Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / Transforms / InstCombine / InstCombineMulDivRem.cpp
blob2d29403097ce79384f76d37f092ab04bce233e49
1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11 // srem, urem, frem.
13 //===----------------------------------------------------------------------===//
15 #include "InstCombine.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Support/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
23 /// simplifyValueKnownNonZero - The specific integer value is used in a context
24 /// where it is known to be non-zero. If this allows us to simplify the
25 /// computation, do so and return the new operand, otherwise return null.
26 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
27 // If V has multiple uses, then we would have to do more analysis to determine
28 // if this is safe. For example, the use could be in dynamically unreached
29 // code.
30 if (!V->hasOneUse()) return 0;
32 bool MadeChange = false;
34 // ((1 << A) >>u B) --> (1 << (A-B))
35 // Because V cannot be zero, we know that B is less than A.
36 Value *A = 0, *B = 0, *PowerOf2 = 0;
37 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
38 m_Value(B))) &&
39 // The "1" can be any value known to be a power of 2.
40 isPowerOfTwo(PowerOf2, IC.getTargetData())) {
41 A = IC.Builder->CreateSub(A, B, "tmp");
42 return IC.Builder->CreateShl(PowerOf2, A);
45 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
46 // inexact. Similarly for <<.
47 if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
48 if (I->isLogicalShift() &&
49 isPowerOfTwo(I->getOperand(0), IC.getTargetData())) {
50 // We know that this is an exact/nuw shift and that the input is a
51 // non-zero context as well.
52 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
53 I->setOperand(0, V2);
54 MadeChange = true;
57 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
58 I->setIsExact();
59 MadeChange = true;
62 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
63 I->setHasNoUnsignedWrap();
64 MadeChange = true;
68 // TODO: Lots more we could do here:
69 // If V is a phi node, we can call this on each of its operands.
70 // "select cond, X, 0" can simplify to "X".
72 return MadeChange ? V : 0;
76 /// MultiplyOverflows - True if the multiply can not be expressed in an int
77 /// this size.
78 static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
79 uint32_t W = C1->getBitWidth();
80 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
81 if (sign) {
82 LHSExt = LHSExt.sext(W * 2);
83 RHSExt = RHSExt.sext(W * 2);
84 } else {
85 LHSExt = LHSExt.zext(W * 2);
86 RHSExt = RHSExt.zext(W * 2);
89 APInt MulExt = LHSExt * RHSExt;
91 if (!sign)
92 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
94 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
95 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
96 return MulExt.slt(Min) || MulExt.sgt(Max);
99 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
100 bool Changed = SimplifyAssociativeOrCommutative(I);
101 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
103 if (Value *V = SimplifyMulInst(Op0, Op1, TD))
104 return ReplaceInstUsesWith(I, V);
106 if (Value *V = SimplifyUsingDistributiveLaws(I))
107 return ReplaceInstUsesWith(I, V);
109 if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
110 return BinaryOperator::CreateNeg(Op0, I.getName());
112 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
114 // ((X << C1)*C2) == (X * (C2 << C1))
115 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
116 if (SI->getOpcode() == Instruction::Shl)
117 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
118 return BinaryOperator::CreateMul(SI->getOperand(0),
119 ConstantExpr::getShl(CI, ShOp));
121 const APInt &Val = CI->getValue();
122 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
123 Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
124 BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
125 if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
126 if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
127 return Shl;
130 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
131 { Value *X; ConstantInt *C1;
132 if (Op0->hasOneUse() &&
133 match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
134 Value *Add = Builder->CreateMul(X, CI, "tmp");
135 return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
139 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
140 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
141 // The "* (2**n)" thus becomes a potential shifting opportunity.
143 const APInt & Val = CI->getValue();
144 const APInt &PosVal = Val.abs();
145 if (Val.isNegative() && PosVal.isPowerOf2()) {
146 Value *X = 0, *Y = 0;
147 if (Op0->hasOneUse()) {
148 ConstantInt *C1;
149 Value *Sub = 0;
150 if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
151 Sub = Builder->CreateSub(X, Y, "suba");
152 else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
153 Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
154 if (Sub)
155 return
156 BinaryOperator::CreateMul(Sub,
157 ConstantInt::get(Y->getType(), PosVal));
163 // Simplify mul instructions with a constant RHS.
164 if (isa<Constant>(Op1)) {
165 // Try to fold constant mul into select arguments.
166 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
167 if (Instruction *R = FoldOpIntoSelect(I, SI))
168 return R;
170 if (isa<PHINode>(Op0))
171 if (Instruction *NV = FoldOpIntoPhi(I))
172 return NV;
175 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
176 if (Value *Op1v = dyn_castNegVal(Op1))
177 return BinaryOperator::CreateMul(Op0v, Op1v);
179 // (X / Y) * Y = X - (X % Y)
180 // (X / Y) * -Y = (X % Y) - X
182 Value *Op1C = Op1;
183 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
184 if (!BO ||
185 (BO->getOpcode() != Instruction::UDiv &&
186 BO->getOpcode() != Instruction::SDiv)) {
187 Op1C = Op0;
188 BO = dyn_cast<BinaryOperator>(Op1);
190 Value *Neg = dyn_castNegVal(Op1C);
191 if (BO && BO->hasOneUse() &&
192 (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
193 (BO->getOpcode() == Instruction::UDiv ||
194 BO->getOpcode() == Instruction::SDiv)) {
195 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
197 // If the division is exact, X % Y is zero, so we end up with X or -X.
198 if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
199 if (SDiv->isExact()) {
200 if (Op1BO == Op1C)
201 return ReplaceInstUsesWith(I, Op0BO);
202 return BinaryOperator::CreateNeg(Op0BO);
205 Value *Rem;
206 if (BO->getOpcode() == Instruction::UDiv)
207 Rem = Builder->CreateURem(Op0BO, Op1BO);
208 else
209 Rem = Builder->CreateSRem(Op0BO, Op1BO);
210 Rem->takeName(BO);
212 if (Op1BO == Op1C)
213 return BinaryOperator::CreateSub(Op0BO, Rem);
214 return BinaryOperator::CreateSub(Rem, Op0BO);
218 /// i1 mul -> i1 and.
219 if (I.getType()->isIntegerTy(1))
220 return BinaryOperator::CreateAnd(Op0, Op1);
222 // X*(1 << Y) --> X << Y
223 // (1 << Y)*X --> X << Y
225 Value *Y;
226 if (match(Op0, m_Shl(m_One(), m_Value(Y))))
227 return BinaryOperator::CreateShl(Op1, Y);
228 if (match(Op1, m_Shl(m_One(), m_Value(Y))))
229 return BinaryOperator::CreateShl(Op0, Y);
232 // If one of the operands of the multiply is a cast from a boolean value, then
233 // we know the bool is either zero or one, so this is a 'masking' multiply.
234 // X * Y (where Y is 0 or 1) -> X & (0-Y)
235 if (!I.getType()->isVectorTy()) {
236 // -2 is "-1 << 1" so it is all bits set except the low one.
237 APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
239 Value *BoolCast = 0, *OtherOp = 0;
240 if (MaskedValueIsZero(Op0, Negative2))
241 BoolCast = Op0, OtherOp = Op1;
242 else if (MaskedValueIsZero(Op1, Negative2))
243 BoolCast = Op1, OtherOp = Op0;
245 if (BoolCast) {
246 Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
247 BoolCast, "tmp");
248 return BinaryOperator::CreateAnd(V, OtherOp);
252 return Changed ? &I : 0;
255 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
256 bool Changed = SimplifyAssociativeOrCommutative(I);
257 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
259 // Simplify mul instructions with a constant RHS...
260 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
261 if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
262 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
263 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
264 if (Op1F->isExactlyValue(1.0))
265 return ReplaceInstUsesWith(I, Op0); // Eliminate 'fmul double %X, 1.0'
266 } else if (Op1C->getType()->isVectorTy()) {
267 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
268 // As above, vector X*splat(1.0) -> X in all defined cases.
269 if (Constant *Splat = Op1V->getSplatValue()) {
270 if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
271 if (F->isExactlyValue(1.0))
272 return ReplaceInstUsesWith(I, Op0);
277 // Try to fold constant mul into select arguments.
278 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
279 if (Instruction *R = FoldOpIntoSelect(I, SI))
280 return R;
282 if (isa<PHINode>(Op0))
283 if (Instruction *NV = FoldOpIntoPhi(I))
284 return NV;
287 if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
288 if (Value *Op1v = dyn_castFNegVal(Op1))
289 return BinaryOperator::CreateFMul(Op0v, Op1v);
291 return Changed ? &I : 0;
294 /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
295 /// instruction.
296 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
297 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
299 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
300 int NonNullOperand = -1;
301 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
302 if (ST->isNullValue())
303 NonNullOperand = 2;
304 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
305 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
306 if (ST->isNullValue())
307 NonNullOperand = 1;
309 if (NonNullOperand == -1)
310 return false;
312 Value *SelectCond = SI->getOperand(0);
314 // Change the div/rem to use 'Y' instead of the select.
315 I.setOperand(1, SI->getOperand(NonNullOperand));
317 // Okay, we know we replace the operand of the div/rem with 'Y' with no
318 // problem. However, the select, or the condition of the select may have
319 // multiple uses. Based on our knowledge that the operand must be non-zero,
320 // propagate the known value for the select into other uses of it, and
321 // propagate a known value of the condition into its other users.
323 // If the select and condition only have a single use, don't bother with this,
324 // early exit.
325 if (SI->use_empty() && SelectCond->hasOneUse())
326 return true;
328 // Scan the current block backward, looking for other uses of SI.
329 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
331 while (BBI != BBFront) {
332 --BBI;
333 // If we found a call to a function, we can't assume it will return, so
334 // information from below it cannot be propagated above it.
335 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
336 break;
338 // Replace uses of the select or its condition with the known values.
339 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
340 I != E; ++I) {
341 if (*I == SI) {
342 *I = SI->getOperand(NonNullOperand);
343 Worklist.Add(BBI);
344 } else if (*I == SelectCond) {
345 *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
346 ConstantInt::getFalse(BBI->getContext());
347 Worklist.Add(BBI);
351 // If we past the instruction, quit looking for it.
352 if (&*BBI == SI)
353 SI = 0;
354 if (&*BBI == SelectCond)
355 SelectCond = 0;
357 // If we ran out of things to eliminate, break out of the loop.
358 if (SelectCond == 0 && SI == 0)
359 break;
362 return true;
366 /// This function implements the transforms common to both integer division
367 /// instructions (udiv and sdiv). It is called by the visitors to those integer
368 /// division instructions.
369 /// @brief Common integer divide transforms
370 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
371 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
373 // The RHS is known non-zero.
374 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
375 I.setOperand(1, V);
376 return &I;
379 // Handle cases involving: [su]div X, (select Cond, Y, Z)
380 // This does not apply for fdiv.
381 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
382 return &I;
384 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
385 // (X / C1) / C2 -> X / (C1*C2)
386 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
387 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
388 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
389 if (MultiplyOverflows(RHS, LHSRHS,
390 I.getOpcode()==Instruction::SDiv))
391 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
392 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
393 ConstantExpr::getMul(RHS, LHSRHS));
396 if (!RHS->isZero()) { // avoid X udiv 0
397 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
398 if (Instruction *R = FoldOpIntoSelect(I, SI))
399 return R;
400 if (isa<PHINode>(Op0))
401 if (Instruction *NV = FoldOpIntoPhi(I))
402 return NV;
406 // See if we can fold away this div instruction.
407 if (SimplifyDemandedInstructionBits(I))
408 return &I;
410 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
411 Value *X = 0, *Z = 0;
412 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
413 bool isSigned = I.getOpcode() == Instruction::SDiv;
414 if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
415 (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
416 return BinaryOperator::Create(I.getOpcode(), X, Op1);
419 return 0;
422 /// dyn_castZExtVal - Checks if V is a zext or constant that can
423 /// be truncated to Ty without losing bits.
424 static Value *dyn_castZExtVal(Value *V, const Type *Ty) {
425 if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
426 if (Z->getSrcTy() == Ty)
427 return Z->getOperand(0);
428 } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
429 if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
430 return ConstantExpr::getTrunc(C, Ty);
432 return 0;
435 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
436 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
438 if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
439 return ReplaceInstUsesWith(I, V);
441 // Handle the integer div common cases
442 if (Instruction *Common = commonIDivTransforms(I))
443 return Common;
445 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
446 // X udiv 2^C -> X >> C
447 // Check to see if this is an unsigned division with an exact power of 2,
448 // if so, convert to a right shift.
449 if (C->getValue().isPowerOf2()) { // 0 not included in isPowerOf2
450 BinaryOperator *LShr =
451 BinaryOperator::CreateLShr(Op0,
452 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
453 if (I.isExact()) LShr->setIsExact();
454 return LShr;
457 // X udiv C, where C >= signbit
458 if (C->getValue().isNegative()) {
459 Value *IC = Builder->CreateICmpULT(Op0, C);
460 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
461 ConstantInt::get(I.getType(), 1));
465 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
466 { const APInt *CI; Value *N;
467 if (match(Op1, m_Shl(m_Power2(CI), m_Value(N)))) {
468 if (*CI != 1)
469 N = Builder->CreateAdd(N, ConstantInt::get(I.getType(), CI->logBase2()),
470 "tmp");
471 if (I.isExact())
472 return BinaryOperator::CreateExactLShr(Op0, N);
473 return BinaryOperator::CreateLShr(Op0, N);
477 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
478 // where C1&C2 are powers of two.
479 { Value *Cond; const APInt *C1, *C2;
480 if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
481 // Construct the "on true" case of the select
482 Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
483 I.isExact());
485 // Construct the "on false" case of the select
486 Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
487 I.isExact());
489 // construct the select instruction and return it.
490 return SelectInst::Create(Cond, TSI, FSI);
494 // (zext A) udiv (zext B) --> zext (A udiv B)
495 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
496 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
497 return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
498 I.isExact()),
499 I.getType());
501 return 0;
504 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
505 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
507 if (Value *V = SimplifySDivInst(Op0, Op1, TD))
508 return ReplaceInstUsesWith(I, V);
510 // Handle the integer div common cases
511 if (Instruction *Common = commonIDivTransforms(I))
512 return Common;
514 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
515 // sdiv X, -1 == -X
516 if (RHS->isAllOnesValue())
517 return BinaryOperator::CreateNeg(Op0);
519 // sdiv X, C --> ashr exact X, log2(C)
520 if (I.isExact() && RHS->getValue().isNonNegative() &&
521 RHS->getValue().isPowerOf2()) {
522 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
523 RHS->getValue().exactLogBase2());
524 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
527 // -X/C --> X/-C provided the negation doesn't overflow.
528 if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
529 if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
530 return BinaryOperator::CreateSDiv(Sub->getOperand(1),
531 ConstantExpr::getNeg(RHS));
534 // If the sign bits of both operands are zero (i.e. we can prove they are
535 // unsigned inputs), turn this into a udiv.
536 if (I.getType()->isIntegerTy()) {
537 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
538 if (MaskedValueIsZero(Op0, Mask)) {
539 if (MaskedValueIsZero(Op1, Mask)) {
540 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
541 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
544 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
545 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
546 // Safe because the only negative value (1 << Y) can take on is
547 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
548 // the sign bit set.
549 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
554 return 0;
557 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
558 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
560 if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
561 return ReplaceInstUsesWith(I, V);
563 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
564 const APFloat &Op1F = Op1C->getValueAPF();
566 // If the divisor has an exact multiplicative inverse we can turn the fdiv
567 // into a cheaper fmul.
568 APFloat Reciprocal(Op1F.getSemantics());
569 if (Op1F.getExactInverse(&Reciprocal)) {
570 ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal);
571 return BinaryOperator::CreateFMul(Op0, RFP);
575 return 0;
578 /// This function implements the transforms common to both integer remainder
579 /// instructions (urem and srem). It is called by the visitors to those integer
580 /// remainder instructions.
581 /// @brief Common integer remainder transforms
582 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
583 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
585 // The RHS is known non-zero.
586 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
587 I.setOperand(1, V);
588 return &I;
591 // Handle cases involving: rem X, (select Cond, Y, Z)
592 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
593 return &I;
595 if (isa<ConstantInt>(Op1)) {
596 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
597 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
598 if (Instruction *R = FoldOpIntoSelect(I, SI))
599 return R;
600 } else if (isa<PHINode>(Op0I)) {
601 if (Instruction *NV = FoldOpIntoPhi(I))
602 return NV;
605 // See if we can fold away this rem instruction.
606 if (SimplifyDemandedInstructionBits(I))
607 return &I;
611 return 0;
614 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
615 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
617 if (Value *V = SimplifyURemInst(Op0, Op1, TD))
618 return ReplaceInstUsesWith(I, V);
620 if (Instruction *common = commonIRemTransforms(I))
621 return common;
623 // X urem C^2 -> X and C-1
624 { const APInt *C;
625 if (match(Op1, m_Power2(C)))
626 return BinaryOperator::CreateAnd(Op0,
627 ConstantInt::get(I.getType(), *C-1));
630 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
631 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
632 Constant *N1 = Constant::getAllOnesValue(I.getType());
633 Value *Add = Builder->CreateAdd(Op1, N1, "tmp");
634 return BinaryOperator::CreateAnd(Op0, Add);
637 // urem X, (select Cond, 2^C1, 2^C2) -->
638 // select Cond, (and X, C1-1), (and X, C2-1)
639 // when C1&C2 are powers of two.
640 { Value *Cond; const APInt *C1, *C2;
641 if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
642 Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
643 Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
644 return SelectInst::Create(Cond, TrueAnd, FalseAnd);
648 // (zext A) urem (zext B) --> zext (A urem B)
649 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
650 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
651 return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
652 I.getType());
654 return 0;
657 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
658 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
660 if (Value *V = SimplifySRemInst(Op0, Op1, TD))
661 return ReplaceInstUsesWith(I, V);
663 // Handle the integer rem common cases
664 if (Instruction *Common = commonIRemTransforms(I))
665 return Common;
667 if (Value *RHSNeg = dyn_castNegVal(Op1))
668 if (!isa<Constant>(RHSNeg) ||
669 (isa<ConstantInt>(RHSNeg) &&
670 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
671 // X % -Y -> X % Y
672 Worklist.AddValue(I.getOperand(1));
673 I.setOperand(1, RHSNeg);
674 return &I;
677 // If the sign bits of both operands are zero (i.e. we can prove they are
678 // unsigned inputs), turn this into a urem.
679 if (I.getType()->isIntegerTy()) {
680 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
681 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
682 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
683 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
687 // If it's a constant vector, flip any negative values positive.
688 if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) {
689 unsigned VWidth = RHSV->getNumOperands();
691 bool hasNegative = false;
692 for (unsigned i = 0; !hasNegative && i != VWidth; ++i)
693 if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i)))
694 if (RHS->getValue().isNegative())
695 hasNegative = true;
697 if (hasNegative) {
698 std::vector<Constant *> Elts(VWidth);
699 for (unsigned i = 0; i != VWidth; ++i) {
700 if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) {
701 if (RHS->getValue().isNegative())
702 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
703 else
704 Elts[i] = RHS;
708 Constant *NewRHSV = ConstantVector::get(Elts);
709 if (NewRHSV != RHSV) {
710 Worklist.AddValue(I.getOperand(1));
711 I.setOperand(1, NewRHSV);
712 return &I;
717 return 0;
720 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
721 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
723 if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
724 return ReplaceInstUsesWith(I, V);
726 // Handle cases involving: rem X, (select Cond, Y, Z)
727 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
728 return &I;
730 return 0;