Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / Transforms / InstCombine / InstCombineCalls.cpp
blob27e15c3058922b0e00082e627dfc73b9cf8787f7
1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitCall and visitInvoke functions.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombine.h"
15 #include "llvm/IntrinsicInst.h"
16 #include "llvm/Support/CallSite.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Analysis/MemoryBuiltins.h"
19 #include "llvm/Transforms/Utils/BuildLibCalls.h"
20 #include "llvm/Transforms/Utils/Local.h"
21 using namespace llvm;
23 /// getPromotedType - Return the specified type promoted as it would be to pass
24 /// though a va_arg area.
25 static const Type *getPromotedType(const Type *Ty) {
26 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
27 if (ITy->getBitWidth() < 32)
28 return Type::getInt32Ty(Ty->getContext());
30 return Ty;
34 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
35 unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
36 unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
37 unsigned MinAlign = std::min(DstAlign, SrcAlign);
38 unsigned CopyAlign = MI->getAlignment();
40 if (CopyAlign < MinAlign) {
41 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
42 MinAlign, false));
43 return MI;
46 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
47 // load/store.
48 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
49 if (MemOpLength == 0) return 0;
51 // Source and destination pointer types are always "i8*" for intrinsic. See
52 // if the size is something we can handle with a single primitive load/store.
53 // A single load+store correctly handles overlapping memory in the memmove
54 // case.
55 unsigned Size = MemOpLength->getZExtValue();
56 if (Size == 0) return MI; // Delete this mem transfer.
58 if (Size > 8 || (Size&(Size-1)))
59 return 0; // If not 1/2/4/8 bytes, exit.
61 // Use an integer load+store unless we can find something better.
62 unsigned SrcAddrSp =
63 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
64 unsigned DstAddrSp =
65 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
67 const IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
68 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
69 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
71 // Memcpy forces the use of i8* for the source and destination. That means
72 // that if you're using memcpy to move one double around, you'll get a cast
73 // from double* to i8*. We'd much rather use a double load+store rather than
74 // an i64 load+store, here because this improves the odds that the source or
75 // dest address will be promotable. See if we can find a better type than the
76 // integer datatype.
77 Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
78 if (StrippedDest != MI->getArgOperand(0)) {
79 const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
80 ->getElementType();
81 if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
82 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
83 // down through these levels if so.
84 while (!SrcETy->isSingleValueType()) {
85 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
86 if (STy->getNumElements() == 1)
87 SrcETy = STy->getElementType(0);
88 else
89 break;
90 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
91 if (ATy->getNumElements() == 1)
92 SrcETy = ATy->getElementType();
93 else
94 break;
95 } else
96 break;
99 if (SrcETy->isSingleValueType()) {
100 NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
101 NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
107 // If the memcpy/memmove provides better alignment info than we can
108 // infer, use it.
109 SrcAlign = std::max(SrcAlign, CopyAlign);
110 DstAlign = std::max(DstAlign, CopyAlign);
112 Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
113 Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
114 LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
115 L->setAlignment(SrcAlign);
116 StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
117 S->setAlignment(DstAlign);
119 // Set the size of the copy to 0, it will be deleted on the next iteration.
120 MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
121 return MI;
124 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
125 unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
126 if (MI->getAlignment() < Alignment) {
127 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
128 Alignment, false));
129 return MI;
132 // Extract the length and alignment and fill if they are constant.
133 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
134 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
135 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
136 return 0;
137 uint64_t Len = LenC->getZExtValue();
138 Alignment = MI->getAlignment();
140 // If the length is zero, this is a no-op
141 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
143 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
144 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
145 const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
147 Value *Dest = MI->getDest();
148 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
149 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
150 Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
152 // Alignment 0 is identity for alignment 1 for memset, but not store.
153 if (Alignment == 0) Alignment = 1;
155 // Extract the fill value and store.
156 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
157 StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
158 MI->isVolatile());
159 S->setAlignment(Alignment);
161 // Set the size of the copy to 0, it will be deleted on the next iteration.
162 MI->setLength(Constant::getNullValue(LenC->getType()));
163 return MI;
166 return 0;
169 /// visitCallInst - CallInst simplification. This mostly only handles folding
170 /// of intrinsic instructions. For normal calls, it allows visitCallSite to do
171 /// the heavy lifting.
173 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
174 if (isFreeCall(&CI))
175 return visitFree(CI);
176 if (isMalloc(&CI))
177 return visitMalloc(CI);
179 // If the caller function is nounwind, mark the call as nounwind, even if the
180 // callee isn't.
181 if (CI.getParent()->getParent()->doesNotThrow() &&
182 !CI.doesNotThrow()) {
183 CI.setDoesNotThrow();
184 return &CI;
187 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
188 if (!II) return visitCallSite(&CI);
190 // Intrinsics cannot occur in an invoke, so handle them here instead of in
191 // visitCallSite.
192 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
193 bool Changed = false;
195 // memmove/cpy/set of zero bytes is a noop.
196 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
197 if (NumBytes->isNullValue())
198 return EraseInstFromFunction(CI);
200 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
201 if (CI->getZExtValue() == 1) {
202 // Replace the instruction with just byte operations. We would
203 // transform other cases to loads/stores, but we don't know if
204 // alignment is sufficient.
208 // No other transformations apply to volatile transfers.
209 if (MI->isVolatile())
210 return 0;
212 // If we have a memmove and the source operation is a constant global,
213 // then the source and dest pointers can't alias, so we can change this
214 // into a call to memcpy.
215 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
216 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
217 if (GVSrc->isConstant()) {
218 Module *M = CI.getParent()->getParent()->getParent();
219 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
220 const Type *Tys[3] = { CI.getArgOperand(0)->getType(),
221 CI.getArgOperand(1)->getType(),
222 CI.getArgOperand(2)->getType() };
223 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys, 3));
224 Changed = true;
228 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
229 // memmove(x,x,size) -> noop.
230 if (MTI->getSource() == MTI->getDest())
231 return EraseInstFromFunction(CI);
234 // If we can determine a pointer alignment that is bigger than currently
235 // set, update the alignment.
236 if (isa<MemTransferInst>(MI)) {
237 if (Instruction *I = SimplifyMemTransfer(MI))
238 return I;
239 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
240 if (Instruction *I = SimplifyMemSet(MSI))
241 return I;
244 if (Changed) return II;
247 switch (II->getIntrinsicID()) {
248 default: break;
249 case Intrinsic::objectsize: {
250 // We need target data for just about everything so depend on it.
251 if (!TD) break;
253 const Type *ReturnTy = CI.getType();
254 uint64_t DontKnow = II->getArgOperand(1) == Builder->getTrue() ? 0 : -1ULL;
256 // Get to the real allocated thing and offset as fast as possible.
257 Value *Op1 = II->getArgOperand(0)->stripPointerCasts();
259 uint64_t Offset = 0;
260 uint64_t Size = -1ULL;
262 // Try to look through constant GEPs.
263 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) {
264 if (!GEP->hasAllConstantIndices()) break;
266 // Get the current byte offset into the thing. Use the original
267 // operand in case we're looking through a bitcast.
268 SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
269 Offset = TD->getIndexedOffset(GEP->getPointerOperandType(),
270 Ops.data(), Ops.size());
272 Op1 = GEP->getPointerOperand()->stripPointerCasts();
274 // Make sure we're not a constant offset from an external
275 // global.
276 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1))
277 if (!GV->hasDefinitiveInitializer()) break;
280 // If we've stripped down to a single global variable that we
281 // can know the size of then just return that.
282 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
283 if (GV->hasDefinitiveInitializer()) {
284 Constant *C = GV->getInitializer();
285 Size = TD->getTypeAllocSize(C->getType());
286 } else {
287 // Can't determine size of the GV.
288 Constant *RetVal = ConstantInt::get(ReturnTy, DontKnow);
289 return ReplaceInstUsesWith(CI, RetVal);
291 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
292 // Get alloca size.
293 if (AI->getAllocatedType()->isSized()) {
294 Size = TD->getTypeAllocSize(AI->getAllocatedType());
295 if (AI->isArrayAllocation()) {
296 const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
297 if (!C) break;
298 Size *= C->getZExtValue();
301 } else if (CallInst *MI = extractMallocCall(Op1)) {
302 // Get allocation size.
303 const Type* MallocType = getMallocAllocatedType(MI);
304 if (MallocType && MallocType->isSized())
305 if (Value *NElems = getMallocArraySize(MI, TD, true))
306 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
307 Size = NElements->getZExtValue() * TD->getTypeAllocSize(MallocType);
310 // Do not return "I don't know" here. Later optimization passes could
311 // make it possible to evaluate objectsize to a constant.
312 if (Size == -1ULL)
313 break;
315 if (Size < Offset) {
316 // Out of bound reference? Negative index normalized to large
317 // index? Just return "I don't know".
318 return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, DontKnow));
320 return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, Size-Offset));
322 case Intrinsic::bswap:
323 // bswap(bswap(x)) -> x
324 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
325 if (Operand->getIntrinsicID() == Intrinsic::bswap)
326 return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
328 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
329 if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
330 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
331 if (Operand->getIntrinsicID() == Intrinsic::bswap) {
332 unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
333 TI->getType()->getPrimitiveSizeInBits();
334 Value *CV = ConstantInt::get(Operand->getType(), C);
335 Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
336 return new TruncInst(V, TI->getType());
340 break;
341 case Intrinsic::powi:
342 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
343 // powi(x, 0) -> 1.0
344 if (Power->isZero())
345 return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
346 // powi(x, 1) -> x
347 if (Power->isOne())
348 return ReplaceInstUsesWith(CI, II->getArgOperand(0));
349 // powi(x, -1) -> 1/x
350 if (Power->isAllOnesValue())
351 return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
352 II->getArgOperand(0));
354 break;
355 case Intrinsic::cttz: {
356 // If all bits below the first known one are known zero,
357 // this value is constant.
358 const IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
359 // FIXME: Try to simplify vectors of integers.
360 if (!IT) break;
361 uint32_t BitWidth = IT->getBitWidth();
362 APInt KnownZero(BitWidth, 0);
363 APInt KnownOne(BitWidth, 0);
364 ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
365 KnownZero, KnownOne);
366 unsigned TrailingZeros = KnownOne.countTrailingZeros();
367 APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
368 if ((Mask & KnownZero) == Mask)
369 return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
370 APInt(BitWidth, TrailingZeros)));
373 break;
374 case Intrinsic::ctlz: {
375 // If all bits above the first known one are known zero,
376 // this value is constant.
377 const IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
378 // FIXME: Try to simplify vectors of integers.
379 if (!IT) break;
380 uint32_t BitWidth = IT->getBitWidth();
381 APInt KnownZero(BitWidth, 0);
382 APInt KnownOne(BitWidth, 0);
383 ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
384 KnownZero, KnownOne);
385 unsigned LeadingZeros = KnownOne.countLeadingZeros();
386 APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
387 if ((Mask & KnownZero) == Mask)
388 return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
389 APInt(BitWidth, LeadingZeros)));
392 break;
393 case Intrinsic::uadd_with_overflow: {
394 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
395 const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
396 uint32_t BitWidth = IT->getBitWidth();
397 APInt Mask = APInt::getSignBit(BitWidth);
398 APInt LHSKnownZero(BitWidth, 0);
399 APInt LHSKnownOne(BitWidth, 0);
400 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
401 bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
402 bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
404 if (LHSKnownNegative || LHSKnownPositive) {
405 APInt RHSKnownZero(BitWidth, 0);
406 APInt RHSKnownOne(BitWidth, 0);
407 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
408 bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
409 bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
410 if (LHSKnownNegative && RHSKnownNegative) {
411 // The sign bit is set in both cases: this MUST overflow.
412 // Create a simple add instruction, and insert it into the struct.
413 Value *Add = Builder->CreateAdd(LHS, RHS);
414 Add->takeName(&CI);
415 Constant *V[] = {
416 UndefValue::get(LHS->getType()),
417 ConstantInt::getTrue(II->getContext())
419 const StructType *ST = cast<StructType>(II->getType());
420 Constant *Struct = ConstantStruct::get(ST, V);
421 return InsertValueInst::Create(Struct, Add, 0);
424 if (LHSKnownPositive && RHSKnownPositive) {
425 // The sign bit is clear in both cases: this CANNOT overflow.
426 // Create a simple add instruction, and insert it into the struct.
427 Value *Add = Builder->CreateNUWAdd(LHS, RHS);
428 Add->takeName(&CI);
429 Constant *V[] = {
430 UndefValue::get(LHS->getType()),
431 ConstantInt::getFalse(II->getContext())
433 const StructType *ST = cast<StructType>(II->getType());
434 Constant *Struct = ConstantStruct::get(ST, V);
435 return InsertValueInst::Create(Struct, Add, 0);
439 // FALL THROUGH uadd into sadd
440 case Intrinsic::sadd_with_overflow:
441 // Canonicalize constants into the RHS.
442 if (isa<Constant>(II->getArgOperand(0)) &&
443 !isa<Constant>(II->getArgOperand(1))) {
444 Value *LHS = II->getArgOperand(0);
445 II->setArgOperand(0, II->getArgOperand(1));
446 II->setArgOperand(1, LHS);
447 return II;
450 // X + undef -> undef
451 if (isa<UndefValue>(II->getArgOperand(1)))
452 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
454 if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
455 // X + 0 -> {X, false}
456 if (RHS->isZero()) {
457 Constant *V[] = {
458 UndefValue::get(II->getArgOperand(0)->getType()),
459 ConstantInt::getFalse(II->getContext())
461 Constant *Struct =
462 ConstantStruct::get(cast<StructType>(II->getType()), V);
463 return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
466 break;
467 case Intrinsic::usub_with_overflow:
468 case Intrinsic::ssub_with_overflow:
469 // undef - X -> undef
470 // X - undef -> undef
471 if (isa<UndefValue>(II->getArgOperand(0)) ||
472 isa<UndefValue>(II->getArgOperand(1)))
473 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
475 if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
476 // X - 0 -> {X, false}
477 if (RHS->isZero()) {
478 Constant *V[] = {
479 UndefValue::get(II->getArgOperand(0)->getType()),
480 ConstantInt::getFalse(II->getContext())
482 Constant *Struct =
483 ConstantStruct::get(cast<StructType>(II->getType()), V);
484 return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
487 break;
488 case Intrinsic::umul_with_overflow: {
489 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
490 unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
491 APInt Mask = APInt::getAllOnesValue(BitWidth);
493 APInt LHSKnownZero(BitWidth, 0);
494 APInt LHSKnownOne(BitWidth, 0);
495 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
496 APInt RHSKnownZero(BitWidth, 0);
497 APInt RHSKnownOne(BitWidth, 0);
498 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
500 // Get the largest possible values for each operand.
501 APInt LHSMax = ~LHSKnownZero;
502 APInt RHSMax = ~RHSKnownZero;
504 // If multiplying the maximum values does not overflow then we can turn
505 // this into a plain NUW mul.
506 bool Overflow;
507 LHSMax.umul_ov(RHSMax, Overflow);
508 if (!Overflow) {
509 Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
510 Constant *V[] = {
511 UndefValue::get(LHS->getType()),
512 Builder->getFalse()
514 Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V);
515 return InsertValueInst::Create(Struct, Mul, 0);
517 } // FALL THROUGH
518 case Intrinsic::smul_with_overflow:
519 // Canonicalize constants into the RHS.
520 if (isa<Constant>(II->getArgOperand(0)) &&
521 !isa<Constant>(II->getArgOperand(1))) {
522 Value *LHS = II->getArgOperand(0);
523 II->setArgOperand(0, II->getArgOperand(1));
524 II->setArgOperand(1, LHS);
525 return II;
528 // X * undef -> undef
529 if (isa<UndefValue>(II->getArgOperand(1)))
530 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
532 if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
533 // X*0 -> {0, false}
534 if (RHSI->isZero())
535 return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
537 // X * 1 -> {X, false}
538 if (RHSI->equalsInt(1)) {
539 Constant *V[] = {
540 UndefValue::get(II->getArgOperand(0)->getType()),
541 ConstantInt::getFalse(II->getContext())
543 Constant *Struct =
544 ConstantStruct::get(cast<StructType>(II->getType()), V);
545 return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
548 break;
549 case Intrinsic::ppc_altivec_lvx:
550 case Intrinsic::ppc_altivec_lvxl:
551 // Turn PPC lvx -> load if the pointer is known aligned.
552 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
553 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
554 PointerType::getUnqual(II->getType()));
555 return new LoadInst(Ptr);
557 break;
558 case Intrinsic::ppc_altivec_stvx:
559 case Intrinsic::ppc_altivec_stvxl:
560 // Turn stvx -> store if the pointer is known aligned.
561 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
562 const Type *OpPtrTy =
563 PointerType::getUnqual(II->getArgOperand(0)->getType());
564 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
565 return new StoreInst(II->getArgOperand(0), Ptr);
567 break;
568 case Intrinsic::x86_sse_storeu_ps:
569 case Intrinsic::x86_sse2_storeu_pd:
570 case Intrinsic::x86_sse2_storeu_dq:
571 // Turn X86 storeu -> store if the pointer is known aligned.
572 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
573 const Type *OpPtrTy =
574 PointerType::getUnqual(II->getArgOperand(1)->getType());
575 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
576 return new StoreInst(II->getArgOperand(1), Ptr);
578 break;
580 case Intrinsic::x86_sse_cvtss2si:
581 case Intrinsic::x86_sse_cvtss2si64:
582 case Intrinsic::x86_sse_cvttss2si:
583 case Intrinsic::x86_sse_cvttss2si64:
584 case Intrinsic::x86_sse2_cvtsd2si:
585 case Intrinsic::x86_sse2_cvtsd2si64:
586 case Intrinsic::x86_sse2_cvttsd2si:
587 case Intrinsic::x86_sse2_cvttsd2si64: {
588 // These intrinsics only demand the 0th element of their input vectors. If
589 // we can simplify the input based on that, do so now.
590 unsigned VWidth =
591 cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
592 APInt DemandedElts(VWidth, 1);
593 APInt UndefElts(VWidth, 0);
594 if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
595 DemandedElts, UndefElts)) {
596 II->setArgOperand(0, V);
597 return II;
599 break;
603 case Intrinsic::x86_sse41_pmovsxbw:
604 case Intrinsic::x86_sse41_pmovsxwd:
605 case Intrinsic::x86_sse41_pmovsxdq:
606 case Intrinsic::x86_sse41_pmovzxbw:
607 case Intrinsic::x86_sse41_pmovzxwd:
608 case Intrinsic::x86_sse41_pmovzxdq: {
609 // pmov{s|z}x ignores the upper half of their input vectors.
610 unsigned VWidth =
611 cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
612 unsigned LowHalfElts = VWidth / 2;
613 APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
614 APInt UndefElts(VWidth, 0);
615 if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
616 InputDemandedElts,
617 UndefElts)) {
618 II->setArgOperand(0, TmpV);
619 return II;
621 break;
624 case Intrinsic::ppc_altivec_vperm:
625 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
626 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getArgOperand(2))) {
627 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
629 // Check that all of the elements are integer constants or undefs.
630 bool AllEltsOk = true;
631 for (unsigned i = 0; i != 16; ++i) {
632 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
633 !isa<UndefValue>(Mask->getOperand(i))) {
634 AllEltsOk = false;
635 break;
639 if (AllEltsOk) {
640 // Cast the input vectors to byte vectors.
641 Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
642 Mask->getType());
643 Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
644 Mask->getType());
645 Value *Result = UndefValue::get(Op0->getType());
647 // Only extract each element once.
648 Value *ExtractedElts[32];
649 memset(ExtractedElts, 0, sizeof(ExtractedElts));
651 for (unsigned i = 0; i != 16; ++i) {
652 if (isa<UndefValue>(Mask->getOperand(i)))
653 continue;
654 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
655 Idx &= 31; // Match the hardware behavior.
657 if (ExtractedElts[Idx] == 0) {
658 ExtractedElts[Idx] =
659 Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
660 ConstantInt::get(Type::getInt32Ty(II->getContext()),
661 Idx&15, false), "tmp");
664 // Insert this value into the result vector.
665 Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
666 ConstantInt::get(Type::getInt32Ty(II->getContext()),
667 i, false), "tmp");
669 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
672 break;
674 case Intrinsic::arm_neon_vld1:
675 case Intrinsic::arm_neon_vld2:
676 case Intrinsic::arm_neon_vld3:
677 case Intrinsic::arm_neon_vld4:
678 case Intrinsic::arm_neon_vld2lane:
679 case Intrinsic::arm_neon_vld3lane:
680 case Intrinsic::arm_neon_vld4lane:
681 case Intrinsic::arm_neon_vst1:
682 case Intrinsic::arm_neon_vst2:
683 case Intrinsic::arm_neon_vst3:
684 case Intrinsic::arm_neon_vst4:
685 case Intrinsic::arm_neon_vst2lane:
686 case Intrinsic::arm_neon_vst3lane:
687 case Intrinsic::arm_neon_vst4lane: {
688 unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
689 unsigned AlignArg = II->getNumArgOperands() - 1;
690 ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
691 if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
692 II->setArgOperand(AlignArg,
693 ConstantInt::get(Type::getInt32Ty(II->getContext()),
694 MemAlign, false));
695 return II;
697 break;
700 case Intrinsic::stackrestore: {
701 // If the save is right next to the restore, remove the restore. This can
702 // happen when variable allocas are DCE'd.
703 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
704 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
705 BasicBlock::iterator BI = SS;
706 if (&*++BI == II)
707 return EraseInstFromFunction(CI);
711 // Scan down this block to see if there is another stack restore in the
712 // same block without an intervening call/alloca.
713 BasicBlock::iterator BI = II;
714 TerminatorInst *TI = II->getParent()->getTerminator();
715 bool CannotRemove = false;
716 for (++BI; &*BI != TI; ++BI) {
717 if (isa<AllocaInst>(BI) || isMalloc(BI)) {
718 CannotRemove = true;
719 break;
721 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
722 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
723 // If there is a stackrestore below this one, remove this one.
724 if (II->getIntrinsicID() == Intrinsic::stackrestore)
725 return EraseInstFromFunction(CI);
726 // Otherwise, ignore the intrinsic.
727 } else {
728 // If we found a non-intrinsic call, we can't remove the stack
729 // restore.
730 CannotRemove = true;
731 break;
736 // If the stack restore is in a return/unwind block and if there are no
737 // allocas or calls between the restore and the return, nuke the restore.
738 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
739 return EraseInstFromFunction(CI);
740 break;
744 return visitCallSite(II);
747 // InvokeInst simplification
749 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
750 return visitCallSite(&II);
753 /// isSafeToEliminateVarargsCast - If this cast does not affect the value
754 /// passed through the varargs area, we can eliminate the use of the cast.
755 static bool isSafeToEliminateVarargsCast(const CallSite CS,
756 const CastInst * const CI,
757 const TargetData * const TD,
758 const int ix) {
759 if (!CI->isLosslessCast())
760 return false;
762 // The size of ByVal arguments is derived from the type, so we
763 // can't change to a type with a different size. If the size were
764 // passed explicitly we could avoid this check.
765 if (!CS.paramHasAttr(ix, Attribute::ByVal))
766 return true;
768 const Type* SrcTy =
769 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
770 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
771 if (!SrcTy->isSized() || !DstTy->isSized())
772 return false;
773 if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
774 return false;
775 return true;
778 namespace {
779 class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
780 InstCombiner *IC;
781 protected:
782 void replaceCall(Value *With) {
783 NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
785 bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
786 if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
787 return true;
788 if (ConstantInt *SizeCI =
789 dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
790 if (SizeCI->isAllOnesValue())
791 return true;
792 if (isString) {
793 uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
794 // If the length is 0 we don't know how long it is and so we can't
795 // remove the check.
796 if (Len == 0) return false;
797 return SizeCI->getZExtValue() >= Len;
799 if (ConstantInt *Arg = dyn_cast<ConstantInt>(
800 CI->getArgOperand(SizeArgOp)))
801 return SizeCI->getZExtValue() >= Arg->getZExtValue();
803 return false;
805 public:
806 InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
807 Instruction *NewInstruction;
809 } // end anonymous namespace
811 // Try to fold some different type of calls here.
812 // Currently we're only working with the checking functions, memcpy_chk,
813 // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
814 // strcat_chk and strncat_chk.
815 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
816 if (CI->getCalledFunction() == 0) return 0;
818 InstCombineFortifiedLibCalls Simplifier(this);
819 Simplifier.fold(CI, TD);
820 return Simplifier.NewInstruction;
823 // visitCallSite - Improvements for call and invoke instructions.
825 Instruction *InstCombiner::visitCallSite(CallSite CS) {
826 bool Changed = false;
828 // If the callee is a pointer to a function, attempt to move any casts to the
829 // arguments of the call/invoke.
830 Value *Callee = CS.getCalledValue();
831 if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
832 return 0;
834 if (Function *CalleeF = dyn_cast<Function>(Callee))
835 // If the call and callee calling conventions don't match, this call must
836 // be unreachable, as the call is undefined.
837 if (CalleeF->getCallingConv() != CS.getCallingConv() &&
838 // Only do this for calls to a function with a body. A prototype may
839 // not actually end up matching the implementation's calling conv for a
840 // variety of reasons (e.g. it may be written in assembly).
841 !CalleeF->isDeclaration()) {
842 Instruction *OldCall = CS.getInstruction();
843 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
844 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
845 OldCall);
846 // If OldCall dues not return void then replaceAllUsesWith undef.
847 // This allows ValueHandlers and custom metadata to adjust itself.
848 if (!OldCall->getType()->isVoidTy())
849 ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
850 if (isa<CallInst>(OldCall))
851 return EraseInstFromFunction(*OldCall);
853 // We cannot remove an invoke, because it would change the CFG, just
854 // change the callee to a null pointer.
855 cast<InvokeInst>(OldCall)->setCalledFunction(
856 Constant::getNullValue(CalleeF->getType()));
857 return 0;
860 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
861 // This instruction is not reachable, just remove it. We insert a store to
862 // undef so that we know that this code is not reachable, despite the fact
863 // that we can't modify the CFG here.
864 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
865 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
866 CS.getInstruction());
868 // If CS does not return void then replaceAllUsesWith undef.
869 // This allows ValueHandlers and custom metadata to adjust itself.
870 if (!CS.getInstruction()->getType()->isVoidTy())
871 ReplaceInstUsesWith(*CS.getInstruction(),
872 UndefValue::get(CS.getInstruction()->getType()));
874 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
875 // Don't break the CFG, insert a dummy cond branch.
876 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
877 ConstantInt::getTrue(Callee->getContext()), II);
879 return EraseInstFromFunction(*CS.getInstruction());
882 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
883 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
884 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
885 return transformCallThroughTrampoline(CS);
887 const PointerType *PTy = cast<PointerType>(Callee->getType());
888 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
889 if (FTy->isVarArg()) {
890 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
891 // See if we can optimize any arguments passed through the varargs area of
892 // the call.
893 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
894 E = CS.arg_end(); I != E; ++I, ++ix) {
895 CastInst *CI = dyn_cast<CastInst>(*I);
896 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
897 *I = CI->getOperand(0);
898 Changed = true;
903 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
904 // Inline asm calls cannot throw - mark them 'nounwind'.
905 CS.setDoesNotThrow();
906 Changed = true;
909 // Try to optimize the call if possible, we require TargetData for most of
910 // this. None of these calls are seen as possibly dead so go ahead and
911 // delete the instruction now.
912 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
913 Instruction *I = tryOptimizeCall(CI, TD);
914 // If we changed something return the result, etc. Otherwise let
915 // the fallthrough check.
916 if (I) return EraseInstFromFunction(*I);
919 return Changed ? CS.getInstruction() : 0;
922 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
923 // attempt to move the cast to the arguments of the call/invoke.
925 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
926 Function *Callee =
927 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
928 if (Callee == 0)
929 return false;
930 Instruction *Caller = CS.getInstruction();
931 const AttrListPtr &CallerPAL = CS.getAttributes();
933 // Okay, this is a cast from a function to a different type. Unless doing so
934 // would cause a type conversion of one of our arguments, change this call to
935 // be a direct call with arguments casted to the appropriate types.
937 const FunctionType *FT = Callee->getFunctionType();
938 const Type *OldRetTy = Caller->getType();
939 const Type *NewRetTy = FT->getReturnType();
941 if (NewRetTy->isStructTy())
942 return false; // TODO: Handle multiple return values.
944 // Check to see if we are changing the return type...
945 if (OldRetTy != NewRetTy) {
946 if (Callee->isDeclaration() &&
947 // Conversion is ok if changing from one pointer type to another or from
948 // a pointer to an integer of the same size.
949 !((OldRetTy->isPointerTy() || !TD ||
950 OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
951 (NewRetTy->isPointerTy() || !TD ||
952 NewRetTy == TD->getIntPtrType(Caller->getContext()))))
953 return false; // Cannot transform this return value.
955 if (!Caller->use_empty() &&
956 // void -> non-void is handled specially
957 !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
958 return false; // Cannot transform this return value.
960 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
961 Attributes RAttrs = CallerPAL.getRetAttributes();
962 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
963 return false; // Attribute not compatible with transformed value.
966 // If the callsite is an invoke instruction, and the return value is used by
967 // a PHI node in a successor, we cannot change the return type of the call
968 // because there is no place to put the cast instruction (without breaking
969 // the critical edge). Bail out in this case.
970 if (!Caller->use_empty())
971 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
972 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
973 UI != E; ++UI)
974 if (PHINode *PN = dyn_cast<PHINode>(*UI))
975 if (PN->getParent() == II->getNormalDest() ||
976 PN->getParent() == II->getUnwindDest())
977 return false;
980 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
981 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
983 CallSite::arg_iterator AI = CS.arg_begin();
984 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
985 const Type *ParamTy = FT->getParamType(i);
986 const Type *ActTy = (*AI)->getType();
988 if (!CastInst::isCastable(ActTy, ParamTy))
989 return false; // Cannot transform this parameter value.
991 unsigned Attrs = CallerPAL.getParamAttributes(i + 1);
992 if (Attrs & Attribute::typeIncompatible(ParamTy))
993 return false; // Attribute not compatible with transformed value.
995 // If the parameter is passed as a byval argument, then we have to have a
996 // sized type and the sized type has to have the same size as the old type.
997 if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
998 const PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
999 if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
1000 return false;
1002 const Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
1003 if (TD->getTypeAllocSize(CurElTy) !=
1004 TD->getTypeAllocSize(ParamPTy->getElementType()))
1005 return false;
1008 // Converting from one pointer type to another or between a pointer and an
1009 // integer of the same size is safe even if we do not have a body.
1010 bool isConvertible = ActTy == ParamTy ||
1011 (TD && ((ParamTy->isPointerTy() ||
1012 ParamTy == TD->getIntPtrType(Caller->getContext())) &&
1013 (ActTy->isPointerTy() ||
1014 ActTy == TD->getIntPtrType(Caller->getContext()))));
1015 if (Callee->isDeclaration() && !isConvertible) return false;
1018 if (Callee->isDeclaration()) {
1019 // Do not delete arguments unless we have a function body.
1020 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
1021 return false;
1023 // If the callee is just a declaration, don't change the varargsness of the
1024 // call. We don't want to introduce a varargs call where one doesn't
1025 // already exist.
1026 const PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
1027 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
1028 return false;
1031 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1032 !CallerPAL.isEmpty())
1033 // In this case we have more arguments than the new function type, but we
1034 // won't be dropping them. Check that these extra arguments have attributes
1035 // that are compatible with being a vararg call argument.
1036 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1037 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
1038 break;
1039 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
1040 if (PAttrs & Attribute::VarArgsIncompatible)
1041 return false;
1045 // Okay, we decided that this is a safe thing to do: go ahead and start
1046 // inserting cast instructions as necessary.
1047 std::vector<Value*> Args;
1048 Args.reserve(NumActualArgs);
1049 SmallVector<AttributeWithIndex, 8> attrVec;
1050 attrVec.reserve(NumCommonArgs);
1052 // Get any return attributes.
1053 Attributes RAttrs = CallerPAL.getRetAttributes();
1055 // If the return value is not being used, the type may not be compatible
1056 // with the existing attributes. Wipe out any problematic attributes.
1057 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
1059 // Add the new return attributes.
1060 if (RAttrs)
1061 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
1063 AI = CS.arg_begin();
1064 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1065 const Type *ParamTy = FT->getParamType(i);
1066 if ((*AI)->getType() == ParamTy) {
1067 Args.push_back(*AI);
1068 } else {
1069 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
1070 false, ParamTy, false);
1071 Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
1074 // Add any parameter attributes.
1075 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1076 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1079 // If the function takes more arguments than the call was taking, add them
1080 // now.
1081 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1082 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1084 // If we are removing arguments to the function, emit an obnoxious warning.
1085 if (FT->getNumParams() < NumActualArgs) {
1086 if (!FT->isVarArg()) {
1087 errs() << "WARNING: While resolving call to function '"
1088 << Callee->getName() << "' arguments were dropped!\n";
1089 } else {
1090 // Add all of the arguments in their promoted form to the arg list.
1091 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1092 const Type *PTy = getPromotedType((*AI)->getType());
1093 if (PTy != (*AI)->getType()) {
1094 // Must promote to pass through va_arg area!
1095 Instruction::CastOps opcode =
1096 CastInst::getCastOpcode(*AI, false, PTy, false);
1097 Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
1098 } else {
1099 Args.push_back(*AI);
1102 // Add any parameter attributes.
1103 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1104 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1109 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
1110 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1112 if (NewRetTy->isVoidTy())
1113 Caller->setName(""); // Void type should not have a name.
1115 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1116 attrVec.end());
1118 Instruction *NC;
1119 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1120 NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
1121 II->getUnwindDest(), Args.begin(), Args.end());
1122 NC->takeName(II);
1123 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1124 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1125 } else {
1126 CallInst *CI = cast<CallInst>(Caller);
1127 NC = Builder->CreateCall(Callee, Args.begin(), Args.end());
1128 NC->takeName(CI);
1129 if (CI->isTailCall())
1130 cast<CallInst>(NC)->setTailCall();
1131 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1132 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1135 // Insert a cast of the return type as necessary.
1136 Value *NV = NC;
1137 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1138 if (!NV->getType()->isVoidTy()) {
1139 Instruction::CastOps opcode =
1140 CastInst::getCastOpcode(NC, false, OldRetTy, false);
1141 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1142 NC->setDebugLoc(Caller->getDebugLoc());
1144 // If this is an invoke instruction, we should insert it after the first
1145 // non-phi, instruction in the normal successor block.
1146 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1147 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1148 InsertNewInstBefore(NC, *I);
1149 } else {
1150 // Otherwise, it's a call, just insert cast right after the call.
1151 InsertNewInstBefore(NC, *Caller);
1153 Worklist.AddUsersToWorkList(*Caller);
1154 } else {
1155 NV = UndefValue::get(Caller->getType());
1159 if (!Caller->use_empty())
1160 ReplaceInstUsesWith(*Caller, NV);
1162 EraseInstFromFunction(*Caller);
1163 return true;
1166 // transformCallThroughTrampoline - Turn a call to a function created by the
1167 // init_trampoline intrinsic into a direct call to the underlying function.
1169 Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1170 Value *Callee = CS.getCalledValue();
1171 const PointerType *PTy = cast<PointerType>(Callee->getType());
1172 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1173 const AttrListPtr &Attrs = CS.getAttributes();
1175 // If the call already has the 'nest' attribute somewhere then give up -
1176 // otherwise 'nest' would occur twice after splicing in the chain.
1177 if (Attrs.hasAttrSomewhere(Attribute::Nest))
1178 return 0;
1180 IntrinsicInst *Tramp =
1181 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1183 Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1184 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1185 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1187 const AttrListPtr &NestAttrs = NestF->getAttributes();
1188 if (!NestAttrs.isEmpty()) {
1189 unsigned NestIdx = 1;
1190 const Type *NestTy = 0;
1191 Attributes NestAttr = Attribute::None;
1193 // Look for a parameter marked with the 'nest' attribute.
1194 for (FunctionType::param_iterator I = NestFTy->param_begin(),
1195 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1196 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1197 // Record the parameter type and any other attributes.
1198 NestTy = *I;
1199 NestAttr = NestAttrs.getParamAttributes(NestIdx);
1200 break;
1203 if (NestTy) {
1204 Instruction *Caller = CS.getInstruction();
1205 std::vector<Value*> NewArgs;
1206 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1208 SmallVector<AttributeWithIndex, 8> NewAttrs;
1209 NewAttrs.reserve(Attrs.getNumSlots() + 1);
1211 // Insert the nest argument into the call argument list, which may
1212 // mean appending it. Likewise for attributes.
1214 // Add any result attributes.
1215 if (Attributes Attr = Attrs.getRetAttributes())
1216 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1219 unsigned Idx = 1;
1220 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1221 do {
1222 if (Idx == NestIdx) {
1223 // Add the chain argument and attributes.
1224 Value *NestVal = Tramp->getArgOperand(2);
1225 if (NestVal->getType() != NestTy)
1226 NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
1227 NewArgs.push_back(NestVal);
1228 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1231 if (I == E)
1232 break;
1234 // Add the original argument and attributes.
1235 NewArgs.push_back(*I);
1236 if (Attributes Attr = Attrs.getParamAttributes(Idx))
1237 NewAttrs.push_back
1238 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1240 ++Idx, ++I;
1241 } while (1);
1244 // Add any function attributes.
1245 if (Attributes Attr = Attrs.getFnAttributes())
1246 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1248 // The trampoline may have been bitcast to a bogus type (FTy).
1249 // Handle this by synthesizing a new function type, equal to FTy
1250 // with the chain parameter inserted.
1252 std::vector<const Type*> NewTypes;
1253 NewTypes.reserve(FTy->getNumParams()+1);
1255 // Insert the chain's type into the list of parameter types, which may
1256 // mean appending it.
1258 unsigned Idx = 1;
1259 FunctionType::param_iterator I = FTy->param_begin(),
1260 E = FTy->param_end();
1262 do {
1263 if (Idx == NestIdx)
1264 // Add the chain's type.
1265 NewTypes.push_back(NestTy);
1267 if (I == E)
1268 break;
1270 // Add the original type.
1271 NewTypes.push_back(*I);
1273 ++Idx, ++I;
1274 } while (1);
1277 // Replace the trampoline call with a direct call. Let the generic
1278 // code sort out any function type mismatches.
1279 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1280 FTy->isVarArg());
1281 Constant *NewCallee =
1282 NestF->getType() == PointerType::getUnqual(NewFTy) ?
1283 NestF : ConstantExpr::getBitCast(NestF,
1284 PointerType::getUnqual(NewFTy));
1285 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1286 NewAttrs.end());
1288 Instruction *NewCaller;
1289 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1290 NewCaller = InvokeInst::Create(NewCallee,
1291 II->getNormalDest(), II->getUnwindDest(),
1292 NewArgs.begin(), NewArgs.end());
1293 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1294 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1295 } else {
1296 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end());
1297 if (cast<CallInst>(Caller)->isTailCall())
1298 cast<CallInst>(NewCaller)->setTailCall();
1299 cast<CallInst>(NewCaller)->
1300 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1301 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1304 return NewCaller;
1308 // Replace the trampoline call with a direct call. Since there is no 'nest'
1309 // parameter, there is no need to adjust the argument list. Let the generic
1310 // code sort out any function type mismatches.
1311 Constant *NewCallee =
1312 NestF->getType() == PTy ? NestF :
1313 ConstantExpr::getBitCast(NestF, PTy);
1314 CS.setCalledFunction(NewCallee);
1315 return CS.getInstruction();