Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / Target / CppBackend / CPPBackend.cpp
blobc4280ef5a2b955b03a3497bd3a9a0dee26ddc490
1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
11 // LLVM IR interface. The input module is assumed to be verified.
13 //===----------------------------------------------------------------------===//
15 #include "CPPTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instruction.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/PassManager.h"
25 #include "llvm/MC/MCSubtargetInfo.h"
26 #include "llvm/MC/MCSubtargetInfo.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/FormattedStream.h"
31 #include "llvm/Target/TargetRegistry.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Config/config.h"
34 #include <algorithm>
35 #include <set>
36 #include <map>
37 using namespace llvm;
39 static cl::opt<std::string>
40 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
41 cl::value_desc("function name"));
43 enum WhatToGenerate {
44 GenProgram,
45 GenModule,
46 GenContents,
47 GenFunction,
48 GenFunctions,
49 GenInline,
50 GenVariable,
51 GenType
54 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
55 cl::desc("Choose what kind of output to generate"),
56 cl::init(GenProgram),
57 cl::values(
58 clEnumValN(GenProgram, "program", "Generate a complete program"),
59 clEnumValN(GenModule, "module", "Generate a module definition"),
60 clEnumValN(GenContents, "contents", "Generate contents of a module"),
61 clEnumValN(GenFunction, "function", "Generate a function definition"),
62 clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
63 clEnumValN(GenInline, "inline", "Generate an inline function"),
64 clEnumValN(GenVariable, "variable", "Generate a variable definition"),
65 clEnumValN(GenType, "type", "Generate a type definition"),
66 clEnumValEnd
70 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
71 cl::desc("Specify the name of the thing to generate"),
72 cl::init("!bad!"));
74 extern "C" void LLVMInitializeCppBackendTarget() {
75 // Register the target.
76 RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
79 extern "C" void LLVMInitializeCppBackendMCSubtargetInfo() {
80 RegisterMCSubtargetInfo<MCSubtargetInfo> X(TheCppBackendTarget);
83 namespace {
84 typedef std::vector<const Type*> TypeList;
85 typedef std::map<const Type*,std::string> TypeMap;
86 typedef std::map<const Value*,std::string> ValueMap;
87 typedef std::set<std::string> NameSet;
88 typedef std::set<const Type*> TypeSet;
89 typedef std::set<const Value*> ValueSet;
90 typedef std::map<const Value*,std::string> ForwardRefMap;
92 /// CppWriter - This class is the main chunk of code that converts an LLVM
93 /// module to a C++ translation unit.
94 class CppWriter : public ModulePass {
95 formatted_raw_ostream &Out;
96 const Module *TheModule;
97 uint64_t uniqueNum;
98 TypeMap TypeNames;
99 ValueMap ValueNames;
100 TypeMap UnresolvedTypes;
101 TypeList TypeStack;
102 NameSet UsedNames;
103 TypeSet DefinedTypes;
104 ValueSet DefinedValues;
105 ForwardRefMap ForwardRefs;
106 bool is_inline;
107 unsigned indent_level;
109 public:
110 static char ID;
111 explicit CppWriter(formatted_raw_ostream &o) :
112 ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){}
114 virtual const char *getPassName() const { return "C++ backend"; }
116 bool runOnModule(Module &M);
118 void printProgram(const std::string& fname, const std::string& modName );
119 void printModule(const std::string& fname, const std::string& modName );
120 void printContents(const std::string& fname, const std::string& modName );
121 void printFunction(const std::string& fname, const std::string& funcName );
122 void printFunctions();
123 void printInline(const std::string& fname, const std::string& funcName );
124 void printVariable(const std::string& fname, const std::string& varName );
125 void printType(const std::string& fname, const std::string& typeName );
127 void error(const std::string& msg);
130 formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
131 inline void in() { indent_level++; }
132 inline void out() { if (indent_level >0) indent_level--; }
134 private:
135 void printLinkageType(GlobalValue::LinkageTypes LT);
136 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
137 void printCallingConv(CallingConv::ID cc);
138 void printEscapedString(const std::string& str);
139 void printCFP(const ConstantFP* CFP);
141 std::string getCppName(const Type* val);
142 inline void printCppName(const Type* val);
144 std::string getCppName(const Value* val);
145 inline void printCppName(const Value* val);
147 void printAttributes(const AttrListPtr &PAL, const std::string &name);
148 bool printTypeInternal(const Type* Ty);
149 inline void printType(const Type* Ty);
150 void printTypes(const Module* M);
152 void printConstant(const Constant *CPV);
153 void printConstants(const Module* M);
155 void printVariableUses(const GlobalVariable *GV);
156 void printVariableHead(const GlobalVariable *GV);
157 void printVariableBody(const GlobalVariable *GV);
159 void printFunctionUses(const Function *F);
160 void printFunctionHead(const Function *F);
161 void printFunctionBody(const Function *F);
162 void printInstruction(const Instruction *I, const std::string& bbname);
163 std::string getOpName(Value*);
165 void printModuleBody();
167 } // end anonymous namespace.
169 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
170 Out << '\n';
171 if (delta >= 0 || indent_level >= unsigned(-delta))
172 indent_level += delta;
173 Out.indent(indent_level);
174 return Out;
177 static inline void sanitize(std::string &str) {
178 for (size_t i = 0; i < str.length(); ++i)
179 if (!isalnum(str[i]) && str[i] != '_')
180 str[i] = '_';
183 static std::string getTypePrefix(const Type *Ty) {
184 switch (Ty->getTypeID()) {
185 case Type::VoidTyID: return "void_";
186 case Type::IntegerTyID:
187 return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
188 case Type::FloatTyID: return "float_";
189 case Type::DoubleTyID: return "double_";
190 case Type::LabelTyID: return "label_";
191 case Type::FunctionTyID: return "func_";
192 case Type::StructTyID: return "struct_";
193 case Type::ArrayTyID: return "array_";
194 case Type::PointerTyID: return "ptr_";
195 case Type::VectorTyID: return "packed_";
196 default: return "other_";
198 return "unknown_";
201 void CppWriter::error(const std::string& msg) {
202 report_fatal_error(msg);
205 // printCFP - Print a floating point constant .. very carefully :)
206 // This makes sure that conversion to/from floating yields the same binary
207 // result so that we don't lose precision.
208 void CppWriter::printCFP(const ConstantFP *CFP) {
209 bool ignored;
210 APFloat APF = APFloat(CFP->getValueAPF()); // copy
211 if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
212 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
213 Out << "ConstantFP::get(mod->getContext(), ";
214 Out << "APFloat(";
215 #if HAVE_PRINTF_A
216 char Buffer[100];
217 sprintf(Buffer, "%A", APF.convertToDouble());
218 if ((!strncmp(Buffer, "0x", 2) ||
219 !strncmp(Buffer, "-0x", 3) ||
220 !strncmp(Buffer, "+0x", 3)) &&
221 APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
222 if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
223 Out << "BitsToDouble(" << Buffer << ")";
224 else
225 Out << "BitsToFloat((float)" << Buffer << ")";
226 Out << ")";
227 } else {
228 #endif
229 std::string StrVal = ftostr(CFP->getValueAPF());
231 while (StrVal[0] == ' ')
232 StrVal.erase(StrVal.begin());
234 // Check to make sure that the stringized number is not some string like
235 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
236 if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
237 ((StrVal[0] == '-' || StrVal[0] == '+') &&
238 (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
239 (CFP->isExactlyValue(atof(StrVal.c_str())))) {
240 if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
241 Out << StrVal;
242 else
243 Out << StrVal << "f";
244 } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
245 Out << "BitsToDouble(0x"
246 << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
247 << "ULL) /* " << StrVal << " */";
248 else
249 Out << "BitsToFloat(0x"
250 << utohexstr((uint32_t)CFP->getValueAPF().
251 bitcastToAPInt().getZExtValue())
252 << "U) /* " << StrVal << " */";
253 Out << ")";
254 #if HAVE_PRINTF_A
256 #endif
257 Out << ")";
260 void CppWriter::printCallingConv(CallingConv::ID cc){
261 // Print the calling convention.
262 switch (cc) {
263 case CallingConv::C: Out << "CallingConv::C"; break;
264 case CallingConv::Fast: Out << "CallingConv::Fast"; break;
265 case CallingConv::Cold: Out << "CallingConv::Cold"; break;
266 case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
267 default: Out << cc; break;
271 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
272 switch (LT) {
273 case GlobalValue::InternalLinkage:
274 Out << "GlobalValue::InternalLinkage"; break;
275 case GlobalValue::PrivateLinkage:
276 Out << "GlobalValue::PrivateLinkage"; break;
277 case GlobalValue::LinkerPrivateLinkage:
278 Out << "GlobalValue::LinkerPrivateLinkage"; break;
279 case GlobalValue::LinkerPrivateWeakLinkage:
280 Out << "GlobalValue::LinkerPrivateWeakLinkage"; break;
281 case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
282 Out << "GlobalValue::LinkerPrivateWeakDefAutoLinkage"; break;
283 case GlobalValue::AvailableExternallyLinkage:
284 Out << "GlobalValue::AvailableExternallyLinkage "; break;
285 case GlobalValue::LinkOnceAnyLinkage:
286 Out << "GlobalValue::LinkOnceAnyLinkage "; break;
287 case GlobalValue::LinkOnceODRLinkage:
288 Out << "GlobalValue::LinkOnceODRLinkage "; break;
289 case GlobalValue::WeakAnyLinkage:
290 Out << "GlobalValue::WeakAnyLinkage"; break;
291 case GlobalValue::WeakODRLinkage:
292 Out << "GlobalValue::WeakODRLinkage"; break;
293 case GlobalValue::AppendingLinkage:
294 Out << "GlobalValue::AppendingLinkage"; break;
295 case GlobalValue::ExternalLinkage:
296 Out << "GlobalValue::ExternalLinkage"; break;
297 case GlobalValue::DLLImportLinkage:
298 Out << "GlobalValue::DLLImportLinkage"; break;
299 case GlobalValue::DLLExportLinkage:
300 Out << "GlobalValue::DLLExportLinkage"; break;
301 case GlobalValue::ExternalWeakLinkage:
302 Out << "GlobalValue::ExternalWeakLinkage"; break;
303 case GlobalValue::CommonLinkage:
304 Out << "GlobalValue::CommonLinkage"; break;
308 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
309 switch (VisType) {
310 default: llvm_unreachable("Unknown GVar visibility");
311 case GlobalValue::DefaultVisibility:
312 Out << "GlobalValue::DefaultVisibility";
313 break;
314 case GlobalValue::HiddenVisibility:
315 Out << "GlobalValue::HiddenVisibility";
316 break;
317 case GlobalValue::ProtectedVisibility:
318 Out << "GlobalValue::ProtectedVisibility";
319 break;
323 // printEscapedString - Print each character of the specified string, escaping
324 // it if it is not printable or if it is an escape char.
325 void CppWriter::printEscapedString(const std::string &Str) {
326 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
327 unsigned char C = Str[i];
328 if (isprint(C) && C != '"' && C != '\\') {
329 Out << C;
330 } else {
331 Out << "\\x"
332 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
333 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
338 std::string CppWriter::getCppName(const Type* Ty) {
339 // First, handle the primitive types .. easy
340 if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
341 switch (Ty->getTypeID()) {
342 case Type::VoidTyID: return "Type::getVoidTy(mod->getContext())";
343 case Type::IntegerTyID: {
344 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
345 return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
347 case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(mod->getContext())";
348 case Type::FloatTyID: return "Type::getFloatTy(mod->getContext())";
349 case Type::DoubleTyID: return "Type::getDoubleTy(mod->getContext())";
350 case Type::LabelTyID: return "Type::getLabelTy(mod->getContext())";
351 case Type::X86_MMXTyID: return "Type::getX86_MMXTy(mod->getContext())";
352 default:
353 error("Invalid primitive type");
354 break;
356 // shouldn't be returned, but make it sensible
357 return "Type::getVoidTy(mod->getContext())";
360 // Now, see if we've seen the type before and return that
361 TypeMap::iterator I = TypeNames.find(Ty);
362 if (I != TypeNames.end())
363 return I->second;
365 // Okay, let's build a new name for this type. Start with a prefix
366 const char* prefix = 0;
367 switch (Ty->getTypeID()) {
368 case Type::FunctionTyID: prefix = "FuncTy_"; break;
369 case Type::StructTyID: prefix = "StructTy_"; break;
370 case Type::ArrayTyID: prefix = "ArrayTy_"; break;
371 case Type::PointerTyID: prefix = "PointerTy_"; break;
372 case Type::VectorTyID: prefix = "VectorTy_"; break;
373 default: prefix = "OtherTy_"; break; // prevent breakage
376 // See if the type has a name in the symboltable and build accordingly
377 std::string name;
378 if (const StructType *STy = dyn_cast<StructType>(Ty))
379 if (STy->hasName())
380 name = STy->getName();
382 if (name.empty())
383 name = utostr(uniqueNum++);
385 name = std::string(prefix) + name;
386 sanitize(name);
388 // Save the name
389 return TypeNames[Ty] = name;
392 void CppWriter::printCppName(const Type* Ty) {
393 printEscapedString(getCppName(Ty));
396 std::string CppWriter::getCppName(const Value* val) {
397 std::string name;
398 ValueMap::iterator I = ValueNames.find(val);
399 if (I != ValueNames.end() && I->first == val)
400 return I->second;
402 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
403 name = std::string("gvar_") +
404 getTypePrefix(GV->getType()->getElementType());
405 } else if (isa<Function>(val)) {
406 name = std::string("func_");
407 } else if (const Constant* C = dyn_cast<Constant>(val)) {
408 name = std::string("const_") + getTypePrefix(C->getType());
409 } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
410 if (is_inline) {
411 unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
412 Function::const_arg_iterator(Arg)) + 1;
413 name = std::string("arg_") + utostr(argNum);
414 NameSet::iterator NI = UsedNames.find(name);
415 if (NI != UsedNames.end())
416 name += std::string("_") + utostr(uniqueNum++);
417 UsedNames.insert(name);
418 return ValueNames[val] = name;
419 } else {
420 name = getTypePrefix(val->getType());
422 } else {
423 name = getTypePrefix(val->getType());
425 if (val->hasName())
426 name += val->getName();
427 else
428 name += utostr(uniqueNum++);
429 sanitize(name);
430 NameSet::iterator NI = UsedNames.find(name);
431 if (NI != UsedNames.end())
432 name += std::string("_") + utostr(uniqueNum++);
433 UsedNames.insert(name);
434 return ValueNames[val] = name;
437 void CppWriter::printCppName(const Value* val) {
438 printEscapedString(getCppName(val));
441 void CppWriter::printAttributes(const AttrListPtr &PAL,
442 const std::string &name) {
443 Out << "AttrListPtr " << name << "_PAL;";
444 nl(Out);
445 if (!PAL.isEmpty()) {
446 Out << '{'; in(); nl(Out);
447 Out << "SmallVector<AttributeWithIndex, 4> Attrs;"; nl(Out);
448 Out << "AttributeWithIndex PAWI;"; nl(Out);
449 for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
450 unsigned index = PAL.getSlot(i).Index;
451 Attributes attrs = PAL.getSlot(i).Attrs;
452 Out << "PAWI.Index = " << index << "U; PAWI.Attrs = 0 ";
453 #define HANDLE_ATTR(X) \
454 if (attrs & Attribute::X) \
455 Out << " | Attribute::" #X; \
456 attrs &= ~Attribute::X;
458 HANDLE_ATTR(SExt);
459 HANDLE_ATTR(ZExt);
460 HANDLE_ATTR(NoReturn);
461 HANDLE_ATTR(InReg);
462 HANDLE_ATTR(StructRet);
463 HANDLE_ATTR(NoUnwind);
464 HANDLE_ATTR(NoAlias);
465 HANDLE_ATTR(ByVal);
466 HANDLE_ATTR(Nest);
467 HANDLE_ATTR(ReadNone);
468 HANDLE_ATTR(ReadOnly);
469 HANDLE_ATTR(NoInline);
470 HANDLE_ATTR(AlwaysInline);
471 HANDLE_ATTR(OptimizeForSize);
472 HANDLE_ATTR(StackProtect);
473 HANDLE_ATTR(StackProtectReq);
474 HANDLE_ATTR(NoCapture);
475 HANDLE_ATTR(NoRedZone);
476 HANDLE_ATTR(NoImplicitFloat);
477 HANDLE_ATTR(Naked);
478 HANDLE_ATTR(InlineHint);
479 #undef HANDLE_ATTR
480 if (attrs & Attribute::StackAlignment)
481 Out << " | Attribute::constructStackAlignmentFromInt("
482 << Attribute::getStackAlignmentFromAttrs(attrs)
483 << ")";
484 attrs &= ~Attribute::StackAlignment;
485 assert(attrs == 0 && "Unhandled attribute!");
486 Out << ";";
487 nl(Out);
488 Out << "Attrs.push_back(PAWI);";
489 nl(Out);
491 Out << name << "_PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());";
492 nl(Out);
493 out(); nl(Out);
494 Out << '}'; nl(Out);
498 bool CppWriter::printTypeInternal(const Type* Ty) {
499 // We don't print definitions for primitive types
500 if (Ty->isPrimitiveType() || Ty->isIntegerTy())
501 return false;
503 // If we already defined this type, we don't need to define it again.
504 if (DefinedTypes.find(Ty) != DefinedTypes.end())
505 return false;
507 // Everything below needs the name for the type so get it now.
508 std::string typeName(getCppName(Ty));
510 // Search the type stack for recursion. If we find it, then generate this
511 // as an OpaqueType, but make sure not to do this multiple times because
512 // the type could appear in multiple places on the stack. Once the opaque
513 // definition is issued, it must not be re-issued. Consequently we have to
514 // check the UnresolvedTypes list as well.
515 TypeList::const_iterator TI = std::find(TypeStack.begin(), TypeStack.end(),
516 Ty);
517 if (TI != TypeStack.end()) {
518 TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
519 if (I == UnresolvedTypes.end()) {
520 Out << "PATypeHolder " << typeName;
521 Out << "_fwd = OpaqueType::get(mod->getContext());";
522 nl(Out);
523 UnresolvedTypes[Ty] = typeName;
525 return true;
528 // We're going to print a derived type which, by definition, contains other
529 // types. So, push this one we're printing onto the type stack to assist with
530 // recursive definitions.
531 TypeStack.push_back(Ty);
533 // Print the type definition
534 switch (Ty->getTypeID()) {
535 case Type::FunctionTyID: {
536 const FunctionType* FT = cast<FunctionType>(Ty);
537 Out << "std::vector<const Type*>" << typeName << "_args;";
538 nl(Out);
539 FunctionType::param_iterator PI = FT->param_begin();
540 FunctionType::param_iterator PE = FT->param_end();
541 for (; PI != PE; ++PI) {
542 const Type* argTy = static_cast<const Type*>(*PI);
543 bool isForward = printTypeInternal(argTy);
544 std::string argName(getCppName(argTy));
545 Out << typeName << "_args.push_back(" << argName;
546 if (isForward)
547 Out << "_fwd";
548 Out << ");";
549 nl(Out);
551 bool isForward = printTypeInternal(FT->getReturnType());
552 std::string retTypeName(getCppName(FT->getReturnType()));
553 Out << "FunctionType* " << typeName << " = FunctionType::get(";
554 in(); nl(Out) << "/*Result=*/" << retTypeName;
555 if (isForward)
556 Out << "_fwd";
557 Out << ",";
558 nl(Out) << "/*Params=*/" << typeName << "_args,";
559 nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
560 out();
561 nl(Out);
562 break;
564 case Type::StructTyID: {
565 const StructType* ST = cast<StructType>(Ty);
566 Out << "std::vector<const Type*>" << typeName << "_fields;";
567 nl(Out);
568 StructType::element_iterator EI = ST->element_begin();
569 StructType::element_iterator EE = ST->element_end();
570 for (; EI != EE; ++EI) {
571 const Type* fieldTy = static_cast<const Type*>(*EI);
572 bool isForward = printTypeInternal(fieldTy);
573 std::string fieldName(getCppName(fieldTy));
574 Out << typeName << "_fields.push_back(" << fieldName;
575 if (isForward)
576 Out << "_fwd";
577 Out << ");";
578 nl(Out);
581 Out << "StructType *" << typeName << " = ";
582 if (ST->isAnonymous()) {
583 Out << "StructType::get(" << "mod->getContext(), ";
584 } else {
585 Out << "StructType::createNamed(mod->getContext(), \"";
586 printEscapedString(ST->getName());
587 Out << "\");";
588 nl(Out);
589 Out << typeName << "->setBody(";
591 Out << typeName << "_fields, /*isPacked=*/"
592 << (ST->isPacked() ? "true" : "false") << ");";
593 nl(Out);
594 break;
596 case Type::ArrayTyID: {
597 const ArrayType* AT = cast<ArrayType>(Ty);
598 const Type* ET = AT->getElementType();
599 bool isForward = printTypeInternal(ET);
600 std::string elemName(getCppName(ET));
601 Out << "ArrayType* " << typeName << " = ArrayType::get("
602 << elemName << (isForward ? "_fwd" : "")
603 << ", " << utostr(AT->getNumElements()) << ");";
604 nl(Out);
605 break;
607 case Type::PointerTyID: {
608 const PointerType* PT = cast<PointerType>(Ty);
609 const Type* ET = PT->getElementType();
610 bool isForward = printTypeInternal(ET);
611 std::string elemName(getCppName(ET));
612 Out << "PointerType* " << typeName << " = PointerType::get("
613 << elemName << (isForward ? "_fwd" : "")
614 << ", " << utostr(PT->getAddressSpace()) << ");";
615 nl(Out);
616 break;
618 case Type::VectorTyID: {
619 const VectorType* PT = cast<VectorType>(Ty);
620 const Type* ET = PT->getElementType();
621 bool isForward = printTypeInternal(ET);
622 std::string elemName(getCppName(ET));
623 Out << "VectorType* " << typeName << " = VectorType::get("
624 << elemName << (isForward ? "_fwd" : "")
625 << ", " << utostr(PT->getNumElements()) << ");";
626 nl(Out);
627 break;
629 default:
630 error("Invalid TypeID");
633 // Pop us off the type stack
634 TypeStack.pop_back();
636 // Indicate that this type is now defined.
637 DefinedTypes.insert(Ty);
639 // Early resolve as many unresolved types as possible. Search the unresolved
640 // types map for the type we just printed. Now that its definition is complete
641 // we can resolve any previous references to it. This prevents a cascade of
642 // unresolved types.
643 TypeMap::iterator I = UnresolvedTypes.find(Ty);
644 if (I != UnresolvedTypes.end()) {
645 Out << "cast<OpaqueType>(" << I->second
646 << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");";
647 nl(Out);
648 Out << I->second << " = cast<";
649 switch (Ty->getTypeID()) {
650 case Type::FunctionTyID: Out << "FunctionType"; break;
651 case Type::ArrayTyID: Out << "ArrayType"; break;
652 case Type::StructTyID: Out << "StructType"; break;
653 case Type::VectorTyID: Out << "VectorType"; break;
654 case Type::PointerTyID: Out << "PointerType"; break;
655 default: Out << "NoSuchDerivedType"; break;
657 Out << ">(" << I->second << "_fwd.get());";
658 nl(Out); nl(Out);
659 UnresolvedTypes.erase(I);
662 // Finally, separate the type definition from other with a newline.
663 nl(Out);
665 // We weren't a recursive type
666 return false;
669 // Prints a type definition. Returns true if it could not resolve all the
670 // types in the definition but had to use a forward reference.
671 void CppWriter::printType(const Type* Ty) {
672 assert(TypeStack.empty());
673 TypeStack.clear();
674 printTypeInternal(Ty);
675 assert(TypeStack.empty());
678 void CppWriter::printTypes(const Module* M) {
679 // Add all of the global variables to the value table.
680 for (Module::const_global_iterator I = TheModule->global_begin(),
681 E = TheModule->global_end(); I != E; ++I) {
682 if (I->hasInitializer())
683 printType(I->getInitializer()->getType());
684 printType(I->getType());
687 // Add all the functions to the table
688 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
689 FI != FE; ++FI) {
690 printType(FI->getReturnType());
691 printType(FI->getFunctionType());
692 // Add all the function arguments
693 for (Function::const_arg_iterator AI = FI->arg_begin(),
694 AE = FI->arg_end(); AI != AE; ++AI) {
695 printType(AI->getType());
698 // Add all of the basic blocks and instructions
699 for (Function::const_iterator BB = FI->begin(),
700 E = FI->end(); BB != E; ++BB) {
701 printType(BB->getType());
702 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
703 ++I) {
704 printType(I->getType());
705 for (unsigned i = 0; i < I->getNumOperands(); ++i)
706 printType(I->getOperand(i)->getType());
713 // printConstant - Print out a constant pool entry...
714 void CppWriter::printConstant(const Constant *CV) {
715 // First, if the constant is actually a GlobalValue (variable or function)
716 // or its already in the constant list then we've printed it already and we
717 // can just return.
718 if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
719 return;
721 std::string constName(getCppName(CV));
722 std::string typeName(getCppName(CV->getType()));
724 if (isa<GlobalValue>(CV)) {
725 // Skip variables and functions, we emit them elsewhere
726 return;
729 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
730 std::string constValue = CI->getValue().toString(10, true);
731 Out << "ConstantInt* " << constName
732 << " = ConstantInt::get(mod->getContext(), APInt("
733 << cast<IntegerType>(CI->getType())->getBitWidth()
734 << ", StringRef(\"" << constValue << "\"), 10));";
735 } else if (isa<ConstantAggregateZero>(CV)) {
736 Out << "ConstantAggregateZero* " << constName
737 << " = ConstantAggregateZero::get(" << typeName << ");";
738 } else if (isa<ConstantPointerNull>(CV)) {
739 Out << "ConstantPointerNull* " << constName
740 << " = ConstantPointerNull::get(" << typeName << ");";
741 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
742 Out << "ConstantFP* " << constName << " = ";
743 printCFP(CFP);
744 Out << ";";
745 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
746 if (CA->isString() &&
747 CA->getType()->getElementType() ==
748 Type::getInt8Ty(CA->getContext())) {
749 Out << "Constant* " << constName <<
750 " = ConstantArray::get(mod->getContext(), \"";
751 std::string tmp = CA->getAsString();
752 bool nullTerminate = false;
753 if (tmp[tmp.length()-1] == 0) {
754 tmp.erase(tmp.length()-1);
755 nullTerminate = true;
757 printEscapedString(tmp);
758 // Determine if we want null termination or not.
759 if (nullTerminate)
760 Out << "\", true"; // Indicate that the null terminator should be
761 // added.
762 else
763 Out << "\", false";// No null terminator
764 Out << ");";
765 } else {
766 Out << "std::vector<Constant*> " << constName << "_elems;";
767 nl(Out);
768 unsigned N = CA->getNumOperands();
769 for (unsigned i = 0; i < N; ++i) {
770 printConstant(CA->getOperand(i)); // recurse to print operands
771 Out << constName << "_elems.push_back("
772 << getCppName(CA->getOperand(i)) << ");";
773 nl(Out);
775 Out << "Constant* " << constName << " = ConstantArray::get("
776 << typeName << ", " << constName << "_elems);";
778 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
779 Out << "std::vector<Constant*> " << constName << "_fields;";
780 nl(Out);
781 unsigned N = CS->getNumOperands();
782 for (unsigned i = 0; i < N; i++) {
783 printConstant(CS->getOperand(i));
784 Out << constName << "_fields.push_back("
785 << getCppName(CS->getOperand(i)) << ");";
786 nl(Out);
788 Out << "Constant* " << constName << " = ConstantStruct::get("
789 << typeName << ", " << constName << "_fields);";
790 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
791 Out << "std::vector<Constant*> " << constName << "_elems;";
792 nl(Out);
793 unsigned N = CP->getNumOperands();
794 for (unsigned i = 0; i < N; ++i) {
795 printConstant(CP->getOperand(i));
796 Out << constName << "_elems.push_back("
797 << getCppName(CP->getOperand(i)) << ");";
798 nl(Out);
800 Out << "Constant* " << constName << " = ConstantVector::get("
801 << typeName << ", " << constName << "_elems);";
802 } else if (isa<UndefValue>(CV)) {
803 Out << "UndefValue* " << constName << " = UndefValue::get("
804 << typeName << ");";
805 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
806 if (CE->getOpcode() == Instruction::GetElementPtr) {
807 Out << "std::vector<Constant*> " << constName << "_indices;";
808 nl(Out);
809 printConstant(CE->getOperand(0));
810 for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
811 printConstant(CE->getOperand(i));
812 Out << constName << "_indices.push_back("
813 << getCppName(CE->getOperand(i)) << ");";
814 nl(Out);
816 Out << "Constant* " << constName
817 << " = ConstantExpr::getGetElementPtr("
818 << getCppName(CE->getOperand(0)) << ", "
819 << "&" << constName << "_indices[0], "
820 << constName << "_indices.size()"
821 << ");";
822 } else if (CE->isCast()) {
823 printConstant(CE->getOperand(0));
824 Out << "Constant* " << constName << " = ConstantExpr::getCast(";
825 switch (CE->getOpcode()) {
826 default: llvm_unreachable("Invalid cast opcode");
827 case Instruction::Trunc: Out << "Instruction::Trunc"; break;
828 case Instruction::ZExt: Out << "Instruction::ZExt"; break;
829 case Instruction::SExt: Out << "Instruction::SExt"; break;
830 case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break;
831 case Instruction::FPExt: Out << "Instruction::FPExt"; break;
832 case Instruction::FPToUI: Out << "Instruction::FPToUI"; break;
833 case Instruction::FPToSI: Out << "Instruction::FPToSI"; break;
834 case Instruction::UIToFP: Out << "Instruction::UIToFP"; break;
835 case Instruction::SIToFP: Out << "Instruction::SIToFP"; break;
836 case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break;
837 case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break;
838 case Instruction::BitCast: Out << "Instruction::BitCast"; break;
840 Out << ", " << getCppName(CE->getOperand(0)) << ", "
841 << getCppName(CE->getType()) << ");";
842 } else {
843 unsigned N = CE->getNumOperands();
844 for (unsigned i = 0; i < N; ++i ) {
845 printConstant(CE->getOperand(i));
847 Out << "Constant* " << constName << " = ConstantExpr::";
848 switch (CE->getOpcode()) {
849 case Instruction::Add: Out << "getAdd("; break;
850 case Instruction::FAdd: Out << "getFAdd("; break;
851 case Instruction::Sub: Out << "getSub("; break;
852 case Instruction::FSub: Out << "getFSub("; break;
853 case Instruction::Mul: Out << "getMul("; break;
854 case Instruction::FMul: Out << "getFMul("; break;
855 case Instruction::UDiv: Out << "getUDiv("; break;
856 case Instruction::SDiv: Out << "getSDiv("; break;
857 case Instruction::FDiv: Out << "getFDiv("; break;
858 case Instruction::URem: Out << "getURem("; break;
859 case Instruction::SRem: Out << "getSRem("; break;
860 case Instruction::FRem: Out << "getFRem("; break;
861 case Instruction::And: Out << "getAnd("; break;
862 case Instruction::Or: Out << "getOr("; break;
863 case Instruction::Xor: Out << "getXor("; break;
864 case Instruction::ICmp:
865 Out << "getICmp(ICmpInst::ICMP_";
866 switch (CE->getPredicate()) {
867 case ICmpInst::ICMP_EQ: Out << "EQ"; break;
868 case ICmpInst::ICMP_NE: Out << "NE"; break;
869 case ICmpInst::ICMP_SLT: Out << "SLT"; break;
870 case ICmpInst::ICMP_ULT: Out << "ULT"; break;
871 case ICmpInst::ICMP_SGT: Out << "SGT"; break;
872 case ICmpInst::ICMP_UGT: Out << "UGT"; break;
873 case ICmpInst::ICMP_SLE: Out << "SLE"; break;
874 case ICmpInst::ICMP_ULE: Out << "ULE"; break;
875 case ICmpInst::ICMP_SGE: Out << "SGE"; break;
876 case ICmpInst::ICMP_UGE: Out << "UGE"; break;
877 default: error("Invalid ICmp Predicate");
879 break;
880 case Instruction::FCmp:
881 Out << "getFCmp(FCmpInst::FCMP_";
882 switch (CE->getPredicate()) {
883 case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
884 case FCmpInst::FCMP_ORD: Out << "ORD"; break;
885 case FCmpInst::FCMP_UNO: Out << "UNO"; break;
886 case FCmpInst::FCMP_OEQ: Out << "OEQ"; break;
887 case FCmpInst::FCMP_UEQ: Out << "UEQ"; break;
888 case FCmpInst::FCMP_ONE: Out << "ONE"; break;
889 case FCmpInst::FCMP_UNE: Out << "UNE"; break;
890 case FCmpInst::FCMP_OLT: Out << "OLT"; break;
891 case FCmpInst::FCMP_ULT: Out << "ULT"; break;
892 case FCmpInst::FCMP_OGT: Out << "OGT"; break;
893 case FCmpInst::FCMP_UGT: Out << "UGT"; break;
894 case FCmpInst::FCMP_OLE: Out << "OLE"; break;
895 case FCmpInst::FCMP_ULE: Out << "ULE"; break;
896 case FCmpInst::FCMP_OGE: Out << "OGE"; break;
897 case FCmpInst::FCMP_UGE: Out << "UGE"; break;
898 case FCmpInst::FCMP_TRUE: Out << "TRUE"; break;
899 default: error("Invalid FCmp Predicate");
901 break;
902 case Instruction::Shl: Out << "getShl("; break;
903 case Instruction::LShr: Out << "getLShr("; break;
904 case Instruction::AShr: Out << "getAShr("; break;
905 case Instruction::Select: Out << "getSelect("; break;
906 case Instruction::ExtractElement: Out << "getExtractElement("; break;
907 case Instruction::InsertElement: Out << "getInsertElement("; break;
908 case Instruction::ShuffleVector: Out << "getShuffleVector("; break;
909 default:
910 error("Invalid constant expression");
911 break;
913 Out << getCppName(CE->getOperand(0));
914 for (unsigned i = 1; i < CE->getNumOperands(); ++i)
915 Out << ", " << getCppName(CE->getOperand(i));
916 Out << ");";
918 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
919 Out << "Constant* " << constName << " = ";
920 Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
921 } else {
922 error("Bad Constant");
923 Out << "Constant* " << constName << " = 0; ";
925 nl(Out);
928 void CppWriter::printConstants(const Module* M) {
929 // Traverse all the global variables looking for constant initializers
930 for (Module::const_global_iterator I = TheModule->global_begin(),
931 E = TheModule->global_end(); I != E; ++I)
932 if (I->hasInitializer())
933 printConstant(I->getInitializer());
935 // Traverse the LLVM functions looking for constants
936 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
937 FI != FE; ++FI) {
938 // Add all of the basic blocks and instructions
939 for (Function::const_iterator BB = FI->begin(),
940 E = FI->end(); BB != E; ++BB) {
941 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
942 ++I) {
943 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
944 if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
945 printConstant(C);
953 void CppWriter::printVariableUses(const GlobalVariable *GV) {
954 nl(Out) << "// Type Definitions";
955 nl(Out);
956 printType(GV->getType());
957 if (GV->hasInitializer()) {
958 const Constant *Init = GV->getInitializer();
959 printType(Init->getType());
960 if (const Function *F = dyn_cast<Function>(Init)) {
961 nl(Out)<< "/ Function Declarations"; nl(Out);
962 printFunctionHead(F);
963 } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
964 nl(Out) << "// Global Variable Declarations"; nl(Out);
965 printVariableHead(gv);
967 nl(Out) << "// Global Variable Definitions"; nl(Out);
968 printVariableBody(gv);
969 } else {
970 nl(Out) << "// Constant Definitions"; nl(Out);
971 printConstant(Init);
976 void CppWriter::printVariableHead(const GlobalVariable *GV) {
977 nl(Out) << "GlobalVariable* " << getCppName(GV);
978 if (is_inline) {
979 Out << " = mod->getGlobalVariable(mod->getContext(), ";
980 printEscapedString(GV->getName());
981 Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
982 nl(Out) << "if (!" << getCppName(GV) << ") {";
983 in(); nl(Out) << getCppName(GV);
985 Out << " = new GlobalVariable(/*Module=*/*mod, ";
986 nl(Out) << "/*Type=*/";
987 printCppName(GV->getType()->getElementType());
988 Out << ",";
989 nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
990 Out << ",";
991 nl(Out) << "/*Linkage=*/";
992 printLinkageType(GV->getLinkage());
993 Out << ",";
994 nl(Out) << "/*Initializer=*/0, ";
995 if (GV->hasInitializer()) {
996 Out << "// has initializer, specified below";
998 nl(Out) << "/*Name=*/\"";
999 printEscapedString(GV->getName());
1000 Out << "\");";
1001 nl(Out);
1003 if (GV->hasSection()) {
1004 printCppName(GV);
1005 Out << "->setSection(\"";
1006 printEscapedString(GV->getSection());
1007 Out << "\");";
1008 nl(Out);
1010 if (GV->getAlignment()) {
1011 printCppName(GV);
1012 Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
1013 nl(Out);
1015 if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
1016 printCppName(GV);
1017 Out << "->setVisibility(";
1018 printVisibilityType(GV->getVisibility());
1019 Out << ");";
1020 nl(Out);
1022 if (GV->isThreadLocal()) {
1023 printCppName(GV);
1024 Out << "->setThreadLocal(true);";
1025 nl(Out);
1027 if (is_inline) {
1028 out(); Out << "}"; nl(Out);
1032 void CppWriter::printVariableBody(const GlobalVariable *GV) {
1033 if (GV->hasInitializer()) {
1034 printCppName(GV);
1035 Out << "->setInitializer(";
1036 Out << getCppName(GV->getInitializer()) << ");";
1037 nl(Out);
1041 std::string CppWriter::getOpName(Value* V) {
1042 if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1043 return getCppName(V);
1045 // See if its alread in the map of forward references, if so just return the
1046 // name we already set up for it
1047 ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1048 if (I != ForwardRefs.end())
1049 return I->second;
1051 // This is a new forward reference. Generate a unique name for it
1052 std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1054 // Yes, this is a hack. An Argument is the smallest instantiable value that
1055 // we can make as a placeholder for the real value. We'll replace these
1056 // Argument instances later.
1057 Out << "Argument* " << result << " = new Argument("
1058 << getCppName(V->getType()) << ");";
1059 nl(Out);
1060 ForwardRefs[V] = result;
1061 return result;
1064 // printInstruction - This member is called for each Instruction in a function.
1065 void CppWriter::printInstruction(const Instruction *I,
1066 const std::string& bbname) {
1067 std::string iName(getCppName(I));
1069 // Before we emit this instruction, we need to take care of generating any
1070 // forward references. So, we get the names of all the operands in advance
1071 const unsigned Ops(I->getNumOperands());
1072 std::string* opNames = new std::string[Ops];
1073 for (unsigned i = 0; i < Ops; i++)
1074 opNames[i] = getOpName(I->getOperand(i));
1076 switch (I->getOpcode()) {
1077 default:
1078 error("Invalid instruction");
1079 break;
1081 case Instruction::Ret: {
1082 const ReturnInst* ret = cast<ReturnInst>(I);
1083 Out << "ReturnInst::Create(mod->getContext(), "
1084 << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1085 break;
1087 case Instruction::Br: {
1088 const BranchInst* br = cast<BranchInst>(I);
1089 Out << "BranchInst::Create(" ;
1090 if (br->getNumOperands() == 3) {
1091 Out << opNames[2] << ", "
1092 << opNames[1] << ", "
1093 << opNames[0] << ", ";
1095 } else if (br->getNumOperands() == 1) {
1096 Out << opNames[0] << ", ";
1097 } else {
1098 error("Branch with 2 operands?");
1100 Out << bbname << ");";
1101 break;
1103 case Instruction::Switch: {
1104 const SwitchInst *SI = cast<SwitchInst>(I);
1105 Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1106 << opNames[0] << ", "
1107 << opNames[1] << ", "
1108 << SI->getNumCases() << ", " << bbname << ");";
1109 nl(Out);
1110 for (unsigned i = 2; i != SI->getNumOperands(); i += 2) {
1111 Out << iName << "->addCase("
1112 << opNames[i] << ", "
1113 << opNames[i+1] << ");";
1114 nl(Out);
1116 break;
1118 case Instruction::IndirectBr: {
1119 const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
1120 Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
1121 << opNames[0] << ", " << IBI->getNumDestinations() << ");";
1122 nl(Out);
1123 for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
1124 Out << iName << "->addDestination(" << opNames[i] << ");";
1125 nl(Out);
1127 break;
1129 case Instruction::Invoke: {
1130 const InvokeInst* inv = cast<InvokeInst>(I);
1131 Out << "std::vector<Value*> " << iName << "_params;";
1132 nl(Out);
1133 for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
1134 Out << iName << "_params.push_back("
1135 << getOpName(inv->getArgOperand(i)) << ");";
1136 nl(Out);
1138 // FIXME: This shouldn't use magic numbers -3, -2, and -1.
1139 Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1140 << getOpName(inv->getCalledFunction()) << ", "
1141 << getOpName(inv->getNormalDest()) << ", "
1142 << getOpName(inv->getUnwindDest()) << ", "
1143 << iName << "_params.begin(), "
1144 << iName << "_params.end(), \"";
1145 printEscapedString(inv->getName());
1146 Out << "\", " << bbname << ");";
1147 nl(Out) << iName << "->setCallingConv(";
1148 printCallingConv(inv->getCallingConv());
1149 Out << ");";
1150 printAttributes(inv->getAttributes(), iName);
1151 Out << iName << "->setAttributes(" << iName << "_PAL);";
1152 nl(Out);
1153 break;
1155 case Instruction::Unwind: {
1156 Out << "new UnwindInst("
1157 << bbname << ");";
1158 break;
1160 case Instruction::Unreachable: {
1161 Out << "new UnreachableInst("
1162 << "mod->getContext(), "
1163 << bbname << ");";
1164 break;
1166 case Instruction::Add:
1167 case Instruction::FAdd:
1168 case Instruction::Sub:
1169 case Instruction::FSub:
1170 case Instruction::Mul:
1171 case Instruction::FMul:
1172 case Instruction::UDiv:
1173 case Instruction::SDiv:
1174 case Instruction::FDiv:
1175 case Instruction::URem:
1176 case Instruction::SRem:
1177 case Instruction::FRem:
1178 case Instruction::And:
1179 case Instruction::Or:
1180 case Instruction::Xor:
1181 case Instruction::Shl:
1182 case Instruction::LShr:
1183 case Instruction::AShr:{
1184 Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1185 switch (I->getOpcode()) {
1186 case Instruction::Add: Out << "Instruction::Add"; break;
1187 case Instruction::FAdd: Out << "Instruction::FAdd"; break;
1188 case Instruction::Sub: Out << "Instruction::Sub"; break;
1189 case Instruction::FSub: Out << "Instruction::FSub"; break;
1190 case Instruction::Mul: Out << "Instruction::Mul"; break;
1191 case Instruction::FMul: Out << "Instruction::FMul"; break;
1192 case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1193 case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1194 case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1195 case Instruction::URem:Out << "Instruction::URem"; break;
1196 case Instruction::SRem:Out << "Instruction::SRem"; break;
1197 case Instruction::FRem:Out << "Instruction::FRem"; break;
1198 case Instruction::And: Out << "Instruction::And"; break;
1199 case Instruction::Or: Out << "Instruction::Or"; break;
1200 case Instruction::Xor: Out << "Instruction::Xor"; break;
1201 case Instruction::Shl: Out << "Instruction::Shl"; break;
1202 case Instruction::LShr:Out << "Instruction::LShr"; break;
1203 case Instruction::AShr:Out << "Instruction::AShr"; break;
1204 default: Out << "Instruction::BadOpCode"; break;
1206 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1207 printEscapedString(I->getName());
1208 Out << "\", " << bbname << ");";
1209 break;
1211 case Instruction::FCmp: {
1212 Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
1213 switch (cast<FCmpInst>(I)->getPredicate()) {
1214 case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1215 case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break;
1216 case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break;
1217 case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break;
1218 case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break;
1219 case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break;
1220 case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break;
1221 case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break;
1222 case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break;
1223 case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break;
1224 case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break;
1225 case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break;
1226 case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break;
1227 case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break;
1228 case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break;
1229 case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1230 default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1232 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1233 printEscapedString(I->getName());
1234 Out << "\");";
1235 break;
1237 case Instruction::ICmp: {
1238 Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
1239 switch (cast<ICmpInst>(I)->getPredicate()) {
1240 case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break;
1241 case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break;
1242 case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1243 case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1244 case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1245 case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1246 case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1247 case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1248 case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1249 case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1250 default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1252 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1253 printEscapedString(I->getName());
1254 Out << "\");";
1255 break;
1257 case Instruction::Alloca: {
1258 const AllocaInst* allocaI = cast<AllocaInst>(I);
1259 Out << "AllocaInst* " << iName << " = new AllocaInst("
1260 << getCppName(allocaI->getAllocatedType()) << ", ";
1261 if (allocaI->isArrayAllocation())
1262 Out << opNames[0] << ", ";
1263 Out << "\"";
1264 printEscapedString(allocaI->getName());
1265 Out << "\", " << bbname << ");";
1266 if (allocaI->getAlignment())
1267 nl(Out) << iName << "->setAlignment("
1268 << allocaI->getAlignment() << ");";
1269 break;
1271 case Instruction::Load: {
1272 const LoadInst* load = cast<LoadInst>(I);
1273 Out << "LoadInst* " << iName << " = new LoadInst("
1274 << opNames[0] << ", \"";
1275 printEscapedString(load->getName());
1276 Out << "\", " << (load->isVolatile() ? "true" : "false" )
1277 << ", " << bbname << ");";
1278 break;
1280 case Instruction::Store: {
1281 const StoreInst* store = cast<StoreInst>(I);
1282 Out << " new StoreInst("
1283 << opNames[0] << ", "
1284 << opNames[1] << ", "
1285 << (store->isVolatile() ? "true" : "false")
1286 << ", " << bbname << ");";
1287 break;
1289 case Instruction::GetElementPtr: {
1290 const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1291 if (gep->getNumOperands() <= 2) {
1292 Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1293 << opNames[0];
1294 if (gep->getNumOperands() == 2)
1295 Out << ", " << opNames[1];
1296 } else {
1297 Out << "std::vector<Value*> " << iName << "_indices;";
1298 nl(Out);
1299 for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1300 Out << iName << "_indices.push_back("
1301 << opNames[i] << ");";
1302 nl(Out);
1304 Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1305 << opNames[0] << ", " << iName << "_indices.begin(), "
1306 << iName << "_indices.end()";
1308 Out << ", \"";
1309 printEscapedString(gep->getName());
1310 Out << "\", " << bbname << ");";
1311 break;
1313 case Instruction::PHI: {
1314 const PHINode* phi = cast<PHINode>(I);
1316 Out << "PHINode* " << iName << " = PHINode::Create("
1317 << getCppName(phi->getType()) << ", "
1318 << phi->getNumIncomingValues() << ", \"";
1319 printEscapedString(phi->getName());
1320 Out << "\", " << bbname << ");";
1321 nl(Out);
1322 for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
1323 Out << iName << "->addIncoming("
1324 << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
1325 << getOpName(phi->getIncomingBlock(i)) << ");";
1326 nl(Out);
1328 break;
1330 case Instruction::Trunc:
1331 case Instruction::ZExt:
1332 case Instruction::SExt:
1333 case Instruction::FPTrunc:
1334 case Instruction::FPExt:
1335 case Instruction::FPToUI:
1336 case Instruction::FPToSI:
1337 case Instruction::UIToFP:
1338 case Instruction::SIToFP:
1339 case Instruction::PtrToInt:
1340 case Instruction::IntToPtr:
1341 case Instruction::BitCast: {
1342 const CastInst* cst = cast<CastInst>(I);
1343 Out << "CastInst* " << iName << " = new ";
1344 switch (I->getOpcode()) {
1345 case Instruction::Trunc: Out << "TruncInst"; break;
1346 case Instruction::ZExt: Out << "ZExtInst"; break;
1347 case Instruction::SExt: Out << "SExtInst"; break;
1348 case Instruction::FPTrunc: Out << "FPTruncInst"; break;
1349 case Instruction::FPExt: Out << "FPExtInst"; break;
1350 case Instruction::FPToUI: Out << "FPToUIInst"; break;
1351 case Instruction::FPToSI: Out << "FPToSIInst"; break;
1352 case Instruction::UIToFP: Out << "UIToFPInst"; break;
1353 case Instruction::SIToFP: Out << "SIToFPInst"; break;
1354 case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1355 case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1356 case Instruction::BitCast: Out << "BitCastInst"; break;
1357 default: assert(!"Unreachable"); break;
1359 Out << "(" << opNames[0] << ", "
1360 << getCppName(cst->getType()) << ", \"";
1361 printEscapedString(cst->getName());
1362 Out << "\", " << bbname << ");";
1363 break;
1365 case Instruction::Call: {
1366 const CallInst* call = cast<CallInst>(I);
1367 if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1368 Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1369 << getCppName(ila->getFunctionType()) << ", \""
1370 << ila->getAsmString() << "\", \""
1371 << ila->getConstraintString() << "\","
1372 << (ila->hasSideEffects() ? "true" : "false") << ");";
1373 nl(Out);
1375 if (call->getNumArgOperands() > 1) {
1376 Out << "std::vector<Value*> " << iName << "_params;";
1377 nl(Out);
1378 for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
1379 Out << iName << "_params.push_back(" << opNames[i] << ");";
1380 nl(Out);
1382 Out << "CallInst* " << iName << " = CallInst::Create("
1383 << opNames[call->getNumArgOperands()] << ", "
1384 << iName << "_params.begin(), "
1385 << iName << "_params.end(), \"";
1386 } else if (call->getNumArgOperands() == 1) {
1387 Out << "CallInst* " << iName << " = CallInst::Create("
1388 << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
1389 } else {
1390 Out << "CallInst* " << iName << " = CallInst::Create("
1391 << opNames[call->getNumArgOperands()] << ", \"";
1393 printEscapedString(call->getName());
1394 Out << "\", " << bbname << ");";
1395 nl(Out) << iName << "->setCallingConv(";
1396 printCallingConv(call->getCallingConv());
1397 Out << ");";
1398 nl(Out) << iName << "->setTailCall("
1399 << (call->isTailCall() ? "true" : "false");
1400 Out << ");";
1401 nl(Out);
1402 printAttributes(call->getAttributes(), iName);
1403 Out << iName << "->setAttributes(" << iName << "_PAL);";
1404 nl(Out);
1405 break;
1407 case Instruction::Select: {
1408 const SelectInst* sel = cast<SelectInst>(I);
1409 Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1410 Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1411 printEscapedString(sel->getName());
1412 Out << "\", " << bbname << ");";
1413 break;
1415 case Instruction::UserOp1:
1416 /// FALL THROUGH
1417 case Instruction::UserOp2: {
1418 /// FIXME: What should be done here?
1419 break;
1421 case Instruction::VAArg: {
1422 const VAArgInst* va = cast<VAArgInst>(I);
1423 Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1424 << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1425 printEscapedString(va->getName());
1426 Out << "\", " << bbname << ");";
1427 break;
1429 case Instruction::ExtractElement: {
1430 const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1431 Out << "ExtractElementInst* " << getCppName(eei)
1432 << " = new ExtractElementInst(" << opNames[0]
1433 << ", " << opNames[1] << ", \"";
1434 printEscapedString(eei->getName());
1435 Out << "\", " << bbname << ");";
1436 break;
1438 case Instruction::InsertElement: {
1439 const InsertElementInst* iei = cast<InsertElementInst>(I);
1440 Out << "InsertElementInst* " << getCppName(iei)
1441 << " = InsertElementInst::Create(" << opNames[0]
1442 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1443 printEscapedString(iei->getName());
1444 Out << "\", " << bbname << ");";
1445 break;
1447 case Instruction::ShuffleVector: {
1448 const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1449 Out << "ShuffleVectorInst* " << getCppName(svi)
1450 << " = new ShuffleVectorInst(" << opNames[0]
1451 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1452 printEscapedString(svi->getName());
1453 Out << "\", " << bbname << ");";
1454 break;
1456 case Instruction::ExtractValue: {
1457 const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1458 Out << "std::vector<unsigned> " << iName << "_indices;";
1459 nl(Out);
1460 for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1461 Out << iName << "_indices.push_back("
1462 << evi->idx_begin()[i] << ");";
1463 nl(Out);
1465 Out << "ExtractValueInst* " << getCppName(evi)
1466 << " = ExtractValueInst::Create(" << opNames[0]
1467 << ", "
1468 << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
1469 printEscapedString(evi->getName());
1470 Out << "\", " << bbname << ");";
1471 break;
1473 case Instruction::InsertValue: {
1474 const InsertValueInst *ivi = cast<InsertValueInst>(I);
1475 Out << "std::vector<unsigned> " << iName << "_indices;";
1476 nl(Out);
1477 for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1478 Out << iName << "_indices.push_back("
1479 << ivi->idx_begin()[i] << ");";
1480 nl(Out);
1482 Out << "InsertValueInst* " << getCppName(ivi)
1483 << " = InsertValueInst::Create(" << opNames[0]
1484 << ", " << opNames[1] << ", "
1485 << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
1486 printEscapedString(ivi->getName());
1487 Out << "\", " << bbname << ");";
1488 break;
1491 DefinedValues.insert(I);
1492 nl(Out);
1493 delete [] opNames;
1496 // Print out the types, constants and declarations needed by one function
1497 void CppWriter::printFunctionUses(const Function* F) {
1498 nl(Out) << "// Type Definitions"; nl(Out);
1499 if (!is_inline) {
1500 // Print the function's return type
1501 printType(F->getReturnType());
1503 // Print the function's function type
1504 printType(F->getFunctionType());
1506 // Print the types of each of the function's arguments
1507 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1508 AI != AE; ++AI) {
1509 printType(AI->getType());
1513 // Print type definitions for every type referenced by an instruction and
1514 // make a note of any global values or constants that are referenced
1515 SmallPtrSet<GlobalValue*,64> gvs;
1516 SmallPtrSet<Constant*,64> consts;
1517 for (Function::const_iterator BB = F->begin(), BE = F->end();
1518 BB != BE; ++BB){
1519 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1520 I != E; ++I) {
1521 // Print the type of the instruction itself
1522 printType(I->getType());
1524 // Print the type of each of the instruction's operands
1525 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1526 Value* operand = I->getOperand(i);
1527 printType(operand->getType());
1529 // If the operand references a GVal or Constant, make a note of it
1530 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1531 gvs.insert(GV);
1532 if (GenerationType != GenFunction)
1533 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1534 if (GVar->hasInitializer())
1535 consts.insert(GVar->getInitializer());
1536 } else if (Constant* C = dyn_cast<Constant>(operand)) {
1537 consts.insert(C);
1538 for (unsigned j = 0; j < C->getNumOperands(); ++j) {
1539 // If the operand references a GVal or Constant, make a note of it
1540 Value* operand = C->getOperand(j);
1541 printType(operand->getType());
1542 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1543 gvs.insert(GV);
1544 if (GenerationType != GenFunction)
1545 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1546 if (GVar->hasInitializer())
1547 consts.insert(GVar->getInitializer());
1555 // Print the function declarations for any functions encountered
1556 nl(Out) << "// Function Declarations"; nl(Out);
1557 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1558 I != E; ++I) {
1559 if (Function* Fun = dyn_cast<Function>(*I)) {
1560 if (!is_inline || Fun != F)
1561 printFunctionHead(Fun);
1565 // Print the global variable declarations for any variables encountered
1566 nl(Out) << "// Global Variable Declarations"; nl(Out);
1567 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1568 I != E; ++I) {
1569 if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
1570 printVariableHead(F);
1573 // Print the constants found
1574 nl(Out) << "// Constant Definitions"; nl(Out);
1575 for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
1576 E = consts.end(); I != E; ++I) {
1577 printConstant(*I);
1580 // Process the global variables definitions now that all the constants have
1581 // been emitted. These definitions just couple the gvars with their constant
1582 // initializers.
1583 if (GenerationType != GenFunction) {
1584 nl(Out) << "// Global Variable Definitions"; nl(Out);
1585 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1586 I != E; ++I) {
1587 if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
1588 printVariableBody(GV);
1593 void CppWriter::printFunctionHead(const Function* F) {
1594 nl(Out) << "Function* " << getCppName(F);
1595 if (is_inline) {
1596 Out << " = mod->getFunction(\"";
1597 printEscapedString(F->getName());
1598 Out << "\", " << getCppName(F->getFunctionType()) << ");";
1599 nl(Out) << "if (!" << getCppName(F) << ") {";
1600 nl(Out) << getCppName(F);
1602 Out<< " = Function::Create(";
1603 nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1604 nl(Out) << "/*Linkage=*/";
1605 printLinkageType(F->getLinkage());
1606 Out << ",";
1607 nl(Out) << "/*Name=*/\"";
1608 printEscapedString(F->getName());
1609 Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1610 nl(Out,-1);
1611 printCppName(F);
1612 Out << "->setCallingConv(";
1613 printCallingConv(F->getCallingConv());
1614 Out << ");";
1615 nl(Out);
1616 if (F->hasSection()) {
1617 printCppName(F);
1618 Out << "->setSection(\"" << F->getSection() << "\");";
1619 nl(Out);
1621 if (F->getAlignment()) {
1622 printCppName(F);
1623 Out << "->setAlignment(" << F->getAlignment() << ");";
1624 nl(Out);
1626 if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1627 printCppName(F);
1628 Out << "->setVisibility(";
1629 printVisibilityType(F->getVisibility());
1630 Out << ");";
1631 nl(Out);
1633 if (F->hasGC()) {
1634 printCppName(F);
1635 Out << "->setGC(\"" << F->getGC() << "\");";
1636 nl(Out);
1638 if (is_inline) {
1639 Out << "}";
1640 nl(Out);
1642 printAttributes(F->getAttributes(), getCppName(F));
1643 printCppName(F);
1644 Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1645 nl(Out);
1648 void CppWriter::printFunctionBody(const Function *F) {
1649 if (F->isDeclaration())
1650 return; // external functions have no bodies.
1652 // Clear the DefinedValues and ForwardRefs maps because we can't have
1653 // cross-function forward refs
1654 ForwardRefs.clear();
1655 DefinedValues.clear();
1657 // Create all the argument values
1658 if (!is_inline) {
1659 if (!F->arg_empty()) {
1660 Out << "Function::arg_iterator args = " << getCppName(F)
1661 << "->arg_begin();";
1662 nl(Out);
1664 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1665 AI != AE; ++AI) {
1666 Out << "Value* " << getCppName(AI) << " = args++;";
1667 nl(Out);
1668 if (AI->hasName()) {
1669 Out << getCppName(AI) << "->setName(\"" << AI->getName() << "\");";
1670 nl(Out);
1675 // Create all the basic blocks
1676 nl(Out);
1677 for (Function::const_iterator BI = F->begin(), BE = F->end();
1678 BI != BE; ++BI) {
1679 std::string bbname(getCppName(BI));
1680 Out << "BasicBlock* " << bbname <<
1681 " = BasicBlock::Create(mod->getContext(), \"";
1682 if (BI->hasName())
1683 printEscapedString(BI->getName());
1684 Out << "\"," << getCppName(BI->getParent()) << ",0);";
1685 nl(Out);
1688 // Output all of its basic blocks... for the function
1689 for (Function::const_iterator BI = F->begin(), BE = F->end();
1690 BI != BE; ++BI) {
1691 std::string bbname(getCppName(BI));
1692 nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1693 nl(Out);
1695 // Output all of the instructions in the basic block...
1696 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1697 I != E; ++I) {
1698 printInstruction(I,bbname);
1702 // Loop over the ForwardRefs and resolve them now that all instructions
1703 // are generated.
1704 if (!ForwardRefs.empty()) {
1705 nl(Out) << "// Resolve Forward References";
1706 nl(Out);
1709 while (!ForwardRefs.empty()) {
1710 ForwardRefMap::iterator I = ForwardRefs.begin();
1711 Out << I->second << "->replaceAllUsesWith("
1712 << getCppName(I->first) << "); delete " << I->second << ";";
1713 nl(Out);
1714 ForwardRefs.erase(I);
1718 void CppWriter::printInline(const std::string& fname,
1719 const std::string& func) {
1720 const Function* F = TheModule->getFunction(func);
1721 if (!F) {
1722 error(std::string("Function '") + func + "' not found in input module");
1723 return;
1725 if (F->isDeclaration()) {
1726 error(std::string("Function '") + func + "' is external!");
1727 return;
1729 nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1730 << getCppName(F);
1731 unsigned arg_count = 1;
1732 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1733 AI != AE; ++AI) {
1734 Out << ", Value* arg_" << arg_count;
1736 Out << ") {";
1737 nl(Out);
1738 is_inline = true;
1739 printFunctionUses(F);
1740 printFunctionBody(F);
1741 is_inline = false;
1742 Out << "return " << getCppName(F->begin()) << ";";
1743 nl(Out) << "}";
1744 nl(Out);
1747 void CppWriter::printModuleBody() {
1748 // Print out all the type definitions
1749 nl(Out) << "// Type Definitions"; nl(Out);
1750 printTypes(TheModule);
1752 // Functions can call each other and global variables can reference them so
1753 // define all the functions first before emitting their function bodies.
1754 nl(Out) << "// Function Declarations"; nl(Out);
1755 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1756 I != E; ++I)
1757 printFunctionHead(I);
1759 // Process the global variables declarations. We can't initialze them until
1760 // after the constants are printed so just print a header for each global
1761 nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1762 for (Module::const_global_iterator I = TheModule->global_begin(),
1763 E = TheModule->global_end(); I != E; ++I) {
1764 printVariableHead(I);
1767 // Print out all the constants definitions. Constants don't recurse except
1768 // through GlobalValues. All GlobalValues have been declared at this point
1769 // so we can proceed to generate the constants.
1770 nl(Out) << "// Constant Definitions"; nl(Out);
1771 printConstants(TheModule);
1773 // Process the global variables definitions now that all the constants have
1774 // been emitted. These definitions just couple the gvars with their constant
1775 // initializers.
1776 nl(Out) << "// Global Variable Definitions"; nl(Out);
1777 for (Module::const_global_iterator I = TheModule->global_begin(),
1778 E = TheModule->global_end(); I != E; ++I) {
1779 printVariableBody(I);
1782 // Finally, we can safely put out all of the function bodies.
1783 nl(Out) << "// Function Definitions"; nl(Out);
1784 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1785 I != E; ++I) {
1786 if (!I->isDeclaration()) {
1787 nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1788 << ")";
1789 nl(Out) << "{";
1790 nl(Out,1);
1791 printFunctionBody(I);
1792 nl(Out,-1) << "}";
1793 nl(Out);
1798 void CppWriter::printProgram(const std::string& fname,
1799 const std::string& mName) {
1800 Out << "#include <llvm/LLVMContext.h>\n";
1801 Out << "#include <llvm/Module.h>\n";
1802 Out << "#include <llvm/DerivedTypes.h>\n";
1803 Out << "#include <llvm/Constants.h>\n";
1804 Out << "#include <llvm/GlobalVariable.h>\n";
1805 Out << "#include <llvm/Function.h>\n";
1806 Out << "#include <llvm/CallingConv.h>\n";
1807 Out << "#include <llvm/BasicBlock.h>\n";
1808 Out << "#include <llvm/Instructions.h>\n";
1809 Out << "#include <llvm/InlineAsm.h>\n";
1810 Out << "#include <llvm/Support/FormattedStream.h>\n";
1811 Out << "#include <llvm/Support/MathExtras.h>\n";
1812 Out << "#include <llvm/Pass.h>\n";
1813 Out << "#include <llvm/PassManager.h>\n";
1814 Out << "#include <llvm/ADT/SmallVector.h>\n";
1815 Out << "#include <llvm/Analysis/Verifier.h>\n";
1816 Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
1817 Out << "#include <algorithm>\n";
1818 Out << "using namespace llvm;\n\n";
1819 Out << "Module* " << fname << "();\n\n";
1820 Out << "int main(int argc, char**argv) {\n";
1821 Out << " Module* Mod = " << fname << "();\n";
1822 Out << " verifyModule(*Mod, PrintMessageAction);\n";
1823 Out << " PassManager PM;\n";
1824 Out << " PM.add(createPrintModulePass(&outs()));\n";
1825 Out << " PM.run(*Mod);\n";
1826 Out << " return 0;\n";
1827 Out << "}\n\n";
1828 printModule(fname,mName);
1831 void CppWriter::printModule(const std::string& fname,
1832 const std::string& mName) {
1833 nl(Out) << "Module* " << fname << "() {";
1834 nl(Out,1) << "// Module Construction";
1835 nl(Out) << "Module* mod = new Module(\"";
1836 printEscapedString(mName);
1837 Out << "\", getGlobalContext());";
1838 if (!TheModule->getTargetTriple().empty()) {
1839 nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
1841 if (!TheModule->getTargetTriple().empty()) {
1842 nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1843 << "\");";
1846 if (!TheModule->getModuleInlineAsm().empty()) {
1847 nl(Out) << "mod->setModuleInlineAsm(\"";
1848 printEscapedString(TheModule->getModuleInlineAsm());
1849 Out << "\");";
1851 nl(Out);
1853 // Loop over the dependent libraries and emit them.
1854 Module::lib_iterator LI = TheModule->lib_begin();
1855 Module::lib_iterator LE = TheModule->lib_end();
1856 while (LI != LE) {
1857 Out << "mod->addLibrary(\"" << *LI << "\");";
1858 nl(Out);
1859 ++LI;
1861 printModuleBody();
1862 nl(Out) << "return mod;";
1863 nl(Out,-1) << "}";
1864 nl(Out);
1867 void CppWriter::printContents(const std::string& fname,
1868 const std::string& mName) {
1869 Out << "\nModule* " << fname << "(Module *mod) {\n";
1870 Out << "\nmod->setModuleIdentifier(\"";
1871 printEscapedString(mName);
1872 Out << "\");\n";
1873 printModuleBody();
1874 Out << "\nreturn mod;\n";
1875 Out << "\n}\n";
1878 void CppWriter::printFunction(const std::string& fname,
1879 const std::string& funcName) {
1880 const Function* F = TheModule->getFunction(funcName);
1881 if (!F) {
1882 error(std::string("Function '") + funcName + "' not found in input module");
1883 return;
1885 Out << "\nFunction* " << fname << "(Module *mod) {\n";
1886 printFunctionUses(F);
1887 printFunctionHead(F);
1888 printFunctionBody(F);
1889 Out << "return " << getCppName(F) << ";\n";
1890 Out << "}\n";
1893 void CppWriter::printFunctions() {
1894 const Module::FunctionListType &funcs = TheModule->getFunctionList();
1895 Module::const_iterator I = funcs.begin();
1896 Module::const_iterator IE = funcs.end();
1898 for (; I != IE; ++I) {
1899 const Function &func = *I;
1900 if (!func.isDeclaration()) {
1901 std::string name("define_");
1902 name += func.getName();
1903 printFunction(name, func.getName());
1908 void CppWriter::printVariable(const std::string& fname,
1909 const std::string& varName) {
1910 const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
1912 if (!GV) {
1913 error(std::string("Variable '") + varName + "' not found in input module");
1914 return;
1916 Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
1917 printVariableUses(GV);
1918 printVariableHead(GV);
1919 printVariableBody(GV);
1920 Out << "return " << getCppName(GV) << ";\n";
1921 Out << "}\n";
1924 void CppWriter::printType(const std::string &fname,
1925 const std::string &typeName) {
1926 const Type* Ty = TheModule->getTypeByName(typeName);
1927 if (!Ty) {
1928 error(std::string("Type '") + typeName + "' not found in input module");
1929 return;
1931 Out << "\nType* " << fname << "(Module *mod) {\n";
1932 printType(Ty);
1933 Out << "return " << getCppName(Ty) << ";\n";
1934 Out << "}\n";
1937 bool CppWriter::runOnModule(Module &M) {
1938 TheModule = &M;
1940 // Emit a header
1941 Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
1943 // Get the name of the function we're supposed to generate
1944 std::string fname = FuncName.getValue();
1946 // Get the name of the thing we are to generate
1947 std::string tgtname = NameToGenerate.getValue();
1948 if (GenerationType == GenModule ||
1949 GenerationType == GenContents ||
1950 GenerationType == GenProgram ||
1951 GenerationType == GenFunctions) {
1952 if (tgtname == "!bad!") {
1953 if (M.getModuleIdentifier() == "-")
1954 tgtname = "<stdin>";
1955 else
1956 tgtname = M.getModuleIdentifier();
1958 } else if (tgtname == "!bad!")
1959 error("You must use the -for option with -gen-{function,variable,type}");
1961 switch (WhatToGenerate(GenerationType)) {
1962 case GenProgram:
1963 if (fname.empty())
1964 fname = "makeLLVMModule";
1965 printProgram(fname,tgtname);
1966 break;
1967 case GenModule:
1968 if (fname.empty())
1969 fname = "makeLLVMModule";
1970 printModule(fname,tgtname);
1971 break;
1972 case GenContents:
1973 if (fname.empty())
1974 fname = "makeLLVMModuleContents";
1975 printContents(fname,tgtname);
1976 break;
1977 case GenFunction:
1978 if (fname.empty())
1979 fname = "makeLLVMFunction";
1980 printFunction(fname,tgtname);
1981 break;
1982 case GenFunctions:
1983 printFunctions();
1984 break;
1985 case GenInline:
1986 if (fname.empty())
1987 fname = "makeLLVMInline";
1988 printInline(fname,tgtname);
1989 break;
1990 case GenVariable:
1991 if (fname.empty())
1992 fname = "makeLLVMVariable";
1993 printVariable(fname,tgtname);
1994 break;
1995 case GenType:
1996 if (fname.empty())
1997 fname = "makeLLVMType";
1998 printType(fname,tgtname);
1999 break;
2000 default:
2001 error("Invalid generation option");
2004 return false;
2007 char CppWriter::ID = 0;
2009 //===----------------------------------------------------------------------===//
2010 // External Interface declaration
2011 //===----------------------------------------------------------------------===//
2013 bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
2014 formatted_raw_ostream &o,
2015 CodeGenFileType FileType,
2016 CodeGenOpt::Level OptLevel,
2017 bool DisableVerify) {
2018 if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
2019 PM.add(new CppWriter(o));
2020 return false;