1 //===- InstCombineSelect.cpp ----------------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the visitSelect function.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombine.h"
15 #include "llvm/Support/PatternMatch.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
18 using namespace PatternMatch
;
20 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
21 /// returning the kind and providing the out parameter results if we
22 /// successfully match.
23 static SelectPatternFlavor
24 MatchSelectPattern(Value
*V
, Value
*&LHS
, Value
*&RHS
) {
25 SelectInst
*SI
= dyn_cast
<SelectInst
>(V
);
26 if (SI
== 0) return SPF_UNKNOWN
;
28 ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(SI
->getCondition());
29 if (ICI
== 0) return SPF_UNKNOWN
;
31 LHS
= ICI
->getOperand(0);
32 RHS
= ICI
->getOperand(1);
34 // (icmp X, Y) ? X : Y
35 if (SI
->getTrueValue() == ICI
->getOperand(0) &&
36 SI
->getFalseValue() == ICI
->getOperand(1)) {
37 switch (ICI
->getPredicate()) {
38 default: return SPF_UNKNOWN
; // Equality.
39 case ICmpInst::ICMP_UGT
:
40 case ICmpInst::ICMP_UGE
: return SPF_UMAX
;
41 case ICmpInst::ICMP_SGT
:
42 case ICmpInst::ICMP_SGE
: return SPF_SMAX
;
43 case ICmpInst::ICMP_ULT
:
44 case ICmpInst::ICMP_ULE
: return SPF_UMIN
;
45 case ICmpInst::ICMP_SLT
:
46 case ICmpInst::ICMP_SLE
: return SPF_SMIN
;
50 // (icmp X, Y) ? Y : X
51 if (SI
->getTrueValue() == ICI
->getOperand(1) &&
52 SI
->getFalseValue() == ICI
->getOperand(0)) {
53 switch (ICI
->getPredicate()) {
54 default: return SPF_UNKNOWN
; // Equality.
55 case ICmpInst::ICMP_UGT
:
56 case ICmpInst::ICMP_UGE
: return SPF_UMIN
;
57 case ICmpInst::ICMP_SGT
:
58 case ICmpInst::ICMP_SGE
: return SPF_SMIN
;
59 case ICmpInst::ICMP_ULT
:
60 case ICmpInst::ICMP_ULE
: return SPF_UMAX
;
61 case ICmpInst::ICMP_SLT
:
62 case ICmpInst::ICMP_SLE
: return SPF_SMAX
;
66 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
72 /// GetSelectFoldableOperands - We want to turn code that looks like this:
74 /// %D = select %cond, %C, %A
76 /// %C = select %cond, %B, 0
79 /// Assuming that the specified instruction is an operand to the select, return
80 /// a bitmask indicating which operands of this instruction are foldable if they
81 /// equal the other incoming value of the select.
83 static unsigned GetSelectFoldableOperands(Instruction
*I
) {
84 switch (I
->getOpcode()) {
85 case Instruction::Add
:
86 case Instruction::Mul
:
87 case Instruction::And
:
89 case Instruction::Xor
:
90 return 3; // Can fold through either operand.
91 case Instruction::Sub
: // Can only fold on the amount subtracted.
92 case Instruction::Shl
: // Can only fold on the shift amount.
93 case Instruction::LShr
:
94 case Instruction::AShr
:
97 return 0; // Cannot fold
101 /// GetSelectFoldableConstant - For the same transformation as the previous
102 /// function, return the identity constant that goes into the select.
103 static Constant
*GetSelectFoldableConstant(Instruction
*I
) {
104 switch (I
->getOpcode()) {
105 default: llvm_unreachable("This cannot happen!");
106 case Instruction::Add
:
107 case Instruction::Sub
:
108 case Instruction::Or
:
109 case Instruction::Xor
:
110 case Instruction::Shl
:
111 case Instruction::LShr
:
112 case Instruction::AShr
:
113 return Constant::getNullValue(I
->getType());
114 case Instruction::And
:
115 return Constant::getAllOnesValue(I
->getType());
116 case Instruction::Mul
:
117 return ConstantInt::get(I
->getType(), 1);
121 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
122 /// have the same opcode and only one use each. Try to simplify this.
123 Instruction
*InstCombiner::FoldSelectOpOp(SelectInst
&SI
, Instruction
*TI
,
125 if (TI
->getNumOperands() == 1) {
126 // If this is a non-volatile load or a cast from the same type,
129 if (TI
->getOperand(0)->getType() != FI
->getOperand(0)->getType())
132 return 0; // unknown unary op.
135 // Fold this by inserting a select from the input values.
136 Value
*NewSI
= Builder
->CreateSelect(SI
.getCondition(), TI
->getOperand(0),
137 FI
->getOperand(0), SI
.getName()+".v");
138 return CastInst::Create(Instruction::CastOps(TI
->getOpcode()), NewSI
,
142 // Only handle binary operators here.
143 if (!isa
<BinaryOperator
>(TI
))
146 // Figure out if the operations have any operands in common.
147 Value
*MatchOp
, *OtherOpT
, *OtherOpF
;
149 if (TI
->getOperand(0) == FI
->getOperand(0)) {
150 MatchOp
= TI
->getOperand(0);
151 OtherOpT
= TI
->getOperand(1);
152 OtherOpF
= FI
->getOperand(1);
153 MatchIsOpZero
= true;
154 } else if (TI
->getOperand(1) == FI
->getOperand(1)) {
155 MatchOp
= TI
->getOperand(1);
156 OtherOpT
= TI
->getOperand(0);
157 OtherOpF
= FI
->getOperand(0);
158 MatchIsOpZero
= false;
159 } else if (!TI
->isCommutative()) {
161 } else if (TI
->getOperand(0) == FI
->getOperand(1)) {
162 MatchOp
= TI
->getOperand(0);
163 OtherOpT
= TI
->getOperand(1);
164 OtherOpF
= FI
->getOperand(0);
165 MatchIsOpZero
= true;
166 } else if (TI
->getOperand(1) == FI
->getOperand(0)) {
167 MatchOp
= TI
->getOperand(1);
168 OtherOpT
= TI
->getOperand(0);
169 OtherOpF
= FI
->getOperand(1);
170 MatchIsOpZero
= true;
175 // If we reach here, they do have operations in common.
176 Value
*NewSI
= Builder
->CreateSelect(SI
.getCondition(), OtherOpT
,
177 OtherOpF
, SI
.getName()+".v");
179 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(TI
)) {
181 return BinaryOperator::Create(BO
->getOpcode(), MatchOp
, NewSI
);
183 return BinaryOperator::Create(BO
->getOpcode(), NewSI
, MatchOp
);
185 llvm_unreachable("Shouldn't get here");
189 static bool isSelect01(Constant
*C1
, Constant
*C2
) {
190 ConstantInt
*C1I
= dyn_cast
<ConstantInt
>(C1
);
193 ConstantInt
*C2I
= dyn_cast
<ConstantInt
>(C2
);
196 if (!C1I
->isZero() && !C2I
->isZero()) // One side must be zero.
198 return C1I
->isOne() || C1I
->isAllOnesValue() ||
199 C2I
->isOne() || C2I
->isAllOnesValue();
202 /// FoldSelectIntoOp - Try fold the select into one of the operands to
203 /// facilitate further optimization.
204 Instruction
*InstCombiner::FoldSelectIntoOp(SelectInst
&SI
, Value
*TrueVal
,
206 // See the comment above GetSelectFoldableOperands for a description of the
207 // transformation we are doing here.
208 if (Instruction
*TVI
= dyn_cast
<Instruction
>(TrueVal
)) {
209 if (TVI
->hasOneUse() && TVI
->getNumOperands() == 2 &&
210 !isa
<Constant
>(FalseVal
)) {
211 if (unsigned SFO
= GetSelectFoldableOperands(TVI
)) {
212 unsigned OpToFold
= 0;
213 if ((SFO
& 1) && FalseVal
== TVI
->getOperand(0)) {
215 } else if ((SFO
& 2) && FalseVal
== TVI
->getOperand(1)) {
220 Constant
*C
= GetSelectFoldableConstant(TVI
);
221 Value
*OOp
= TVI
->getOperand(2-OpToFold
);
222 // Avoid creating select between 2 constants unless it's selecting
223 // between 0, 1 and -1.
224 if (!isa
<Constant
>(OOp
) || isSelect01(C
, cast
<Constant
>(OOp
))) {
225 Value
*NewSel
= Builder
->CreateSelect(SI
.getCondition(), OOp
, C
);
226 NewSel
->takeName(TVI
);
227 BinaryOperator
*TVI_BO
= cast
<BinaryOperator
>(TVI
);
228 BinaryOperator
*BO
= BinaryOperator::Create(TVI_BO
->getOpcode(),
230 if (isa
<PossiblyExactOperator
>(BO
))
231 BO
->setIsExact(TVI_BO
->isExact());
232 if (isa
<OverflowingBinaryOperator
>(BO
)) {
233 BO
->setHasNoUnsignedWrap(TVI_BO
->hasNoUnsignedWrap());
234 BO
->setHasNoSignedWrap(TVI_BO
->hasNoSignedWrap());
243 if (Instruction
*FVI
= dyn_cast
<Instruction
>(FalseVal
)) {
244 if (FVI
->hasOneUse() && FVI
->getNumOperands() == 2 &&
245 !isa
<Constant
>(TrueVal
)) {
246 if (unsigned SFO
= GetSelectFoldableOperands(FVI
)) {
247 unsigned OpToFold
= 0;
248 if ((SFO
& 1) && TrueVal
== FVI
->getOperand(0)) {
250 } else if ((SFO
& 2) && TrueVal
== FVI
->getOperand(1)) {
255 Constant
*C
= GetSelectFoldableConstant(FVI
);
256 Value
*OOp
= FVI
->getOperand(2-OpToFold
);
257 // Avoid creating select between 2 constants unless it's selecting
258 // between 0, 1 and -1.
259 if (!isa
<Constant
>(OOp
) || isSelect01(C
, cast
<Constant
>(OOp
))) {
260 Value
*NewSel
= Builder
->CreateSelect(SI
.getCondition(), C
, OOp
);
261 NewSel
->takeName(FVI
);
262 BinaryOperator
*FVI_BO
= cast
<BinaryOperator
>(FVI
);
263 BinaryOperator
*BO
= BinaryOperator::Create(FVI_BO
->getOpcode(),
265 if (isa
<PossiblyExactOperator
>(BO
))
266 BO
->setIsExact(FVI_BO
->isExact());
267 if (isa
<OverflowingBinaryOperator
>(BO
)) {
268 BO
->setHasNoUnsignedWrap(FVI_BO
->hasNoUnsignedWrap());
269 BO
->setHasNoSignedWrap(FVI_BO
->hasNoSignedWrap());
281 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
282 /// replaced with RepOp.
283 static Value
*SimplifyWithOpReplaced(Value
*V
, Value
*Op
, Value
*RepOp
,
284 const TargetData
*TD
) {
285 // Trivial replacement.
289 Instruction
*I
= dyn_cast
<Instruction
>(V
);
293 // If this is a binary operator, try to simplify it with the replaced op.
294 if (BinaryOperator
*B
= dyn_cast
<BinaryOperator
>(I
)) {
295 if (B
->getOperand(0) == Op
)
296 return SimplifyBinOp(B
->getOpcode(), RepOp
, B
->getOperand(1), TD
);
297 if (B
->getOperand(1) == Op
)
298 return SimplifyBinOp(B
->getOpcode(), B
->getOperand(0), RepOp
, TD
);
301 // Same for CmpInsts.
302 if (CmpInst
*C
= dyn_cast
<CmpInst
>(I
)) {
303 if (C
->getOperand(0) == Op
)
304 return SimplifyCmpInst(C
->getPredicate(), RepOp
, C
->getOperand(1), TD
);
305 if (C
->getOperand(1) == Op
)
306 return SimplifyCmpInst(C
->getPredicate(), C
->getOperand(0), RepOp
, TD
);
309 // TODO: We could hand off more cases to instsimplify here.
311 // If all operands are constant after substituting Op for RepOp then we can
312 // constant fold the instruction.
313 if (Constant
*CRepOp
= dyn_cast
<Constant
>(RepOp
)) {
314 // Build a list of all constant operands.
315 SmallVector
<Constant
*, 8> ConstOps
;
316 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
317 if (I
->getOperand(i
) == Op
)
318 ConstOps
.push_back(CRepOp
);
319 else if (Constant
*COp
= dyn_cast
<Constant
>(I
->getOperand(i
)))
320 ConstOps
.push_back(COp
);
325 // All operands were constants, fold it.
326 if (ConstOps
.size() == I
->getNumOperands())
327 return ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
328 ConstOps
.data(), ConstOps
.size(), TD
);
334 /// visitSelectInstWithICmp - Visit a SelectInst that has an
335 /// ICmpInst as its first operand.
337 Instruction
*InstCombiner::visitSelectInstWithICmp(SelectInst
&SI
,
339 bool Changed
= false;
340 ICmpInst::Predicate Pred
= ICI
->getPredicate();
341 Value
*CmpLHS
= ICI
->getOperand(0);
342 Value
*CmpRHS
= ICI
->getOperand(1);
343 Value
*TrueVal
= SI
.getTrueValue();
344 Value
*FalseVal
= SI
.getFalseValue();
346 // Check cases where the comparison is with a constant that
347 // can be adjusted to fit the min/max idiom. We may move or edit ICI
348 // here, so make sure the select is the only user.
349 if (ICI
->hasOneUse())
350 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CmpRHS
)) {
351 // X < MIN ? T : F --> F
352 if ((Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_ULT
)
353 && CI
->isMinValue(Pred
== ICmpInst::ICMP_SLT
))
354 return ReplaceInstUsesWith(SI
, FalseVal
);
355 // X > MAX ? T : F --> F
356 else if ((Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_UGT
)
357 && CI
->isMaxValue(Pred
== ICmpInst::ICMP_SGT
))
358 return ReplaceInstUsesWith(SI
, FalseVal
);
361 case ICmpInst::ICMP_ULT
:
362 case ICmpInst::ICMP_SLT
:
363 case ICmpInst::ICMP_UGT
:
364 case ICmpInst::ICMP_SGT
: {
365 // These transformations only work for selects over integers.
366 const IntegerType
*SelectTy
= dyn_cast
<IntegerType
>(SI
.getType());
370 Constant
*AdjustedRHS
;
371 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_SGT
)
372 AdjustedRHS
= ConstantInt::get(CI
->getContext(), CI
->getValue() + 1);
373 else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
374 AdjustedRHS
= ConstantInt::get(CI
->getContext(), CI
->getValue() - 1);
376 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
377 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
378 if ((CmpLHS
== TrueVal
&& AdjustedRHS
== FalseVal
) ||
379 (CmpLHS
== FalseVal
&& AdjustedRHS
== TrueVal
))
380 ; // Nothing to do here. Values match without any sign/zero extension.
382 // Types do not match. Instead of calculating this with mixed types
383 // promote all to the larger type. This enables scalar evolution to
384 // analyze this expression.
385 else if (CmpRHS
->getType()->getScalarSizeInBits()
386 < SelectTy
->getBitWidth()) {
387 Constant
*sextRHS
= ConstantExpr::getSExt(AdjustedRHS
, SelectTy
);
389 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
390 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
391 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
392 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
393 if (match(TrueVal
, m_SExt(m_Specific(CmpLHS
))) &&
394 sextRHS
== FalseVal
) {
396 AdjustedRHS
= sextRHS
;
397 } else if (match(FalseVal
, m_SExt(m_Specific(CmpLHS
))) &&
398 sextRHS
== TrueVal
) {
400 AdjustedRHS
= sextRHS
;
401 } else if (ICI
->isUnsigned()) {
402 Constant
*zextRHS
= ConstantExpr::getZExt(AdjustedRHS
, SelectTy
);
403 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
404 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
405 // zext + signed compare cannot be changed:
406 // 0xff <s 0x00, but 0x00ff >s 0x0000
407 if (match(TrueVal
, m_ZExt(m_Specific(CmpLHS
))) &&
408 zextRHS
== FalseVal
) {
410 AdjustedRHS
= zextRHS
;
411 } else if (match(FalseVal
, m_ZExt(m_Specific(CmpLHS
))) &&
412 zextRHS
== TrueVal
) {
414 AdjustedRHS
= zextRHS
;
422 Pred
= ICmpInst::getSwappedPredicate(Pred
);
423 CmpRHS
= AdjustedRHS
;
424 std::swap(FalseVal
, TrueVal
);
425 ICI
->setPredicate(Pred
);
426 ICI
->setOperand(0, CmpLHS
);
427 ICI
->setOperand(1, CmpRHS
);
428 SI
.setOperand(1, TrueVal
);
429 SI
.setOperand(2, FalseVal
);
431 // Move ICI instruction right before the select instruction. Otherwise
432 // the sext/zext value may be defined after the ICI instruction uses it.
433 ICI
->moveBefore(&SI
);
441 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
442 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
443 // FIXME: Type and constness constraints could be lifted, but we have to
444 // watch code size carefully. We should consider xor instead of
445 // sub/add when we decide to do that.
446 if (const IntegerType
*Ty
= dyn_cast
<IntegerType
>(CmpLHS
->getType())) {
447 if (TrueVal
->getType() == Ty
) {
448 if (ConstantInt
*Cmp
= dyn_cast
<ConstantInt
>(CmpRHS
)) {
449 ConstantInt
*C1
= NULL
, *C2
= NULL
;
450 if (Pred
== ICmpInst::ICMP_SGT
&& Cmp
->isAllOnesValue()) {
451 C1
= dyn_cast
<ConstantInt
>(TrueVal
);
452 C2
= dyn_cast
<ConstantInt
>(FalseVal
);
453 } else if (Pred
== ICmpInst::ICMP_SLT
&& Cmp
->isNullValue()) {
454 C1
= dyn_cast
<ConstantInt
>(FalseVal
);
455 C2
= dyn_cast
<ConstantInt
>(TrueVal
);
458 // This shift results in either -1 or 0.
459 Value
*AShr
= Builder
->CreateAShr(CmpLHS
, Ty
->getBitWidth()-1);
461 // Check if we can express the operation with a single or.
462 if (C2
->isAllOnesValue())
463 return ReplaceInstUsesWith(SI
, Builder
->CreateOr(AShr
, C1
));
465 Value
*And
= Builder
->CreateAnd(AShr
, C2
->getValue()-C1
->getValue());
466 return ReplaceInstUsesWith(SI
, Builder
->CreateAdd(And
, C1
));
472 // If we have an equality comparison then we know the value in one of the
473 // arms of the select. See if substituting this value into the arm and
474 // simplifying the result yields the same value as the other arm.
475 if (Pred
== ICmpInst::ICMP_EQ
) {
476 if (SimplifyWithOpReplaced(FalseVal
, CmpLHS
, CmpRHS
, TD
) == TrueVal
||
477 SimplifyWithOpReplaced(FalseVal
, CmpRHS
, CmpLHS
, TD
) == TrueVal
)
478 return ReplaceInstUsesWith(SI
, FalseVal
);
479 } else if (Pred
== ICmpInst::ICMP_NE
) {
480 if (SimplifyWithOpReplaced(TrueVal
, CmpLHS
, CmpRHS
, TD
) == FalseVal
||
481 SimplifyWithOpReplaced(TrueVal
, CmpRHS
, CmpLHS
, TD
) == FalseVal
)
482 return ReplaceInstUsesWith(SI
, TrueVal
);
485 // NOTE: if we wanted to, this is where to detect integer MIN/MAX
487 if (isa
<Constant
>(CmpRHS
)) {
488 if (CmpLHS
== TrueVal
&& Pred
== ICmpInst::ICMP_EQ
) {
489 // Transform (X == C) ? X : Y -> (X == C) ? C : Y
490 SI
.setOperand(1, CmpRHS
);
492 } else if (CmpLHS
== FalseVal
&& Pred
== ICmpInst::ICMP_NE
) {
493 // Transform (X != C) ? Y : X -> (X != C) ? Y : C
494 SI
.setOperand(2, CmpRHS
);
499 return Changed
? &SI
: 0;
503 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
504 /// PHI node (but the two may be in different blocks). See if the true/false
505 /// values (V) are live in all of the predecessor blocks of the PHI. For
506 /// example, cases like this cannot be mapped:
508 /// X = phi [ C1, BB1], [C2, BB2]
510 /// Z = select X, Y, 0
512 /// because Y is not live in BB1/BB2.
514 static bool CanSelectOperandBeMappingIntoPredBlock(const Value
*V
,
515 const SelectInst
&SI
) {
516 // If the value is a non-instruction value like a constant or argument, it
517 // can always be mapped.
518 const Instruction
*I
= dyn_cast
<Instruction
>(V
);
519 if (I
== 0) return true;
521 // If V is a PHI node defined in the same block as the condition PHI, we can
522 // map the arguments.
523 const PHINode
*CondPHI
= cast
<PHINode
>(SI
.getCondition());
525 if (const PHINode
*VP
= dyn_cast
<PHINode
>(I
))
526 if (VP
->getParent() == CondPHI
->getParent())
529 // Otherwise, if the PHI and select are defined in the same block and if V is
530 // defined in a different block, then we can transform it.
531 if (SI
.getParent() == CondPHI
->getParent() &&
532 I
->getParent() != CondPHI
->getParent())
535 // Otherwise we have a 'hard' case and we can't tell without doing more
536 // detailed dominator based analysis, punt.
540 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
541 /// SPF2(SPF1(A, B), C)
542 Instruction
*InstCombiner::FoldSPFofSPF(Instruction
*Inner
,
543 SelectPatternFlavor SPF1
,
546 SelectPatternFlavor SPF2
, Value
*C
) {
547 if (C
== A
|| C
== B
) {
548 // MAX(MAX(A, B), B) -> MAX(A, B)
549 // MIN(MIN(a, b), a) -> MIN(a, b)
551 return ReplaceInstUsesWith(Outer
, Inner
);
553 // MAX(MIN(a, b), a) -> a
554 // MIN(MAX(a, b), a) -> a
555 if ((SPF1
== SPF_SMIN
&& SPF2
== SPF_SMAX
) ||
556 (SPF1
== SPF_SMAX
&& SPF2
== SPF_SMIN
) ||
557 (SPF1
== SPF_UMIN
&& SPF2
== SPF_UMAX
) ||
558 (SPF1
== SPF_UMAX
&& SPF2
== SPF_UMIN
))
559 return ReplaceInstUsesWith(Outer
, C
);
562 // TODO: MIN(MIN(A, 23), 97)
567 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't
568 /// both be) and we have an icmp instruction with zero, and we have an 'and'
569 /// with the non-constant value and a power of two we can turn the select
570 /// into a shift on the result of the 'and'.
571 static Value
*foldSelectICmpAnd(const SelectInst
&SI
, ConstantInt
*TrueVal
,
572 ConstantInt
*FalseVal
,
573 InstCombiner::BuilderTy
*Builder
) {
574 const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(SI
.getCondition());
575 if (!IC
|| !IC
->isEquality())
578 if (!match(IC
->getOperand(1), m_Zero()))
582 Value
*LHS
= IC
->getOperand(0);
583 if (LHS
->getType() != SI
.getType() ||
584 !match(LHS
, m_And(m_Value(), m_ConstantInt(AndRHS
))))
587 // If both select arms are non-zero see if we have a select of the form
588 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
589 // for 'x ? 2^n : 0' and fix the thing up at the end.
590 ConstantInt
*Offset
= 0;
591 if (!TrueVal
->isZero() && !FalseVal
->isZero()) {
592 if ((TrueVal
->getValue() - FalseVal
->getValue()).isPowerOf2())
594 else if ((FalseVal
->getValue() - TrueVal
->getValue()).isPowerOf2())
599 // Adjust TrueVal and FalseVal to the offset.
600 TrueVal
= ConstantInt::get(Builder
->getContext(),
601 TrueVal
->getValue() - Offset
->getValue());
602 FalseVal
= ConstantInt::get(Builder
->getContext(),
603 FalseVal
->getValue() - Offset
->getValue());
606 // Make sure the mask in the 'and' and one of the select arms is a power of 2.
607 if (!AndRHS
->getValue().isPowerOf2() ||
608 (!TrueVal
->getValue().isPowerOf2() &&
609 !FalseVal
->getValue().isPowerOf2()))
612 // Determine which shift is needed to transform result of the 'and' into the
614 ConstantInt
*ValC
= !TrueVal
->isZero() ? TrueVal
: FalseVal
;
615 unsigned ValZeros
= ValC
->getValue().logBase2();
616 unsigned AndZeros
= AndRHS
->getValue().logBase2();
619 if (ValZeros
> AndZeros
)
620 V
= Builder
->CreateShl(V
, ValZeros
- AndZeros
);
621 else if (ValZeros
< AndZeros
)
622 V
= Builder
->CreateLShr(V
, AndZeros
- ValZeros
);
624 // Okay, now we know that everything is set up, we just don't know whether we
625 // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
626 bool ShouldNotVal
= !TrueVal
->isZero();
627 ShouldNotVal
^= IC
->getPredicate() == ICmpInst::ICMP_NE
;
629 V
= Builder
->CreateXor(V
, ValC
);
631 // Apply an offset if needed.
633 V
= Builder
->CreateAdd(V
, Offset
);
637 Instruction
*InstCombiner::visitSelectInst(SelectInst
&SI
) {
638 Value
*CondVal
= SI
.getCondition();
639 Value
*TrueVal
= SI
.getTrueValue();
640 Value
*FalseVal
= SI
.getFalseValue();
642 if (Value
*V
= SimplifySelectInst(CondVal
, TrueVal
, FalseVal
, TD
))
643 return ReplaceInstUsesWith(SI
, V
);
645 if (SI
.getType()->isIntegerTy(1)) {
646 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(TrueVal
)) {
647 if (C
->getZExtValue()) {
648 // Change: A = select B, true, C --> A = or B, C
649 return BinaryOperator::CreateOr(CondVal
, FalseVal
);
651 // Change: A = select B, false, C --> A = and !B, C
652 Value
*NotCond
= Builder
->CreateNot(CondVal
, "not."+CondVal
->getName());
653 return BinaryOperator::CreateAnd(NotCond
, FalseVal
);
654 } else if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(FalseVal
)) {
655 if (C
->getZExtValue() == false) {
656 // Change: A = select B, C, false --> A = and B, C
657 return BinaryOperator::CreateAnd(CondVal
, TrueVal
);
659 // Change: A = select B, C, true --> A = or !B, C
660 Value
*NotCond
= Builder
->CreateNot(CondVal
, "not."+CondVal
->getName());
661 return BinaryOperator::CreateOr(NotCond
, TrueVal
);
664 // select a, b, a -> a&b
665 // select a, a, b -> a|b
666 if (CondVal
== TrueVal
)
667 return BinaryOperator::CreateOr(CondVal
, FalseVal
);
668 else if (CondVal
== FalseVal
)
669 return BinaryOperator::CreateAnd(CondVal
, TrueVal
);
672 // Selecting between two integer constants?
673 if (ConstantInt
*TrueValC
= dyn_cast
<ConstantInt
>(TrueVal
))
674 if (ConstantInt
*FalseValC
= dyn_cast
<ConstantInt
>(FalseVal
)) {
675 // select C, 1, 0 -> zext C to int
676 if (FalseValC
->isZero() && TrueValC
->getValue() == 1)
677 return new ZExtInst(CondVal
, SI
.getType());
679 // select C, -1, 0 -> sext C to int
680 if (FalseValC
->isZero() && TrueValC
->isAllOnesValue())
681 return new SExtInst(CondVal
, SI
.getType());
683 // select C, 0, 1 -> zext !C to int
684 if (TrueValC
->isZero() && FalseValC
->getValue() == 1) {
685 Value
*NotCond
= Builder
->CreateNot(CondVal
, "not."+CondVal
->getName());
686 return new ZExtInst(NotCond
, SI
.getType());
689 // select C, 0, -1 -> sext !C to int
690 if (TrueValC
->isZero() && FalseValC
->isAllOnesValue()) {
691 Value
*NotCond
= Builder
->CreateNot(CondVal
, "not."+CondVal
->getName());
692 return new SExtInst(NotCond
, SI
.getType());
695 if (Value
*V
= foldSelectICmpAnd(SI
, TrueValC
, FalseValC
, Builder
))
696 return ReplaceInstUsesWith(SI
, V
);
699 // See if we are selecting two values based on a comparison of the two values.
700 if (FCmpInst
*FCI
= dyn_cast
<FCmpInst
>(CondVal
)) {
701 if (FCI
->getOperand(0) == TrueVal
&& FCI
->getOperand(1) == FalseVal
) {
702 // Transform (X == Y) ? X : Y -> Y
703 if (FCI
->getPredicate() == FCmpInst::FCMP_OEQ
) {
704 // This is not safe in general for floating point:
705 // consider X== -0, Y== +0.
706 // It becomes safe if either operand is a nonzero constant.
707 ConstantFP
*CFPt
, *CFPf
;
708 if (((CFPt
= dyn_cast
<ConstantFP
>(TrueVal
)) &&
709 !CFPt
->getValueAPF().isZero()) ||
710 ((CFPf
= dyn_cast
<ConstantFP
>(FalseVal
)) &&
711 !CFPf
->getValueAPF().isZero()))
712 return ReplaceInstUsesWith(SI
, FalseVal
);
714 // Transform (X une Y) ? X : Y -> X
715 if (FCI
->getPredicate() == FCmpInst::FCMP_UNE
) {
716 // This is not safe in general for floating point:
717 // consider X== -0, Y== +0.
718 // It becomes safe if either operand is a nonzero constant.
719 ConstantFP
*CFPt
, *CFPf
;
720 if (((CFPt
= dyn_cast
<ConstantFP
>(TrueVal
)) &&
721 !CFPt
->getValueAPF().isZero()) ||
722 ((CFPf
= dyn_cast
<ConstantFP
>(FalseVal
)) &&
723 !CFPf
->getValueAPF().isZero()))
724 return ReplaceInstUsesWith(SI
, TrueVal
);
726 // NOTE: if we wanted to, this is where to detect MIN/MAX
728 } else if (FCI
->getOperand(0) == FalseVal
&& FCI
->getOperand(1) == TrueVal
){
729 // Transform (X == Y) ? Y : X -> X
730 if (FCI
->getPredicate() == FCmpInst::FCMP_OEQ
) {
731 // This is not safe in general for floating point:
732 // consider X== -0, Y== +0.
733 // It becomes safe if either operand is a nonzero constant.
734 ConstantFP
*CFPt
, *CFPf
;
735 if (((CFPt
= dyn_cast
<ConstantFP
>(TrueVal
)) &&
736 !CFPt
->getValueAPF().isZero()) ||
737 ((CFPf
= dyn_cast
<ConstantFP
>(FalseVal
)) &&
738 !CFPf
->getValueAPF().isZero()))
739 return ReplaceInstUsesWith(SI
, FalseVal
);
741 // Transform (X une Y) ? Y : X -> Y
742 if (FCI
->getPredicate() == FCmpInst::FCMP_UNE
) {
743 // This is not safe in general for floating point:
744 // consider X== -0, Y== +0.
745 // It becomes safe if either operand is a nonzero constant.
746 ConstantFP
*CFPt
, *CFPf
;
747 if (((CFPt
= dyn_cast
<ConstantFP
>(TrueVal
)) &&
748 !CFPt
->getValueAPF().isZero()) ||
749 ((CFPf
= dyn_cast
<ConstantFP
>(FalseVal
)) &&
750 !CFPf
->getValueAPF().isZero()))
751 return ReplaceInstUsesWith(SI
, TrueVal
);
753 // NOTE: if we wanted to, this is where to detect MIN/MAX
755 // NOTE: if we wanted to, this is where to detect ABS
758 // See if we are selecting two values based on a comparison of the two values.
759 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(CondVal
))
760 if (Instruction
*Result
= visitSelectInstWithICmp(SI
, ICI
))
763 if (Instruction
*TI
= dyn_cast
<Instruction
>(TrueVal
))
764 if (Instruction
*FI
= dyn_cast
<Instruction
>(FalseVal
))
765 if (TI
->hasOneUse() && FI
->hasOneUse()) {
766 Instruction
*AddOp
= 0, *SubOp
= 0;
768 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
769 if (TI
->getOpcode() == FI
->getOpcode())
770 if (Instruction
*IV
= FoldSelectOpOp(SI
, TI
, FI
))
773 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
774 // even legal for FP.
775 if ((TI
->getOpcode() == Instruction::Sub
&&
776 FI
->getOpcode() == Instruction::Add
) ||
777 (TI
->getOpcode() == Instruction::FSub
&&
778 FI
->getOpcode() == Instruction::FAdd
)) {
779 AddOp
= FI
; SubOp
= TI
;
780 } else if ((FI
->getOpcode() == Instruction::Sub
&&
781 TI
->getOpcode() == Instruction::Add
) ||
782 (FI
->getOpcode() == Instruction::FSub
&&
783 TI
->getOpcode() == Instruction::FAdd
)) {
784 AddOp
= TI
; SubOp
= FI
;
788 Value
*OtherAddOp
= 0;
789 if (SubOp
->getOperand(0) == AddOp
->getOperand(0)) {
790 OtherAddOp
= AddOp
->getOperand(1);
791 } else if (SubOp
->getOperand(0) == AddOp
->getOperand(1)) {
792 OtherAddOp
= AddOp
->getOperand(0);
796 // So at this point we know we have (Y -> OtherAddOp):
797 // select C, (add X, Y), (sub X, Z)
798 Value
*NegVal
; // Compute -Z
799 if (SI
.getType()->isFPOrFPVectorTy()) {
800 NegVal
= Builder
->CreateFNeg(SubOp
->getOperand(1));
802 NegVal
= Builder
->CreateNeg(SubOp
->getOperand(1));
805 Value
*NewTrueOp
= OtherAddOp
;
806 Value
*NewFalseOp
= NegVal
;
808 std::swap(NewTrueOp
, NewFalseOp
);
810 Builder
->CreateSelect(CondVal
, NewTrueOp
,
811 NewFalseOp
, SI
.getName() + ".p");
813 if (SI
.getType()->isFPOrFPVectorTy())
814 return BinaryOperator::CreateFAdd(SubOp
->getOperand(0), NewSel
);
816 return BinaryOperator::CreateAdd(SubOp
->getOperand(0), NewSel
);
821 // See if we can fold the select into one of our operands.
822 if (SI
.getType()->isIntegerTy()) {
823 if (Instruction
*FoldI
= FoldSelectIntoOp(SI
, TrueVal
, FalseVal
))
826 // MAX(MAX(a, b), a) -> MAX(a, b)
827 // MIN(MIN(a, b), a) -> MIN(a, b)
828 // MAX(MIN(a, b), a) -> a
829 // MIN(MAX(a, b), a) -> a
830 Value
*LHS
, *RHS
, *LHS2
, *RHS2
;
831 if (SelectPatternFlavor SPF
= MatchSelectPattern(&SI
, LHS
, RHS
)) {
832 if (SelectPatternFlavor SPF2
= MatchSelectPattern(LHS
, LHS2
, RHS2
))
833 if (Instruction
*R
= FoldSPFofSPF(cast
<Instruction
>(LHS
),SPF2
,LHS2
,RHS2
,
836 if (SelectPatternFlavor SPF2
= MatchSelectPattern(RHS
, LHS2
, RHS2
))
837 if (Instruction
*R
= FoldSPFofSPF(cast
<Instruction
>(RHS
),SPF2
,LHS2
,RHS2
,
844 // ABS(ABS(X)) -> ABS(X)
847 // See if we can fold the select into a phi node if the condition is a select.
848 if (isa
<PHINode
>(SI
.getCondition()))
849 // The true/false values have to be live in the PHI predecessor's blocks.
850 if (CanSelectOperandBeMappingIntoPredBlock(TrueVal
, SI
) &&
851 CanSelectOperandBeMappingIntoPredBlock(FalseVal
, SI
))
852 if (Instruction
*NV
= FoldOpIntoPhi(SI
))
855 if (SelectInst
*TrueSI
= dyn_cast
<SelectInst
>(TrueVal
)) {
856 if (TrueSI
->getCondition() == CondVal
) {
857 SI
.setOperand(1, TrueSI
->getTrueValue());
861 if (SelectInst
*FalseSI
= dyn_cast
<SelectInst
>(FalseVal
)) {
862 if (FalseSI
->getCondition() == CondVal
) {
863 SI
.setOperand(2, FalseSI
->getFalseValue());
868 if (BinaryOperator::isNot(CondVal
)) {
869 SI
.setOperand(0, BinaryOperator::getNotArgument(CondVal
));
870 SI
.setOperand(1, FalseVal
);
871 SI
.setOperand(2, TrueVal
);