1 //===- InstCombineCompares.cpp --------------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the visitICmp and visitFCmp functions.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombine.h"
15 #include "llvm/IntrinsicInst.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/MemoryBuiltins.h"
18 #include "llvm/Target/TargetData.h"
19 #include "llvm/Support/ConstantRange.h"
20 #include "llvm/Support/GetElementPtrTypeIterator.h"
21 #include "llvm/Support/PatternMatch.h"
23 using namespace PatternMatch
;
25 static ConstantInt
*getOne(Constant
*C
) {
26 return ConstantInt::get(cast
<IntegerType
>(C
->getType()), 1);
29 /// AddOne - Add one to a ConstantInt
30 static Constant
*AddOne(Constant
*C
) {
31 return ConstantExpr::getAdd(C
, ConstantInt::get(C
->getType(), 1));
33 /// SubOne - Subtract one from a ConstantInt
34 static Constant
*SubOne(Constant
*C
) {
35 return ConstantExpr::getSub(C
, ConstantInt::get(C
->getType(), 1));
38 static ConstantInt
*ExtractElement(Constant
*V
, Constant
*Idx
) {
39 return cast
<ConstantInt
>(ConstantExpr::getExtractElement(V
, Idx
));
42 static bool HasAddOverflow(ConstantInt
*Result
,
43 ConstantInt
*In1
, ConstantInt
*In2
,
46 if (In2
->getValue().isNegative())
47 return Result
->getValue().sgt(In1
->getValue());
49 return Result
->getValue().slt(In1
->getValue());
51 return Result
->getValue().ult(In1
->getValue());
54 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
55 /// overflowed for this type.
56 static bool AddWithOverflow(Constant
*&Result
, Constant
*In1
,
57 Constant
*In2
, bool IsSigned
= false) {
58 Result
= ConstantExpr::getAdd(In1
, In2
);
60 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(In1
->getType())) {
61 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
62 Constant
*Idx
= ConstantInt::get(Type::getInt32Ty(In1
->getContext()), i
);
63 if (HasAddOverflow(ExtractElement(Result
, Idx
),
64 ExtractElement(In1
, Idx
),
65 ExtractElement(In2
, Idx
),
72 return HasAddOverflow(cast
<ConstantInt
>(Result
),
73 cast
<ConstantInt
>(In1
), cast
<ConstantInt
>(In2
),
77 static bool HasSubOverflow(ConstantInt
*Result
,
78 ConstantInt
*In1
, ConstantInt
*In2
,
81 if (In2
->getValue().isNegative())
82 return Result
->getValue().slt(In1
->getValue());
84 return Result
->getValue().sgt(In1
->getValue());
86 return Result
->getValue().ugt(In1
->getValue());
89 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
90 /// overflowed for this type.
91 static bool SubWithOverflow(Constant
*&Result
, Constant
*In1
,
92 Constant
*In2
, bool IsSigned
= false) {
93 Result
= ConstantExpr::getSub(In1
, In2
);
95 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(In1
->getType())) {
96 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
97 Constant
*Idx
= ConstantInt::get(Type::getInt32Ty(In1
->getContext()), i
);
98 if (HasSubOverflow(ExtractElement(Result
, Idx
),
99 ExtractElement(In1
, Idx
),
100 ExtractElement(In2
, Idx
),
107 return HasSubOverflow(cast
<ConstantInt
>(Result
),
108 cast
<ConstantInt
>(In1
), cast
<ConstantInt
>(In2
),
112 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
113 /// comparison only checks the sign bit. If it only checks the sign bit, set
114 /// TrueIfSigned if the result of the comparison is true when the input value is
116 static bool isSignBitCheck(ICmpInst::Predicate pred
, ConstantInt
*RHS
,
117 bool &TrueIfSigned
) {
119 case ICmpInst::ICMP_SLT
: // True if LHS s< 0
121 return RHS
->isZero();
122 case ICmpInst::ICMP_SLE
: // True if LHS s<= RHS and RHS == -1
124 return RHS
->isAllOnesValue();
125 case ICmpInst::ICMP_SGT
: // True if LHS s> -1
126 TrueIfSigned
= false;
127 return RHS
->isAllOnesValue();
128 case ICmpInst::ICMP_UGT
:
129 // True if LHS u> RHS and RHS == high-bit-mask - 1
131 return RHS
->getValue() ==
132 APInt::getSignedMaxValue(RHS
->getType()->getPrimitiveSizeInBits());
133 case ICmpInst::ICMP_UGE
:
134 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
136 return RHS
->getValue().isSignBit();
142 // isHighOnes - Return true if the constant is of the form 1+0+.
143 // This is the same as lowones(~X).
144 static bool isHighOnes(const ConstantInt
*CI
) {
145 return (~CI
->getValue() + 1).isPowerOf2();
148 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
149 /// set of known zero and one bits, compute the maximum and minimum values that
150 /// could have the specified known zero and known one bits, returning them in
152 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt
& KnownZero
,
153 const APInt
& KnownOne
,
154 APInt
& Min
, APInt
& Max
) {
155 assert(KnownZero
.getBitWidth() == KnownOne
.getBitWidth() &&
156 KnownZero
.getBitWidth() == Min
.getBitWidth() &&
157 KnownZero
.getBitWidth() == Max
.getBitWidth() &&
158 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
159 APInt UnknownBits
= ~(KnownZero
|KnownOne
);
161 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
162 // bit if it is unknown.
164 Max
= KnownOne
|UnknownBits
;
166 if (UnknownBits
.isNegative()) { // Sign bit is unknown
167 Min
.setBit(Min
.getBitWidth()-1);
168 Max
.clearBit(Max
.getBitWidth()-1);
172 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
173 // a set of known zero and one bits, compute the maximum and minimum values that
174 // could have the specified known zero and known one bits, returning them in
176 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt
&KnownZero
,
177 const APInt
&KnownOne
,
178 APInt
&Min
, APInt
&Max
) {
179 assert(KnownZero
.getBitWidth() == KnownOne
.getBitWidth() &&
180 KnownZero
.getBitWidth() == Min
.getBitWidth() &&
181 KnownZero
.getBitWidth() == Max
.getBitWidth() &&
182 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
183 APInt UnknownBits
= ~(KnownZero
|KnownOne
);
185 // The minimum value is when the unknown bits are all zeros.
187 // The maximum value is when the unknown bits are all ones.
188 Max
= KnownOne
|UnknownBits
;
193 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
194 /// cmp pred (load (gep GV, ...)), cmpcst
195 /// where GV is a global variable with a constant initializer. Try to simplify
196 /// this into some simple computation that does not need the load. For example
197 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
199 /// If AndCst is non-null, then the loaded value is masked with that constant
200 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
201 Instruction
*InstCombiner::
202 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst
*GEP
, GlobalVariable
*GV
,
203 CmpInst
&ICI
, ConstantInt
*AndCst
) {
204 // We need TD information to know the pointer size unless this is inbounds.
205 if (!GEP
->isInBounds() && TD
== 0) return 0;
207 ConstantArray
*Init
= dyn_cast
<ConstantArray
>(GV
->getInitializer());
208 if (Init
== 0 || Init
->getNumOperands() > 1024) return 0;
210 // There are many forms of this optimization we can handle, for now, just do
211 // the simple index into a single-dimensional array.
213 // Require: GEP GV, 0, i {{, constant indices}}
214 if (GEP
->getNumOperands() < 3 ||
215 !isa
<ConstantInt
>(GEP
->getOperand(1)) ||
216 !cast
<ConstantInt
>(GEP
->getOperand(1))->isZero() ||
217 isa
<Constant
>(GEP
->getOperand(2)))
220 // Check that indices after the variable are constants and in-range for the
221 // type they index. Collect the indices. This is typically for arrays of
223 SmallVector
<unsigned, 4> LaterIndices
;
225 const Type
*EltTy
= cast
<ArrayType
>(Init
->getType())->getElementType();
226 for (unsigned i
= 3, e
= GEP
->getNumOperands(); i
!= e
; ++i
) {
227 ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
228 if (Idx
== 0) return 0; // Variable index.
230 uint64_t IdxVal
= Idx
->getZExtValue();
231 if ((unsigned)IdxVal
!= IdxVal
) return 0; // Too large array index.
233 if (const StructType
*STy
= dyn_cast
<StructType
>(EltTy
))
234 EltTy
= STy
->getElementType(IdxVal
);
235 else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(EltTy
)) {
236 if (IdxVal
>= ATy
->getNumElements()) return 0;
237 EltTy
= ATy
->getElementType();
239 return 0; // Unknown type.
242 LaterIndices
.push_back(IdxVal
);
245 enum { Overdefined
= -3, Undefined
= -2 };
247 // Variables for our state machines.
249 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
250 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
251 // and 87 is the second (and last) index. FirstTrueElement is -2 when
252 // undefined, otherwise set to the first true element. SecondTrueElement is
253 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
254 int FirstTrueElement
= Undefined
, SecondTrueElement
= Undefined
;
256 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
257 // form "i != 47 & i != 87". Same state transitions as for true elements.
258 int FirstFalseElement
= Undefined
, SecondFalseElement
= Undefined
;
260 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
261 /// define a state machine that triggers for ranges of values that the index
262 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
263 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
264 /// index in the range (inclusive). We use -2 for undefined here because we
265 /// use relative comparisons and don't want 0-1 to match -1.
266 int TrueRangeEnd
= Undefined
, FalseRangeEnd
= Undefined
;
268 // MagicBitvector - This is a magic bitvector where we set a bit if the
269 // comparison is true for element 'i'. If there are 64 elements or less in
270 // the array, this will fully represent all the comparison results.
271 uint64_t MagicBitvector
= 0;
274 // Scan the array and see if one of our patterns matches.
275 Constant
*CompareRHS
= cast
<Constant
>(ICI
.getOperand(1));
276 for (unsigned i
= 0, e
= Init
->getNumOperands(); i
!= e
; ++i
) {
277 Constant
*Elt
= Init
->getOperand(i
);
279 // If this is indexing an array of structures, get the structure element.
280 if (!LaterIndices
.empty())
281 Elt
= ConstantExpr::getExtractValue(Elt
, LaterIndices
.data(),
282 LaterIndices
.size());
284 // If the element is masked, handle it.
285 if (AndCst
) Elt
= ConstantExpr::getAnd(Elt
, AndCst
);
287 // Find out if the comparison would be true or false for the i'th element.
288 Constant
*C
= ConstantFoldCompareInstOperands(ICI
.getPredicate(), Elt
,
290 // If the result is undef for this element, ignore it.
291 if (isa
<UndefValue
>(C
)) {
292 // Extend range state machines to cover this element in case there is an
293 // undef in the middle of the range.
294 if (TrueRangeEnd
== (int)i
-1)
296 if (FalseRangeEnd
== (int)i
-1)
301 // If we can't compute the result for any of the elements, we have to give
302 // up evaluating the entire conditional.
303 if (!isa
<ConstantInt
>(C
)) return 0;
305 // Otherwise, we know if the comparison is true or false for this element,
306 // update our state machines.
307 bool IsTrueForElt
= !cast
<ConstantInt
>(C
)->isZero();
309 // State machine for single/double/range index comparison.
311 // Update the TrueElement state machine.
312 if (FirstTrueElement
== Undefined
)
313 FirstTrueElement
= TrueRangeEnd
= i
; // First true element.
315 // Update double-compare state machine.
316 if (SecondTrueElement
== Undefined
)
317 SecondTrueElement
= i
;
319 SecondTrueElement
= Overdefined
;
321 // Update range state machine.
322 if (TrueRangeEnd
== (int)i
-1)
325 TrueRangeEnd
= Overdefined
;
328 // Update the FalseElement state machine.
329 if (FirstFalseElement
== Undefined
)
330 FirstFalseElement
= FalseRangeEnd
= i
; // First false element.
332 // Update double-compare state machine.
333 if (SecondFalseElement
== Undefined
)
334 SecondFalseElement
= i
;
336 SecondFalseElement
= Overdefined
;
338 // Update range state machine.
339 if (FalseRangeEnd
== (int)i
-1)
342 FalseRangeEnd
= Overdefined
;
347 // If this element is in range, update our magic bitvector.
348 if (i
< 64 && IsTrueForElt
)
349 MagicBitvector
|= 1ULL << i
;
351 // If all of our states become overdefined, bail out early. Since the
352 // predicate is expensive, only check it every 8 elements. This is only
353 // really useful for really huge arrays.
354 if ((i
& 8) == 0 && i
>= 64 && SecondTrueElement
== Overdefined
&&
355 SecondFalseElement
== Overdefined
&& TrueRangeEnd
== Overdefined
&&
356 FalseRangeEnd
== Overdefined
)
360 // Now that we've scanned the entire array, emit our new comparison(s). We
361 // order the state machines in complexity of the generated code.
362 Value
*Idx
= GEP
->getOperand(2);
364 // If the index is larger than the pointer size of the target, truncate the
365 // index down like the GEP would do implicitly. We don't have to do this for
366 // an inbounds GEP because the index can't be out of range.
367 if (!GEP
->isInBounds() &&
368 Idx
->getType()->getPrimitiveSizeInBits() > TD
->getPointerSizeInBits())
369 Idx
= Builder
->CreateTrunc(Idx
, TD
->getIntPtrType(Idx
->getContext()));
371 // If the comparison is only true for one or two elements, emit direct
373 if (SecondTrueElement
!= Overdefined
) {
374 // None true -> false.
375 if (FirstTrueElement
== Undefined
)
376 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse(GEP
->getContext()));
378 Value
*FirstTrueIdx
= ConstantInt::get(Idx
->getType(), FirstTrueElement
);
380 // True for one element -> 'i == 47'.
381 if (SecondTrueElement
== Undefined
)
382 return new ICmpInst(ICmpInst::ICMP_EQ
, Idx
, FirstTrueIdx
);
384 // True for two elements -> 'i == 47 | i == 72'.
385 Value
*C1
= Builder
->CreateICmpEQ(Idx
, FirstTrueIdx
);
386 Value
*SecondTrueIdx
= ConstantInt::get(Idx
->getType(), SecondTrueElement
);
387 Value
*C2
= Builder
->CreateICmpEQ(Idx
, SecondTrueIdx
);
388 return BinaryOperator::CreateOr(C1
, C2
);
391 // If the comparison is only false for one or two elements, emit direct
393 if (SecondFalseElement
!= Overdefined
) {
394 // None false -> true.
395 if (FirstFalseElement
== Undefined
)
396 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue(GEP
->getContext()));
398 Value
*FirstFalseIdx
= ConstantInt::get(Idx
->getType(), FirstFalseElement
);
400 // False for one element -> 'i != 47'.
401 if (SecondFalseElement
== Undefined
)
402 return new ICmpInst(ICmpInst::ICMP_NE
, Idx
, FirstFalseIdx
);
404 // False for two elements -> 'i != 47 & i != 72'.
405 Value
*C1
= Builder
->CreateICmpNE(Idx
, FirstFalseIdx
);
406 Value
*SecondFalseIdx
= ConstantInt::get(Idx
->getType(),SecondFalseElement
);
407 Value
*C2
= Builder
->CreateICmpNE(Idx
, SecondFalseIdx
);
408 return BinaryOperator::CreateAnd(C1
, C2
);
411 // If the comparison can be replaced with a range comparison for the elements
412 // where it is true, emit the range check.
413 if (TrueRangeEnd
!= Overdefined
) {
414 assert(TrueRangeEnd
!= FirstTrueElement
&& "Should emit single compare");
416 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
417 if (FirstTrueElement
) {
418 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstTrueElement
);
419 Idx
= Builder
->CreateAdd(Idx
, Offs
);
422 Value
*End
= ConstantInt::get(Idx
->getType(),
423 TrueRangeEnd
-FirstTrueElement
+1);
424 return new ICmpInst(ICmpInst::ICMP_ULT
, Idx
, End
);
427 // False range check.
428 if (FalseRangeEnd
!= Overdefined
) {
429 assert(FalseRangeEnd
!= FirstFalseElement
&& "Should emit single compare");
430 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
431 if (FirstFalseElement
) {
432 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstFalseElement
);
433 Idx
= Builder
->CreateAdd(Idx
, Offs
);
436 Value
*End
= ConstantInt::get(Idx
->getType(),
437 FalseRangeEnd
-FirstFalseElement
);
438 return new ICmpInst(ICmpInst::ICMP_UGT
, Idx
, End
);
442 // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
443 // of this load, replace it with computation that does:
444 // ((magic_cst >> i) & 1) != 0
445 if (Init
->getNumOperands() <= 32 ||
446 (TD
&& Init
->getNumOperands() <= 64 && TD
->isLegalInteger(64))) {
448 if (Init
->getNumOperands() <= 32)
449 Ty
= Type::getInt32Ty(Init
->getContext());
451 Ty
= Type::getInt64Ty(Init
->getContext());
452 Value
*V
= Builder
->CreateIntCast(Idx
, Ty
, false);
453 V
= Builder
->CreateLShr(ConstantInt::get(Ty
, MagicBitvector
), V
);
454 V
= Builder
->CreateAnd(ConstantInt::get(Ty
, 1), V
);
455 return new ICmpInst(ICmpInst::ICMP_NE
, V
, ConstantInt::get(Ty
, 0));
462 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
463 /// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
464 /// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
465 /// be complex, and scales are involved. The above expression would also be
466 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
467 /// This later form is less amenable to optimization though, and we are allowed
468 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
470 /// If we can't emit an optimized form for this expression, this returns null.
472 static Value
*EvaluateGEPOffsetExpression(User
*GEP
, InstCombiner
&IC
) {
473 TargetData
&TD
= *IC
.getTargetData();
474 gep_type_iterator GTI
= gep_type_begin(GEP
);
476 // Check to see if this gep only has a single variable index. If so, and if
477 // any constant indices are a multiple of its scale, then we can compute this
478 // in terms of the scale of the variable index. For example, if the GEP
479 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
480 // because the expression will cross zero at the same point.
481 unsigned i
, e
= GEP
->getNumOperands();
483 for (i
= 1; i
!= e
; ++i
, ++GTI
) {
484 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
485 // Compute the aggregate offset of constant indices.
486 if (CI
->isZero()) continue;
488 // Handle a struct index, which adds its field offset to the pointer.
489 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
490 Offset
+= TD
.getStructLayout(STy
)->getElementOffset(CI
->getZExtValue());
492 uint64_t Size
= TD
.getTypeAllocSize(GTI
.getIndexedType());
493 Offset
+= Size
*CI
->getSExtValue();
496 // Found our variable index.
501 // If there are no variable indices, we must have a constant offset, just
502 // evaluate it the general way.
503 if (i
== e
) return 0;
505 Value
*VariableIdx
= GEP
->getOperand(i
);
506 // Determine the scale factor of the variable element. For example, this is
507 // 4 if the variable index is into an array of i32.
508 uint64_t VariableScale
= TD
.getTypeAllocSize(GTI
.getIndexedType());
510 // Verify that there are no other variable indices. If so, emit the hard way.
511 for (++i
, ++GTI
; i
!= e
; ++i
, ++GTI
) {
512 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
515 // Compute the aggregate offset of constant indices.
516 if (CI
->isZero()) continue;
518 // Handle a struct index, which adds its field offset to the pointer.
519 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
520 Offset
+= TD
.getStructLayout(STy
)->getElementOffset(CI
->getZExtValue());
522 uint64_t Size
= TD
.getTypeAllocSize(GTI
.getIndexedType());
523 Offset
+= Size
*CI
->getSExtValue();
527 // Okay, we know we have a single variable index, which must be a
528 // pointer/array/vector index. If there is no offset, life is simple, return
530 unsigned IntPtrWidth
= TD
.getPointerSizeInBits();
532 // Cast to intptrty in case a truncation occurs. If an extension is needed,
533 // we don't need to bother extending: the extension won't affect where the
534 // computation crosses zero.
535 if (VariableIdx
->getType()->getPrimitiveSizeInBits() > IntPtrWidth
) {
536 const Type
*IntPtrTy
= TD
.getIntPtrType(VariableIdx
->getContext());
537 VariableIdx
= IC
.Builder
->CreateTrunc(VariableIdx
, IntPtrTy
);
542 // Otherwise, there is an index. The computation we will do will be modulo
543 // the pointer size, so get it.
544 uint64_t PtrSizeMask
= ~0ULL >> (64-IntPtrWidth
);
546 Offset
&= PtrSizeMask
;
547 VariableScale
&= PtrSizeMask
;
549 // To do this transformation, any constant index must be a multiple of the
550 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
551 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
552 // multiple of the variable scale.
553 int64_t NewOffs
= Offset
/ (int64_t)VariableScale
;
554 if (Offset
!= NewOffs
*(int64_t)VariableScale
)
557 // Okay, we can do this evaluation. Start by converting the index to intptr.
558 const Type
*IntPtrTy
= TD
.getIntPtrType(VariableIdx
->getContext());
559 if (VariableIdx
->getType() != IntPtrTy
)
560 VariableIdx
= IC
.Builder
->CreateIntCast(VariableIdx
, IntPtrTy
,
562 Constant
*OffsetVal
= ConstantInt::get(IntPtrTy
, NewOffs
);
563 return IC
.Builder
->CreateAdd(VariableIdx
, OffsetVal
, "offset");
566 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
567 /// else. At this point we know that the GEP is on the LHS of the comparison.
568 Instruction
*InstCombiner::FoldGEPICmp(GEPOperator
*GEPLHS
, Value
*RHS
,
569 ICmpInst::Predicate Cond
,
571 // Look through bitcasts.
572 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(RHS
))
573 RHS
= BCI
->getOperand(0);
575 Value
*PtrBase
= GEPLHS
->getOperand(0);
576 if (TD
&& PtrBase
== RHS
&& GEPLHS
->isInBounds()) {
577 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
578 // This transformation (ignoring the base and scales) is valid because we
579 // know pointers can't overflow since the gep is inbounds. See if we can
580 // output an optimized form.
581 Value
*Offset
= EvaluateGEPOffsetExpression(GEPLHS
, *this);
583 // If not, synthesize the offset the hard way.
585 Offset
= EmitGEPOffset(GEPLHS
);
586 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), Offset
,
587 Constant::getNullValue(Offset
->getType()));
588 } else if (GEPOperator
*GEPRHS
= dyn_cast
<GEPOperator
>(RHS
)) {
589 // If the base pointers are different, but the indices are the same, just
590 // compare the base pointer.
591 if (PtrBase
!= GEPRHS
->getOperand(0)) {
592 bool IndicesTheSame
= GEPLHS
->getNumOperands()==GEPRHS
->getNumOperands();
593 IndicesTheSame
&= GEPLHS
->getOperand(0)->getType() ==
594 GEPRHS
->getOperand(0)->getType();
596 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
)
597 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
598 IndicesTheSame
= false;
602 // If all indices are the same, just compare the base pointers.
604 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
),
605 GEPLHS
->getOperand(0), GEPRHS
->getOperand(0));
607 // Otherwise, the base pointers are different and the indices are
608 // different, bail out.
612 // If one of the GEPs has all zero indices, recurse.
613 bool AllZeros
= true;
614 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
)
615 if (!isa
<Constant
>(GEPLHS
->getOperand(i
)) ||
616 !cast
<Constant
>(GEPLHS
->getOperand(i
))->isNullValue()) {
621 return FoldGEPICmp(GEPRHS
, GEPLHS
->getOperand(0),
622 ICmpInst::getSwappedPredicate(Cond
), I
);
624 // If the other GEP has all zero indices, recurse.
626 for (unsigned i
= 1, e
= GEPRHS
->getNumOperands(); i
!= e
; ++i
)
627 if (!isa
<Constant
>(GEPRHS
->getOperand(i
)) ||
628 !cast
<Constant
>(GEPRHS
->getOperand(i
))->isNullValue()) {
633 return FoldGEPICmp(GEPLHS
, GEPRHS
->getOperand(0), Cond
, I
);
635 bool GEPsInBounds
= GEPLHS
->isInBounds() && GEPRHS
->isInBounds();
636 if (GEPLHS
->getNumOperands() == GEPRHS
->getNumOperands()) {
637 // If the GEPs only differ by one index, compare it.
638 unsigned NumDifferences
= 0; // Keep track of # differences.
639 unsigned DiffOperand
= 0; // The operand that differs.
640 for (unsigned i
= 1, e
= GEPRHS
->getNumOperands(); i
!= e
; ++i
)
641 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
642 if (GEPLHS
->getOperand(i
)->getType()->getPrimitiveSizeInBits() !=
643 GEPRHS
->getOperand(i
)->getType()->getPrimitiveSizeInBits()) {
644 // Irreconcilable differences.
648 if (NumDifferences
++) break;
653 if (NumDifferences
== 0) // SAME GEP?
654 return ReplaceInstUsesWith(I
, // No comparison is needed here.
655 ConstantInt::get(Type::getInt1Ty(I
.getContext()),
656 ICmpInst::isTrueWhenEqual(Cond
)));
658 else if (NumDifferences
== 1 && GEPsInBounds
) {
659 Value
*LHSV
= GEPLHS
->getOperand(DiffOperand
);
660 Value
*RHSV
= GEPRHS
->getOperand(DiffOperand
);
661 // Make sure we do a signed comparison here.
662 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), LHSV
, RHSV
);
666 // Only lower this if the icmp is the only user of the GEP or if we expect
667 // the result to fold to a constant!
670 (isa
<ConstantExpr
>(GEPLHS
) || GEPLHS
->hasOneUse()) &&
671 (isa
<ConstantExpr
>(GEPRHS
) || GEPRHS
->hasOneUse())) {
672 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
673 Value
*L
= EmitGEPOffset(GEPLHS
);
674 Value
*R
= EmitGEPOffset(GEPRHS
);
675 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), L
, R
);
681 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
682 Instruction
*InstCombiner::FoldICmpAddOpCst(ICmpInst
&ICI
,
683 Value
*X
, ConstantInt
*CI
,
684 ICmpInst::Predicate Pred
,
686 // If we have X+0, exit early (simplifying logic below) and let it get folded
687 // elsewhere. icmp X+0, X -> icmp X, X
689 bool isTrue
= ICmpInst::isTrueWhenEqual(Pred
);
690 return ReplaceInstUsesWith(ICI
, ConstantInt::get(ICI
.getType(), isTrue
));
693 // (X+4) == X -> false.
694 if (Pred
== ICmpInst::ICMP_EQ
)
695 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse(X
->getContext()));
697 // (X+4) != X -> true.
698 if (Pred
== ICmpInst::ICMP_NE
)
699 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue(X
->getContext()));
701 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
702 // so the values can never be equal. Similarly for all other "or equals"
705 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
706 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
707 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
708 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_ULE
) {
710 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI
->getType()), CI
);
711 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, R
);
714 // (X+1) >u X --> X <u (0-1) --> X != 255
715 // (X+2) >u X --> X <u (0-2) --> X <u 254
716 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
717 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_UGE
)
718 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, ConstantExpr::getNeg(CI
));
720 unsigned BitWidth
= CI
->getType()->getPrimitiveSizeInBits();
721 ConstantInt
*SMax
= ConstantInt::get(X
->getContext(),
722 APInt::getSignedMaxValue(BitWidth
));
724 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
725 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
726 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
727 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
728 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
729 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
730 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
)
731 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, ConstantExpr::getSub(SMax
, CI
));
733 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
734 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
735 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
736 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
737 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
738 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
740 assert(Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
);
741 Constant
*C
= ConstantInt::get(X
->getContext(), CI
->getValue()-1);
742 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, ConstantExpr::getSub(SMax
, C
));
745 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
746 /// and CmpRHS are both known to be integer constants.
747 Instruction
*InstCombiner::FoldICmpDivCst(ICmpInst
&ICI
, BinaryOperator
*DivI
,
748 ConstantInt
*DivRHS
) {
749 ConstantInt
*CmpRHS
= cast
<ConstantInt
>(ICI
.getOperand(1));
750 const APInt
&CmpRHSV
= CmpRHS
->getValue();
752 // FIXME: If the operand types don't match the type of the divide
753 // then don't attempt this transform. The code below doesn't have the
754 // logic to deal with a signed divide and an unsigned compare (and
755 // vice versa). This is because (x /s C1) <s C2 produces different
756 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
757 // (x /u C1) <u C2. Simply casting the operands and result won't
758 // work. :( The if statement below tests that condition and bails
760 bool DivIsSigned
= DivI
->getOpcode() == Instruction::SDiv
;
761 if (!ICI
.isEquality() && DivIsSigned
!= ICI
.isSigned())
763 if (DivRHS
->isZero())
764 return 0; // The ProdOV computation fails on divide by zero.
765 if (DivIsSigned
&& DivRHS
->isAllOnesValue())
766 return 0; // The overflow computation also screws up here
767 if (DivRHS
->isOne()) {
768 // This eliminates some funny cases with INT_MIN.
769 ICI
.setOperand(0, DivI
->getOperand(0)); // X/1 == X.
773 // Compute Prod = CI * DivRHS. We are essentially solving an equation
774 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
775 // C2 (CI). By solving for X we can turn this into a range check
776 // instead of computing a divide.
777 Constant
*Prod
= ConstantExpr::getMul(CmpRHS
, DivRHS
);
779 // Determine if the product overflows by seeing if the product is
780 // not equal to the divide. Make sure we do the same kind of divide
781 // as in the LHS instruction that we're folding.
782 bool ProdOV
= (DivIsSigned
? ConstantExpr::getSDiv(Prod
, DivRHS
) :
783 ConstantExpr::getUDiv(Prod
, DivRHS
)) != CmpRHS
;
785 // Get the ICmp opcode
786 ICmpInst::Predicate Pred
= ICI
.getPredicate();
788 /// If the division is known to be exact, then there is no remainder from the
789 /// divide, so the covered range size is unit, otherwise it is the divisor.
790 ConstantInt
*RangeSize
= DivI
->isExact() ? getOne(Prod
) : DivRHS
;
792 // Figure out the interval that is being checked. For example, a comparison
793 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
794 // Compute this interval based on the constants involved and the signedness of
795 // the compare/divide. This computes a half-open interval, keeping track of
796 // whether either value in the interval overflows. After analysis each
797 // overflow variable is set to 0 if it's corresponding bound variable is valid
798 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
799 int LoOverflow
= 0, HiOverflow
= 0;
800 Constant
*LoBound
= 0, *HiBound
= 0;
802 if (!DivIsSigned
) { // udiv
803 // e.g. X/5 op 3 --> [15, 20)
805 HiOverflow
= LoOverflow
= ProdOV
;
807 // If this is not an exact divide, then many values in the range collapse
808 // to the same result value.
809 HiOverflow
= AddWithOverflow(HiBound
, LoBound
, RangeSize
, false);
812 } else if (DivRHS
->getValue().isStrictlyPositive()) { // Divisor is > 0.
813 if (CmpRHSV
== 0) { // (X / pos) op 0
814 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
815 LoBound
= ConstantExpr::getNeg(SubOne(RangeSize
));
817 } else if (CmpRHSV
.isStrictlyPositive()) { // (X / pos) op pos
818 LoBound
= Prod
; // e.g. X/5 op 3 --> [15, 20)
819 HiOverflow
= LoOverflow
= ProdOV
;
821 HiOverflow
= AddWithOverflow(HiBound
, Prod
, RangeSize
, true);
822 } else { // (X / pos) op neg
823 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
824 HiBound
= AddOne(Prod
);
825 LoOverflow
= HiOverflow
= ProdOV
? -1 : 0;
827 ConstantInt
*DivNeg
=cast
<ConstantInt
>(ConstantExpr::getNeg(RangeSize
));
828 LoOverflow
= AddWithOverflow(LoBound
, HiBound
, DivNeg
, true) ? -1 : 0;
831 } else if (DivRHS
->getValue().isNegative()) { // Divisor is < 0.
833 RangeSize
= cast
<ConstantInt
>(ConstantExpr::getNeg(RangeSize
));
834 if (CmpRHSV
== 0) { // (X / neg) op 0
835 // e.g. X/-5 op 0 --> [-4, 5)
836 LoBound
= AddOne(RangeSize
);
837 HiBound
= cast
<ConstantInt
>(ConstantExpr::getNeg(RangeSize
));
838 if (HiBound
== DivRHS
) { // -INTMIN = INTMIN
839 HiOverflow
= 1; // [INTMIN+1, overflow)
840 HiBound
= 0; // e.g. X/INTMIN = 0 --> X > INTMIN
842 } else if (CmpRHSV
.isStrictlyPositive()) { // (X / neg) op pos
843 // e.g. X/-5 op 3 --> [-19, -14)
844 HiBound
= AddOne(Prod
);
845 HiOverflow
= LoOverflow
= ProdOV
? -1 : 0;
847 LoOverflow
= AddWithOverflow(LoBound
, HiBound
, RangeSize
, true) ? -1:0;
848 } else { // (X / neg) op neg
849 LoBound
= Prod
; // e.g. X/-5 op -3 --> [15, 20)
850 LoOverflow
= HiOverflow
= ProdOV
;
852 HiOverflow
= SubWithOverflow(HiBound
, Prod
, RangeSize
, true);
855 // Dividing by a negative swaps the condition. LT <-> GT
856 Pred
= ICmpInst::getSwappedPredicate(Pred
);
859 Value
*X
= DivI
->getOperand(0);
861 default: llvm_unreachable("Unhandled icmp opcode!");
862 case ICmpInst::ICMP_EQ
:
863 if (LoOverflow
&& HiOverflow
)
864 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse(ICI
.getContext()));
866 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
867 ICmpInst::ICMP_UGE
, X
, LoBound
);
869 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
870 ICmpInst::ICMP_ULT
, X
, HiBound
);
871 return ReplaceInstUsesWith(ICI
, InsertRangeTest(X
, LoBound
, HiBound
,
873 case ICmpInst::ICMP_NE
:
874 if (LoOverflow
&& HiOverflow
)
875 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue(ICI
.getContext()));
877 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
878 ICmpInst::ICMP_ULT
, X
, LoBound
);
880 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
881 ICmpInst::ICMP_UGE
, X
, HiBound
);
882 return ReplaceInstUsesWith(ICI
, InsertRangeTest(X
, LoBound
, HiBound
,
883 DivIsSigned
, false));
884 case ICmpInst::ICMP_ULT
:
885 case ICmpInst::ICMP_SLT
:
886 if (LoOverflow
== +1) // Low bound is greater than input range.
887 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue(ICI
.getContext()));
888 if (LoOverflow
== -1) // Low bound is less than input range.
889 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse(ICI
.getContext()));
890 return new ICmpInst(Pred
, X
, LoBound
);
891 case ICmpInst::ICMP_UGT
:
892 case ICmpInst::ICMP_SGT
:
893 if (HiOverflow
== +1) // High bound greater than input range.
894 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse(ICI
.getContext()));
895 if (HiOverflow
== -1) // High bound less than input range.
896 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue(ICI
.getContext()));
897 if (Pred
== ICmpInst::ICMP_UGT
)
898 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, HiBound
);
899 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, HiBound
);
903 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
904 Instruction
*InstCombiner::FoldICmpShrCst(ICmpInst
&ICI
, BinaryOperator
*Shr
,
905 ConstantInt
*ShAmt
) {
906 const APInt
&CmpRHSV
= cast
<ConstantInt
>(ICI
.getOperand(1))->getValue();
908 // Check that the shift amount is in range. If not, don't perform
909 // undefined shifts. When the shift is visited it will be
911 uint32_t TypeBits
= CmpRHSV
.getBitWidth();
912 uint32_t ShAmtVal
= (uint32_t)ShAmt
->getLimitedValue(TypeBits
);
913 if (ShAmtVal
>= TypeBits
|| ShAmtVal
== 0)
916 if (!ICI
.isEquality()) {
917 // If we have an unsigned comparison and an ashr, we can't simplify this.
918 // Similarly for signed comparisons with lshr.
919 if (ICI
.isSigned() != (Shr
->getOpcode() == Instruction::AShr
))
922 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
923 // by a power of 2. Since we already have logic to simplify these,
924 // transform to div and then simplify the resultant comparison.
925 if (Shr
->getOpcode() == Instruction::AShr
&&
926 (!Shr
->isExact() || ShAmtVal
== TypeBits
- 1))
929 // Revisit the shift (to delete it).
933 ConstantInt::get(Shr
->getType(), APInt::getOneBitSet(TypeBits
, ShAmtVal
));
936 Shr
->getOpcode() == Instruction::AShr
?
937 Builder
->CreateSDiv(Shr
->getOperand(0), DivCst
, "", Shr
->isExact()) :
938 Builder
->CreateUDiv(Shr
->getOperand(0), DivCst
, "", Shr
->isExact());
940 ICI
.setOperand(0, Tmp
);
942 // If the builder folded the binop, just return it.
943 BinaryOperator
*TheDiv
= dyn_cast
<BinaryOperator
>(Tmp
);
947 // Otherwise, fold this div/compare.
948 assert(TheDiv
->getOpcode() == Instruction::SDiv
||
949 TheDiv
->getOpcode() == Instruction::UDiv
);
951 Instruction
*Res
= FoldICmpDivCst(ICI
, TheDiv
, cast
<ConstantInt
>(DivCst
));
952 assert(Res
&& "This div/cst should have folded!");
957 // If we are comparing against bits always shifted out, the
958 // comparison cannot succeed.
959 APInt Comp
= CmpRHSV
<< ShAmtVal
;
960 ConstantInt
*ShiftedCmpRHS
= ConstantInt::get(ICI
.getContext(), Comp
);
961 if (Shr
->getOpcode() == Instruction::LShr
)
962 Comp
= Comp
.lshr(ShAmtVal
);
964 Comp
= Comp
.ashr(ShAmtVal
);
966 if (Comp
!= CmpRHSV
) { // Comparing against a bit that we know is zero.
967 bool IsICMP_NE
= ICI
.getPredicate() == ICmpInst::ICMP_NE
;
968 Constant
*Cst
= ConstantInt::get(Type::getInt1Ty(ICI
.getContext()),
970 return ReplaceInstUsesWith(ICI
, Cst
);
973 // Otherwise, check to see if the bits shifted out are known to be zero.
974 // If so, we can compare against the unshifted value:
975 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
976 if (Shr
->hasOneUse() && Shr
->isExact())
977 return new ICmpInst(ICI
.getPredicate(), Shr
->getOperand(0), ShiftedCmpRHS
);
979 if (Shr
->hasOneUse()) {
980 // Otherwise strength reduce the shift into an and.
981 APInt
Val(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShAmtVal
));
982 Constant
*Mask
= ConstantInt::get(ICI
.getContext(), Val
);
984 Value
*And
= Builder
->CreateAnd(Shr
->getOperand(0),
985 Mask
, Shr
->getName()+".mask");
986 return new ICmpInst(ICI
.getPredicate(), And
, ShiftedCmpRHS
);
992 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
994 Instruction
*InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst
&ICI
,
997 const APInt
&RHSV
= RHS
->getValue();
999 switch (LHSI
->getOpcode()) {
1000 case Instruction::Trunc
:
1001 if (ICI
.isEquality() && LHSI
->hasOneUse()) {
1002 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1003 // of the high bits truncated out of x are known.
1004 unsigned DstBits
= LHSI
->getType()->getPrimitiveSizeInBits(),
1005 SrcBits
= LHSI
->getOperand(0)->getType()->getPrimitiveSizeInBits();
1006 APInt
Mask(APInt::getHighBitsSet(SrcBits
, SrcBits
-DstBits
));
1007 APInt
KnownZero(SrcBits
, 0), KnownOne(SrcBits
, 0);
1008 ComputeMaskedBits(LHSI
->getOperand(0), Mask
, KnownZero
, KnownOne
);
1010 // If all the high bits are known, we can do this xform.
1011 if ((KnownZero
|KnownOne
).countLeadingOnes() >= SrcBits
-DstBits
) {
1012 // Pull in the high bits from known-ones set.
1013 APInt NewRHS
= RHS
->getValue().zext(SrcBits
);
1015 return new ICmpInst(ICI
.getPredicate(), LHSI
->getOperand(0),
1016 ConstantInt::get(ICI
.getContext(), NewRHS
));
1021 case Instruction::Xor
: // (icmp pred (xor X, XorCST), CI)
1022 if (ConstantInt
*XorCST
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1))) {
1023 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1025 if ((ICI
.getPredicate() == ICmpInst::ICMP_SLT
&& RHSV
== 0) ||
1026 (ICI
.getPredicate() == ICmpInst::ICMP_SGT
&& RHSV
.isAllOnesValue())) {
1027 Value
*CompareVal
= LHSI
->getOperand(0);
1029 // If the sign bit of the XorCST is not set, there is no change to
1030 // the operation, just stop using the Xor.
1031 if (!XorCST
->getValue().isNegative()) {
1032 ICI
.setOperand(0, CompareVal
);
1037 // Was the old condition true if the operand is positive?
1038 bool isTrueIfPositive
= ICI
.getPredicate() == ICmpInst::ICMP_SGT
;
1040 // If so, the new one isn't.
1041 isTrueIfPositive
^= true;
1043 if (isTrueIfPositive
)
1044 return new ICmpInst(ICmpInst::ICMP_SGT
, CompareVal
,
1047 return new ICmpInst(ICmpInst::ICMP_SLT
, CompareVal
,
1051 if (LHSI
->hasOneUse()) {
1052 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1053 if (!ICI
.isEquality() && XorCST
->getValue().isSignBit()) {
1054 const APInt
&SignBit
= XorCST
->getValue();
1055 ICmpInst::Predicate Pred
= ICI
.isSigned()
1056 ? ICI
.getUnsignedPredicate()
1057 : ICI
.getSignedPredicate();
1058 return new ICmpInst(Pred
, LHSI
->getOperand(0),
1059 ConstantInt::get(ICI
.getContext(),
1063 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1064 if (!ICI
.isEquality() && XorCST
->getValue().isMaxSignedValue()) {
1065 const APInt
&NotSignBit
= XorCST
->getValue();
1066 ICmpInst::Predicate Pred
= ICI
.isSigned()
1067 ? ICI
.getUnsignedPredicate()
1068 : ICI
.getSignedPredicate();
1069 Pred
= ICI
.getSwappedPredicate(Pred
);
1070 return new ICmpInst(Pred
, LHSI
->getOperand(0),
1071 ConstantInt::get(ICI
.getContext(),
1072 RHSV
^ NotSignBit
));
1077 case Instruction::And
: // (icmp pred (and X, AndCST), RHS)
1078 if (LHSI
->hasOneUse() && isa
<ConstantInt
>(LHSI
->getOperand(1)) &&
1079 LHSI
->getOperand(0)->hasOneUse()) {
1080 ConstantInt
*AndCST
= cast
<ConstantInt
>(LHSI
->getOperand(1));
1082 // If the LHS is an AND of a truncating cast, we can widen the
1083 // and/compare to be the input width without changing the value
1084 // produced, eliminating a cast.
1085 if (TruncInst
*Cast
= dyn_cast
<TruncInst
>(LHSI
->getOperand(0))) {
1086 // We can do this transformation if either the AND constant does not
1087 // have its sign bit set or if it is an equality comparison.
1088 // Extending a relational comparison when we're checking the sign
1089 // bit would not work.
1090 if (ICI
.isEquality() ||
1091 (AndCST
->getValue().isNonNegative() && RHSV
.isNonNegative())) {
1093 Builder
->CreateAnd(Cast
->getOperand(0),
1094 ConstantExpr::getZExt(AndCST
, Cast
->getSrcTy()));
1095 NewAnd
->takeName(LHSI
);
1096 return new ICmpInst(ICI
.getPredicate(), NewAnd
,
1097 ConstantExpr::getZExt(RHS
, Cast
->getSrcTy()));
1101 // If the LHS is an AND of a zext, and we have an equality compare, we can
1102 // shrink the and/compare to the smaller type, eliminating the cast.
1103 if (ZExtInst
*Cast
= dyn_cast
<ZExtInst
>(LHSI
->getOperand(0))) {
1104 const IntegerType
*Ty
= cast
<IntegerType
>(Cast
->getSrcTy());
1105 // Make sure we don't compare the upper bits, SimplifyDemandedBits
1106 // should fold the icmp to true/false in that case.
1107 if (ICI
.isEquality() && RHSV
.getActiveBits() <= Ty
->getBitWidth()) {
1109 Builder
->CreateAnd(Cast
->getOperand(0),
1110 ConstantExpr::getTrunc(AndCST
, Ty
));
1111 NewAnd
->takeName(LHSI
);
1112 return new ICmpInst(ICI
.getPredicate(), NewAnd
,
1113 ConstantExpr::getTrunc(RHS
, Ty
));
1117 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1118 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
1119 // happens a LOT in code produced by the C front-end, for bitfield
1121 BinaryOperator
*Shift
= dyn_cast
<BinaryOperator
>(LHSI
->getOperand(0));
1122 if (Shift
&& !Shift
->isShift())
1126 ShAmt
= Shift
? dyn_cast
<ConstantInt
>(Shift
->getOperand(1)) : 0;
1127 const Type
*Ty
= Shift
? Shift
->getType() : 0; // Type of the shift.
1128 const Type
*AndTy
= AndCST
->getType(); // Type of the and.
1130 // We can fold this as long as we can't shift unknown bits
1131 // into the mask. This can only happen with signed shift
1132 // rights, as they sign-extend.
1134 bool CanFold
= Shift
->isLogicalShift();
1136 // To test for the bad case of the signed shr, see if any
1137 // of the bits shifted in could be tested after the mask.
1138 uint32_t TyBits
= Ty
->getPrimitiveSizeInBits();
1139 int ShAmtVal
= TyBits
- ShAmt
->getLimitedValue(TyBits
);
1141 uint32_t BitWidth
= AndTy
->getPrimitiveSizeInBits();
1142 if ((APInt::getHighBitsSet(BitWidth
, BitWidth
-ShAmtVal
) &
1143 AndCST
->getValue()) == 0)
1149 if (Shift
->getOpcode() == Instruction::Shl
)
1150 NewCst
= ConstantExpr::getLShr(RHS
, ShAmt
);
1152 NewCst
= ConstantExpr::getShl(RHS
, ShAmt
);
1154 // Check to see if we are shifting out any of the bits being
1156 if (ConstantExpr::get(Shift
->getOpcode(),
1157 NewCst
, ShAmt
) != RHS
) {
1158 // If we shifted bits out, the fold is not going to work out.
1159 // As a special case, check to see if this means that the
1160 // result is always true or false now.
1161 if (ICI
.getPredicate() == ICmpInst::ICMP_EQ
)
1162 return ReplaceInstUsesWith(ICI
,
1163 ConstantInt::getFalse(ICI
.getContext()));
1164 if (ICI
.getPredicate() == ICmpInst::ICMP_NE
)
1165 return ReplaceInstUsesWith(ICI
,
1166 ConstantInt::getTrue(ICI
.getContext()));
1168 ICI
.setOperand(1, NewCst
);
1169 Constant
*NewAndCST
;
1170 if (Shift
->getOpcode() == Instruction::Shl
)
1171 NewAndCST
= ConstantExpr::getLShr(AndCST
, ShAmt
);
1173 NewAndCST
= ConstantExpr::getShl(AndCST
, ShAmt
);
1174 LHSI
->setOperand(1, NewAndCST
);
1175 LHSI
->setOperand(0, Shift
->getOperand(0));
1176 Worklist
.Add(Shift
); // Shift is dead.
1182 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
1183 // preferable because it allows the C<<Y expression to be hoisted out
1184 // of a loop if Y is invariant and X is not.
1185 if (Shift
&& Shift
->hasOneUse() && RHSV
== 0 &&
1186 ICI
.isEquality() && !Shift
->isArithmeticShift() &&
1187 !isa
<Constant
>(Shift
->getOperand(0))) {
1190 if (Shift
->getOpcode() == Instruction::LShr
) {
1191 NS
= Builder
->CreateShl(AndCST
, Shift
->getOperand(1), "tmp");
1193 // Insert a logical shift.
1194 NS
= Builder
->CreateLShr(AndCST
, Shift
->getOperand(1), "tmp");
1197 // Compute X & (C << Y).
1199 Builder
->CreateAnd(Shift
->getOperand(0), NS
, LHSI
->getName());
1201 ICI
.setOperand(0, NewAnd
);
1206 // Try to optimize things like "A[i]&42 == 0" to index computations.
1207 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(LHSI
->getOperand(0))) {
1208 if (GetElementPtrInst
*GEP
=
1209 dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0)))
1210 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
1211 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
1212 !LI
->isVolatile() && isa
<ConstantInt
>(LHSI
->getOperand(1))) {
1213 ConstantInt
*C
= cast
<ConstantInt
>(LHSI
->getOperand(1));
1214 if (Instruction
*Res
= FoldCmpLoadFromIndexedGlobal(GEP
, GV
,ICI
, C
))
1220 case Instruction::Or
: {
1221 if (!ICI
.isEquality() || !RHS
->isNullValue() || !LHSI
->hasOneUse())
1224 if (match(LHSI
, m_Or(m_PtrToInt(m_Value(P
)), m_PtrToInt(m_Value(Q
))))) {
1225 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1226 // -> and (icmp eq P, null), (icmp eq Q, null).
1227 Value
*ICIP
= Builder
->CreateICmp(ICI
.getPredicate(), P
,
1228 Constant::getNullValue(P
->getType()));
1229 Value
*ICIQ
= Builder
->CreateICmp(ICI
.getPredicate(), Q
,
1230 Constant::getNullValue(Q
->getType()));
1232 if (ICI
.getPredicate() == ICmpInst::ICMP_EQ
)
1233 Op
= BinaryOperator::CreateAnd(ICIP
, ICIQ
);
1235 Op
= BinaryOperator::CreateOr(ICIP
, ICIQ
);
1241 case Instruction::Shl
: { // (icmp pred (shl X, ShAmt), CI)
1242 ConstantInt
*ShAmt
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1));
1245 uint32_t TypeBits
= RHSV
.getBitWidth();
1247 // Check that the shift amount is in range. If not, don't perform
1248 // undefined shifts. When the shift is visited it will be
1250 if (ShAmt
->uge(TypeBits
))
1253 if (ICI
.isEquality()) {
1254 // If we are comparing against bits always shifted out, the
1255 // comparison cannot succeed.
1257 ConstantExpr::getShl(ConstantExpr::getLShr(RHS
, ShAmt
),
1259 if (Comp
!= RHS
) {// Comparing against a bit that we know is zero.
1260 bool IsICMP_NE
= ICI
.getPredicate() == ICmpInst::ICMP_NE
;
1262 ConstantInt::get(Type::getInt1Ty(ICI
.getContext()), IsICMP_NE
);
1263 return ReplaceInstUsesWith(ICI
, Cst
);
1266 // If the shift is NUW, then it is just shifting out zeros, no need for an
1268 if (cast
<BinaryOperator
>(LHSI
)->hasNoUnsignedWrap())
1269 return new ICmpInst(ICI
.getPredicate(), LHSI
->getOperand(0),
1270 ConstantExpr::getLShr(RHS
, ShAmt
));
1272 if (LHSI
->hasOneUse()) {
1273 // Otherwise strength reduce the shift into an and.
1274 uint32_t ShAmtVal
= (uint32_t)ShAmt
->getLimitedValue(TypeBits
);
1276 ConstantInt::get(ICI
.getContext(), APInt::getLowBitsSet(TypeBits
,
1277 TypeBits
-ShAmtVal
));
1280 Builder
->CreateAnd(LHSI
->getOperand(0),Mask
, LHSI
->getName()+".mask");
1281 return new ICmpInst(ICI
.getPredicate(), And
,
1282 ConstantExpr::getLShr(RHS
, ShAmt
));
1286 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1287 bool TrueIfSigned
= false;
1288 if (LHSI
->hasOneUse() &&
1289 isSignBitCheck(ICI
.getPredicate(), RHS
, TrueIfSigned
)) {
1290 // (X << 31) <s 0 --> (X&1) != 0
1291 Constant
*Mask
= ConstantInt::get(LHSI
->getOperand(0)->getType(),
1292 APInt::getOneBitSet(TypeBits
,
1293 TypeBits
-ShAmt
->getZExtValue()-1));
1295 Builder
->CreateAnd(LHSI
->getOperand(0), Mask
, LHSI
->getName()+".mask");
1296 return new ICmpInst(TrueIfSigned
? ICmpInst::ICMP_NE
: ICmpInst::ICMP_EQ
,
1297 And
, Constant::getNullValue(And
->getType()));
1302 case Instruction::LShr
: // (icmp pred (shr X, ShAmt), CI)
1303 case Instruction::AShr
: {
1304 // Handle equality comparisons of shift-by-constant.
1305 BinaryOperator
*BO
= cast
<BinaryOperator
>(LHSI
);
1306 if (ConstantInt
*ShAmt
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1))) {
1307 if (Instruction
*Res
= FoldICmpShrCst(ICI
, BO
, ShAmt
))
1311 // Handle exact shr's.
1312 if (ICI
.isEquality() && BO
->isExact() && BO
->hasOneUse()) {
1313 if (RHSV
.isMinValue())
1314 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(0), RHS
);
1319 case Instruction::SDiv
:
1320 case Instruction::UDiv
:
1321 // Fold: icmp pred ([us]div X, C1), C2 -> range test
1322 // Fold this div into the comparison, producing a range check.
1323 // Determine, based on the divide type, what the range is being
1324 // checked. If there is an overflow on the low or high side, remember
1325 // it, otherwise compute the range [low, hi) bounding the new value.
1326 // See: InsertRangeTest above for the kinds of replacements possible.
1327 if (ConstantInt
*DivRHS
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1)))
1328 if (Instruction
*R
= FoldICmpDivCst(ICI
, cast
<BinaryOperator
>(LHSI
),
1333 case Instruction::Add
:
1334 // Fold: icmp pred (add X, C1), C2
1335 if (!ICI
.isEquality()) {
1336 ConstantInt
*LHSC
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1));
1338 const APInt
&LHSV
= LHSC
->getValue();
1340 ConstantRange CR
= ICI
.makeConstantRange(ICI
.getPredicate(), RHSV
)
1343 if (ICI
.isSigned()) {
1344 if (CR
.getLower().isSignBit()) {
1345 return new ICmpInst(ICmpInst::ICMP_SLT
, LHSI
->getOperand(0),
1346 ConstantInt::get(ICI
.getContext(),CR
.getUpper()));
1347 } else if (CR
.getUpper().isSignBit()) {
1348 return new ICmpInst(ICmpInst::ICMP_SGE
, LHSI
->getOperand(0),
1349 ConstantInt::get(ICI
.getContext(),CR
.getLower()));
1352 if (CR
.getLower().isMinValue()) {
1353 return new ICmpInst(ICmpInst::ICMP_ULT
, LHSI
->getOperand(0),
1354 ConstantInt::get(ICI
.getContext(),CR
.getUpper()));
1355 } else if (CR
.getUpper().isMinValue()) {
1356 return new ICmpInst(ICmpInst::ICMP_UGE
, LHSI
->getOperand(0),
1357 ConstantInt::get(ICI
.getContext(),CR
.getLower()));
1364 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1365 if (ICI
.isEquality()) {
1366 bool isICMP_NE
= ICI
.getPredicate() == ICmpInst::ICMP_NE
;
1368 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1369 // the second operand is a constant, simplify a bit.
1370 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(LHSI
)) {
1371 switch (BO
->getOpcode()) {
1372 case Instruction::SRem
:
1373 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1374 if (RHSV
== 0 && isa
<ConstantInt
>(BO
->getOperand(1)) &&BO
->hasOneUse()){
1375 const APInt
&V
= cast
<ConstantInt
>(BO
->getOperand(1))->getValue();
1376 if (V
.sgt(1) && V
.isPowerOf2()) {
1378 Builder
->CreateURem(BO
->getOperand(0), BO
->getOperand(1),
1380 return new ICmpInst(ICI
.getPredicate(), NewRem
,
1381 Constant::getNullValue(BO
->getType()));
1385 case Instruction::Add
:
1386 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1387 if (ConstantInt
*BOp1C
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
1388 if (BO
->hasOneUse())
1389 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(0),
1390 ConstantExpr::getSub(RHS
, BOp1C
));
1391 } else if (RHSV
== 0) {
1392 // Replace ((add A, B) != 0) with (A != -B) if A or B is
1393 // efficiently invertible, or if the add has just this one use.
1394 Value
*BOp0
= BO
->getOperand(0), *BOp1
= BO
->getOperand(1);
1396 if (Value
*NegVal
= dyn_castNegVal(BOp1
))
1397 return new ICmpInst(ICI
.getPredicate(), BOp0
, NegVal
);
1398 if (Value
*NegVal
= dyn_castNegVal(BOp0
))
1399 return new ICmpInst(ICI
.getPredicate(), NegVal
, BOp1
);
1400 if (BO
->hasOneUse()) {
1401 Value
*Neg
= Builder
->CreateNeg(BOp1
);
1403 return new ICmpInst(ICI
.getPredicate(), BOp0
, Neg
);
1407 case Instruction::Xor
:
1408 // For the xor case, we can xor two constants together, eliminating
1409 // the explicit xor.
1410 if (Constant
*BOC
= dyn_cast
<Constant
>(BO
->getOperand(1))) {
1411 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(0),
1412 ConstantExpr::getXor(RHS
, BOC
));
1413 } else if (RHSV
== 0) {
1414 // Replace ((xor A, B) != 0) with (A != B)
1415 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(0),
1419 case Instruction::Sub
:
1420 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1421 if (ConstantInt
*BOp0C
= dyn_cast
<ConstantInt
>(BO
->getOperand(0))) {
1422 if (BO
->hasOneUse())
1423 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(1),
1424 ConstantExpr::getSub(BOp0C
, RHS
));
1425 } else if (RHSV
== 0) {
1426 // Replace ((sub A, B) != 0) with (A != B)
1427 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(0),
1431 case Instruction::Or
:
1432 // If bits are being or'd in that are not present in the constant we
1433 // are comparing against, then the comparison could never succeed!
1434 if (ConstantInt
*BOC
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
1435 Constant
*NotCI
= ConstantExpr::getNot(RHS
);
1436 if (!ConstantExpr::getAnd(BOC
, NotCI
)->isNullValue())
1437 return ReplaceInstUsesWith(ICI
,
1438 ConstantInt::get(Type::getInt1Ty(ICI
.getContext()),
1443 case Instruction::And
:
1444 if (ConstantInt
*BOC
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
1445 // If bits are being compared against that are and'd out, then the
1446 // comparison can never succeed!
1447 if ((RHSV
& ~BOC
->getValue()) != 0)
1448 return ReplaceInstUsesWith(ICI
,
1449 ConstantInt::get(Type::getInt1Ty(ICI
.getContext()),
1452 // If we have ((X & C) == C), turn it into ((X & C) != 0).
1453 if (RHS
== BOC
&& RHSV
.isPowerOf2())
1454 return new ICmpInst(isICMP_NE
? ICmpInst::ICMP_EQ
:
1455 ICmpInst::ICMP_NE
, LHSI
,
1456 Constant::getNullValue(RHS
->getType()));
1458 // Don't perform the following transforms if the AND has multiple uses
1459 if (!BO
->hasOneUse())
1462 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1463 if (BOC
->getValue().isSignBit()) {
1464 Value
*X
= BO
->getOperand(0);
1465 Constant
*Zero
= Constant::getNullValue(X
->getType());
1466 ICmpInst::Predicate pred
= isICMP_NE
?
1467 ICmpInst::ICMP_SLT
: ICmpInst::ICMP_SGE
;
1468 return new ICmpInst(pred
, X
, Zero
);
1471 // ((X & ~7) == 0) --> X < 8
1472 if (RHSV
== 0 && isHighOnes(BOC
)) {
1473 Value
*X
= BO
->getOperand(0);
1474 Constant
*NegX
= ConstantExpr::getNeg(BOC
);
1475 ICmpInst::Predicate pred
= isICMP_NE
?
1476 ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
1477 return new ICmpInst(pred
, X
, NegX
);
1482 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(LHSI
)) {
1483 // Handle icmp {eq|ne} <intrinsic>, intcst.
1484 switch (II
->getIntrinsicID()) {
1485 case Intrinsic::bswap
:
1487 ICI
.setOperand(0, II
->getArgOperand(0));
1488 ICI
.setOperand(1, ConstantInt::get(II
->getContext(), RHSV
.byteSwap()));
1490 case Intrinsic::ctlz
:
1491 case Intrinsic::cttz
:
1492 // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
1493 if (RHSV
== RHS
->getType()->getBitWidth()) {
1495 ICI
.setOperand(0, II
->getArgOperand(0));
1496 ICI
.setOperand(1, ConstantInt::get(RHS
->getType(), 0));
1500 case Intrinsic::ctpop
:
1501 // popcount(A) == 0 -> A == 0 and likewise for !=
1502 if (RHS
->isZero()) {
1504 ICI
.setOperand(0, II
->getArgOperand(0));
1505 ICI
.setOperand(1, RHS
);
1517 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1518 /// We only handle extending casts so far.
1520 Instruction
*InstCombiner::visitICmpInstWithCastAndCast(ICmpInst
&ICI
) {
1521 const CastInst
*LHSCI
= cast
<CastInst
>(ICI
.getOperand(0));
1522 Value
*LHSCIOp
= LHSCI
->getOperand(0);
1523 const Type
*SrcTy
= LHSCIOp
->getType();
1524 const Type
*DestTy
= LHSCI
->getType();
1527 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1528 // integer type is the same size as the pointer type.
1529 if (TD
&& LHSCI
->getOpcode() == Instruction::PtrToInt
&&
1530 TD
->getPointerSizeInBits() ==
1531 cast
<IntegerType
>(DestTy
)->getBitWidth()) {
1533 if (Constant
*RHSC
= dyn_cast
<Constant
>(ICI
.getOperand(1))) {
1534 RHSOp
= ConstantExpr::getIntToPtr(RHSC
, SrcTy
);
1535 } else if (PtrToIntInst
*RHSC
= dyn_cast
<PtrToIntInst
>(ICI
.getOperand(1))) {
1536 RHSOp
= RHSC
->getOperand(0);
1537 // If the pointer types don't match, insert a bitcast.
1538 if (LHSCIOp
->getType() != RHSOp
->getType())
1539 RHSOp
= Builder
->CreateBitCast(RHSOp
, LHSCIOp
->getType());
1543 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, RHSOp
);
1546 // The code below only handles extension cast instructions, so far.
1548 if (LHSCI
->getOpcode() != Instruction::ZExt
&&
1549 LHSCI
->getOpcode() != Instruction::SExt
)
1552 bool isSignedExt
= LHSCI
->getOpcode() == Instruction::SExt
;
1553 bool isSignedCmp
= ICI
.isSigned();
1555 if (CastInst
*CI
= dyn_cast
<CastInst
>(ICI
.getOperand(1))) {
1556 // Not an extension from the same type?
1557 RHSCIOp
= CI
->getOperand(0);
1558 if (RHSCIOp
->getType() != LHSCIOp
->getType())
1561 // If the signedness of the two casts doesn't agree (i.e. one is a sext
1562 // and the other is a zext), then we can't handle this.
1563 if (CI
->getOpcode() != LHSCI
->getOpcode())
1566 // Deal with equality cases early.
1567 if (ICI
.isEquality())
1568 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, RHSCIOp
);
1570 // A signed comparison of sign extended values simplifies into a
1571 // signed comparison.
1572 if (isSignedCmp
&& isSignedExt
)
1573 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, RHSCIOp
);
1575 // The other three cases all fold into an unsigned comparison.
1576 return new ICmpInst(ICI
.getUnsignedPredicate(), LHSCIOp
, RHSCIOp
);
1579 // If we aren't dealing with a constant on the RHS, exit early
1580 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(ICI
.getOperand(1));
1584 // Compute the constant that would happen if we truncated to SrcTy then
1585 // reextended to DestTy.
1586 Constant
*Res1
= ConstantExpr::getTrunc(CI
, SrcTy
);
1587 Constant
*Res2
= ConstantExpr::getCast(LHSCI
->getOpcode(),
1590 // If the re-extended constant didn't change...
1592 // Deal with equality cases early.
1593 if (ICI
.isEquality())
1594 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, Res1
);
1596 // A signed comparison of sign extended values simplifies into a
1597 // signed comparison.
1598 if (isSignedExt
&& isSignedCmp
)
1599 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, Res1
);
1601 // The other three cases all fold into an unsigned comparison.
1602 return new ICmpInst(ICI
.getUnsignedPredicate(), LHSCIOp
, Res1
);
1605 // The re-extended constant changed so the constant cannot be represented
1606 // in the shorter type. Consequently, we cannot emit a simple comparison.
1607 // All the cases that fold to true or false will have already been handled
1608 // by SimplifyICmpInst, so only deal with the tricky case.
1610 if (isSignedCmp
|| !isSignedExt
)
1613 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1614 // should have been folded away previously and not enter in here.
1616 // We're performing an unsigned comp with a sign extended value.
1617 // This is true if the input is >= 0. [aka >s -1]
1618 Constant
*NegOne
= Constant::getAllOnesValue(SrcTy
);
1619 Value
*Result
= Builder
->CreateICmpSGT(LHSCIOp
, NegOne
, ICI
.getName());
1621 // Finally, return the value computed.
1622 if (ICI
.getPredicate() == ICmpInst::ICMP_ULT
)
1623 return ReplaceInstUsesWith(ICI
, Result
);
1625 assert(ICI
.getPredicate() == ICmpInst::ICMP_UGT
&& "ICmp should be folded!");
1626 return BinaryOperator::CreateNot(Result
);
1629 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1630 /// I = icmp ugt (add (add A, B), CI2), CI1
1631 /// If this is of the form:
1633 /// if (sum+128 >u 255)
1634 /// Then replace it with llvm.sadd.with.overflow.i8.
1636 static Instruction
*ProcessUGT_ADDCST_ADD(ICmpInst
&I
, Value
*A
, Value
*B
,
1637 ConstantInt
*CI2
, ConstantInt
*CI1
,
1639 // The transformation we're trying to do here is to transform this into an
1640 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1641 // with a narrower add, and discard the add-with-constant that is part of the
1642 // range check (if we can't eliminate it, this isn't profitable).
1644 // In order to eliminate the add-with-constant, the compare can be its only
1646 Instruction
*AddWithCst
= cast
<Instruction
>(I
.getOperand(0));
1647 if (!AddWithCst
->hasOneUse()) return 0;
1649 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1650 if (!CI2
->getValue().isPowerOf2()) return 0;
1651 unsigned NewWidth
= CI2
->getValue().countTrailingZeros();
1652 if (NewWidth
!= 7 && NewWidth
!= 15 && NewWidth
!= 31) return 0;
1654 // The width of the new add formed is 1 more than the bias.
1657 // Check to see that CI1 is an all-ones value with NewWidth bits.
1658 if (CI1
->getBitWidth() == NewWidth
||
1659 CI1
->getValue() != APInt::getLowBitsSet(CI1
->getBitWidth(), NewWidth
))
1662 // In order to replace the original add with a narrower
1663 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1664 // and truncates that discard the high bits of the add. Verify that this is
1666 Instruction
*OrigAdd
= cast
<Instruction
>(AddWithCst
->getOperand(0));
1667 for (Value::use_iterator UI
= OrigAdd
->use_begin(), E
= OrigAdd
->use_end();
1669 if (*UI
== AddWithCst
) continue;
1671 // Only accept truncates for now. We would really like a nice recursive
1672 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1673 // chain to see which bits of a value are actually demanded. If the
1674 // original add had another add which was then immediately truncated, we
1675 // could still do the transformation.
1676 TruncInst
*TI
= dyn_cast
<TruncInst
>(*UI
);
1678 TI
->getType()->getPrimitiveSizeInBits() > NewWidth
) return 0;
1681 // If the pattern matches, truncate the inputs to the narrower type and
1682 // use the sadd_with_overflow intrinsic to efficiently compute both the
1683 // result and the overflow bit.
1684 Module
*M
= I
.getParent()->getParent()->getParent();
1686 const Type
*NewType
= IntegerType::get(OrigAdd
->getContext(), NewWidth
);
1687 Value
*F
= Intrinsic::getDeclaration(M
, Intrinsic::sadd_with_overflow
,
1690 InstCombiner::BuilderTy
*Builder
= IC
.Builder
;
1692 // Put the new code above the original add, in case there are any uses of the
1693 // add between the add and the compare.
1694 Builder
->SetInsertPoint(OrigAdd
);
1696 Value
*TruncA
= Builder
->CreateTrunc(A
, NewType
, A
->getName()+".trunc");
1697 Value
*TruncB
= Builder
->CreateTrunc(B
, NewType
, B
->getName()+".trunc");
1698 CallInst
*Call
= Builder
->CreateCall2(F
, TruncA
, TruncB
, "sadd");
1699 Value
*Add
= Builder
->CreateExtractValue(Call
, 0, "sadd.result");
1700 Value
*ZExt
= Builder
->CreateZExt(Add
, OrigAdd
->getType());
1702 // The inner add was the result of the narrow add, zero extended to the
1703 // wider type. Replace it with the result computed by the intrinsic.
1704 IC
.ReplaceInstUsesWith(*OrigAdd
, ZExt
);
1706 // The original icmp gets replaced with the overflow value.
1707 return ExtractValueInst::Create(Call
, 1, "sadd.overflow");
1710 static Instruction
*ProcessUAddIdiom(Instruction
&I
, Value
*OrigAddV
,
1712 // Don't bother doing this transformation for pointers, don't do it for
1714 if (!isa
<IntegerType
>(OrigAddV
->getType())) return 0;
1716 // If the add is a constant expr, then we don't bother transforming it.
1717 Instruction
*OrigAdd
= dyn_cast
<Instruction
>(OrigAddV
);
1718 if (OrigAdd
== 0) return 0;
1720 Value
*LHS
= OrigAdd
->getOperand(0), *RHS
= OrigAdd
->getOperand(1);
1722 // Put the new code above the original add, in case there are any uses of the
1723 // add between the add and the compare.
1724 InstCombiner::BuilderTy
*Builder
= IC
.Builder
;
1725 Builder
->SetInsertPoint(OrigAdd
);
1727 Module
*M
= I
.getParent()->getParent()->getParent();
1728 const Type
*Ty
= LHS
->getType();
1729 Value
*F
= Intrinsic::getDeclaration(M
, Intrinsic::uadd_with_overflow
, &Ty
,1);
1730 CallInst
*Call
= Builder
->CreateCall2(F
, LHS
, RHS
, "uadd");
1731 Value
*Add
= Builder
->CreateExtractValue(Call
, 0);
1733 IC
.ReplaceInstUsesWith(*OrigAdd
, Add
);
1735 // The original icmp gets replaced with the overflow value.
1736 return ExtractValueInst::Create(Call
, 1, "uadd.overflow");
1739 // DemandedBitsLHSMask - When performing a comparison against a constant,
1740 // it is possible that not all the bits in the LHS are demanded. This helper
1741 // method computes the mask that IS demanded.
1742 static APInt
DemandedBitsLHSMask(ICmpInst
&I
,
1743 unsigned BitWidth
, bool isSignCheck
) {
1745 return APInt::getSignBit(BitWidth
);
1747 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getOperand(1));
1748 if (!CI
) return APInt::getAllOnesValue(BitWidth
);
1749 const APInt
&RHS
= CI
->getValue();
1751 switch (I
.getPredicate()) {
1752 // For a UGT comparison, we don't care about any bits that
1753 // correspond to the trailing ones of the comparand. The value of these
1754 // bits doesn't impact the outcome of the comparison, because any value
1755 // greater than the RHS must differ in a bit higher than these due to carry.
1756 case ICmpInst::ICMP_UGT
: {
1757 unsigned trailingOnes
= RHS
.countTrailingOnes();
1758 APInt lowBitsSet
= APInt::getLowBitsSet(BitWidth
, trailingOnes
);
1762 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
1763 // Any value less than the RHS must differ in a higher bit because of carries.
1764 case ICmpInst::ICMP_ULT
: {
1765 unsigned trailingZeros
= RHS
.countTrailingZeros();
1766 APInt lowBitsSet
= APInt::getLowBitsSet(BitWidth
, trailingZeros
);
1771 return APInt::getAllOnesValue(BitWidth
);
1776 Instruction
*InstCombiner::visitICmpInst(ICmpInst
&I
) {
1777 bool Changed
= false;
1778 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1780 /// Orders the operands of the compare so that they are listed from most
1781 /// complex to least complex. This puts constants before unary operators,
1782 /// before binary operators.
1783 if (getComplexity(Op0
) < getComplexity(Op1
)) {
1785 std::swap(Op0
, Op1
);
1789 if (Value
*V
= SimplifyICmpInst(I
.getPredicate(), Op0
, Op1
, TD
))
1790 return ReplaceInstUsesWith(I
, V
);
1792 const Type
*Ty
= Op0
->getType();
1794 // icmp's with boolean values can always be turned into bitwise operations
1795 if (Ty
->isIntegerTy(1)) {
1796 switch (I
.getPredicate()) {
1797 default: llvm_unreachable("Invalid icmp instruction!");
1798 case ICmpInst::ICMP_EQ
: { // icmp eq i1 A, B -> ~(A^B)
1799 Value
*Xor
= Builder
->CreateXor(Op0
, Op1
, I
.getName()+"tmp");
1800 return BinaryOperator::CreateNot(Xor
);
1802 case ICmpInst::ICMP_NE
: // icmp eq i1 A, B -> A^B
1803 return BinaryOperator::CreateXor(Op0
, Op1
);
1805 case ICmpInst::ICMP_UGT
:
1806 std::swap(Op0
, Op1
); // Change icmp ugt -> icmp ult
1808 case ICmpInst::ICMP_ULT
:{ // icmp ult i1 A, B -> ~A & B
1809 Value
*Not
= Builder
->CreateNot(Op0
, I
.getName()+"tmp");
1810 return BinaryOperator::CreateAnd(Not
, Op1
);
1812 case ICmpInst::ICMP_SGT
:
1813 std::swap(Op0
, Op1
); // Change icmp sgt -> icmp slt
1815 case ICmpInst::ICMP_SLT
: { // icmp slt i1 A, B -> A & ~B
1816 Value
*Not
= Builder
->CreateNot(Op1
, I
.getName()+"tmp");
1817 return BinaryOperator::CreateAnd(Not
, Op0
);
1819 case ICmpInst::ICMP_UGE
:
1820 std::swap(Op0
, Op1
); // Change icmp uge -> icmp ule
1822 case ICmpInst::ICMP_ULE
: { // icmp ule i1 A, B -> ~A | B
1823 Value
*Not
= Builder
->CreateNot(Op0
, I
.getName()+"tmp");
1824 return BinaryOperator::CreateOr(Not
, Op1
);
1826 case ICmpInst::ICMP_SGE
:
1827 std::swap(Op0
, Op1
); // Change icmp sge -> icmp sle
1829 case ICmpInst::ICMP_SLE
: { // icmp sle i1 A, B -> A | ~B
1830 Value
*Not
= Builder
->CreateNot(Op1
, I
.getName()+"tmp");
1831 return BinaryOperator::CreateOr(Not
, Op0
);
1836 unsigned BitWidth
= 0;
1837 if (Ty
->isIntOrIntVectorTy())
1838 BitWidth
= Ty
->getScalarSizeInBits();
1839 else if (TD
) // Pointers require TD info to get their size.
1840 BitWidth
= TD
->getTypeSizeInBits(Ty
->getScalarType());
1842 bool isSignBit
= false;
1844 // See if we are doing a comparison with a constant.
1845 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
1846 Value
*A
= 0, *B
= 0;
1848 // Match the following pattern, which is a common idiom when writing
1849 // overflow-safe integer arithmetic function. The source performs an
1850 // addition in wider type, and explicitly checks for overflow using
1851 // comparisons against INT_MIN and INT_MAX. Simplify this by using the
1852 // sadd_with_overflow intrinsic.
1854 // TODO: This could probably be generalized to handle other overflow-safe
1855 // operations if we worked out the formulas to compute the appropriate
1859 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1861 ConstantInt
*CI2
; // I = icmp ugt (add (add A, B), CI2), CI
1862 if (I
.getPredicate() == ICmpInst::ICMP_UGT
&&
1863 match(Op0
, m_Add(m_Add(m_Value(A
), m_Value(B
)), m_ConstantInt(CI2
))))
1864 if (Instruction
*Res
= ProcessUGT_ADDCST_ADD(I
, A
, B
, CI2
, CI
, *this))
1868 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1869 if (I
.isEquality() && CI
->isZero() &&
1870 match(Op0
, m_Sub(m_Value(A
), m_Value(B
)))) {
1871 // (icmp cond A B) if cond is equality
1872 return new ICmpInst(I
.getPredicate(), A
, B
);
1875 // If we have an icmp le or icmp ge instruction, turn it into the
1876 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
1877 // them being folded in the code below. The SimplifyICmpInst code has
1878 // already handled the edge cases for us, so we just assert on them.
1879 switch (I
.getPredicate()) {
1881 case ICmpInst::ICMP_ULE
:
1882 assert(!CI
->isMaxValue(false)); // A <=u MAX -> TRUE
1883 return new ICmpInst(ICmpInst::ICMP_ULT
, Op0
,
1884 ConstantInt::get(CI
->getContext(), CI
->getValue()+1));
1885 case ICmpInst::ICMP_SLE
:
1886 assert(!CI
->isMaxValue(true)); // A <=s MAX -> TRUE
1887 return new ICmpInst(ICmpInst::ICMP_SLT
, Op0
,
1888 ConstantInt::get(CI
->getContext(), CI
->getValue()+1));
1889 case ICmpInst::ICMP_UGE
:
1890 assert(!CI
->isMinValue(false)); // A >=u MIN -> TRUE
1891 return new ICmpInst(ICmpInst::ICMP_UGT
, Op0
,
1892 ConstantInt::get(CI
->getContext(), CI
->getValue()-1));
1893 case ICmpInst::ICMP_SGE
:
1894 assert(!CI
->isMinValue(true)); // A >=s MIN -> TRUE
1895 return new ICmpInst(ICmpInst::ICMP_SGT
, Op0
,
1896 ConstantInt::get(CI
->getContext(), CI
->getValue()-1));
1899 // If this comparison is a normal comparison, it demands all
1900 // bits, if it is a sign bit comparison, it only demands the sign bit.
1902 isSignBit
= isSignBitCheck(I
.getPredicate(), CI
, UnusedBit
);
1905 // See if we can fold the comparison based on range information we can get
1906 // by checking whether bits are known to be zero or one in the input.
1907 if (BitWidth
!= 0) {
1908 APInt
Op0KnownZero(BitWidth
, 0), Op0KnownOne(BitWidth
, 0);
1909 APInt
Op1KnownZero(BitWidth
, 0), Op1KnownOne(BitWidth
, 0);
1911 if (SimplifyDemandedBits(I
.getOperandUse(0),
1912 DemandedBitsLHSMask(I
, BitWidth
, isSignBit
),
1913 Op0KnownZero
, Op0KnownOne
, 0))
1915 if (SimplifyDemandedBits(I
.getOperandUse(1),
1916 APInt::getAllOnesValue(BitWidth
),
1917 Op1KnownZero
, Op1KnownOne
, 0))
1920 // Given the known and unknown bits, compute a range that the LHS could be
1921 // in. Compute the Min, Max and RHS values based on the known bits. For the
1922 // EQ and NE we use unsigned values.
1923 APInt
Op0Min(BitWidth
, 0), Op0Max(BitWidth
, 0);
1924 APInt
Op1Min(BitWidth
, 0), Op1Max(BitWidth
, 0);
1926 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero
, Op0KnownOne
,
1928 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero
, Op1KnownOne
,
1931 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero
, Op0KnownOne
,
1933 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero
, Op1KnownOne
,
1937 // If Min and Max are known to be the same, then SimplifyDemandedBits
1938 // figured out that the LHS is a constant. Just constant fold this now so
1939 // that code below can assume that Min != Max.
1940 if (!isa
<Constant
>(Op0
) && Op0Min
== Op0Max
)
1941 return new ICmpInst(I
.getPredicate(),
1942 ConstantInt::get(Op0
->getType(), Op0Min
), Op1
);
1943 if (!isa
<Constant
>(Op1
) && Op1Min
== Op1Max
)
1944 return new ICmpInst(I
.getPredicate(), Op0
,
1945 ConstantInt::get(Op1
->getType(), Op1Min
));
1947 // Based on the range information we know about the LHS, see if we can
1948 // simplify this comparison. For example, (x&4) < 8 is always true.
1949 switch (I
.getPredicate()) {
1950 default: llvm_unreachable("Unknown icmp opcode!");
1951 case ICmpInst::ICMP_EQ
: {
1952 if (Op0Max
.ult(Op1Min
) || Op0Min
.ugt(Op1Max
))
1953 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
1955 // If all bits are known zero except for one, then we know at most one
1956 // bit is set. If the comparison is against zero, then this is a check
1957 // to see if *that* bit is set.
1958 APInt Op0KnownZeroInverted
= ~Op0KnownZero
;
1959 if (~Op1KnownZero
== 0 && Op0KnownZeroInverted
.isPowerOf2()) {
1960 // If the LHS is an AND with the same constant, look through it.
1962 ConstantInt
*LHSC
= 0;
1963 if (!match(Op0
, m_And(m_Value(LHS
), m_ConstantInt(LHSC
))) ||
1964 LHSC
->getValue() != Op0KnownZeroInverted
)
1967 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
1968 // then turn "((1 << x)&8) == 0" into "x != 3".
1970 if (match(LHS
, m_Shl(m_One(), m_Value(X
)))) {
1971 unsigned CmpVal
= Op0KnownZeroInverted
.countTrailingZeros();
1972 return new ICmpInst(ICmpInst::ICMP_NE
, X
,
1973 ConstantInt::get(X
->getType(), CmpVal
));
1976 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
1977 // then turn "((8 >>u x)&1) == 0" into "x != 3".
1979 if (Op0KnownZeroInverted
== 1 &&
1980 match(LHS
, m_LShr(m_Power2(CI
), m_Value(X
))))
1981 return new ICmpInst(ICmpInst::ICMP_NE
, X
,
1982 ConstantInt::get(X
->getType(),
1983 CI
->countTrailingZeros()));
1988 case ICmpInst::ICMP_NE
: {
1989 if (Op0Max
.ult(Op1Min
) || Op0Min
.ugt(Op1Max
))
1990 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
1992 // If all bits are known zero except for one, then we know at most one
1993 // bit is set. If the comparison is against zero, then this is a check
1994 // to see if *that* bit is set.
1995 APInt Op0KnownZeroInverted
= ~Op0KnownZero
;
1996 if (~Op1KnownZero
== 0 && Op0KnownZeroInverted
.isPowerOf2()) {
1997 // If the LHS is an AND with the same constant, look through it.
1999 ConstantInt
*LHSC
= 0;
2000 if (!match(Op0
, m_And(m_Value(LHS
), m_ConstantInt(LHSC
))) ||
2001 LHSC
->getValue() != Op0KnownZeroInverted
)
2004 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2005 // then turn "((1 << x)&8) != 0" into "x == 3".
2007 if (match(LHS
, m_Shl(m_One(), m_Value(X
)))) {
2008 unsigned CmpVal
= Op0KnownZeroInverted
.countTrailingZeros();
2009 return new ICmpInst(ICmpInst::ICMP_EQ
, X
,
2010 ConstantInt::get(X
->getType(), CmpVal
));
2013 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2014 // then turn "((8 >>u x)&1) != 0" into "x == 3".
2016 if (Op0KnownZeroInverted
== 1 &&
2017 match(LHS
, m_LShr(m_Power2(CI
), m_Value(X
))))
2018 return new ICmpInst(ICmpInst::ICMP_EQ
, X
,
2019 ConstantInt::get(X
->getType(),
2020 CI
->countTrailingZeros()));
2025 case ICmpInst::ICMP_ULT
:
2026 if (Op0Max
.ult(Op1Min
)) // A <u B -> true if max(A) < min(B)
2027 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
2028 if (Op0Min
.uge(Op1Max
)) // A <u B -> false if min(A) >= max(B)
2029 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
2030 if (Op1Min
== Op0Max
) // A <u B -> A != B if max(A) == min(B)
2031 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
2032 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
2033 if (Op1Max
== Op0Min
+1) // A <u C -> A == C-1 if min(A)+1 == C
2034 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
2035 ConstantInt::get(CI
->getContext(), CI
->getValue()-1));
2037 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
2038 if (CI
->isMinValue(true))
2039 return new ICmpInst(ICmpInst::ICMP_SGT
, Op0
,
2040 Constant::getAllOnesValue(Op0
->getType()));
2043 case ICmpInst::ICMP_UGT
:
2044 if (Op0Min
.ugt(Op1Max
)) // A >u B -> true if min(A) > max(B)
2045 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
2046 if (Op0Max
.ule(Op1Min
)) // A >u B -> false if max(A) <= max(B)
2047 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
2049 if (Op1Max
== Op0Min
) // A >u B -> A != B if min(A) == max(B)
2050 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
2051 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
2052 if (Op1Min
== Op0Max
-1) // A >u C -> A == C+1 if max(a)-1 == C
2053 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
2054 ConstantInt::get(CI
->getContext(), CI
->getValue()+1));
2056 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
2057 if (CI
->isMaxValue(true))
2058 return new ICmpInst(ICmpInst::ICMP_SLT
, Op0
,
2059 Constant::getNullValue(Op0
->getType()));
2062 case ICmpInst::ICMP_SLT
:
2063 if (Op0Max
.slt(Op1Min
)) // A <s B -> true if max(A) < min(C)
2064 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
2065 if (Op0Min
.sge(Op1Max
)) // A <s B -> false if min(A) >= max(C)
2066 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
2067 if (Op1Min
== Op0Max
) // A <s B -> A != B if max(A) == min(B)
2068 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
2069 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
2070 if (Op1Max
== Op0Min
+1) // A <s C -> A == C-1 if min(A)+1 == C
2071 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
2072 ConstantInt::get(CI
->getContext(), CI
->getValue()-1));
2075 case ICmpInst::ICMP_SGT
:
2076 if (Op0Min
.sgt(Op1Max
)) // A >s B -> true if min(A) > max(B)
2077 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
2078 if (Op0Max
.sle(Op1Min
)) // A >s B -> false if max(A) <= min(B)
2079 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
2081 if (Op1Max
== Op0Min
) // A >s B -> A != B if min(A) == max(B)
2082 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
2083 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
2084 if (Op1Min
== Op0Max
-1) // A >s C -> A == C+1 if max(A)-1 == C
2085 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
2086 ConstantInt::get(CI
->getContext(), CI
->getValue()+1));
2089 case ICmpInst::ICMP_SGE
:
2090 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SGE with ConstantInt not folded!");
2091 if (Op0Min
.sge(Op1Max
)) // A >=s B -> true if min(A) >= max(B)
2092 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
2093 if (Op0Max
.slt(Op1Min
)) // A >=s B -> false if max(A) < min(B)
2094 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
2096 case ICmpInst::ICMP_SLE
:
2097 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SLE with ConstantInt not folded!");
2098 if (Op0Max
.sle(Op1Min
)) // A <=s B -> true if max(A) <= min(B)
2099 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
2100 if (Op0Min
.sgt(Op1Max
)) // A <=s B -> false if min(A) > max(B)
2101 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
2103 case ICmpInst::ICMP_UGE
:
2104 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_UGE with ConstantInt not folded!");
2105 if (Op0Min
.uge(Op1Max
)) // A >=u B -> true if min(A) >= max(B)
2106 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
2107 if (Op0Max
.ult(Op1Min
)) // A >=u B -> false if max(A) < min(B)
2108 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
2110 case ICmpInst::ICMP_ULE
:
2111 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_ULE with ConstantInt not folded!");
2112 if (Op0Max
.ule(Op1Min
)) // A <=u B -> true if max(A) <= min(B)
2113 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
2114 if (Op0Min
.ugt(Op1Max
)) // A <=u B -> false if min(A) > max(B)
2115 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
2119 // Turn a signed comparison into an unsigned one if both operands
2120 // are known to have the same sign.
2122 ((Op0KnownZero
.isNegative() && Op1KnownZero
.isNegative()) ||
2123 (Op0KnownOne
.isNegative() && Op1KnownOne
.isNegative())))
2124 return new ICmpInst(I
.getUnsignedPredicate(), Op0
, Op1
);
2127 // Test if the ICmpInst instruction is used exclusively by a select as
2128 // part of a minimum or maximum operation. If so, refrain from doing
2129 // any other folding. This helps out other analyses which understand
2130 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2131 // and CodeGen. And in this case, at least one of the comparison
2132 // operands has at least one user besides the compare (the select),
2133 // which would often largely negate the benefit of folding anyway.
2135 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(*I
.use_begin()))
2136 if ((SI
->getOperand(1) == Op0
&& SI
->getOperand(2) == Op1
) ||
2137 (SI
->getOperand(2) == Op0
&& SI
->getOperand(1) == Op1
))
2140 // See if we are doing a comparison between a constant and an instruction that
2141 // can be folded into the comparison.
2142 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
2143 // Since the RHS is a ConstantInt (CI), if the left hand side is an
2144 // instruction, see if that instruction also has constants so that the
2145 // instruction can be folded into the icmp
2146 if (Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
))
2147 if (Instruction
*Res
= visitICmpInstWithInstAndIntCst(I
, LHSI
, CI
))
2151 // Handle icmp with constant (but not simple integer constant) RHS
2152 if (Constant
*RHSC
= dyn_cast
<Constant
>(Op1
)) {
2153 if (Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
))
2154 switch (LHSI
->getOpcode()) {
2155 case Instruction::GetElementPtr
:
2156 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2157 if (RHSC
->isNullValue() &&
2158 cast
<GetElementPtrInst
>(LHSI
)->hasAllZeroIndices())
2159 return new ICmpInst(I
.getPredicate(), LHSI
->getOperand(0),
2160 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
2162 case Instruction::PHI
:
2163 // Only fold icmp into the PHI if the phi and icmp are in the same
2164 // block. If in the same block, we're encouraging jump threading. If
2165 // not, we are just pessimizing the code by making an i1 phi.
2166 if (LHSI
->getParent() == I
.getParent())
2167 if (Instruction
*NV
= FoldOpIntoPhi(I
))
2170 case Instruction::Select
: {
2171 // If either operand of the select is a constant, we can fold the
2172 // comparison into the select arms, which will cause one to be
2173 // constant folded and the select turned into a bitwise or.
2174 Value
*Op1
= 0, *Op2
= 0;
2175 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(1)))
2176 Op1
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
2177 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(2)))
2178 Op2
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
2180 // We only want to perform this transformation if it will not lead to
2181 // additional code. This is true if either both sides of the select
2182 // fold to a constant (in which case the icmp is replaced with a select
2183 // which will usually simplify) or this is the only user of the
2184 // select (in which case we are trading a select+icmp for a simpler
2186 if ((Op1
&& Op2
) || (LHSI
->hasOneUse() && (Op1
|| Op2
))) {
2188 Op1
= Builder
->CreateICmp(I
.getPredicate(), LHSI
->getOperand(1),
2191 Op2
= Builder
->CreateICmp(I
.getPredicate(), LHSI
->getOperand(2),
2193 return SelectInst::Create(LHSI
->getOperand(0), Op1
, Op2
);
2197 case Instruction::IntToPtr
:
2198 // icmp pred inttoptr(X), null -> icmp pred X, 0
2199 if (RHSC
->isNullValue() && TD
&&
2200 TD
->getIntPtrType(RHSC
->getContext()) ==
2201 LHSI
->getOperand(0)->getType())
2202 return new ICmpInst(I
.getPredicate(), LHSI
->getOperand(0),
2203 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
2206 case Instruction::Load
:
2207 // Try to optimize things like "A[i] > 4" to index computations.
2208 if (GetElementPtrInst
*GEP
=
2209 dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0))) {
2210 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
2211 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
2212 !cast
<LoadInst
>(LHSI
)->isVolatile())
2213 if (Instruction
*Res
= FoldCmpLoadFromIndexedGlobal(GEP
, GV
, I
))
2220 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2221 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Op0
))
2222 if (Instruction
*NI
= FoldGEPICmp(GEP
, Op1
, I
.getPredicate(), I
))
2224 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Op1
))
2225 if (Instruction
*NI
= FoldGEPICmp(GEP
, Op0
,
2226 ICmpInst::getSwappedPredicate(I
.getPredicate()), I
))
2229 // Test to see if the operands of the icmp are casted versions of other
2230 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
2232 if (BitCastInst
*CI
= dyn_cast
<BitCastInst
>(Op0
)) {
2233 if (Op0
->getType()->isPointerTy() &&
2234 (isa
<Constant
>(Op1
) || isa
<BitCastInst
>(Op1
))) {
2235 // We keep moving the cast from the left operand over to the right
2236 // operand, where it can often be eliminated completely.
2237 Op0
= CI
->getOperand(0);
2239 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2240 // so eliminate it as well.
2241 if (BitCastInst
*CI2
= dyn_cast
<BitCastInst
>(Op1
))
2242 Op1
= CI2
->getOperand(0);
2244 // If Op1 is a constant, we can fold the cast into the constant.
2245 if (Op0
->getType() != Op1
->getType()) {
2246 if (Constant
*Op1C
= dyn_cast
<Constant
>(Op1
)) {
2247 Op1
= ConstantExpr::getBitCast(Op1C
, Op0
->getType());
2249 // Otherwise, cast the RHS right before the icmp
2250 Op1
= Builder
->CreateBitCast(Op1
, Op0
->getType());
2253 return new ICmpInst(I
.getPredicate(), Op0
, Op1
);
2257 if (isa
<CastInst
>(Op0
)) {
2258 // Handle the special case of: icmp (cast bool to X), <cst>
2259 // This comes up when you have code like
2262 // For generality, we handle any zero-extension of any operand comparison
2263 // with a constant or another cast from the same type.
2264 if (isa
<Constant
>(Op1
) || isa
<CastInst
>(Op1
))
2265 if (Instruction
*R
= visitICmpInstWithCastAndCast(I
))
2269 // Special logic for binary operators.
2270 BinaryOperator
*BO0
= dyn_cast
<BinaryOperator
>(Op0
);
2271 BinaryOperator
*BO1
= dyn_cast
<BinaryOperator
>(Op1
);
2273 CmpInst::Predicate Pred
= I
.getPredicate();
2274 bool NoOp0WrapProblem
= false, NoOp1WrapProblem
= false;
2275 if (BO0
&& isa
<OverflowingBinaryOperator
>(BO0
))
2276 NoOp0WrapProblem
= ICmpInst::isEquality(Pred
) ||
2277 (CmpInst::isUnsigned(Pred
) && BO0
->hasNoUnsignedWrap()) ||
2278 (CmpInst::isSigned(Pred
) && BO0
->hasNoSignedWrap());
2279 if (BO1
&& isa
<OverflowingBinaryOperator
>(BO1
))
2280 NoOp1WrapProblem
= ICmpInst::isEquality(Pred
) ||
2281 (CmpInst::isUnsigned(Pred
) && BO1
->hasNoUnsignedWrap()) ||
2282 (CmpInst::isSigned(Pred
) && BO1
->hasNoSignedWrap());
2284 // Analyze the case when either Op0 or Op1 is an add instruction.
2285 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2286 Value
*A
= 0, *B
= 0, *C
= 0, *D
= 0;
2287 if (BO0
&& BO0
->getOpcode() == Instruction::Add
)
2288 A
= BO0
->getOperand(0), B
= BO0
->getOperand(1);
2289 if (BO1
&& BO1
->getOpcode() == Instruction::Add
)
2290 C
= BO1
->getOperand(0), D
= BO1
->getOperand(1);
2292 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2293 if ((A
== Op1
|| B
== Op1
) && NoOp0WrapProblem
)
2294 return new ICmpInst(Pred
, A
== Op1
? B
: A
,
2295 Constant::getNullValue(Op1
->getType()));
2297 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2298 if ((C
== Op0
|| D
== Op0
) && NoOp1WrapProblem
)
2299 return new ICmpInst(Pred
, Constant::getNullValue(Op0
->getType()),
2302 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2303 if (A
&& C
&& (A
== C
|| A
== D
|| B
== C
|| B
== D
) &&
2304 NoOp0WrapProblem
&& NoOp1WrapProblem
&&
2305 // Try not to increase register pressure.
2306 BO0
->hasOneUse() && BO1
->hasOneUse()) {
2307 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2308 Value
*Y
= (A
== C
|| A
== D
) ? B
: A
;
2309 Value
*Z
= (C
== A
|| C
== B
) ? D
: C
;
2310 return new ICmpInst(Pred
, Y
, Z
);
2313 // Analyze the case when either Op0 or Op1 is a sub instruction.
2314 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2315 A
= 0; B
= 0; C
= 0; D
= 0;
2316 if (BO0
&& BO0
->getOpcode() == Instruction::Sub
)
2317 A
= BO0
->getOperand(0), B
= BO0
->getOperand(1);
2318 if (BO1
&& BO1
->getOpcode() == Instruction::Sub
)
2319 C
= BO1
->getOperand(0), D
= BO1
->getOperand(1);
2321 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2322 if (A
== Op1
&& NoOp0WrapProblem
)
2323 return new ICmpInst(Pred
, Constant::getNullValue(Op1
->getType()), B
);
2325 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2326 if (C
== Op0
&& NoOp1WrapProblem
)
2327 return new ICmpInst(Pred
, D
, Constant::getNullValue(Op0
->getType()));
2329 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2330 if (B
&& D
&& B
== D
&& NoOp0WrapProblem
&& NoOp1WrapProblem
&&
2331 // Try not to increase register pressure.
2332 BO0
->hasOneUse() && BO1
->hasOneUse())
2333 return new ICmpInst(Pred
, A
, C
);
2335 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2336 if (A
&& C
&& A
== C
&& NoOp0WrapProblem
&& NoOp1WrapProblem
&&
2337 // Try not to increase register pressure.
2338 BO0
->hasOneUse() && BO1
->hasOneUse())
2339 return new ICmpInst(Pred
, D
, B
);
2341 BinaryOperator
*SRem
= NULL
;
2342 // icmp (srem X, Y), Y
2343 if (BO0
&& BO0
->getOpcode() == Instruction::SRem
&&
2344 Op1
== BO0
->getOperand(1))
2346 // icmp Y, (srem X, Y)
2347 else if (BO1
&& BO1
->getOpcode() == Instruction::SRem
&&
2348 Op0
== BO1
->getOperand(1))
2351 // We don't check hasOneUse to avoid increasing register pressure because
2352 // the value we use is the same value this instruction was already using.
2353 switch (SRem
== BO0
? ICmpInst::getSwappedPredicate(Pred
) : Pred
) {
2355 case ICmpInst::ICMP_EQ
:
2356 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
2357 case ICmpInst::ICMP_NE
:
2358 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
2359 case ICmpInst::ICMP_SGT
:
2360 case ICmpInst::ICMP_SGE
:
2361 return new ICmpInst(ICmpInst::ICMP_SGT
, SRem
->getOperand(1),
2362 Constant::getAllOnesValue(SRem
->getType()));
2363 case ICmpInst::ICMP_SLT
:
2364 case ICmpInst::ICMP_SLE
:
2365 return new ICmpInst(ICmpInst::ICMP_SLT
, SRem
->getOperand(1),
2366 Constant::getNullValue(SRem
->getType()));
2370 if (BO0
&& BO1
&& BO0
->getOpcode() == BO1
->getOpcode() &&
2371 BO0
->hasOneUse() && BO1
->hasOneUse() &&
2372 BO0
->getOperand(1) == BO1
->getOperand(1)) {
2373 switch (BO0
->getOpcode()) {
2375 case Instruction::Add
:
2376 case Instruction::Sub
:
2377 case Instruction::Xor
:
2378 if (I
.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
2379 return new ICmpInst(I
.getPredicate(), BO0
->getOperand(0),
2380 BO1
->getOperand(0));
2381 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2382 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO0
->getOperand(1))) {
2383 if (CI
->getValue().isSignBit()) {
2384 ICmpInst::Predicate Pred
= I
.isSigned()
2385 ? I
.getUnsignedPredicate()
2386 : I
.getSignedPredicate();
2387 return new ICmpInst(Pred
, BO0
->getOperand(0),
2388 BO1
->getOperand(0));
2391 if (CI
->getValue().isMaxSignedValue()) {
2392 ICmpInst::Predicate Pred
= I
.isSigned()
2393 ? I
.getUnsignedPredicate()
2394 : I
.getSignedPredicate();
2395 Pred
= I
.getSwappedPredicate(Pred
);
2396 return new ICmpInst(Pred
, BO0
->getOperand(0),
2397 BO1
->getOperand(0));
2401 case Instruction::Mul
:
2402 if (!I
.isEquality())
2405 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO0
->getOperand(1))) {
2406 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2407 // Mask = -1 >> count-trailing-zeros(Cst).
2408 if (!CI
->isZero() && !CI
->isOne()) {
2409 const APInt
&AP
= CI
->getValue();
2410 ConstantInt
*Mask
= ConstantInt::get(I
.getContext(),
2411 APInt::getLowBitsSet(AP
.getBitWidth(),
2413 AP
.countTrailingZeros()));
2414 Value
*And1
= Builder
->CreateAnd(BO0
->getOperand(0), Mask
);
2415 Value
*And2
= Builder
->CreateAnd(BO1
->getOperand(0), Mask
);
2416 return new ICmpInst(I
.getPredicate(), And1
, And2
);
2420 case Instruction::UDiv
:
2421 case Instruction::LShr
:
2425 case Instruction::SDiv
:
2426 case Instruction::AShr
:
2427 if (!BO0
->isExact() || !BO1
->isExact())
2429 return new ICmpInst(I
.getPredicate(), BO0
->getOperand(0),
2430 BO1
->getOperand(0));
2431 case Instruction::Shl
: {
2432 bool NUW
= BO0
->hasNoUnsignedWrap() && BO1
->hasNoUnsignedWrap();
2433 bool NSW
= BO0
->hasNoSignedWrap() && BO1
->hasNoSignedWrap();
2436 if (!NSW
&& I
.isSigned())
2438 return new ICmpInst(I
.getPredicate(), BO0
->getOperand(0),
2439 BO1
->getOperand(0));
2446 // ~x < ~y --> y < x
2447 // ~x < cst --> ~cst < x
2448 if (match(Op0
, m_Not(m_Value(A
)))) {
2449 if (match(Op1
, m_Not(m_Value(B
))))
2450 return new ICmpInst(I
.getPredicate(), B
, A
);
2451 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(Op1
))
2452 return new ICmpInst(I
.getPredicate(), ConstantExpr::getNot(RHSC
), A
);
2455 // (a+b) <u a --> llvm.uadd.with.overflow.
2456 // (a+b) <u b --> llvm.uadd.with.overflow.
2457 if (I
.getPredicate() == ICmpInst::ICMP_ULT
&&
2458 match(Op0
, m_Add(m_Value(A
), m_Value(B
))) &&
2459 (Op1
== A
|| Op1
== B
))
2460 if (Instruction
*R
= ProcessUAddIdiom(I
, Op0
, *this))
2463 // a >u (a+b) --> llvm.uadd.with.overflow.
2464 // b >u (a+b) --> llvm.uadd.with.overflow.
2465 if (I
.getPredicate() == ICmpInst::ICMP_UGT
&&
2466 match(Op1
, m_Add(m_Value(A
), m_Value(B
))) &&
2467 (Op0
== A
|| Op0
== B
))
2468 if (Instruction
*R
= ProcessUAddIdiom(I
, Op1
, *this))
2472 if (I
.isEquality()) {
2473 Value
*A
, *B
, *C
, *D
;
2475 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
)))) {
2476 if (A
== Op1
|| B
== Op1
) { // (A^B) == A -> B == 0
2477 Value
*OtherVal
= A
== Op1
? B
: A
;
2478 return new ICmpInst(I
.getPredicate(), OtherVal
,
2479 Constant::getNullValue(A
->getType()));
2482 if (match(Op1
, m_Xor(m_Value(C
), m_Value(D
)))) {
2483 // A^c1 == C^c2 --> A == C^(c1^c2)
2484 ConstantInt
*C1
, *C2
;
2485 if (match(B
, m_ConstantInt(C1
)) &&
2486 match(D
, m_ConstantInt(C2
)) && Op1
->hasOneUse()) {
2487 Constant
*NC
= ConstantInt::get(I
.getContext(),
2488 C1
->getValue() ^ C2
->getValue());
2489 Value
*Xor
= Builder
->CreateXor(C
, NC
, "tmp");
2490 return new ICmpInst(I
.getPredicate(), A
, Xor
);
2493 // A^B == A^D -> B == D
2494 if (A
== C
) return new ICmpInst(I
.getPredicate(), B
, D
);
2495 if (A
== D
) return new ICmpInst(I
.getPredicate(), B
, C
);
2496 if (B
== C
) return new ICmpInst(I
.getPredicate(), A
, D
);
2497 if (B
== D
) return new ICmpInst(I
.getPredicate(), A
, C
);
2501 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
))) &&
2502 (A
== Op0
|| B
== Op0
)) {
2503 // A == (A^B) -> B == 0
2504 Value
*OtherVal
= A
== Op0
? B
: A
;
2505 return new ICmpInst(I
.getPredicate(), OtherVal
,
2506 Constant::getNullValue(A
->getType()));
2509 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2510 if (match(Op0
, m_OneUse(m_And(m_Value(A
), m_Value(B
)))) &&
2511 match(Op1
, m_OneUse(m_And(m_Value(C
), m_Value(D
))))) {
2512 Value
*X
= 0, *Y
= 0, *Z
= 0;
2515 X
= B
; Y
= D
; Z
= A
;
2516 } else if (A
== D
) {
2517 X
= B
; Y
= C
; Z
= A
;
2518 } else if (B
== C
) {
2519 X
= A
; Y
= D
; Z
= B
;
2520 } else if (B
== D
) {
2521 X
= A
; Y
= C
; Z
= B
;
2524 if (X
) { // Build (X^Y) & Z
2525 Op1
= Builder
->CreateXor(X
, Y
, "tmp");
2526 Op1
= Builder
->CreateAnd(Op1
, Z
, "tmp");
2527 I
.setOperand(0, Op1
);
2528 I
.setOperand(1, Constant::getNullValue(Op1
->getType()));
2533 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
2534 // "icmp (and X, mask), cst"
2537 if (Op0
->hasOneUse() &&
2538 match(Op0
, m_Trunc(m_OneUse(m_LShr(m_Value(A
),
2539 m_ConstantInt(ShAmt
))))) &&
2540 match(Op1
, m_ConstantInt(Cst1
)) &&
2541 // Only do this when A has multiple uses. This is most important to do
2542 // when it exposes other optimizations.
2544 unsigned ASize
=cast
<IntegerType
>(A
->getType())->getPrimitiveSizeInBits();
2546 if (ShAmt
< ASize
) {
2548 APInt::getLowBitsSet(ASize
, Op0
->getType()->getPrimitiveSizeInBits());
2551 APInt CmpV
= Cst1
->getValue().zext(ASize
);
2554 Value
*Mask
= Builder
->CreateAnd(A
, Builder
->getInt(MaskV
));
2555 return new ICmpInst(I
.getPredicate(), Mask
, Builder
->getInt(CmpV
));
2561 Value
*X
; ConstantInt
*Cst
;
2563 if (match(Op0
, m_Add(m_Value(X
), m_ConstantInt(Cst
))) && Op1
== X
)
2564 return FoldICmpAddOpCst(I
, X
, Cst
, I
.getPredicate(), Op0
);
2567 if (match(Op1
, m_Add(m_Value(X
), m_ConstantInt(Cst
))) && Op0
== X
)
2568 return FoldICmpAddOpCst(I
, X
, Cst
, I
.getSwappedPredicate(), Op1
);
2570 return Changed
? &I
: 0;
2578 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2580 Instruction
*InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst
&I
,
2583 if (!isa
<ConstantFP
>(RHSC
)) return 0;
2584 const APFloat
&RHS
= cast
<ConstantFP
>(RHSC
)->getValueAPF();
2586 // Get the width of the mantissa. We don't want to hack on conversions that
2587 // might lose information from the integer, e.g. "i64 -> float"
2588 int MantissaWidth
= LHSI
->getType()->getFPMantissaWidth();
2589 if (MantissaWidth
== -1) return 0; // Unknown.
2591 // Check to see that the input is converted from an integer type that is small
2592 // enough that preserves all bits. TODO: check here for "known" sign bits.
2593 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2594 unsigned InputSize
= LHSI
->getOperand(0)->getType()->getScalarSizeInBits();
2596 // If this is a uitofp instruction, we need an extra bit to hold the sign.
2597 bool LHSUnsigned
= isa
<UIToFPInst
>(LHSI
);
2601 // If the conversion would lose info, don't hack on this.
2602 if ((int)InputSize
> MantissaWidth
)
2605 // Otherwise, we can potentially simplify the comparison. We know that it
2606 // will always come through as an integer value and we know the constant is
2607 // not a NAN (it would have been previously simplified).
2608 assert(!RHS
.isNaN() && "NaN comparison not already folded!");
2610 ICmpInst::Predicate Pred
;
2611 switch (I
.getPredicate()) {
2612 default: llvm_unreachable("Unexpected predicate!");
2613 case FCmpInst::FCMP_UEQ
:
2614 case FCmpInst::FCMP_OEQ
:
2615 Pred
= ICmpInst::ICMP_EQ
;
2617 case FCmpInst::FCMP_UGT
:
2618 case FCmpInst::FCMP_OGT
:
2619 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGT
: ICmpInst::ICMP_SGT
;
2621 case FCmpInst::FCMP_UGE
:
2622 case FCmpInst::FCMP_OGE
:
2623 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_SGE
;
2625 case FCmpInst::FCMP_ULT
:
2626 case FCmpInst::FCMP_OLT
:
2627 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULT
: ICmpInst::ICMP_SLT
;
2629 case FCmpInst::FCMP_ULE
:
2630 case FCmpInst::FCMP_OLE
:
2631 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_SLE
;
2633 case FCmpInst::FCMP_UNE
:
2634 case FCmpInst::FCMP_ONE
:
2635 Pred
= ICmpInst::ICMP_NE
;
2637 case FCmpInst::FCMP_ORD
:
2638 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
2639 case FCmpInst::FCMP_UNO
:
2640 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
2643 const IntegerType
*IntTy
= cast
<IntegerType
>(LHSI
->getOperand(0)->getType());
2645 // Now we know that the APFloat is a normal number, zero or inf.
2647 // See if the FP constant is too large for the integer. For example,
2648 // comparing an i8 to 300.0.
2649 unsigned IntWidth
= IntTy
->getScalarSizeInBits();
2652 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
2653 // and large values.
2654 APFloat
SMax(RHS
.getSemantics(), APFloat::fcZero
, false);
2655 SMax
.convertFromAPInt(APInt::getSignedMaxValue(IntWidth
), true,
2656 APFloat::rmNearestTiesToEven
);
2657 if (SMax
.compare(RHS
) == APFloat::cmpLessThan
) { // smax < 13123.0
2658 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SLT
||
2659 Pred
== ICmpInst::ICMP_SLE
)
2660 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
2661 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
2664 // If the RHS value is > UnsignedMax, fold the comparison. This handles
2665 // +INF and large values.
2666 APFloat
UMax(RHS
.getSemantics(), APFloat::fcZero
, false);
2667 UMax
.convertFromAPInt(APInt::getMaxValue(IntWidth
), false,
2668 APFloat::rmNearestTiesToEven
);
2669 if (UMax
.compare(RHS
) == APFloat::cmpLessThan
) { // umax < 13123.0
2670 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_ULT
||
2671 Pred
== ICmpInst::ICMP_ULE
)
2672 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
2673 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
2678 // See if the RHS value is < SignedMin.
2679 APFloat
SMin(RHS
.getSemantics(), APFloat::fcZero
, false);
2680 SMin
.convertFromAPInt(APInt::getSignedMinValue(IntWidth
), true,
2681 APFloat::rmNearestTiesToEven
);
2682 if (SMin
.compare(RHS
) == APFloat::cmpGreaterThan
) { // smin > 12312.0
2683 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
||
2684 Pred
== ICmpInst::ICMP_SGE
)
2685 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
2686 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
2690 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2691 // [0, UMAX], but it may still be fractional. See if it is fractional by
2692 // casting the FP value to the integer value and back, checking for equality.
2693 // Don't do this for zero, because -0.0 is not fractional.
2694 Constant
*RHSInt
= LHSUnsigned
2695 ? ConstantExpr::getFPToUI(RHSC
, IntTy
)
2696 : ConstantExpr::getFPToSI(RHSC
, IntTy
);
2697 if (!RHS
.isZero()) {
2698 bool Equal
= LHSUnsigned
2699 ? ConstantExpr::getUIToFP(RHSInt
, RHSC
->getType()) == RHSC
2700 : ConstantExpr::getSIToFP(RHSInt
, RHSC
->getType()) == RHSC
;
2702 // If we had a comparison against a fractional value, we have to adjust
2703 // the compare predicate and sometimes the value. RHSC is rounded towards
2704 // zero at this point.
2706 default: llvm_unreachable("Unexpected integer comparison!");
2707 case ICmpInst::ICMP_NE
: // (float)int != 4.4 --> true
2708 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
2709 case ICmpInst::ICMP_EQ
: // (float)int == 4.4 --> false
2710 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
2711 case ICmpInst::ICMP_ULE
:
2712 // (float)int <= 4.4 --> int <= 4
2713 // (float)int <= -4.4 --> false
2714 if (RHS
.isNegative())
2715 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
2717 case ICmpInst::ICMP_SLE
:
2718 // (float)int <= 4.4 --> int <= 4
2719 // (float)int <= -4.4 --> int < -4
2720 if (RHS
.isNegative())
2721 Pred
= ICmpInst::ICMP_SLT
;
2723 case ICmpInst::ICMP_ULT
:
2724 // (float)int < -4.4 --> false
2725 // (float)int < 4.4 --> int <= 4
2726 if (RHS
.isNegative())
2727 return ReplaceInstUsesWith(I
, ConstantInt::getFalse(I
.getContext()));
2728 Pred
= ICmpInst::ICMP_ULE
;
2730 case ICmpInst::ICMP_SLT
:
2731 // (float)int < -4.4 --> int < -4
2732 // (float)int < 4.4 --> int <= 4
2733 if (!RHS
.isNegative())
2734 Pred
= ICmpInst::ICMP_SLE
;
2736 case ICmpInst::ICMP_UGT
:
2737 // (float)int > 4.4 --> int > 4
2738 // (float)int > -4.4 --> true
2739 if (RHS
.isNegative())
2740 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
2742 case ICmpInst::ICMP_SGT
:
2743 // (float)int > 4.4 --> int > 4
2744 // (float)int > -4.4 --> int >= -4
2745 if (RHS
.isNegative())
2746 Pred
= ICmpInst::ICMP_SGE
;
2748 case ICmpInst::ICMP_UGE
:
2749 // (float)int >= -4.4 --> true
2750 // (float)int >= 4.4 --> int > 4
2751 if (!RHS
.isNegative())
2752 return ReplaceInstUsesWith(I
, ConstantInt::getTrue(I
.getContext()));
2753 Pred
= ICmpInst::ICMP_UGT
;
2755 case ICmpInst::ICMP_SGE
:
2756 // (float)int >= -4.4 --> int >= -4
2757 // (float)int >= 4.4 --> int > 4
2758 if (!RHS
.isNegative())
2759 Pred
= ICmpInst::ICMP_SGT
;
2765 // Lower this FP comparison into an appropriate integer version of the
2767 return new ICmpInst(Pred
, LHSI
->getOperand(0), RHSInt
);
2770 Instruction
*InstCombiner::visitFCmpInst(FCmpInst
&I
) {
2771 bool Changed
= false;
2773 /// Orders the operands of the compare so that they are listed from most
2774 /// complex to least complex. This puts constants before unary operators,
2775 /// before binary operators.
2776 if (getComplexity(I
.getOperand(0)) < getComplexity(I
.getOperand(1))) {
2781 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2783 if (Value
*V
= SimplifyFCmpInst(I
.getPredicate(), Op0
, Op1
, TD
))
2784 return ReplaceInstUsesWith(I
, V
);
2786 // Simplify 'fcmp pred X, X'
2788 switch (I
.getPredicate()) {
2789 default: llvm_unreachable("Unknown predicate!");
2790 case FCmpInst::FCMP_UNO
: // True if unordered: isnan(X) | isnan(Y)
2791 case FCmpInst::FCMP_ULT
: // True if unordered or less than
2792 case FCmpInst::FCMP_UGT
: // True if unordered or greater than
2793 case FCmpInst::FCMP_UNE
: // True if unordered or not equal
2794 // Canonicalize these to be 'fcmp uno %X, 0.0'.
2795 I
.setPredicate(FCmpInst::FCMP_UNO
);
2796 I
.setOperand(1, Constant::getNullValue(Op0
->getType()));
2799 case FCmpInst::FCMP_ORD
: // True if ordered (no nans)
2800 case FCmpInst::FCMP_OEQ
: // True if ordered and equal
2801 case FCmpInst::FCMP_OGE
: // True if ordered and greater than or equal
2802 case FCmpInst::FCMP_OLE
: // True if ordered and less than or equal
2803 // Canonicalize these to be 'fcmp ord %X, 0.0'.
2804 I
.setPredicate(FCmpInst::FCMP_ORD
);
2805 I
.setOperand(1, Constant::getNullValue(Op0
->getType()));
2810 // Handle fcmp with constant RHS
2811 if (Constant
*RHSC
= dyn_cast
<Constant
>(Op1
)) {
2812 if (Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
))
2813 switch (LHSI
->getOpcode()) {
2814 case Instruction::FPExt
: {
2815 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
2816 FPExtInst
*LHSExt
= cast
<FPExtInst
>(LHSI
);
2817 ConstantFP
*RHSF
= dyn_cast
<ConstantFP
>(RHSC
);
2821 // We can't convert a PPC double double.
2822 if (RHSF
->getType()->isPPC_FP128Ty())
2825 const fltSemantics
*Sem
;
2826 // FIXME: This shouldn't be here.
2827 if (LHSExt
->getSrcTy()->isFloatTy())
2828 Sem
= &APFloat::IEEEsingle
;
2829 else if (LHSExt
->getSrcTy()->isDoubleTy())
2830 Sem
= &APFloat::IEEEdouble
;
2831 else if (LHSExt
->getSrcTy()->isFP128Ty())
2832 Sem
= &APFloat::IEEEquad
;
2833 else if (LHSExt
->getSrcTy()->isX86_FP80Ty())
2834 Sem
= &APFloat::x87DoubleExtended
;
2839 APFloat F
= RHSF
->getValueAPF();
2840 F
.convert(*Sem
, APFloat::rmNearestTiesToEven
, &Lossy
);
2842 // Avoid lossy conversions and denormals.
2844 F
.compare(APFloat::getSmallestNormalized(*Sem
)) !=
2845 APFloat::cmpLessThan
)
2846 return new FCmpInst(I
.getPredicate(), LHSExt
->getOperand(0),
2847 ConstantFP::get(RHSC
->getContext(), F
));
2850 case Instruction::PHI
:
2851 // Only fold fcmp into the PHI if the phi and fcmp are in the same
2852 // block. If in the same block, we're encouraging jump threading. If
2853 // not, we are just pessimizing the code by making an i1 phi.
2854 if (LHSI
->getParent() == I
.getParent())
2855 if (Instruction
*NV
= FoldOpIntoPhi(I
))
2858 case Instruction::SIToFP
:
2859 case Instruction::UIToFP
:
2860 if (Instruction
*NV
= FoldFCmp_IntToFP_Cst(I
, LHSI
, RHSC
))
2863 case Instruction::Select
: {
2864 // If either operand of the select is a constant, we can fold the
2865 // comparison into the select arms, which will cause one to be
2866 // constant folded and the select turned into a bitwise or.
2867 Value
*Op1
= 0, *Op2
= 0;
2868 if (LHSI
->hasOneUse()) {
2869 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(1))) {
2870 // Fold the known value into the constant operand.
2871 Op1
= ConstantExpr::getCompare(I
.getPredicate(), C
, RHSC
);
2872 // Insert a new FCmp of the other select operand.
2873 Op2
= Builder
->CreateFCmp(I
.getPredicate(),
2874 LHSI
->getOperand(2), RHSC
, I
.getName());
2875 } else if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(2))) {
2876 // Fold the known value into the constant operand.
2877 Op2
= ConstantExpr::getCompare(I
.getPredicate(), C
, RHSC
);
2878 // Insert a new FCmp of the other select operand.
2879 Op1
= Builder
->CreateFCmp(I
.getPredicate(), LHSI
->getOperand(1),
2885 return SelectInst::Create(LHSI
->getOperand(0), Op1
, Op2
);
2888 case Instruction::FSub
: {
2889 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
2891 if (match(LHSI
, m_FNeg(m_Value(Op
))))
2892 return new FCmpInst(I
.getSwappedPredicate(), Op
,
2893 ConstantExpr::getFNeg(RHSC
));
2896 case Instruction::Load
:
2897 if (GetElementPtrInst
*GEP
=
2898 dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0))) {
2899 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
2900 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
2901 !cast
<LoadInst
>(LHSI
)->isVolatile())
2902 if (Instruction
*Res
= FoldCmpLoadFromIndexedGlobal(GEP
, GV
, I
))
2909 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
2911 if (match(Op0
, m_FNeg(m_Value(X
))) && match(Op1
, m_FNeg(m_Value(Y
))))
2912 return new FCmpInst(I
.getSwappedPredicate(), X
, Y
);
2914 // fcmp (fpext x), (fpext y) -> fcmp x, y
2915 if (FPExtInst
*LHSExt
= dyn_cast
<FPExtInst
>(Op0
))
2916 if (FPExtInst
*RHSExt
= dyn_cast
<FPExtInst
>(Op1
))
2917 if (LHSExt
->getSrcTy() == RHSExt
->getSrcTy())
2918 return new FCmpInst(I
.getPredicate(), LHSExt
->getOperand(0),
2919 RHSExt
->getOperand(0));
2921 return Changed
? &I
: 0;