, MVT::i32
);
1411 SDValue SubReg2
= CurDAG
->getTargetConstant(ARM::dsub_2
, MVT::i32
);
1412 SDValue SubReg3
= CurDAG
->getTargetConstant(ARM::dsub_3
, MVT::i32
);
1413 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
,
1414 V2
, SubReg2
, V3
, SubReg3
};
1415 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
, 9);
1418 /// QuadQRegs - Form 4 consecutive Q registers.
1420 SDNode
*ARMDAGToDAGISel::QuadQRegs(EVT VT
, SDValue V0
, SDValue V1
,
1421 SDValue V2
, SDValue V3
) {
1422 DebugLoc dl
= V0
.getNode()->getDebugLoc();
1423 SDValue RegClass
= CurDAG
->getTargetConstant(ARM::QQQQPRRegClassID
, MVT::i32
);
1424 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::qsub_0
, MVT::i32
);
1425 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::qsub_1
, MVT::i32
);
1426 SDValue SubReg2
= CurDAG
->getTargetConstant(ARM::qsub_2
, MVT::i32
);
1427 SDValue SubReg3
= CurDAG
->getTargetConstant(ARM::qsub_3
, MVT::i32
);
1428 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
,
1429 V2
, SubReg2
, V3
, SubReg3
};
1430 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
, 9);
1433 /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
1434 /// of a NEON VLD or VST instruction. The supported values depend on the
1435 /// number of registers being loaded.
1436 SDValue
ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align
, unsigned NumVecs
,
1437 bool is64BitVector
) {
1438 unsigned NumRegs
= NumVecs
;
1439 if (!is64BitVector
&& NumVecs
< 3)
1442 unsigned Alignment
= cast
<ConstantSDNode
>(Align
)->getZExtValue();
1443 if (Alignment
>= 32 && NumRegs
== 4)
1445 else if (Alignment
>= 16 && (NumRegs
== 2 || NumRegs
== 4))
1447 else if (Alignment
>= 8)
1452 return CurDAG
->getTargetConstant(Alignment
, MVT::i32
);
1455 SDNode
*ARMDAGToDAGISel::SelectVLD(SDNode
*N
, bool isUpdating
, unsigned NumVecs
,
1456 unsigned *DOpcodes
, unsigned *QOpcodes0
,
1457 unsigned *QOpcodes1
) {
1458 assert(NumVecs
>= 1 && NumVecs
<= 4 && "VLD NumVecs out-of-range");
1459 DebugLoc dl
= N
->getDebugLoc();
1461 SDValue MemAddr
, Align
;
1462 unsigned AddrOpIdx
= isUpdating
? 1 : 2;
1463 if (!SelectAddrMode6(N
, N
->getOperand(AddrOpIdx
), MemAddr
, Align
))
1466 SDValue Chain
= N
->getOperand(0);
1467 EVT VT
= N
->getValueType(0);
1468 bool is64BitVector
= VT
.is64BitVector();
1469 Align
= GetVLDSTAlign(Align
, NumVecs
, is64BitVector
);
1471 unsigned OpcodeIndex
;
1472 switch (VT
.getSimpleVT().SimpleTy
) {
1473 default: llvm_unreachable("unhandled vld type");
1474 // Double-register operations:
1475 case MVT::v8i8
: OpcodeIndex
= 0; break;
1476 case MVT::v4i16
: OpcodeIndex
= 1; break;
1478 case MVT::v2i32
: OpcodeIndex
= 2; break;
1479 case MVT::v1i64
: OpcodeIndex
= 3; break;
1480 // Quad-register operations:
1481 case MVT::v16i8
: OpcodeIndex
= 0; break;
1482 case MVT::v8i16
: OpcodeIndex
= 1; break;
1484 case MVT::v4i32
: OpcodeIndex
= 2; break;
1485 case MVT::v2i64
: OpcodeIndex
= 3;
1486 assert(NumVecs
== 1 && "v2i64 type only supported for VLD1");
1494 unsigned ResTyElts
= (NumVecs
== 3) ? 4 : NumVecs
;
1497 ResTy
= EVT::getVectorVT(*CurDAG
->getContext(), MVT::i64
, ResTyElts
);
1499 std::vector
<EVT
> ResTys
;
1500 ResTys
.push_back(ResTy
);
1502 ResTys
.push_back(MVT::i32
);
1503 ResTys
.push_back(MVT::Other
);
1505 SDValue Pred
= getAL(CurDAG
);
1506 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
1508 SmallVector
<SDValue
, 7> Ops
;
1510 // Double registers and VLD1/VLD2 quad registers are directly supported.
1511 if (is64BitVector
|| NumVecs
<= 2) {
1512 unsigned Opc
= (is64BitVector
? DOpcodes
[OpcodeIndex
] :
1513 QOpcodes0
[OpcodeIndex
]);
1514 Ops
.push_back(MemAddr
);
1515 Ops
.push_back(Align
);
1517 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
1518 Ops
.push_back(isa
<ConstantSDNode
>(Inc
.getNode()) ? Reg0
: Inc
);
1520 Ops
.push_back(Pred
);
1521 Ops
.push_back(Reg0
);
1522 Ops
.push_back(Chain
);
1523 VLd
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
.data(), Ops
.size());
1526 // Otherwise, quad registers are loaded with two separate instructions,
1527 // where one loads the even registers and the other loads the odd registers.
1528 EVT AddrTy
= MemAddr
.getValueType();
1530 // Load the even subregs. This is always an updating load, so that it
1531 // provides the address to the second load for the odd subregs.
1533 SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, ResTy
), 0);
1534 const SDValue OpsA
[] = { MemAddr
, Align
, Reg0
, ImplDef
, Pred
, Reg0
, Chain
};
1535 SDNode
*VLdA
= CurDAG
->getMachineNode(QOpcodes0
[OpcodeIndex
], dl
,
1536 ResTy
, AddrTy
, MVT::Other
, OpsA
, 7);
1537 Chain
= SDValue(VLdA
, 2);
1539 // Load the odd subregs.
1540 Ops
.push_back(SDValue(VLdA
, 1));
1541 Ops
.push_back(Align
);
1543 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
1544 assert(isa
<ConstantSDNode
>(Inc
.getNode()) &&
1545 "only constant post-increment update allowed for VLD3/4");
1547 Ops
.push_back(Reg0
);
1549 Ops
.push_back(SDValue(VLdA
, 0));
1550 Ops
.push_back(Pred
);
1551 Ops
.push_back(Reg0
);
1552 Ops
.push_back(Chain
);
1553 VLd
= CurDAG
->getMachineNode(QOpcodes1
[OpcodeIndex
], dl
, ResTys
,
1554 Ops
.data(), Ops
.size());
1557 // Transfer memoperands.
1558 MachineSDNode::mmo_iterator MemOp
= MF
->allocateMemRefsArray(1);
1559 MemOp
[0] = cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1560 cast
<MachineSDNode
>(VLd
)->setMemRefs(MemOp
, MemOp
+ 1);
1565 // Extract out the subregisters.
1566 SDValue SuperReg
= SDValue(VLd
, 0);
1567 assert(ARM::dsub_7
== ARM::dsub_0
+7 &&
1568 ARM::qsub_3
== ARM::qsub_0
+3 && "Unexpected subreg numbering");
1569 unsigned Sub0
= (is64BitVector
? ARM::dsub_0
: ARM::qsub_0
);
1570 for (unsigned Vec
= 0; Vec
< NumVecs
; ++Vec
)
1571 ReplaceUses(SDValue(N
, Vec
),
1572 CurDAG
->getTargetExtractSubreg(Sub0
+ Vec
, dl
, VT
, SuperReg
));
1573 ReplaceUses(SDValue(N
, NumVecs
), SDValue(VLd
, 1));
1575 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(VLd
, 2));
1579 SDNode
*ARMDAGToDAGISel::SelectVST(SDNode
*N
, bool isUpdating
, unsigned NumVecs
,
1580 unsigned *DOpcodes
, unsigned *QOpcodes0
,
1581 unsigned *QOpcodes1
) {
1582 assert(NumVecs
>= 1 && NumVecs
<= 4 && "VST NumVecs out-of-range");
1583 DebugLoc dl
= N
->getDebugLoc();
1585 SDValue MemAddr
, Align
;
1586 unsigned AddrOpIdx
= isUpdating
? 1 : 2;
1587 unsigned Vec0Idx
= 3; // AddrOpIdx + (isUpdating ? 2 : 1)
1588 if (!SelectAddrMode6(N
, N
->getOperand(AddrOpIdx
), MemAddr
, Align
))
1591 MachineSDNode::mmo_iterator MemOp
= MF
->allocateMemRefsArray(1);
1592 MemOp
[0] = cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1594 SDValue Chain
= N
->getOperand(0);
1595 EVT VT
= N
->getOperand(Vec0Idx
).getValueType();
1596 bool is64BitVector
= VT
.is64BitVector();
1597 Align
= GetVLDSTAlign(Align
, NumVecs
, is64BitVector
);
1599 unsigned OpcodeIndex
;
1600 switch (VT
.getSimpleVT().SimpleTy
) {
1601 default: llvm_unreachable("unhandled vst type");
1602 // Double-register operations:
1603 case MVT::v8i8
: OpcodeIndex
= 0; break;
1604 case MVT::v4i16
: OpcodeIndex
= 1; break;
1606 case MVT::v2i32
: OpcodeIndex
= 2; break;
1607 case MVT::v1i64
: OpcodeIndex
= 3; break;
1608 // Quad-register operations:
1609 case MVT::v16i8
: OpcodeIndex
= 0; break;
1610 case MVT::v8i16
: OpcodeIndex
= 1; break;
1612 case MVT::v4i32
: OpcodeIndex
= 2; break;
1613 case MVT::v2i64
: OpcodeIndex
= 3;
1614 assert(NumVecs
== 1 && "v2i64 type only supported for VST1");
1618 std::vector
<EVT
> ResTys
;
1620 ResTys
.push_back(MVT::i32
);
1621 ResTys
.push_back(MVT::Other
);
1623 SDValue Pred
= getAL(CurDAG
);
1624 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
1625 SmallVector
<SDValue
, 7> Ops
;
1627 // Double registers and VST1/VST2 quad registers are directly supported.
1628 if (is64BitVector
|| NumVecs
<= 2) {
1631 SrcReg
= N
->getOperand(Vec0Idx
);
1632 } else if (is64BitVector
) {
1633 // Form a REG_SEQUENCE to force register allocation.
1634 SDValue V0
= N
->getOperand(Vec0Idx
+ 0);
1635 SDValue V1
= N
->getOperand(Vec0Idx
+ 1);
1637 SrcReg
= SDValue(PairDRegs(MVT::v2i64
, V0
, V1
), 0);
1639 SDValue V2
= N
->getOperand(Vec0Idx
+ 2);
1640 // If it's a vst3, form a quad D-register and leave the last part as
1642 SDValue V3
= (NumVecs
== 3)
1643 ? SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
,dl
,VT
), 0)
1644 : N
->getOperand(Vec0Idx
+ 3);
1645 SrcReg
= SDValue(QuadDRegs(MVT::v4i64
, V0
, V1
, V2
, V3
), 0);
1648 // Form a QQ register.
1649 SDValue Q0
= N
->getOperand(Vec0Idx
);
1650 SDValue Q1
= N
->getOperand(Vec0Idx
+ 1);
1651 SrcReg
= SDValue(PairQRegs(MVT::v4i64
, Q0
, Q1
), 0);
1654 unsigned Opc
= (is64BitVector
? DOpcodes
[OpcodeIndex
] :
1655 QOpcodes0
[OpcodeIndex
]);
1656 Ops
.push_back(MemAddr
);
1657 Ops
.push_back(Align
);
1659 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
1660 Ops
.push_back(isa
<ConstantSDNode
>(Inc
.getNode()) ? Reg0
: Inc
);
1662 Ops
.push_back(SrcReg
);
1663 Ops
.push_back(Pred
);
1664 Ops
.push_back(Reg0
);
1665 Ops
.push_back(Chain
);
1667 CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
.data(), Ops
.size());
1669 // Transfer memoperands.
1670 cast
<MachineSDNode
>(VSt
)->setMemRefs(MemOp
, MemOp
+ 1);
1675 // Otherwise, quad registers are stored with two separate instructions,
1676 // where one stores the even registers and the other stores the odd registers.
1678 // Form the QQQQ REG_SEQUENCE.
1679 SDValue V0
= N
->getOperand(Vec0Idx
+ 0);
1680 SDValue V1
= N
->getOperand(Vec0Idx
+ 1);
1681 SDValue V2
= N
->getOperand(Vec0Idx
+ 2);
1682 SDValue V3
= (NumVecs
== 3)
1683 ? SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, VT
), 0)
1684 : N
->getOperand(Vec0Idx
+ 3);
1685 SDValue RegSeq
= SDValue(QuadQRegs(MVT::v8i64
, V0
, V1
, V2
, V3
), 0);
1687 // Store the even D registers. This is always an updating store, so that it
1688 // provides the address to the second store for the odd subregs.
1689 const SDValue OpsA
[] = { MemAddr
, Align
, Reg0
, RegSeq
, Pred
, Reg0
, Chain
};
1690 SDNode
*VStA
= CurDAG
->getMachineNode(QOpcodes0
[OpcodeIndex
], dl
,
1691 MemAddr
.getValueType(),
1692 MVT::Other
, OpsA
, 7);
1693 cast
<MachineSDNode
>(VStA
)->setMemRefs(MemOp
, MemOp
+ 1);
1694 Chain
= SDValue(VStA
, 1);
1696 // Store the odd D registers.
1697 Ops
.push_back(SDValue(VStA
, 0));
1698 Ops
.push_back(Align
);
1700 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
1701 assert(isa
<ConstantSDNode
>(Inc
.getNode()) &&
1702 "only constant post-increment update allowed for VST3/4");
1704 Ops
.push_back(Reg0
);
1706 Ops
.push_back(RegSeq
);
1707 Ops
.push_back(Pred
);
1708 Ops
.push_back(Reg0
);
1709 Ops
.push_back(Chain
);
1710 SDNode
*VStB
= CurDAG
->getMachineNode(QOpcodes1
[OpcodeIndex
], dl
, ResTys
,
1711 Ops
.data(), Ops
.size());
1712 cast
<MachineSDNode
>(VStB
)->setMemRefs(MemOp
, MemOp
+ 1);
1716 SDNode
*ARMDAGToDAGISel::SelectVLDSTLane(SDNode
*N
, bool IsLoad
,
1717 bool isUpdating
, unsigned NumVecs
,
1719 unsigned *QOpcodes
) {
1720 assert(NumVecs
>=2 && NumVecs
<= 4 && "VLDSTLane NumVecs out-of-range");
1721 DebugLoc dl
= N
->getDebugLoc();
1723 SDValue MemAddr
, Align
;
1724 unsigned AddrOpIdx
= isUpdating
? 1 : 2;
1725 unsigned Vec0Idx
= 3; // AddrOpIdx + (isUpdating ? 2 : 1)
1726 if (!SelectAddrMode6(N
, N
->getOperand(AddrOpIdx
), MemAddr
, Align
))
1729 MachineSDNode::mmo_iterator MemOp
= MF
->allocateMemRefsArray(1);
1730 MemOp
[0] = cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1732 SDValue Chain
= N
->getOperand(0);
1734 cast
<ConstantSDNode
>(N
->getOperand(Vec0Idx
+ NumVecs
))->getZExtValue();
1735 EVT VT
= N
->getOperand(Vec0Idx
).getValueType();
1736 bool is64BitVector
= VT
.is64BitVector();
1738 unsigned Alignment
= 0;
1740 Alignment
= cast
<ConstantSDNode
>(Align
)->getZExtValue();
1741 unsigned NumBytes
= NumVecs
* VT
.getVectorElementType().getSizeInBits()/8;
1742 if (Alignment
> NumBytes
)
1743 Alignment
= NumBytes
;
1744 if (Alignment
< 8 && Alignment
< NumBytes
)
1746 // Alignment must be a power of two; make sure of that.
1747 Alignment
= (Alignment
& -Alignment
);
1751 Align
= CurDAG
->getTargetConstant(Alignment
, MVT::i32
);
1753 unsigned OpcodeIndex
;
1754 switch (VT
.getSimpleVT().SimpleTy
) {
1755 default: llvm_unreachable("unhandled vld/vst lane type");
1756 // Double-register operations:
1757 case MVT::v8i8
: OpcodeIndex
= 0; break;
1758 case MVT::v4i16
: OpcodeIndex
= 1; break;
1760 case MVT::v2i32
: OpcodeIndex
= 2; break;
1761 // Quad-register operations:
1762 case MVT::v8i16
: OpcodeIndex
= 0; break;
1764 case MVT::v4i32
: OpcodeIndex
= 1; break;
1767 std::vector
<EVT
> ResTys
;
1769 unsigned ResTyElts
= (NumVecs
== 3) ? 4 : NumVecs
;
1772 ResTys
.push_back(EVT::getVectorVT(*CurDAG
->getContext(),
1773 MVT::i64
, ResTyElts
));
1776 ResTys
.push_back(MVT::i32
);
1777 ResTys
.push_back(MVT::Other
);
1779 SDValue Pred
= getAL(CurDAG
);
1780 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
1782 SmallVector
<SDValue
, 8> Ops
;
1783 Ops
.push_back(MemAddr
);
1784 Ops
.push_back(Align
);
1786 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
1787 Ops
.push_back(isa
<ConstantSDNode
>(Inc
.getNode()) ? Reg0
: Inc
);
1791 SDValue V0
= N
->getOperand(Vec0Idx
+ 0);
1792 SDValue V1
= N
->getOperand(Vec0Idx
+ 1);
1795 SuperReg
= SDValue(PairDRegs(MVT::v2i64
, V0
, V1
), 0);
1797 SuperReg
= SDValue(PairQRegs(MVT::v4i64
, V0
, V1
), 0);
1799 SDValue V2
= N
->getOperand(Vec0Idx
+ 2);
1800 SDValue V3
= (NumVecs
== 3)
1801 ? SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, VT
), 0)
1802 : N
->getOperand(Vec0Idx
+ 3);
1804 SuperReg
= SDValue(QuadDRegs(MVT::v4i64
, V0
, V1
, V2
, V3
), 0);
1806 SuperReg
= SDValue(QuadQRegs(MVT::v8i64
, V0
, V1
, V2
, V3
), 0);
1808 Ops
.push_back(SuperReg
);
1809 Ops
.push_back(getI32Imm(Lane
));
1810 Ops
.push_back(Pred
);
1811 Ops
.push_back(Reg0
);
1812 Ops
.push_back(Chain
);
1814 unsigned Opc
= (is64BitVector
? DOpcodes
[OpcodeIndex
] :
1815 QOpcodes
[OpcodeIndex
]);
1816 SDNode
*VLdLn
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
,
1817 Ops
.data(), Ops
.size());
1818 cast
<MachineSDNode
>(VLdLn
)->setMemRefs(MemOp
, MemOp
+ 1);
1822 // Extract the subregisters.
1823 SuperReg
= SDValue(VLdLn
, 0);
1824 assert(ARM::dsub_7
== ARM::dsub_0
+7 &&
1825 ARM::qsub_3
== ARM::qsub_0
+3 && "Unexpected subreg numbering");
1826 unsigned Sub0
= is64BitVector
? ARM::dsub_0
: ARM::qsub_0
;
1827 for (unsigned Vec
= 0; Vec
< NumVecs
; ++Vec
)
1828 ReplaceUses(SDValue(N
, Vec
),
1829 CurDAG
->getTargetExtractSubreg(Sub0
+ Vec
, dl
, VT
, SuperReg
));
1830 ReplaceUses(SDValue(N
, NumVecs
), SDValue(VLdLn
, 1));
1832 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(VLdLn
, 2));
1836 SDNode
*ARMDAGToDAGISel::SelectVLDDup(SDNode
*N
, bool isUpdating
,
1837 unsigned NumVecs
, unsigned *Opcodes
) {
1838 assert(NumVecs
>=2 && NumVecs
<= 4 && "VLDDup NumVecs out-of-range");
1839 DebugLoc dl
= N
->getDebugLoc();
1841 SDValue MemAddr
, Align
;
1842 if (!SelectAddrMode6(N
, N
->getOperand(1), MemAddr
, Align
))
1845 MachineSDNode::mmo_iterator MemOp
= MF
->allocateMemRefsArray(1);
1846 MemOp
[0] = cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1848 SDValue Chain
= N
->getOperand(0);
1849 EVT VT
= N
->getValueType(0);
1851 unsigned Alignment
= 0;
1853 Alignment
= cast
<ConstantSDNode
>(Align
)->getZExtValue();
1854 unsigned NumBytes
= NumVecs
* VT
.getVectorElementType().getSizeInBits()/8;
1855 if (Alignment
> NumBytes
)
1856 Alignment
= NumBytes
;
1857 if (Alignment
< 8 && Alignment
< NumBytes
)
1859 // Alignment must be a power of two; make sure of that.
1860 Alignment
= (Alignment
& -Alignment
);
1864 Align
= CurDAG
->getTargetConstant(Alignment
, MVT::i32
);
1866 unsigned OpcodeIndex
;
1867 switch (VT
.getSimpleVT().SimpleTy
) {
1868 default: llvm_unreachable("unhandled vld-dup type");
1869 case MVT::v8i8
: OpcodeIndex
= 0; break;
1870 case MVT::v4i16
: OpcodeIndex
= 1; break;
1872 case MVT::v2i32
: OpcodeIndex
= 2; break;
1875 SDValue Pred
= getAL(CurDAG
);
1876 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
1878 unsigned Opc
= Opcodes
[OpcodeIndex
];
1879 SmallVector
<SDValue
, 6> Ops
;
1880 Ops
.push_back(MemAddr
);
1881 Ops
.push_back(Align
);
1883 SDValue Inc
= N
->getOperand(2);
1884 Ops
.push_back(isa
<ConstantSDNode
>(Inc
.getNode()) ? Reg0
: Inc
);
1886 Ops
.push_back(Pred
);
1887 Ops
.push_back(Reg0
);
1888 Ops
.push_back(Chain
);
1890 unsigned ResTyElts
= (NumVecs
== 3) ? 4 : NumVecs
;
1891 std::vector
<EVT
> ResTys
;
1892 ResTys
.push_back(EVT::getVectorVT(*CurDAG
->getContext(), MVT::i64
,ResTyElts
));
1894 ResTys
.push_back(MVT::i32
);
1895 ResTys
.push_back(MVT::Other
);
1897 CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
.data(), Ops
.size());
1898 cast
<MachineSDNode
>(VLdDup
)->setMemRefs(MemOp
, MemOp
+ 1);
1899 SuperReg
= SDValue(VLdDup
, 0);
1901 // Extract the subregisters.
1902 assert(ARM::dsub_7
== ARM::dsub_0
+7 && "Unexpected subreg numbering");
1903 unsigned SubIdx
= ARM::dsub_0
;
1904 for (unsigned Vec
= 0; Vec
< NumVecs
; ++Vec
)
1905 ReplaceUses(SDValue(N
, Vec
),
1906 CurDAG
->getTargetExtractSubreg(SubIdx
+Vec
, dl
, VT
, SuperReg
));
1907 ReplaceUses(SDValue(N
, NumVecs
), SDValue(VLdDup
, 1));
1909 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(VLdDup
, 2));
1913 SDNode
*ARMDAGToDAGISel::SelectVTBL(SDNode
*N
, bool IsExt
, unsigned NumVecs
,
1915 assert(NumVecs
>= 2 && NumVecs
<= 4 && "VTBL NumVecs out-of-range");
1916 DebugLoc dl
= N
->getDebugLoc();
1917 EVT VT
= N
->getValueType(0);
1918 unsigned FirstTblReg
= IsExt
? 2 : 1;
1920 // Form a REG_SEQUENCE to force register allocation.
1922 SDValue V0
= N
->getOperand(FirstTblReg
+ 0);
1923 SDValue V1
= N
->getOperand(FirstTblReg
+ 1);
1925 RegSeq
= SDValue(PairDRegs(MVT::v16i8
, V0
, V1
), 0);
1927 SDValue V2
= N
->getOperand(FirstTblReg
+ 2);
1928 // If it's a vtbl3, form a quad D-register and leave the last part as
1930 SDValue V3
= (NumVecs
== 3)
1931 ? SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, VT
), 0)
1932 : N
->getOperand(FirstTblReg
+ 3);
1933 RegSeq
= SDValue(QuadDRegs(MVT::v4i64
, V0
, V1
, V2
, V3
), 0);
1936 SmallVector
<SDValue
, 6> Ops
;
1938 Ops
.push_back(N
->getOperand(1));
1939 Ops
.push_back(RegSeq
);
1940 Ops
.push_back(N
->getOperand(FirstTblReg
+ NumVecs
));
1941 Ops
.push_back(getAL(CurDAG
)); // predicate
1942 Ops
.push_back(CurDAG
->getRegister(0, MVT::i32
)); // predicate register
1943 return CurDAG
->getMachineNode(Opc
, dl
, VT
, Ops
.data(), Ops
.size());
1946 SDNode
*ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode
*N
,
1948 if (!Subtarget
->hasV6T2Ops())
1951 unsigned Opc
= isSigned
? (Subtarget
->isThumb() ? ARM::t2SBFX
: ARM::SBFX
)
1952 : (Subtarget
->isThumb() ? ARM::t2UBFX
: ARM::UBFX
);
1955 // For unsigned extracts, check for a shift right and mask
1956 unsigned And_imm
= 0;
1957 if (N
->getOpcode() == ISD::AND
) {
1958 if (isOpcWithIntImmediate(N
, ISD::AND
, And_imm
)) {
1960 // The immediate is a mask of the low bits iff imm & (imm+1) == 0
1961 if (And_imm
& (And_imm
+ 1))
1964 unsigned Srl_imm
= 0;
1965 if (isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::SRL
,
1967 assert(Srl_imm
> 0 && Srl_imm
< 32 && "bad amount in shift node!");
1969 unsigned Width
= CountTrailingOnes_32(And_imm
);
1970 unsigned LSB
= Srl_imm
;
1971 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
1972 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
1973 CurDAG
->getTargetConstant(LSB
, MVT::i32
),
1974 CurDAG
->getTargetConstant(Width
, MVT::i32
),
1975 getAL(CurDAG
), Reg0
};
1976 return CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
, 5);
1982 // Otherwise, we're looking for a shift of a shift
1983 unsigned Shl_imm
= 0;
1984 if (isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::SHL
, Shl_imm
)) {
1985 assert(Shl_imm
> 0 && Shl_imm
< 32 && "bad amount in shift node!");
1986 unsigned Srl_imm
= 0;
1987 if (isInt32Immediate(N
->getOperand(1), Srl_imm
)) {
1988 assert(Srl_imm
> 0 && Srl_imm
< 32 && "bad amount in shift node!");
1989 unsigned Width
= 32 - Srl_imm
;
1990 int LSB
= Srl_imm
- Shl_imm
;
1993 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
1994 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
1995 CurDAG
->getTargetConstant(LSB
, MVT::i32
),
1996 CurDAG
->getTargetConstant(Width
, MVT::i32
),
1997 getAL(CurDAG
), Reg0
};
1998 return CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
, 5);
2004 SDNode
*ARMDAGToDAGISel::
2005 SelectT2CMOVShiftOp(SDNode
*N
, SDValue FalseVal
, SDValue TrueVal
,
2006 ARMCC::CondCodes CCVal
, SDValue CCR
, SDValue InFlag
) {
2009 if (SelectT2ShifterOperandReg(TrueVal
, CPTmp0
, CPTmp1
)) {
2010 unsigned SOVal
= cast
<ConstantSDNode
>(CPTmp1
)->getZExtValue();
2011 unsigned SOShOp
= ARM_AM::getSORegShOp(SOVal
);
2014 case ARM_AM::lsl
: Opc
= ARM::t2MOVCClsl
; break;
2015 case ARM_AM::lsr
: Opc
= ARM::t2MOVCClsr
; break;
2016 case ARM_AM::asr
: Opc
= ARM::t2MOVCCasr
; break;
2017 case ARM_AM::ror
: Opc
= ARM::t2MOVCCror
; break;
2019 llvm_unreachable("Unknown so_reg opcode!");
2023 CurDAG
->getTargetConstant(ARM_AM::getSORegOffset(SOVal
), MVT::i32
);
2024 SDValue CC
= CurDAG
->getTargetConstant(CCVal
, MVT::i32
);
2025 SDValue Ops
[] = { FalseVal
, CPTmp0
, SOShImm
, CC
, CCR
, InFlag
};
2026 return CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
,Ops
, 6);
2031 SDNode
*ARMDAGToDAGISel::
2032 SelectARMCMOVShiftOp(SDNode
*N
, SDValue FalseVal
, SDValue TrueVal
,
2033 ARMCC::CondCodes CCVal
, SDValue CCR
, SDValue InFlag
) {
2037 if (SelectShifterOperandReg(TrueVal
, CPTmp0
, CPTmp1
, CPTmp2
)) {
2038 SDValue CC
= CurDAG
->getTargetConstant(CCVal
, MVT::i32
);
2039 SDValue Ops
[] = { FalseVal
, CPTmp0
, CPTmp1
, CPTmp2
, CC
, CCR
, InFlag
};
2040 return CurDAG
->SelectNodeTo(N
, ARM::MOVCCs
, MVT::i32
, Ops
, 7);
2045 SDNode
*ARMDAGToDAGISel::
2046 SelectT2CMOVImmOp(SDNode
*N
, SDValue FalseVal
, SDValue TrueVal
,
2047 ARMCC::CondCodes CCVal
, SDValue CCR
, SDValue InFlag
) {
2048 ConstantSDNode
*T
= dyn_cast
<ConstantSDNode
>(TrueVal
);
2053 unsigned TrueImm
= T
->getZExtValue();
2054 if (is_t2_so_imm(TrueImm
)) {
2055 Opc
= ARM::t2MOVCCi
;
2056 } else if (TrueImm
<= 0xffff) {
2057 Opc
= ARM::t2MOVCCi16
;
2058 } else if (is_t2_so_imm_not(TrueImm
)) {
2060 Opc
= ARM::t2MVNCCi
;
2061 } else if (TrueVal
.getNode()->hasOneUse() && Subtarget
->hasV6T2Ops()) {
2063 Opc
= ARM::t2MOVCCi32imm
;
2067 SDValue True
= CurDAG
->getTargetConstant(TrueImm
, MVT::i32
);
2068 SDValue CC
= CurDAG
->getTargetConstant(CCVal
, MVT::i32
);
2069 SDValue Ops
[] = { FalseVal
, True
, CC
, CCR
, InFlag
};
2070 return CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
, 5);
2076 SDNode
*ARMDAGToDAGISel::
2077 SelectARMCMOVImmOp(SDNode
*N
, SDValue FalseVal
, SDValue TrueVal
,
2078 ARMCC::CondCodes CCVal
, SDValue CCR
, SDValue InFlag
) {
2079 ConstantSDNode
*T
= dyn_cast
<ConstantSDNode
>(TrueVal
);
2084 unsigned TrueImm
= T
->getZExtValue();
2085 bool isSoImm
= is_so_imm(TrueImm
);
2088 } else if (Subtarget
->hasV6T2Ops() && TrueImm
<= 0xffff) {
2089 Opc
= ARM::MOVCCi16
;
2090 } else if (is_so_imm_not(TrueImm
)) {
2093 } else if (TrueVal
.getNode()->hasOneUse() &&
2094 (Subtarget
->hasV6T2Ops() || ARM_AM::isSOImmTwoPartVal(TrueImm
))) {
2096 Opc
= ARM::MOVCCi32imm
;
2100 SDValue True
= CurDAG
->getTargetConstant(TrueImm
, MVT::i32
);
2101 SDValue CC
= CurDAG
->getTargetConstant(CCVal
, MVT::i32
);
2102 SDValue Ops
[] = { FalseVal
, True
, CC
, CCR
, InFlag
};
2103 return CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
, 5);
2109 SDNode
*ARMDAGToDAGISel::SelectCMOVOp(SDNode
*N
) {
2110 EVT VT
= N
->getValueType(0);
2111 SDValue FalseVal
= N
->getOperand(0);
2112 SDValue TrueVal
= N
->getOperand(1);
2113 SDValue CC
= N
->getOperand(2);
2114 SDValue CCR
= N
->getOperand(3);
2115 SDValue InFlag
= N
->getOperand(4);
2116 assert(CC
.getOpcode() == ISD::Constant
);
2117 assert(CCR
.getOpcode() == ISD::Register
);
2118 ARMCC::CondCodes CCVal
=
2119 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(CC
)->getZExtValue();
2121 if (!Subtarget
->isThumb1Only() && VT
== MVT::i32
) {
2122 // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
2123 // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
2124 // Pattern complexity = 18 cost = 1 size = 0
2128 if (Subtarget
->isThumb()) {
2129 SDNode
*Res
= SelectT2CMOVShiftOp(N
, FalseVal
, TrueVal
,
2130 CCVal
, CCR
, InFlag
);
2132 Res
= SelectT2CMOVShiftOp(N
, TrueVal
, FalseVal
,
2133 ARMCC::getOppositeCondition(CCVal
), CCR
, InFlag
);
2137 SDNode
*Res
= SelectARMCMOVShiftOp(N
, FalseVal
, TrueVal
,
2138 CCVal
, CCR
, InFlag
);
2140 Res
= SelectARMCMOVShiftOp(N
, TrueVal
, FalseVal
,
2141 ARMCC::getOppositeCondition(CCVal
), CCR
, InFlag
);
2146 // Pattern: (ARMcmov:i32 GPR:i32:$false,
2147 // (imm:i32)<<P:Pred_so_imm>>:$true,
2149 // Emits: (MOVCCi:i32 GPR:i32:$false,
2150 // (so_imm:i32 (imm:i32):$true), (imm:i32):$cc)
2151 // Pattern complexity = 10 cost = 1 size = 0
2152 if (Subtarget
->isThumb()) {
2153 SDNode
*Res
= SelectT2CMOVImmOp(N
, FalseVal
, TrueVal
,
2154 CCVal
, CCR
, InFlag
);
2156 Res
= SelectT2CMOVImmOp(N
, TrueVal
, FalseVal
,
2157 ARMCC::getOppositeCondition(CCVal
), CCR
, InFlag
);
2161 SDNode
*Res
= SelectARMCMOVImmOp(N
, FalseVal
, TrueVal
,
2162 CCVal
, CCR
, InFlag
);
2164 Res
= SelectARMCMOVImmOp(N
, TrueVal
, FalseVal
,
2165 ARMCC::getOppositeCondition(CCVal
), CCR
, InFlag
);
2171 // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2172 // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2173 // Pattern complexity = 6 cost = 1 size = 0
2175 // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2176 // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2177 // Pattern complexity = 6 cost = 11 size = 0
2179 // Also VMOVScc and VMOVDcc.
2180 SDValue Tmp2
= CurDAG
->getTargetConstant(CCVal
, MVT::i32
);
2181 SDValue Ops
[] = { FalseVal
, TrueVal
, Tmp2
, CCR
, InFlag
};
2183 switch (VT
.getSimpleVT().SimpleTy
) {
2184 default: assert(false && "Illegal conditional move type!");
2187 Opc
= Subtarget
->isThumb()
2188 ? (Subtarget
->hasThumb2() ? ARM::t2MOVCCr
: ARM::tMOVCCr_pseudo
)
2198 return CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
, 5);
2201 SDNode
*ARMDAGToDAGISel::SelectConcatVector(SDNode
*N
) {
2202 // The only time a CONCAT_VECTORS operation can have legal types is when
2203 // two 64-bit vectors are concatenated to a 128-bit vector.
2204 EVT VT
= N
->getValueType(0);
2205 if (!VT
.is128BitVector() || N
->getNumOperands() != 2)
2206 llvm_unreachable("unexpected CONCAT_VECTORS");
2207 return PairDRegs(VT
, N
->getOperand(0), N
->getOperand(1));
2210 SDNode
*ARMDAGToDAGISel::Select(SDNode
*N
) {
2211 DebugLoc dl
= N
->getDebugLoc();
2213 if (N
->isMachineOpcode())
2214 return NULL
; // Already selected.
2216 switch (N
->getOpcode()) {
2218 case ISD::Constant
: {
2219 unsigned Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
2221 if (Subtarget
->hasThumb2())
2222 // Thumb2-aware targets have the MOVT instruction, so all immediates can
2223 // be done with MOV + MOVT, at worst.
2226 if (Subtarget
->isThumb()) {
2227 UseCP
= (Val
> 255 && // MOV
2228 ~Val
> 255 && // MOV + MVN
2229 !ARM_AM::isThumbImmShiftedVal(Val
)); // MOV + LSL
2231 UseCP
= (ARM_AM::getSOImmVal(Val
) == -1 && // MOV
2232 ARM_AM::getSOImmVal(~Val
) == -1 && // MVN
2233 !ARM_AM::isSOImmTwoPartVal(Val
)); // two instrs.
2238 CurDAG
->getTargetConstantPool(ConstantInt::get(
2239 Type::getInt32Ty(*CurDAG
->getContext()), Val
),
2240 TLI
.getPointerTy());
2243 if (Subtarget
->isThumb1Only()) {
2244 SDValue Pred
= getAL(CurDAG
);
2245 SDValue PredReg
= CurDAG
->getRegister(0, MVT::i32
);
2246 SDValue Ops
[] = { CPIdx
, Pred
, PredReg
, CurDAG
->getEntryNode() };
2247 ResNode
= CurDAG
->getMachineNode(ARM::tLDRpci
, dl
, MVT::i32
, MVT::Other
,
2252 CurDAG
->getTargetConstant(0, MVT::i32
),
2254 CurDAG
->getRegister(0, MVT::i32
),
2255 CurDAG
->getEntryNode()
2257 ResNode
=CurDAG
->getMachineNode(ARM::LDRcp
, dl
, MVT::i32
, MVT::Other
,
2260 ReplaceUses(SDValue(N
, 0), SDValue(ResNode
, 0));
2264 // Other cases are autogenerated.
2267 case ISD::FrameIndex
: {
2268 // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
2269 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
2270 SDValue TFI
= CurDAG
->getTargetFrameIndex(FI
, TLI
.getPointerTy());
2271 if (Subtarget
->isThumb1Only()) {
2272 return CurDAG
->SelectNodeTo(N
, ARM::tADDrSPi
, MVT::i32
, TFI
,
2273 CurDAG
->getTargetConstant(0, MVT::i32
));
2275 unsigned Opc
= ((Subtarget
->isThumb() && Subtarget
->hasThumb2()) ?
2276 ARM::t2ADDri
: ARM::ADDri
);
2277 SDValue Ops
[] = { TFI
, CurDAG
->getTargetConstant(0, MVT::i32
),
2278 getAL(CurDAG
), CurDAG
->getRegister(0, MVT::i32
),
2279 CurDAG
->getRegister(0, MVT::i32
) };
2280 return CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
, 5);
2284 if (SDNode
*I
= SelectV6T2BitfieldExtractOp(N
, false))
2288 if (SDNode
*I
= SelectV6T2BitfieldExtractOp(N
, true))
2292 if (Subtarget
->isThumb1Only())
2294 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
2295 unsigned RHSV
= C
->getZExtValue();
2297 if (isPowerOf2_32(RHSV
-1)) { // 2^n+1?
2298 unsigned ShImm
= Log2_32(RHSV
-1);
2301 SDValue V
= N
->getOperand(0);
2302 ShImm
= ARM_AM::getSORegOpc(ARM_AM::lsl
, ShImm
);
2303 SDValue ShImmOp
= CurDAG
->getTargetConstant(ShImm
, MVT::i32
);
2304 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2305 if (Subtarget
->isThumb()) {
2306 SDValue Ops
[] = { V
, V
, ShImmOp
, getAL(CurDAG
), Reg0
, Reg0
};
2307 return CurDAG
->SelectNodeTo(N
, ARM::t2ADDrs
, MVT::i32
, Ops
, 6);
2309 SDValue Ops
[] = { V
, V
, Reg0
, ShImmOp
, getAL(CurDAG
), Reg0
, Reg0
};
2310 return CurDAG
->SelectNodeTo(N
, ARM::ADDrs
, MVT::i32
, Ops
, 7);
2313 if (isPowerOf2_32(RHSV
+1)) { // 2^n-1?
2314 unsigned ShImm
= Log2_32(RHSV
+1);
2317 SDValue V
= N
->getOperand(0);
2318 ShImm
= ARM_AM::getSORegOpc(ARM_AM::lsl
, ShImm
);
2319 SDValue ShImmOp
= CurDAG
->getTargetConstant(ShImm
, MVT::i32
);
2320 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2321 if (Subtarget
->isThumb()) {
2322 SDValue Ops
[] = { V
, V
, ShImmOp
, getAL(CurDAG
), Reg0
, Reg0
};
2323 return CurDAG
->SelectNodeTo(N
, ARM::t2RSBrs
, MVT::i32
, Ops
, 6);
2325 SDValue Ops
[] = { V
, V
, Reg0
, ShImmOp
, getAL(CurDAG
), Reg0
, Reg0
};
2326 return CurDAG
->SelectNodeTo(N
, ARM::RSBrs
, MVT::i32
, Ops
, 7);
2332 // Check for unsigned bitfield extract
2333 if (SDNode
*I
= SelectV6T2BitfieldExtractOp(N
, false))
2336 // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
2337 // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
2338 // are entirely contributed by c2 and lower 16-bits are entirely contributed
2339 // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
2340 // Select it to: "movt x, ((c1 & 0xffff) >> 16)
2341 EVT VT
= N
->getValueType(0);
2344 unsigned Opc
= (Subtarget
->isThumb() && Subtarget
->hasThumb2())
2346 : (Subtarget
->hasV6T2Ops() ? ARM::MOVTi16
: 0);
2349 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
2350 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2353 if (N0
.getOpcode() == ISD::OR
&& N0
.getNode()->hasOneUse()) {
2354 SDValue N2
= N0
.getOperand(1);
2355 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
);
2358 unsigned N1CVal
= N1C
->getZExtValue();
2359 unsigned N2CVal
= N2C
->getZExtValue();
2360 if ((N1CVal
& 0xffff0000U
) == (N2CVal
& 0xffff0000U
) &&
2361 (N1CVal
& 0xffffU
) == 0xffffU
&&
2362 (N2CVal
& 0xffffU
) == 0x0U
) {
2363 SDValue Imm16
= CurDAG
->getTargetConstant((N2CVal
& 0xFFFF0000U
) >> 16,
2365 SDValue Ops
[] = { N0
.getOperand(0), Imm16
,
2366 getAL(CurDAG
), CurDAG
->getRegister(0, MVT::i32
) };
2367 return CurDAG
->getMachineNode(Opc
, dl
, VT
, Ops
, 4);
2372 case ARMISD::VMOVRRD
:
2373 return CurDAG
->getMachineNode(ARM::VMOVRRD
, dl
, MVT::i32
, MVT::i32
,
2374 N
->getOperand(0), getAL(CurDAG
),
2375 CurDAG
->getRegister(0, MVT::i32
));
2376 case ISD::UMUL_LOHI
: {
2377 if (Subtarget
->isThumb1Only())
2379 if (Subtarget
->isThumb()) {
2380 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1),
2381 getAL(CurDAG
), CurDAG
->getRegister(0, MVT::i32
),
2382 CurDAG
->getRegister(0, MVT::i32
) };
2383 return CurDAG
->getMachineNode(ARM::t2UMULL
, dl
, MVT::i32
, MVT::i32
,Ops
,4);
2385 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1),
2386 getAL(CurDAG
), CurDAG
->getRegister(0, MVT::i32
),
2387 CurDAG
->getRegister(0, MVT::i32
) };
2388 return CurDAG
->getMachineNode(Subtarget
->hasV6Ops() ?
2389 ARM::UMULL
: ARM::UMULLv5
,
2390 dl
, MVT::i32
, MVT::i32
, Ops
, 5);
2393 case ISD::SMUL_LOHI
: {
2394 if (Subtarget
->isThumb1Only())
2396 if (Subtarget
->isThumb()) {
2397 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1),
2398 getAL(CurDAG
), CurDAG
->getRegister(0, MVT::i32
) };
2399 return CurDAG
->getMachineNode(ARM::t2SMULL
, dl
, MVT::i32
, MVT::i32
,Ops
,4);
2401 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1),
2402 getAL(CurDAG
), CurDAG
->getRegister(0, MVT::i32
),
2403 CurDAG
->getRegister(0, MVT::i32
) };
2404 return CurDAG
->getMachineNode(Subtarget
->hasV6Ops() ?
2405 ARM::SMULL
: ARM::SMULLv5
,
2406 dl
, MVT::i32
, MVT::i32
, Ops
, 5);
2410 SDNode
*ResNode
= 0;
2411 if (Subtarget
->isThumb() && Subtarget
->hasThumb2())
2412 ResNode
= SelectT2IndexedLoad(N
);
2414 ResNode
= SelectARMIndexedLoad(N
);
2417 // Other cases are autogenerated.
2420 case ARMISD::BRCOND
: {
2421 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2422 // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2423 // Pattern complexity = 6 cost = 1 size = 0
2425 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2426 // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
2427 // Pattern complexity = 6 cost = 1 size = 0
2429 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2430 // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2431 // Pattern complexity = 6 cost = 1 size = 0
2433 unsigned Opc
= Subtarget
->isThumb() ?
2434 ((Subtarget
->hasThumb2()) ? ARM::t2Bcc
: ARM::tBcc
) : ARM::Bcc
;
2435 SDValue Chain
= N
->getOperand(0);
2436 SDValue N1
= N
->getOperand(1);
2437 SDValue N2
= N
->getOperand(2);
2438 SDValue N3
= N
->getOperand(3);
2439 SDValue InFlag
= N
->getOperand(4);
2440 assert(N1
.getOpcode() == ISD::BasicBlock
);
2441 assert(N2
.getOpcode() == ISD::Constant
);
2442 assert(N3
.getOpcode() == ISD::Register
);
2444 SDValue Tmp2
= CurDAG
->getTargetConstant(((unsigned)
2445 cast
<ConstantSDNode
>(N2
)->getZExtValue()),
2447 SDValue Ops
[] = { N1
, Tmp2
, N3
, Chain
, InFlag
};
2448 SDNode
*ResNode
= CurDAG
->getMachineNode(Opc
, dl
, MVT::Other
,
2450 Chain
= SDValue(ResNode
, 0);
2451 if (N
->getNumValues() == 2) {
2452 InFlag
= SDValue(ResNode
, 1);
2453 ReplaceUses(SDValue(N
, 1), InFlag
);
2455 ReplaceUses(SDValue(N
, 0),
2456 SDValue(Chain
.getNode(), Chain
.getResNo()));
2460 return SelectCMOVOp(N
);
2461 case ARMISD::VZIP
: {
2463 EVT VT
= N
->getValueType(0);
2464 switch (VT
.getSimpleVT().SimpleTy
) {
2465 default: return NULL
;
2466 case MVT::v8i8
: Opc
= ARM::VZIPd8
; break;
2467 case MVT::v4i16
: Opc
= ARM::VZIPd16
; break;
2469 case MVT::v2i32
: Opc
= ARM::VZIPd32
; break;
2470 case MVT::v16i8
: Opc
= ARM::VZIPq8
; break;
2471 case MVT::v8i16
: Opc
= ARM::VZIPq16
; break;
2473 case MVT::v4i32
: Opc
= ARM::VZIPq32
; break;
2475 SDValue Pred
= getAL(CurDAG
);
2476 SDValue PredReg
= CurDAG
->getRegister(0, MVT::i32
);
2477 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), Pred
, PredReg
};
2478 return CurDAG
->getMachineNode(Opc
, dl
, VT
, VT
, Ops
, 4);
2480 case ARMISD::VUZP
: {
2482 EVT VT
= N
->getValueType(0);
2483 switch (VT
.getSimpleVT().SimpleTy
) {
2484 default: return NULL
;
2485 case MVT::v8i8
: Opc
= ARM::VUZPd8
; break;
2486 case MVT::v4i16
: Opc
= ARM::VUZPd16
; break;
2488 case MVT::v2i32
: Opc
= ARM::VUZPd32
; break;
2489 case MVT::v16i8
: Opc
= ARM::VUZPq8
; break;
2490 case MVT::v8i16
: Opc
= ARM::VUZPq16
; break;
2492 case MVT::v4i32
: Opc
= ARM::VUZPq32
; break;
2494 SDValue Pred
= getAL(CurDAG
);
2495 SDValue PredReg
= CurDAG
->getRegister(0, MVT::i32
);
2496 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), Pred
, PredReg
};
2497 return CurDAG
->getMachineNode(Opc
, dl
, VT
, VT
, Ops
, 4);
2499 case ARMISD::VTRN
: {
2501 EVT VT
= N
->getValueType(0);
2502 switch (VT
.getSimpleVT().SimpleTy
) {
2503 default: return NULL
;
2504 case MVT::v8i8
: Opc
= ARM::VTRNd8
; break;
2505 case MVT::v4i16
: Opc
= ARM::VTRNd16
; break;
2507 case MVT::v2i32
: Opc
= ARM::VTRNd32
; break;
2508 case MVT::v16i8
: Opc
= ARM::VTRNq8
; break;
2509 case MVT::v8i16
: Opc
= ARM::VTRNq16
; break;
2511 case MVT::v4i32
: Opc
= ARM::VTRNq32
; break;
2513 SDValue Pred
= getAL(CurDAG
);
2514 SDValue PredReg
= CurDAG
->getRegister(0, MVT::i32
);
2515 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), Pred
, PredReg
};
2516 return CurDAG
->getMachineNode(Opc
, dl
, VT
, VT
, Ops
, 4);
2518 case ARMISD::BUILD_VECTOR
: {
2519 EVT VecVT
= N
->getValueType(0);
2520 EVT EltVT
= VecVT
.getVectorElementType();
2521 unsigned NumElts
= VecVT
.getVectorNumElements();
2522 if (EltVT
== MVT::f64
) {
2523 assert(NumElts
== 2 && "unexpected type for BUILD_VECTOR");
2524 return PairDRegs(VecVT
, N
->getOperand(0), N
->getOperand(1));
2526 assert(EltVT
== MVT::f32
&& "unexpected type for BUILD_VECTOR");
2528 return PairSRegs(VecVT
, N
->getOperand(0), N
->getOperand(1));
2529 assert(NumElts
== 4 && "unexpected type for BUILD_VECTOR");
2530 return QuadSRegs(VecVT
, N
->getOperand(0), N
->getOperand(1),
2531 N
->getOperand(2), N
->getOperand(3));
2534 case ARMISD::VLD2DUP
: {
2535 unsigned Opcodes
[] = { ARM::VLD2DUPd8Pseudo
, ARM::VLD2DUPd16Pseudo
,
2536 ARM::VLD2DUPd32Pseudo
};
2537 return SelectVLDDup(N
, false, 2, Opcodes
);
2540 case ARMISD::VLD3DUP
: {
2541 unsigned Opcodes
[] = { ARM::VLD3DUPd8Pseudo
, ARM::VLD3DUPd16Pseudo
,
2542 ARM::VLD3DUPd32Pseudo
};
2543 return SelectVLDDup(N
, false, 3, Opcodes
);
2546 case ARMISD::VLD4DUP
: {
2547 unsigned Opcodes
[] = { ARM::VLD4DUPd8Pseudo
, ARM::VLD4DUPd16Pseudo
,
2548 ARM::VLD4DUPd32Pseudo
};
2549 return SelectVLDDup(N
, false, 4, Opcodes
);
2552 case ARMISD::VLD2DUP_UPD
: {
2553 unsigned Opcodes
[] = { ARM::VLD2DUPd8Pseudo_UPD
, ARM::VLD2DUPd16Pseudo_UPD
,
2554 ARM::VLD2DUPd32Pseudo_UPD
};
2555 return SelectVLDDup(N
, true, 2, Opcodes
);
2558 case ARMISD::VLD3DUP_UPD
: {
2559 unsigned Opcodes
[] = { ARM::VLD3DUPd8Pseudo_UPD
, ARM::VLD3DUPd16Pseudo_UPD
,
2560 ARM::VLD3DUPd32Pseudo_UPD
};
2561 return SelectVLDDup(N
, true, 3, Opcodes
);
2564 case ARMISD::VLD4DUP_UPD
: {
2565 unsigned Opcodes
[] = { ARM::VLD4DUPd8Pseudo_UPD
, ARM::VLD4DUPd16Pseudo_UPD
,
2566 ARM::VLD4DUPd32Pseudo_UPD
};
2567 return SelectVLDDup(N
, true, 4, Opcodes
);
2570 case ARMISD::VLD1_UPD
: {
2571 unsigned DOpcodes
[] = { ARM::VLD1d8_UPD
, ARM::VLD1d16_UPD
,
2572 ARM::VLD1d32_UPD
, ARM::VLD1d64_UPD
};
2573 unsigned QOpcodes
[] = { ARM::VLD1q8Pseudo_UPD
, ARM::VLD1q16Pseudo_UPD
,
2574 ARM::VLD1q32Pseudo_UPD
, ARM::VLD1q64Pseudo_UPD
};
2575 return SelectVLD(N
, true, 1, DOpcodes
, QOpcodes
, 0);
2578 case ARMISD::VLD2_UPD
: {
2579 unsigned DOpcodes
[] = { ARM::VLD2d8Pseudo_UPD
, ARM::VLD2d16Pseudo_UPD
,
2580 ARM::VLD2d32Pseudo_UPD
, ARM::VLD1q64Pseudo_UPD
};
2581 unsigned QOpcodes
[] = { ARM::VLD2q8Pseudo_UPD
, ARM::VLD2q16Pseudo_UPD
,
2582 ARM::VLD2q32Pseudo_UPD
};
2583 return SelectVLD(N
, true, 2, DOpcodes
, QOpcodes
, 0);
2586 case ARMISD::VLD3_UPD
: {
2587 unsigned DOpcodes
[] = { ARM::VLD3d8Pseudo_UPD
, ARM::VLD3d16Pseudo_UPD
,
2588 ARM::VLD3d32Pseudo_UPD
, ARM::VLD1d64TPseudo_UPD
};
2589 unsigned QOpcodes0
[] = { ARM::VLD3q8Pseudo_UPD
,
2590 ARM::VLD3q16Pseudo_UPD
,
2591 ARM::VLD3q32Pseudo_UPD
};
2592 unsigned QOpcodes1
[] = { ARM::VLD3q8oddPseudo_UPD
,
2593 ARM::VLD3q16oddPseudo_UPD
,
2594 ARM::VLD3q32oddPseudo_UPD
};
2595 return SelectVLD(N
, true, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
2598 case ARMISD::VLD4_UPD
: {
2599 unsigned DOpcodes
[] = { ARM::VLD4d8Pseudo_UPD
, ARM::VLD4d16Pseudo_UPD
,
2600 ARM::VLD4d32Pseudo_UPD
, ARM::VLD1d64QPseudo_UPD
};
2601 unsigned QOpcodes0
[] = { ARM::VLD4q8Pseudo_UPD
,
2602 ARM::VLD4q16Pseudo_UPD
,
2603 ARM::VLD4q32Pseudo_UPD
};
2604 unsigned QOpcodes1
[] = { ARM::VLD4q8oddPseudo_UPD
,
2605 ARM::VLD4q16oddPseudo_UPD
,
2606 ARM::VLD4q32oddPseudo_UPD
};
2607 return SelectVLD(N
, true, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
2610 case ARMISD::VLD2LN_UPD
: {
2611 unsigned DOpcodes
[] = { ARM::VLD2LNd8Pseudo_UPD
, ARM::VLD2LNd16Pseudo_UPD
,
2612 ARM::VLD2LNd32Pseudo_UPD
};
2613 unsigned QOpcodes
[] = { ARM::VLD2LNq16Pseudo_UPD
,
2614 ARM::VLD2LNq32Pseudo_UPD
};
2615 return SelectVLDSTLane(N
, true, true, 2, DOpcodes
, QOpcodes
);
2618 case ARMISD::VLD3LN_UPD
: {
2619 unsigned DOpcodes
[] = { ARM::VLD3LNd8Pseudo_UPD
, ARM::VLD3LNd16Pseudo_UPD
,
2620 ARM::VLD3LNd32Pseudo_UPD
};
2621 unsigned QOpcodes
[] = { ARM::VLD3LNq16Pseudo_UPD
,
2622 ARM::VLD3LNq32Pseudo_UPD
};
2623 return SelectVLDSTLane(N
, true, true, 3, DOpcodes
, QOpcodes
);
2626 case ARMISD::VLD4LN_UPD
: {
2627 unsigned DOpcodes
[] = { ARM::VLD4LNd8Pseudo_UPD
, ARM::VLD4LNd16Pseudo_UPD
,
2628 ARM::VLD4LNd32Pseudo_UPD
};
2629 unsigned QOpcodes
[] = { ARM::VLD4LNq16Pseudo_UPD
,
2630 ARM::VLD4LNq32Pseudo_UPD
};
2631 return SelectVLDSTLane(N
, true, true, 4, DOpcodes
, QOpcodes
);
2634 case ARMISD::VST1_UPD
: {
2635 unsigned DOpcodes
[] = { ARM::VST1d8_UPD
, ARM::VST1d16_UPD
,
2636 ARM::VST1d32_UPD
, ARM::VST1d64_UPD
};
2637 unsigned QOpcodes
[] = { ARM::VST1q8Pseudo_UPD
, ARM::VST1q16Pseudo_UPD
,
2638 ARM::VST1q32Pseudo_UPD
, ARM::VST1q64Pseudo_UPD
};
2639 return SelectVST(N
, true, 1, DOpcodes
, QOpcodes
, 0);
2642 case ARMISD::VST2_UPD
: {
2643 unsigned DOpcodes
[] = { ARM::VST2d8Pseudo_UPD
, ARM::VST2d16Pseudo_UPD
,
2644 ARM::VST2d32Pseudo_UPD
, ARM::VST1q64Pseudo_UPD
};
2645 unsigned QOpcodes
[] = { ARM::VST2q8Pseudo_UPD
, ARM::VST2q16Pseudo_UPD
,
2646 ARM::VST2q32Pseudo_UPD
};
2647 return SelectVST(N
, true, 2, DOpcodes
, QOpcodes
, 0);
2650 case ARMISD::VST3_UPD
: {
2651 unsigned DOpcodes
[] = { ARM::VST3d8Pseudo_UPD
, ARM::VST3d16Pseudo_UPD
,
2652 ARM::VST3d32Pseudo_UPD
, ARM::VST1d64TPseudo_UPD
};
2653 unsigned QOpcodes0
[] = { ARM::VST3q8Pseudo_UPD
,
2654 ARM::VST3q16Pseudo_UPD
,
2655 ARM::VST3q32Pseudo_UPD
};
2656 unsigned QOpcodes1
[] = { ARM::VST3q8oddPseudo_UPD
,
2657 ARM::VST3q16oddPseudo_UPD
,
2658 ARM::VST3q32oddPseudo_UPD
};
2659 return SelectVST(N
, true, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
2662 case ARMISD::VST4_UPD
: {
2663 unsigned DOpcodes
[] = { ARM::VST4d8Pseudo_UPD
, ARM::VST4d16Pseudo_UPD
,
2664 ARM::VST4d32Pseudo_UPD
, ARM::VST1d64QPseudo_UPD
};
2665 unsigned QOpcodes0
[] = { ARM::VST4q8Pseudo_UPD
,
2666 ARM::VST4q16Pseudo_UPD
,
2667 ARM::VST4q32Pseudo_UPD
};
2668 unsigned QOpcodes1
[] = { ARM::VST4q8oddPseudo_UPD
,
2669 ARM::VST4q16oddPseudo_UPD
,
2670 ARM::VST4q32oddPseudo_UPD
};
2671 return SelectVST(N
, true, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
2674 case ARMISD::VST2LN_UPD
: {
2675 unsigned DOpcodes
[] = { ARM::VST2LNd8Pseudo_UPD
, ARM::VST2LNd16Pseudo_UPD
,
2676 ARM::VST2LNd32Pseudo_UPD
};
2677 unsigned QOpcodes
[] = { ARM::VST2LNq16Pseudo_UPD
,
2678 ARM::VST2LNq32Pseudo_UPD
};
2679 return SelectVLDSTLane(N
, false, true, 2, DOpcodes
, QOpcodes
);
2682 case ARMISD::VST3LN_UPD
: {
2683 unsigned DOpcodes
[] = { ARM::VST3LNd8Pseudo_UPD
, ARM::VST3LNd16Pseudo_UPD
,
2684 ARM::VST3LNd32Pseudo_UPD
};
2685 unsigned QOpcodes
[] = { ARM::VST3LNq16Pseudo_UPD
,
2686 ARM::VST3LNq32Pseudo_UPD
};
2687 return SelectVLDSTLane(N
, false, true, 3, DOpcodes
, QOpcodes
);
2690 case ARMISD::VST4LN_UPD
: {
2691 unsigned DOpcodes
[] = { ARM::VST4LNd8Pseudo_UPD
, ARM::VST4LNd16Pseudo_UPD
,
2692 ARM::VST4LNd32Pseudo_UPD
};
2693 unsigned QOpcodes
[] = { ARM::VST4LNq16Pseudo_UPD
,
2694 ARM::VST4LNq32Pseudo_UPD
};
2695 return SelectVLDSTLane(N
, false, true, 4, DOpcodes
, QOpcodes
);
2698 case ISD::INTRINSIC_VOID
:
2699 case ISD::INTRINSIC_W_CHAIN
: {
2700 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
2705 case Intrinsic::arm_ldrexd
: {
2706 SDValue MemAddr
= N
->getOperand(2);
2707 DebugLoc dl
= N
->getDebugLoc();
2708 SDValue Chain
= N
->getOperand(0);
2710 unsigned NewOpc
= ARM::LDREXD
;
2711 if (Subtarget
->isThumb() && Subtarget
->hasThumb2())
2712 NewOpc
= ARM::t2LDREXD
;
2714 // arm_ldrexd returns a i64 value in {i32, i32}
2715 std::vector
<EVT
> ResTys
;
2716 ResTys
.push_back(MVT::i32
);
2717 ResTys
.push_back(MVT::i32
);
2718 ResTys
.push_back(MVT::Other
);
2720 // place arguments in the right order
2721 SmallVector
<SDValue
, 7> Ops
;
2722 Ops
.push_back(MemAddr
);
2723 Ops
.push_back(getAL(CurDAG
));
2724 Ops
.push_back(CurDAG
->getRegister(0, MVT::i32
));
2725 Ops
.push_back(Chain
);
2726 SDNode
*Ld
= CurDAG
->getMachineNode(NewOpc
, dl
, ResTys
, Ops
.data(),
2728 // Transfer memoperands.
2729 MachineSDNode::mmo_iterator MemOp
= MF
->allocateMemRefsArray(1);
2730 MemOp
[0] = cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
2731 cast
<MachineSDNode
>(Ld
)->setMemRefs(MemOp
, MemOp
+ 1);
2733 // Until there's support for specifing explicit register constraints
2734 // like the use of even/odd register pair, hardcode ldrexd to always
2735 // use the pair [R0, R1] to hold the load result.
2736 Chain
= CurDAG
->getCopyToReg(CurDAG
->getEntryNode(), dl
, ARM::R0
,
2737 SDValue(Ld
, 0), SDValue(0,0));
2738 Chain
= CurDAG
->getCopyToReg(Chain
, dl
, ARM::R1
,
2739 SDValue(Ld
, 1), Chain
.getValue(1));
2742 SDValue Glue
= Chain
.getValue(1);
2743 if (!SDValue(N
, 0).use_empty()) {
2744 SDValue Result
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), dl
,
2745 ARM::R0
, MVT::i32
, Glue
);
2746 Glue
= Result
.getValue(2);
2747 ReplaceUses(SDValue(N
, 0), Result
);
2749 if (!SDValue(N
, 1).use_empty()) {
2750 SDValue Result
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), dl
,
2751 ARM::R1
, MVT::i32
, Glue
);
2752 Glue
= Result
.getValue(2);
2753 ReplaceUses(SDValue(N
, 1), Result
);
2756 ReplaceUses(SDValue(N
, 2), SDValue(Ld
, 2));
2760 case Intrinsic::arm_strexd
: {
2761 DebugLoc dl
= N
->getDebugLoc();
2762 SDValue Chain
= N
->getOperand(0);
2763 SDValue Val0
= N
->getOperand(2);
2764 SDValue Val1
= N
->getOperand(3);
2765 SDValue MemAddr
= N
->getOperand(4);
2767 // Until there's support for specifing explicit register constraints
2768 // like the use of even/odd register pair, hardcode strexd to always
2769 // use the pair [R2, R3] to hold the i64 (i32, i32) value to be stored.
2770 Chain
= CurDAG
->getCopyToReg(CurDAG
->getEntryNode(), dl
, ARM::R2
, Val0
,
2772 Chain
= CurDAG
->getCopyToReg(Chain
, dl
, ARM::R3
, Val1
, Chain
.getValue(1));
2774 SDValue Glue
= Chain
.getValue(1);
2775 Val0
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), dl
,
2776 ARM::R2
, MVT::i32
, Glue
);
2777 Glue
= Val0
.getValue(1);
2778 Val1
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), dl
,
2779 ARM::R3
, MVT::i32
, Glue
);
2781 // Store exclusive double return a i32 value which is the return status
2782 // of the issued store.
2783 std::vector
<EVT
> ResTys
;
2784 ResTys
.push_back(MVT::i32
);
2785 ResTys
.push_back(MVT::Other
);
2787 // place arguments in the right order
2788 SmallVector
<SDValue
, 7> Ops
;
2789 Ops
.push_back(Val0
);
2790 Ops
.push_back(Val1
);
2791 Ops
.push_back(MemAddr
);
2792 Ops
.push_back(getAL(CurDAG
));
2793 Ops
.push_back(CurDAG
->getRegister(0, MVT::i32
));
2794 Ops
.push_back(Chain
);
2796 unsigned NewOpc
= ARM::STREXD
;
2797 if (Subtarget
->isThumb() && Subtarget
->hasThumb2())
2798 NewOpc
= ARM::t2STREXD
;
2800 SDNode
*St
= CurDAG
->getMachineNode(NewOpc
, dl
, ResTys
, Ops
.data(),
2802 // Transfer memoperands.
2803 MachineSDNode::mmo_iterator MemOp
= MF
->allocateMemRefsArray(1);
2804 MemOp
[0] = cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
2805 cast
<MachineSDNode
>(St
)->setMemRefs(MemOp
, MemOp
+ 1);
2810 case Intrinsic::arm_neon_vld1
: {
2811 unsigned DOpcodes
[] = { ARM::VLD1d8
, ARM::VLD1d16
,
2812 ARM::VLD1d32
, ARM::VLD1d64
};
2813 unsigned QOpcodes
[] = { ARM::VLD1q8Pseudo
, ARM::VLD1q16Pseudo
,
2814 ARM::VLD1q32Pseudo
, ARM::VLD1q64Pseudo
};
2815 return SelectVLD(N
, false, 1, DOpcodes
, QOpcodes
, 0);
2818 case Intrinsic::arm_neon_vld2
: {
2819 unsigned DOpcodes
[] = { ARM::VLD2d8Pseudo
, ARM::VLD2d16Pseudo
,
2820 ARM::VLD2d32Pseudo
, ARM::VLD1q64Pseudo
};
2821 unsigned QOpcodes
[] = { ARM::VLD2q8Pseudo
, ARM::VLD2q16Pseudo
,
2822 ARM::VLD2q32Pseudo
};
2823 return SelectVLD(N
, false, 2, DOpcodes
, QOpcodes
, 0);
2826 case Intrinsic::arm_neon_vld3
: {
2827 unsigned DOpcodes
[] = { ARM::VLD3d8Pseudo
, ARM::VLD3d16Pseudo
,
2828 ARM::VLD3d32Pseudo
, ARM::VLD1d64TPseudo
};
2829 unsigned QOpcodes0
[] = { ARM::VLD3q8Pseudo_UPD
,
2830 ARM::VLD3q16Pseudo_UPD
,
2831 ARM::VLD3q32Pseudo_UPD
};
2832 unsigned QOpcodes1
[] = { ARM::VLD3q8oddPseudo
,
2833 ARM::VLD3q16oddPseudo
,
2834 ARM::VLD3q32oddPseudo
};
2835 return SelectVLD(N
, false, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
2838 case Intrinsic::arm_neon_vld4
: {
2839 unsigned DOpcodes
[] = { ARM::VLD4d8Pseudo
, ARM::VLD4d16Pseudo
,
2840 ARM::VLD4d32Pseudo
, ARM::VLD1d64QPseudo
};
2841 unsigned QOpcodes0
[] = { ARM::VLD4q8Pseudo_UPD
,
2842 ARM::VLD4q16Pseudo_UPD
,
2843 ARM::VLD4q32Pseudo_UPD
};
2844 unsigned QOpcodes1
[] = { ARM::VLD4q8oddPseudo
,
2845 ARM::VLD4q16oddPseudo
,
2846 ARM::VLD4q32oddPseudo
};
2847 return SelectVLD(N
, false, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
2850 case Intrinsic::arm_neon_vld2lane
: {
2851 unsigned DOpcodes
[] = { ARM::VLD2LNd8Pseudo
, ARM::VLD2LNd16Pseudo
,
2852 ARM::VLD2LNd32Pseudo
};
2853 unsigned QOpcodes
[] = { ARM::VLD2LNq16Pseudo
, ARM::VLD2LNq32Pseudo
};
2854 return SelectVLDSTLane(N
, true, false, 2, DOpcodes
, QOpcodes
);
2857 case Intrinsic::arm_neon_vld3lane
: {
2858 unsigned DOpcodes
[] = { ARM::VLD3LNd8Pseudo
, ARM::VLD3LNd16Pseudo
,
2859 ARM::VLD3LNd32Pseudo
};
2860 unsigned QOpcodes
[] = { ARM::VLD3LNq16Pseudo
, ARM::VLD3LNq32Pseudo
};
2861 return SelectVLDSTLane(N
, true, false, 3, DOpcodes
, QOpcodes
);
2864 case Intrinsic::arm_neon_vld4lane
: {
2865 unsigned DOpcodes
[] = { ARM::VLD4LNd8Pseudo
, ARM::VLD4LNd16Pseudo
,
2866 ARM::VLD4LNd32Pseudo
};
2867 unsigned QOpcodes
[] = { ARM::VLD4LNq16Pseudo
, ARM::VLD4LNq32Pseudo
};
2868 return SelectVLDSTLane(N
, true, false, 4, DOpcodes
, QOpcodes
);
2871 case Intrinsic::arm_neon_vst1
: {
2872 unsigned DOpcodes
[] = { ARM::VST1d8
, ARM::VST1d16
,
2873 ARM::VST1d32
, ARM::VST1d64
};
2874 unsigned QOpcodes
[] = { ARM::VST1q8Pseudo
, ARM::VST1q16Pseudo
,
2875 ARM::VST1q32Pseudo
, ARM::VST1q64Pseudo
};
2876 return SelectVST(N
, false, 1, DOpcodes
, QOpcodes
, 0);
2879 case Intrinsic::arm_neon_vst2
: {
2880 unsigned DOpcodes
[] = { ARM::VST2d8Pseudo
, ARM::VST2d16Pseudo
,
2881 ARM::VST2d32Pseudo
, ARM::VST1q64Pseudo
};
2882 unsigned QOpcodes
[] = { ARM::VST2q8Pseudo
, ARM::VST2q16Pseudo
,
2883 ARM::VST2q32Pseudo
};
2884 return SelectVST(N
, false, 2, DOpcodes
, QOpcodes
, 0);
2887 case Intrinsic::arm_neon_vst3
: {
2888 unsigned DOpcodes
[] = { ARM::VST3d8Pseudo
, ARM::VST3d16Pseudo
,
2889 ARM::VST3d32Pseudo
, ARM::VST1d64TPseudo
};
2890 unsigned QOpcodes0
[] = { ARM::VST3q8Pseudo_UPD
,
2891 ARM::VST3q16Pseudo_UPD
,
2892 ARM::VST3q32Pseudo_UPD
};
2893 unsigned QOpcodes1
[] = { ARM::VST3q8oddPseudo
,
2894 ARM::VST3q16oddPseudo
,
2895 ARM::VST3q32oddPseudo
};
2896 return SelectVST(N
, false, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
2899 case Intrinsic::arm_neon_vst4
: {
2900 unsigned DOpcodes
[] = { ARM::VST4d8Pseudo
, ARM::VST4d16Pseudo
,
2901 ARM::VST4d32Pseudo
, ARM::VST1d64QPseudo
};
2902 unsigned QOpcodes0
[] = { ARM::VST4q8Pseudo_UPD
,
2903 ARM::VST4q16Pseudo_UPD
,
2904 ARM::VST4q32Pseudo_UPD
};
2905 unsigned QOpcodes1
[] = { ARM::VST4q8oddPseudo
,
2906 ARM::VST4q16oddPseudo
,
2907 ARM::VST4q32oddPseudo
};
2908 return SelectVST(N
, false, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
2911 case Intrinsic::arm_neon_vst2lane
: {
2912 unsigned DOpcodes
[] = { ARM::VST2LNd8Pseudo
, ARM::VST2LNd16Pseudo
,
2913 ARM::VST2LNd32Pseudo
};
2914 unsigned QOpcodes
[] = { ARM::VST2LNq16Pseudo
, ARM::VST2LNq32Pseudo
};
2915 return SelectVLDSTLane(N
, false, false, 2, DOpcodes
, QOpcodes
);
2918 case Intrinsic::arm_neon_vst3lane
: {
2919 unsigned DOpcodes
[] = { ARM::VST3LNd8Pseudo
, ARM::VST3LNd16Pseudo
,
2920 ARM::VST3LNd32Pseudo
};
2921 unsigned QOpcodes
[] = { ARM::VST3LNq16Pseudo
, ARM::VST3LNq32Pseudo
};
2922 return SelectVLDSTLane(N
, false, false, 3, DOpcodes
, QOpcodes
);
2925 case Intrinsic::arm_neon_vst4lane
: {
2926 unsigned DOpcodes
[] = { ARM::VST4LNd8Pseudo
, ARM::VST4LNd16Pseudo
,
2927 ARM::VST4LNd32Pseudo
};
2928 unsigned QOpcodes
[] = { ARM::VST4LNq16Pseudo
, ARM::VST4LNq32Pseudo
};
2929 return SelectVLDSTLane(N
, false, false, 4, DOpcodes
, QOpcodes
);
2935 case ISD::INTRINSIC_WO_CHAIN
: {
2936 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
2941 case Intrinsic::arm_neon_vtbl2
:
2942 return SelectVTBL(N
, false, 2, ARM::VTBL2Pseudo
);
2943 case Intrinsic::arm_neon_vtbl3
:
2944 return SelectVTBL(N
, false, 3, ARM::VTBL3Pseudo
);
2945 case Intrinsic::arm_neon_vtbl4
:
2946 return SelectVTBL(N
, false, 4, ARM::VTBL4Pseudo
);
2948 case Intrinsic::arm_neon_vtbx2
:
2949 return SelectVTBL(N
, true, 2, ARM::VTBX2Pseudo
);
2950 case Intrinsic::arm_neon_vtbx3
:
2951 return SelectVTBL(N
, true, 3, ARM::VTBX3Pseudo
);
2952 case Intrinsic::arm_neon_vtbx4
:
2953 return SelectVTBL(N
, true, 4, ARM::VTBX4Pseudo
);
2958 case ARMISD::VTBL1
: {
2959 DebugLoc dl
= N
->getDebugLoc();
2960 EVT VT
= N
->getValueType(0);
2961 SmallVector
<SDValue
, 6> Ops
;
2963 Ops
.push_back(N
->getOperand(0));
2964 Ops
.push_back(N
->getOperand(1));
2965 Ops
.push_back(getAL(CurDAG
)); // Predicate
2966 Ops
.push_back(CurDAG
->getRegister(0, MVT::i32
)); // Predicate Register
2967 return CurDAG
->getMachineNode(ARM::VTBL1
, dl
, VT
, Ops
.data(), Ops
.size());
2969 case ARMISD::VTBL2
: {
2970 DebugLoc dl
= N
->getDebugLoc();
2971 EVT VT
= N
->getValueType(0);
2973 // Form a REG_SEQUENCE to force register allocation.
2974 SDValue V0
= N
->getOperand(0);
2975 SDValue V1
= N
->getOperand(1);
2976 SDValue RegSeq
= SDValue(PairDRegs(MVT::v16i8
, V0
, V1
), 0);
2978 SmallVector
<SDValue
, 6> Ops
;
2979 Ops
.push_back(RegSeq
);
2980 Ops
.push_back(N
->getOperand(2));
2981 Ops
.push_back(getAL(CurDAG
)); // Predicate
2982 Ops
.push_back(CurDAG
->getRegister(0, MVT::i32
)); // Predicate Register
2983 return CurDAG
->getMachineNode(ARM::VTBL2Pseudo
, dl
, VT
,
2984 Ops
.data(), Ops
.size());
2987 case ISD::CONCAT_VECTORS
:
2988 return SelectConcatVector(N
);
2991 return SelectCode(N
);
2994 bool ARMDAGToDAGISel::
2995 SelectInlineAsmMemoryOperand(const SDValue
&Op
, char ConstraintCode
,
2996 std::vector
<SDValue
> &OutOps
) {
2997 assert(ConstraintCode
== 'm' && "unexpected asm memory constraint");
2998 // Require the address to be in a register. That is safe for all ARM
2999 // variants and it is hard to do anything much smarter without knowing
3000 // how the operand is used.
3001 OutOps
.push_back(Op
);
3005 /// createARMISelDag - This pass converts a legalized DAG into a
3006 /// ARM-specific DAG, ready for instruction scheduling.
3008 FunctionPass
*llvm::createARMISelDag(ARMBaseTargetMachine
&TM
,
3009 CodeGenOpt::Level OptLevel
) {
3010 return new ARMDAGToDAGISel(TM
, OptLevel
);