Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / Target / X86 / AsmParser / X86AsmParser.cpp
blobcdbbcd365fe009ad3153754c23e4994ca005765a
1 //===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Target/TargetAsmParser.h"
11 #include "X86.h"
12 #include "X86Subtarget.h"
13 #include "llvm/Target/TargetRegistry.h"
14 #include "llvm/Target/TargetAsmParser.h"
15 #include "llvm/MC/MCStreamer.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/MC/MCSubtargetInfo.h"
19 #include "llvm/MC/MCParser/MCAsmLexer.h"
20 #include "llvm/MC/MCParser/MCAsmParser.h"
21 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
22 #include "llvm/ADT/OwningPtr.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Support/SourceMgr.h"
29 #include "llvm/Support/raw_ostream.h"
31 #define GET_SUBTARGETINFO_ENUM
32 #include "X86GenSubtargetInfo.inc"
34 using namespace llvm;
36 namespace {
37 struct X86Operand;
39 class X86ATTAsmParser : public TargetAsmParser {
40 MCSubtargetInfo &STI;
41 MCAsmParser &Parser;
43 private:
44 MCAsmParser &getParser() const { return Parser; }
46 MCAsmLexer &getLexer() const { return Parser.getLexer(); }
48 bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
50 X86Operand *ParseOperand();
51 X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
53 bool ParseDirectiveWord(unsigned Size, SMLoc L);
55 bool MatchAndEmitInstruction(SMLoc IDLoc,
56 SmallVectorImpl<MCParsedAsmOperand*> &Operands,
57 MCStreamer &Out);
59 /// isSrcOp - Returns true if operand is either (%rsi) or %ds:%(rsi)
60 /// in 64bit mode or (%edi) or %es:(%edi) in 32bit mode.
61 bool isSrcOp(X86Operand &Op);
63 /// isDstOp - Returns true if operand is either %es:(%rdi) in 64bit mode
64 /// or %es:(%edi) in 32bit mode.
65 bool isDstOp(X86Operand &Op);
67 bool is64Bit() {
68 // FIXME: Can tablegen auto-generate this?
69 return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
72 /// @name Auto-generated Matcher Functions
73 /// {
75 #define GET_ASSEMBLER_HEADER
76 #include "X86GenAsmMatcher.inc"
78 /// }
80 public:
81 X86ATTAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser)
82 : TargetAsmParser(), STI(sti), Parser(parser) {
84 // Initialize the set of available features.
85 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
87 virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
89 virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
90 SmallVectorImpl<MCParsedAsmOperand*> &Operands);
92 virtual bool ParseDirective(AsmToken DirectiveID);
94 } // end anonymous namespace
96 /// @name Auto-generated Match Functions
97 /// {
99 static unsigned MatchRegisterName(StringRef Name);
101 /// }
103 namespace {
105 /// X86Operand - Instances of this class represent a parsed X86 machine
106 /// instruction.
107 struct X86Operand : public MCParsedAsmOperand {
108 enum KindTy {
109 Token,
110 Register,
111 Immediate,
112 Memory
113 } Kind;
115 SMLoc StartLoc, EndLoc;
117 union {
118 struct {
119 const char *Data;
120 unsigned Length;
121 } Tok;
123 struct {
124 unsigned RegNo;
125 } Reg;
127 struct {
128 const MCExpr *Val;
129 } Imm;
131 struct {
132 unsigned SegReg;
133 const MCExpr *Disp;
134 unsigned BaseReg;
135 unsigned IndexReg;
136 unsigned Scale;
137 } Mem;
140 X86Operand(KindTy K, SMLoc Start, SMLoc End)
141 : Kind(K), StartLoc(Start), EndLoc(End) {}
143 /// getStartLoc - Get the location of the first token of this operand.
144 SMLoc getStartLoc() const { return StartLoc; }
145 /// getEndLoc - Get the location of the last token of this operand.
146 SMLoc getEndLoc() const { return EndLoc; }
148 virtual void dump(raw_ostream &OS) const {}
150 StringRef getToken() const {
151 assert(Kind == Token && "Invalid access!");
152 return StringRef(Tok.Data, Tok.Length);
154 void setTokenValue(StringRef Value) {
155 assert(Kind == Token && "Invalid access!");
156 Tok.Data = Value.data();
157 Tok.Length = Value.size();
160 unsigned getReg() const {
161 assert(Kind == Register && "Invalid access!");
162 return Reg.RegNo;
165 const MCExpr *getImm() const {
166 assert(Kind == Immediate && "Invalid access!");
167 return Imm.Val;
170 const MCExpr *getMemDisp() const {
171 assert(Kind == Memory && "Invalid access!");
172 return Mem.Disp;
174 unsigned getMemSegReg() const {
175 assert(Kind == Memory && "Invalid access!");
176 return Mem.SegReg;
178 unsigned getMemBaseReg() const {
179 assert(Kind == Memory && "Invalid access!");
180 return Mem.BaseReg;
182 unsigned getMemIndexReg() const {
183 assert(Kind == Memory && "Invalid access!");
184 return Mem.IndexReg;
186 unsigned getMemScale() const {
187 assert(Kind == Memory && "Invalid access!");
188 return Mem.Scale;
191 bool isToken() const {return Kind == Token; }
193 bool isImm() const { return Kind == Immediate; }
195 bool isImmSExti16i8() const {
196 if (!isImm())
197 return false;
199 // If this isn't a constant expr, just assume it fits and let relaxation
200 // handle it.
201 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
202 if (!CE)
203 return true;
205 // Otherwise, check the value is in a range that makes sense for this
206 // extension.
207 uint64_t Value = CE->getValue();
208 return (( Value <= 0x000000000000007FULL)||
209 (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)||
210 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
212 bool isImmSExti32i8() const {
213 if (!isImm())
214 return false;
216 // If this isn't a constant expr, just assume it fits and let relaxation
217 // handle it.
218 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
219 if (!CE)
220 return true;
222 // Otherwise, check the value is in a range that makes sense for this
223 // extension.
224 uint64_t Value = CE->getValue();
225 return (( Value <= 0x000000000000007FULL)||
226 (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)||
227 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
229 bool isImmSExti64i8() const {
230 if (!isImm())
231 return false;
233 // If this isn't a constant expr, just assume it fits and let relaxation
234 // handle it.
235 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
236 if (!CE)
237 return true;
239 // Otherwise, check the value is in a range that makes sense for this
240 // extension.
241 uint64_t Value = CE->getValue();
242 return (( Value <= 0x000000000000007FULL)||
243 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
245 bool isImmSExti64i32() const {
246 if (!isImm())
247 return false;
249 // If this isn't a constant expr, just assume it fits and let relaxation
250 // handle it.
251 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
252 if (!CE)
253 return true;
255 // Otherwise, check the value is in a range that makes sense for this
256 // extension.
257 uint64_t Value = CE->getValue();
258 return (( Value <= 0x000000007FFFFFFFULL)||
259 (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
262 bool isMem() const { return Kind == Memory; }
264 bool isAbsMem() const {
265 return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
266 !getMemIndexReg() && getMemScale() == 1;
269 bool isReg() const { return Kind == Register; }
271 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
272 // Add as immediates when possible.
273 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
274 Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
275 else
276 Inst.addOperand(MCOperand::CreateExpr(Expr));
279 void addRegOperands(MCInst &Inst, unsigned N) const {
280 assert(N == 1 && "Invalid number of operands!");
281 Inst.addOperand(MCOperand::CreateReg(getReg()));
284 void addImmOperands(MCInst &Inst, unsigned N) const {
285 assert(N == 1 && "Invalid number of operands!");
286 addExpr(Inst, getImm());
289 void addMemOperands(MCInst &Inst, unsigned N) const {
290 assert((N == 5) && "Invalid number of operands!");
291 Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
292 Inst.addOperand(MCOperand::CreateImm(getMemScale()));
293 Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
294 addExpr(Inst, getMemDisp());
295 Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
298 void addAbsMemOperands(MCInst &Inst, unsigned N) const {
299 assert((N == 1) && "Invalid number of operands!");
300 Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
303 static X86Operand *CreateToken(StringRef Str, SMLoc Loc) {
304 X86Operand *Res = new X86Operand(Token, Loc, Loc);
305 Res->Tok.Data = Str.data();
306 Res->Tok.Length = Str.size();
307 return Res;
310 static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) {
311 X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc);
312 Res->Reg.RegNo = RegNo;
313 return Res;
316 static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){
317 X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc);
318 Res->Imm.Val = Val;
319 return Res;
322 /// Create an absolute memory operand.
323 static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc,
324 SMLoc EndLoc) {
325 X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
326 Res->Mem.SegReg = 0;
327 Res->Mem.Disp = Disp;
328 Res->Mem.BaseReg = 0;
329 Res->Mem.IndexReg = 0;
330 Res->Mem.Scale = 1;
331 return Res;
334 /// Create a generalized memory operand.
335 static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp,
336 unsigned BaseReg, unsigned IndexReg,
337 unsigned Scale, SMLoc StartLoc, SMLoc EndLoc) {
338 // We should never just have a displacement, that should be parsed as an
339 // absolute memory operand.
340 assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
342 // The scale should always be one of {1,2,4,8}.
343 assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
344 "Invalid scale!");
345 X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
346 Res->Mem.SegReg = SegReg;
347 Res->Mem.Disp = Disp;
348 Res->Mem.BaseReg = BaseReg;
349 Res->Mem.IndexReg = IndexReg;
350 Res->Mem.Scale = Scale;
351 return Res;
355 } // end anonymous namespace.
357 bool X86ATTAsmParser::isSrcOp(X86Operand &Op) {
358 unsigned basereg = is64Bit() ? X86::RSI : X86::ESI;
360 return (Op.isMem() &&
361 (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::DS) &&
362 isa<MCConstantExpr>(Op.Mem.Disp) &&
363 cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
364 Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0);
367 bool X86ATTAsmParser::isDstOp(X86Operand &Op) {
368 unsigned basereg = is64Bit() ? X86::RDI : X86::EDI;
370 return Op.isMem() && Op.Mem.SegReg == X86::ES &&
371 isa<MCConstantExpr>(Op.Mem.Disp) &&
372 cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
373 Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0;
376 bool X86ATTAsmParser::ParseRegister(unsigned &RegNo,
377 SMLoc &StartLoc, SMLoc &EndLoc) {
378 RegNo = 0;
379 const AsmToken &TokPercent = Parser.getTok();
380 assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!");
381 StartLoc = TokPercent.getLoc();
382 Parser.Lex(); // Eat percent token.
384 const AsmToken &Tok = Parser.getTok();
385 if (Tok.isNot(AsmToken::Identifier))
386 return Error(Tok.getLoc(), "invalid register name");
388 // FIXME: Validate register for the current architecture; we have to do
389 // validation later, so maybe there is no need for this here.
390 RegNo = MatchRegisterName(Tok.getString());
392 // If the match failed, try the register name as lowercase.
393 if (RegNo == 0)
394 RegNo = MatchRegisterName(LowercaseString(Tok.getString()));
396 // FIXME: This should be done using Requires<In32BitMode> and
397 // Requires<In64BitMode> so "eiz" usage in 64-bit instructions
398 // can be also checked.
399 if (RegNo == X86::RIZ && !is64Bit())
400 return Error(Tok.getLoc(), "riz register in 64-bit mode only");
402 // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
403 if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
404 RegNo = X86::ST0;
405 EndLoc = Tok.getLoc();
406 Parser.Lex(); // Eat 'st'
408 // Check to see if we have '(4)' after %st.
409 if (getLexer().isNot(AsmToken::LParen))
410 return false;
411 // Lex the paren.
412 getParser().Lex();
414 const AsmToken &IntTok = Parser.getTok();
415 if (IntTok.isNot(AsmToken::Integer))
416 return Error(IntTok.getLoc(), "expected stack index");
417 switch (IntTok.getIntVal()) {
418 case 0: RegNo = X86::ST0; break;
419 case 1: RegNo = X86::ST1; break;
420 case 2: RegNo = X86::ST2; break;
421 case 3: RegNo = X86::ST3; break;
422 case 4: RegNo = X86::ST4; break;
423 case 5: RegNo = X86::ST5; break;
424 case 6: RegNo = X86::ST6; break;
425 case 7: RegNo = X86::ST7; break;
426 default: return Error(IntTok.getLoc(), "invalid stack index");
429 if (getParser().Lex().isNot(AsmToken::RParen))
430 return Error(Parser.getTok().getLoc(), "expected ')'");
432 EndLoc = Tok.getLoc();
433 Parser.Lex(); // Eat ')'
434 return false;
437 // If this is "db[0-7]", match it as an alias
438 // for dr[0-7].
439 if (RegNo == 0 && Tok.getString().size() == 3 &&
440 Tok.getString().startswith("db")) {
441 switch (Tok.getString()[2]) {
442 case '0': RegNo = X86::DR0; break;
443 case '1': RegNo = X86::DR1; break;
444 case '2': RegNo = X86::DR2; break;
445 case '3': RegNo = X86::DR3; break;
446 case '4': RegNo = X86::DR4; break;
447 case '5': RegNo = X86::DR5; break;
448 case '6': RegNo = X86::DR6; break;
449 case '7': RegNo = X86::DR7; break;
452 if (RegNo != 0) {
453 EndLoc = Tok.getLoc();
454 Parser.Lex(); // Eat it.
455 return false;
459 if (RegNo == 0)
460 return Error(Tok.getLoc(), "invalid register name");
462 EndLoc = Tok.getLoc();
463 Parser.Lex(); // Eat identifier token.
464 return false;
467 X86Operand *X86ATTAsmParser::ParseOperand() {
468 switch (getLexer().getKind()) {
469 default:
470 // Parse a memory operand with no segment register.
471 return ParseMemOperand(0, Parser.getTok().getLoc());
472 case AsmToken::Percent: {
473 // Read the register.
474 unsigned RegNo;
475 SMLoc Start, End;
476 if (ParseRegister(RegNo, Start, End)) return 0;
477 if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
478 Error(Start, "eiz and riz can only be used as index registers");
479 return 0;
482 // If this is a segment register followed by a ':', then this is the start
483 // of a memory reference, otherwise this is a normal register reference.
484 if (getLexer().isNot(AsmToken::Colon))
485 return X86Operand::CreateReg(RegNo, Start, End);
488 getParser().Lex(); // Eat the colon.
489 return ParseMemOperand(RegNo, Start);
491 case AsmToken::Dollar: {
492 // $42 -> immediate.
493 SMLoc Start = Parser.getTok().getLoc(), End;
494 Parser.Lex();
495 const MCExpr *Val;
496 if (getParser().ParseExpression(Val, End))
497 return 0;
498 return X86Operand::CreateImm(Val, Start, End);
503 /// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix
504 /// has already been parsed if present.
505 X86Operand *X86ATTAsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) {
507 // We have to disambiguate a parenthesized expression "(4+5)" from the start
508 // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
509 // only way to do this without lookahead is to eat the '(' and see what is
510 // after it.
511 const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
512 if (getLexer().isNot(AsmToken::LParen)) {
513 SMLoc ExprEnd;
514 if (getParser().ParseExpression(Disp, ExprEnd)) return 0;
516 // After parsing the base expression we could either have a parenthesized
517 // memory address or not. If not, return now. If so, eat the (.
518 if (getLexer().isNot(AsmToken::LParen)) {
519 // Unless we have a segment register, treat this as an immediate.
520 if (SegReg == 0)
521 return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
522 return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
525 // Eat the '('.
526 Parser.Lex();
527 } else {
528 // Okay, we have a '('. We don't know if this is an expression or not, but
529 // so we have to eat the ( to see beyond it.
530 SMLoc LParenLoc = Parser.getTok().getLoc();
531 Parser.Lex(); // Eat the '('.
533 if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
534 // Nothing to do here, fall into the code below with the '(' part of the
535 // memory operand consumed.
536 } else {
537 SMLoc ExprEnd;
539 // It must be an parenthesized expression, parse it now.
540 if (getParser().ParseParenExpression(Disp, ExprEnd))
541 return 0;
543 // After parsing the base expression we could either have a parenthesized
544 // memory address or not. If not, return now. If so, eat the (.
545 if (getLexer().isNot(AsmToken::LParen)) {
546 // Unless we have a segment register, treat this as an immediate.
547 if (SegReg == 0)
548 return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
549 return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
552 // Eat the '('.
553 Parser.Lex();
557 // If we reached here, then we just ate the ( of the memory operand. Process
558 // the rest of the memory operand.
559 unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
561 if (getLexer().is(AsmToken::Percent)) {
562 SMLoc L;
563 if (ParseRegister(BaseReg, L, L)) return 0;
564 if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
565 Error(L, "eiz and riz can only be used as index registers");
566 return 0;
570 if (getLexer().is(AsmToken::Comma)) {
571 Parser.Lex(); // Eat the comma.
573 // Following the comma we should have either an index register, or a scale
574 // value. We don't support the later form, but we want to parse it
575 // correctly.
577 // Not that even though it would be completely consistent to support syntax
578 // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
579 if (getLexer().is(AsmToken::Percent)) {
580 SMLoc L;
581 if (ParseRegister(IndexReg, L, L)) return 0;
583 if (getLexer().isNot(AsmToken::RParen)) {
584 // Parse the scale amount:
585 // ::= ',' [scale-expression]
586 if (getLexer().isNot(AsmToken::Comma)) {
587 Error(Parser.getTok().getLoc(),
588 "expected comma in scale expression");
589 return 0;
591 Parser.Lex(); // Eat the comma.
593 if (getLexer().isNot(AsmToken::RParen)) {
594 SMLoc Loc = Parser.getTok().getLoc();
596 int64_t ScaleVal;
597 if (getParser().ParseAbsoluteExpression(ScaleVal))
598 return 0;
600 // Validate the scale amount.
601 if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
602 Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
603 return 0;
605 Scale = (unsigned)ScaleVal;
608 } else if (getLexer().isNot(AsmToken::RParen)) {
609 // A scale amount without an index is ignored.
610 // index.
611 SMLoc Loc = Parser.getTok().getLoc();
613 int64_t Value;
614 if (getParser().ParseAbsoluteExpression(Value))
615 return 0;
617 if (Value != 1)
618 Warning(Loc, "scale factor without index register is ignored");
619 Scale = 1;
623 // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
624 if (getLexer().isNot(AsmToken::RParen)) {
625 Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
626 return 0;
628 SMLoc MemEnd = Parser.getTok().getLoc();
629 Parser.Lex(); // Eat the ')'.
631 return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
632 MemStart, MemEnd);
635 bool X86ATTAsmParser::
636 ParseInstruction(StringRef Name, SMLoc NameLoc,
637 SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
638 StringRef PatchedName = Name;
640 // FIXME: Hack to recognize setneb as setne.
641 if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
642 PatchedName != "setb" && PatchedName != "setnb")
643 PatchedName = PatchedName.substr(0, Name.size()-1);
645 // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
646 const MCExpr *ExtraImmOp = 0;
647 if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
648 (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
649 PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
650 bool IsVCMP = PatchedName.startswith("vcmp");
651 unsigned SSECCIdx = IsVCMP ? 4 : 3;
652 unsigned SSEComparisonCode = StringSwitch<unsigned>(
653 PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
654 .Case("eq", 0)
655 .Case("lt", 1)
656 .Case("le", 2)
657 .Case("unord", 3)
658 .Case("neq", 4)
659 .Case("nlt", 5)
660 .Case("nle", 6)
661 .Case("ord", 7)
662 .Case("eq_uq", 8)
663 .Case("nge", 9)
664 .Case("ngt", 0x0A)
665 .Case("false", 0x0B)
666 .Case("neq_oq", 0x0C)
667 .Case("ge", 0x0D)
668 .Case("gt", 0x0E)
669 .Case("true", 0x0F)
670 .Case("eq_os", 0x10)
671 .Case("lt_oq", 0x11)
672 .Case("le_oq", 0x12)
673 .Case("unord_s", 0x13)
674 .Case("neq_us", 0x14)
675 .Case("nlt_uq", 0x15)
676 .Case("nle_uq", 0x16)
677 .Case("ord_s", 0x17)
678 .Case("eq_us", 0x18)
679 .Case("nge_uq", 0x19)
680 .Case("ngt_uq", 0x1A)
681 .Case("false_os", 0x1B)
682 .Case("neq_os", 0x1C)
683 .Case("ge_oq", 0x1D)
684 .Case("gt_oq", 0x1E)
685 .Case("true_us", 0x1F)
686 .Default(~0U);
687 if (SSEComparisonCode != ~0U) {
688 ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
689 getParser().getContext());
690 if (PatchedName.endswith("ss")) {
691 PatchedName = IsVCMP ? "vcmpss" : "cmpss";
692 } else if (PatchedName.endswith("sd")) {
693 PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
694 } else if (PatchedName.endswith("ps")) {
695 PatchedName = IsVCMP ? "vcmpps" : "cmpps";
696 } else {
697 assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
698 PatchedName = IsVCMP ? "vcmppd" : "cmppd";
703 Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
705 if (ExtraImmOp)
706 Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
709 // Determine whether this is an instruction prefix.
710 bool isPrefix =
711 Name == "lock" || Name == "rep" ||
712 Name == "repe" || Name == "repz" ||
713 Name == "repne" || Name == "repnz" ||
714 Name == "rex64" || Name == "data16";
717 // This does the actual operand parsing. Don't parse any more if we have a
718 // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
719 // just want to parse the "lock" as the first instruction and the "incl" as
720 // the next one.
721 if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
723 // Parse '*' modifier.
724 if (getLexer().is(AsmToken::Star)) {
725 SMLoc Loc = Parser.getTok().getLoc();
726 Operands.push_back(X86Operand::CreateToken("*", Loc));
727 Parser.Lex(); // Eat the star.
730 // Read the first operand.
731 if (X86Operand *Op = ParseOperand())
732 Operands.push_back(Op);
733 else {
734 Parser.EatToEndOfStatement();
735 return true;
738 while (getLexer().is(AsmToken::Comma)) {
739 Parser.Lex(); // Eat the comma.
741 // Parse and remember the operand.
742 if (X86Operand *Op = ParseOperand())
743 Operands.push_back(Op);
744 else {
745 Parser.EatToEndOfStatement();
746 return true;
750 if (getLexer().isNot(AsmToken::EndOfStatement)) {
751 SMLoc Loc = getLexer().getLoc();
752 Parser.EatToEndOfStatement();
753 return Error(Loc, "unexpected token in argument list");
757 if (getLexer().is(AsmToken::EndOfStatement))
758 Parser.Lex(); // Consume the EndOfStatement
759 else if (isPrefix && getLexer().is(AsmToken::Slash))
760 Parser.Lex(); // Consume the prefix separator Slash
762 // This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
763 // "outb %al, %dx". Out doesn't take a memory form, but this is a widely
764 // documented form in various unofficial manuals, so a lot of code uses it.
765 if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
766 Operands.size() == 3) {
767 X86Operand &Op = *(X86Operand*)Operands.back();
768 if (Op.isMem() && Op.Mem.SegReg == 0 &&
769 isa<MCConstantExpr>(Op.Mem.Disp) &&
770 cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
771 Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
772 SMLoc Loc = Op.getEndLoc();
773 Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
774 delete &Op;
777 // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
778 if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
779 Operands.size() == 3) {
780 X86Operand &Op = *(X86Operand*)Operands.begin()[1];
781 if (Op.isMem() && Op.Mem.SegReg == 0 &&
782 isa<MCConstantExpr>(Op.Mem.Disp) &&
783 cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
784 Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
785 SMLoc Loc = Op.getEndLoc();
786 Operands.begin()[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
787 delete &Op;
790 // Transform "ins[bwl] %dx, %es:(%edi)" into "ins[bwl]"
791 if (Name.startswith("ins") && Operands.size() == 3 &&
792 (Name == "insb" || Name == "insw" || Name == "insl")) {
793 X86Operand &Op = *(X86Operand*)Operands.begin()[1];
794 X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
795 if (Op.isReg() && Op.getReg() == X86::DX && isDstOp(Op2)) {
796 Operands.pop_back();
797 Operands.pop_back();
798 delete &Op;
799 delete &Op2;
803 // Transform "outs[bwl] %ds:(%esi), %dx" into "out[bwl]"
804 if (Name.startswith("outs") && Operands.size() == 3 &&
805 (Name == "outsb" || Name == "outsw" || Name == "outsl")) {
806 X86Operand &Op = *(X86Operand*)Operands.begin()[1];
807 X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
808 if (isSrcOp(Op) && Op2.isReg() && Op2.getReg() == X86::DX) {
809 Operands.pop_back();
810 Operands.pop_back();
811 delete &Op;
812 delete &Op2;
816 // Transform "movs[bwl] %ds:(%esi), %es:(%edi)" into "movs[bwl]"
817 if (Name.startswith("movs") && Operands.size() == 3 &&
818 (Name == "movsb" || Name == "movsw" || Name == "movsl" ||
819 (is64Bit() && Name == "movsq"))) {
820 X86Operand &Op = *(X86Operand*)Operands.begin()[1];
821 X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
822 if (isSrcOp(Op) && isDstOp(Op2)) {
823 Operands.pop_back();
824 Operands.pop_back();
825 delete &Op;
826 delete &Op2;
829 // Transform "lods[bwl] %ds:(%esi),{%al,%ax,%eax,%rax}" into "lods[bwl]"
830 if (Name.startswith("lods") && Operands.size() == 3 &&
831 (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
832 Name == "lodsl" || (is64Bit() && Name == "lodsq"))) {
833 X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
834 X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
835 if (isSrcOp(*Op1) && Op2->isReg()) {
836 const char *ins;
837 unsigned reg = Op2->getReg();
838 bool isLods = Name == "lods";
839 if (reg == X86::AL && (isLods || Name == "lodsb"))
840 ins = "lodsb";
841 else if (reg == X86::AX && (isLods || Name == "lodsw"))
842 ins = "lodsw";
843 else if (reg == X86::EAX && (isLods || Name == "lodsl"))
844 ins = "lodsl";
845 else if (reg == X86::RAX && (isLods || Name == "lodsq"))
846 ins = "lodsq";
847 else
848 ins = NULL;
849 if (ins != NULL) {
850 Operands.pop_back();
851 Operands.pop_back();
852 delete Op1;
853 delete Op2;
854 if (Name != ins)
855 static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
859 // Transform "stos[bwl] {%al,%ax,%eax,%rax},%es:(%edi)" into "stos[bwl]"
860 if (Name.startswith("stos") && Operands.size() == 3 &&
861 (Name == "stos" || Name == "stosb" || Name == "stosw" ||
862 Name == "stosl" || (is64Bit() && Name == "stosq"))) {
863 X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
864 X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
865 if (isDstOp(*Op2) && Op1->isReg()) {
866 const char *ins;
867 unsigned reg = Op1->getReg();
868 bool isStos = Name == "stos";
869 if (reg == X86::AL && (isStos || Name == "stosb"))
870 ins = "stosb";
871 else if (reg == X86::AX && (isStos || Name == "stosw"))
872 ins = "stosw";
873 else if (reg == X86::EAX && (isStos || Name == "stosl"))
874 ins = "stosl";
875 else if (reg == X86::RAX && (isStos || Name == "stosq"))
876 ins = "stosq";
877 else
878 ins = NULL;
879 if (ins != NULL) {
880 Operands.pop_back();
881 Operands.pop_back();
882 delete Op1;
883 delete Op2;
884 if (Name != ins)
885 static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
890 // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to
891 // "shift <op>".
892 if ((Name.startswith("shr") || Name.startswith("sar") ||
893 Name.startswith("shl") || Name.startswith("sal") ||
894 Name.startswith("rcl") || Name.startswith("rcr") ||
895 Name.startswith("rol") || Name.startswith("ror")) &&
896 Operands.size() == 3) {
897 X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
898 if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
899 cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
900 delete Operands[1];
901 Operands.erase(Operands.begin() + 1);
905 // Transforms "int $3" into "int3" as a size optimization. We can't write an
906 // instalias with an immediate operand yet.
907 if (Name == "int" && Operands.size() == 2) {
908 X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
909 if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
910 cast<MCConstantExpr>(Op1->getImm())->getValue() == 3) {
911 delete Operands[1];
912 Operands.erase(Operands.begin() + 1);
913 static_cast<X86Operand*>(Operands[0])->setTokenValue("int3");
917 return false;
920 bool X86ATTAsmParser::
921 MatchAndEmitInstruction(SMLoc IDLoc,
922 SmallVectorImpl<MCParsedAsmOperand*> &Operands,
923 MCStreamer &Out) {
924 assert(!Operands.empty() && "Unexpect empty operand list!");
925 X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
926 assert(Op->isToken() && "Leading operand should always be a mnemonic!");
928 // First, handle aliases that expand to multiple instructions.
929 // FIXME: This should be replaced with a real .td file alias mechanism.
930 // Also, MatchInstructionImpl should do actually *do* the EmitInstruction
931 // call.
932 if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" ||
933 Op->getToken() == "fstsww" || Op->getToken() == "fstcww" ||
934 Op->getToken() == "finit" || Op->getToken() == "fsave" ||
935 Op->getToken() == "fstenv" || Op->getToken() == "fclex") {
936 MCInst Inst;
937 Inst.setOpcode(X86::WAIT);
938 Out.EmitInstruction(Inst);
940 const char *Repl =
941 StringSwitch<const char*>(Op->getToken())
942 .Case("finit", "fninit")
943 .Case("fsave", "fnsave")
944 .Case("fstcw", "fnstcw")
945 .Case("fstcww", "fnstcw")
946 .Case("fstenv", "fnstenv")
947 .Case("fstsw", "fnstsw")
948 .Case("fstsww", "fnstsw")
949 .Case("fclex", "fnclex")
950 .Default(0);
951 assert(Repl && "Unknown wait-prefixed instruction");
952 delete Operands[0];
953 Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
956 bool WasOriginallyInvalidOperand = false;
957 unsigned OrigErrorInfo;
958 MCInst Inst;
960 // First, try a direct match.
961 switch (MatchInstructionImpl(Operands, Inst, OrigErrorInfo)) {
962 case Match_Success:
963 Out.EmitInstruction(Inst);
964 return false;
965 case Match_MissingFeature:
966 Error(IDLoc, "instruction requires a CPU feature not currently enabled");
967 return true;
968 case Match_ConversionFail:
969 return Error(IDLoc, "unable to convert operands to instruction");
970 case Match_InvalidOperand:
971 WasOriginallyInvalidOperand = true;
972 break;
973 case Match_MnemonicFail:
974 break;
977 // FIXME: Ideally, we would only attempt suffix matches for things which are
978 // valid prefixes, and we could just infer the right unambiguous
979 // type. However, that requires substantially more matcher support than the
980 // following hack.
982 // Change the operand to point to a temporary token.
983 StringRef Base = Op->getToken();
984 SmallString<16> Tmp;
985 Tmp += Base;
986 Tmp += ' ';
987 Op->setTokenValue(Tmp.str());
989 // If this instruction starts with an 'f', then it is a floating point stack
990 // instruction. These come in up to three forms for 32-bit, 64-bit, and
991 // 80-bit floating point, which use the suffixes s,l,t respectively.
993 // Otherwise, we assume that this may be an integer instruction, which comes
994 // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
995 const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
997 // Check for the various suffix matches.
998 Tmp[Base.size()] = Suffixes[0];
999 unsigned ErrorInfoIgnore;
1000 MatchResultTy Match1, Match2, Match3, Match4;
1002 Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
1003 Tmp[Base.size()] = Suffixes[1];
1004 Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
1005 Tmp[Base.size()] = Suffixes[2];
1006 Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
1007 Tmp[Base.size()] = Suffixes[3];
1008 Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
1010 // Restore the old token.
1011 Op->setTokenValue(Base);
1013 // If exactly one matched, then we treat that as a successful match (and the
1014 // instruction will already have been filled in correctly, since the failing
1015 // matches won't have modified it).
1016 unsigned NumSuccessfulMatches =
1017 (Match1 == Match_Success) + (Match2 == Match_Success) +
1018 (Match3 == Match_Success) + (Match4 == Match_Success);
1019 if (NumSuccessfulMatches == 1) {
1020 Out.EmitInstruction(Inst);
1021 return false;
1024 // Otherwise, the match failed, try to produce a decent error message.
1026 // If we had multiple suffix matches, then identify this as an ambiguous
1027 // match.
1028 if (NumSuccessfulMatches > 1) {
1029 char MatchChars[4];
1030 unsigned NumMatches = 0;
1031 if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0];
1032 if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1];
1033 if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2];
1034 if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3];
1036 SmallString<126> Msg;
1037 raw_svector_ostream OS(Msg);
1038 OS << "ambiguous instructions require an explicit suffix (could be ";
1039 for (unsigned i = 0; i != NumMatches; ++i) {
1040 if (i != 0)
1041 OS << ", ";
1042 if (i + 1 == NumMatches)
1043 OS << "or ";
1044 OS << "'" << Base << MatchChars[i] << "'";
1046 OS << ")";
1047 Error(IDLoc, OS.str());
1048 return true;
1051 // Okay, we know that none of the variants matched successfully.
1053 // If all of the instructions reported an invalid mnemonic, then the original
1054 // mnemonic was invalid.
1055 if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) &&
1056 (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) {
1057 if (!WasOriginallyInvalidOperand) {
1058 Error(IDLoc, "invalid instruction mnemonic '" + Base + "'");
1059 return true;
1062 // Recover location info for the operand if we know which was the problem.
1063 SMLoc ErrorLoc = IDLoc;
1064 if (OrigErrorInfo != ~0U) {
1065 if (OrigErrorInfo >= Operands.size())
1066 return Error(IDLoc, "too few operands for instruction");
1068 ErrorLoc = ((X86Operand*)Operands[OrigErrorInfo])->getStartLoc();
1069 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
1072 return Error(ErrorLoc, "invalid operand for instruction");
1075 // If one instruction matched with a missing feature, report this as a
1076 // missing feature.
1077 if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) +
1078 (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){
1079 Error(IDLoc, "instruction requires a CPU feature not currently enabled");
1080 return true;
1083 // If one instruction matched with an invalid operand, report this as an
1084 // operand failure.
1085 if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) +
1086 (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){
1087 Error(IDLoc, "invalid operand for instruction");
1088 return true;
1091 // If all of these were an outright failure, report it in a useless way.
1092 // FIXME: We should give nicer diagnostics about the exact failure.
1093 Error(IDLoc, "unknown use of instruction mnemonic without a size suffix");
1094 return true;
1098 bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) {
1099 StringRef IDVal = DirectiveID.getIdentifier();
1100 if (IDVal == ".word")
1101 return ParseDirectiveWord(2, DirectiveID.getLoc());
1102 return true;
1105 /// ParseDirectiveWord
1106 /// ::= .word [ expression (, expression)* ]
1107 bool X86ATTAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
1108 if (getLexer().isNot(AsmToken::EndOfStatement)) {
1109 for (;;) {
1110 const MCExpr *Value;
1111 if (getParser().ParseExpression(Value))
1112 return true;
1114 getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/);
1116 if (getLexer().is(AsmToken::EndOfStatement))
1117 break;
1119 // FIXME: Improve diagnostic.
1120 if (getLexer().isNot(AsmToken::Comma))
1121 return Error(L, "unexpected token in directive");
1122 Parser.Lex();
1126 Parser.Lex();
1127 return false;
1133 extern "C" void LLVMInitializeX86AsmLexer();
1135 // Force static initialization.
1136 extern "C" void LLVMInitializeX86AsmParser() {
1137 RegisterAsmParser<X86ATTAsmParser> X(TheX86_32Target);
1138 RegisterAsmParser<X86ATTAsmParser> Y(TheX86_64Target);
1139 LLVMInitializeX86AsmLexer();
1142 #define GET_REGISTER_MATCHER
1143 #define GET_MATCHER_IMPLEMENTATION
1144 #include "X86GenAsmMatcher.inc"