Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / Transforms / InstCombine / InstCombineSimplifyDemanded.cpp
blob8fea8eb7efb5aa0914a907b3afe14aeecf1530e8
1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
13 //===----------------------------------------------------------------------===//
16 #include "InstCombine.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/IntrinsicInst.h"
20 using namespace llvm;
23 /// ShrinkDemandedConstant - Check to see if the specified operand of the
24 /// specified instruction is a constant integer. If so, check to see if there
25 /// are any bits set in the constant that are not demanded. If so, shrink the
26 /// constant and return true.
27 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
28 APInt Demanded) {
29 assert(I && "No instruction?");
30 assert(OpNo < I->getNumOperands() && "Operand index too large");
32 // If the operand is not a constant integer, nothing to do.
33 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
34 if (!OpC) return false;
36 // If there are no bits set that aren't demanded, nothing to do.
37 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
38 if ((~Demanded & OpC->getValue()) == 0)
39 return false;
41 // This instruction is producing bits that are not demanded. Shrink the RHS.
42 Demanded &= OpC->getValue();
43 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
44 return true;
49 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
50 /// SimplifyDemandedBits knows about. See if the instruction has any
51 /// properties that allow us to simplify its operands.
52 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
53 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
54 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
55 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
57 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
58 KnownZero, KnownOne, 0);
59 if (V == 0) return false;
60 if (V == &Inst) return true;
61 ReplaceInstUsesWith(Inst, V);
62 return true;
65 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
66 /// specified instruction operand if possible, updating it in place. It returns
67 /// true if it made any change and false otherwise.
68 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
69 APInt &KnownZero, APInt &KnownOne,
70 unsigned Depth) {
71 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
72 KnownZero, KnownOne, Depth);
73 if (NewVal == 0) return false;
74 U = NewVal;
75 return true;
79 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
80 /// value based on the demanded bits. When this function is called, it is known
81 /// that only the bits set in DemandedMask of the result of V are ever used
82 /// downstream. Consequently, depending on the mask and V, it may be possible
83 /// to replace V with a constant or one of its operands. In such cases, this
84 /// function does the replacement and returns true. In all other cases, it
85 /// returns false after analyzing the expression and setting KnownOne and known
86 /// to be one in the expression. KnownZero contains all the bits that are known
87 /// to be zero in the expression. These are provided to potentially allow the
88 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
89 /// the expression. KnownOne and KnownZero always follow the invariant that
90 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
91 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
92 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
93 /// and KnownOne must all be the same.
94 ///
95 /// This returns null if it did not change anything and it permits no
96 /// simplification. This returns V itself if it did some simplification of V's
97 /// operands based on the information about what bits are demanded. This returns
98 /// some other non-null value if it found out that V is equal to another value
99 /// in the context where the specified bits are demanded, but not for all users.
100 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
101 APInt &KnownZero, APInt &KnownOne,
102 unsigned Depth) {
103 assert(V != 0 && "Null pointer of Value???");
104 assert(Depth <= 6 && "Limit Search Depth");
105 uint32_t BitWidth = DemandedMask.getBitWidth();
106 const Type *VTy = V->getType();
107 assert((TD || !VTy->isPointerTy()) &&
108 "SimplifyDemandedBits needs to know bit widths!");
109 assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
110 (!VTy->isIntOrIntVectorTy() ||
111 VTy->getScalarSizeInBits() == BitWidth) &&
112 KnownZero.getBitWidth() == BitWidth &&
113 KnownOne.getBitWidth() == BitWidth &&
114 "Value *V, DemandedMask, KnownZero and KnownOne "
115 "must have same BitWidth");
116 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
117 // We know all of the bits for a constant!
118 KnownOne = CI->getValue() & DemandedMask;
119 KnownZero = ~KnownOne & DemandedMask;
120 return 0;
122 if (isa<ConstantPointerNull>(V)) {
123 // We know all of the bits for a constant!
124 KnownOne.clearAllBits();
125 KnownZero = DemandedMask;
126 return 0;
129 KnownZero.clearAllBits();
130 KnownOne.clearAllBits();
131 if (DemandedMask == 0) { // Not demanding any bits from V.
132 if (isa<UndefValue>(V))
133 return 0;
134 return UndefValue::get(VTy);
137 if (Depth == 6) // Limit search depth.
138 return 0;
140 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
141 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
143 Instruction *I = dyn_cast<Instruction>(V);
144 if (!I) {
145 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
146 return 0; // Only analyze instructions.
149 // If there are multiple uses of this value and we aren't at the root, then
150 // we can't do any simplifications of the operands, because DemandedMask
151 // only reflects the bits demanded by *one* of the users.
152 if (Depth != 0 && !I->hasOneUse()) {
153 // Despite the fact that we can't simplify this instruction in all User's
154 // context, we can at least compute the knownzero/knownone bits, and we can
155 // do simplifications that apply to *just* the one user if we know that
156 // this instruction has a simpler value in that context.
157 if (I->getOpcode() == Instruction::And) {
158 // If either the LHS or the RHS are Zero, the result is zero.
159 ComputeMaskedBits(I->getOperand(1), DemandedMask,
160 RHSKnownZero, RHSKnownOne, Depth+1);
161 ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
162 LHSKnownZero, LHSKnownOne, Depth+1);
164 // If all of the demanded bits are known 1 on one side, return the other.
165 // These bits cannot contribute to the result of the 'and' in this
166 // context.
167 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
168 (DemandedMask & ~LHSKnownZero))
169 return I->getOperand(0);
170 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
171 (DemandedMask & ~RHSKnownZero))
172 return I->getOperand(1);
174 // If all of the demanded bits in the inputs are known zeros, return zero.
175 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
176 return Constant::getNullValue(VTy);
178 } else if (I->getOpcode() == Instruction::Or) {
179 // We can simplify (X|Y) -> X or Y in the user's context if we know that
180 // only bits from X or Y are demanded.
182 // If either the LHS or the RHS are One, the result is One.
183 ComputeMaskedBits(I->getOperand(1), DemandedMask,
184 RHSKnownZero, RHSKnownOne, Depth+1);
185 ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
186 LHSKnownZero, LHSKnownOne, Depth+1);
188 // If all of the demanded bits are known zero on one side, return the
189 // other. These bits cannot contribute to the result of the 'or' in this
190 // context.
191 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
192 (DemandedMask & ~LHSKnownOne))
193 return I->getOperand(0);
194 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
195 (DemandedMask & ~RHSKnownOne))
196 return I->getOperand(1);
198 // If all of the potentially set bits on one side are known to be set on
199 // the other side, just use the 'other' side.
200 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
201 (DemandedMask & (~RHSKnownZero)))
202 return I->getOperand(0);
203 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
204 (DemandedMask & (~LHSKnownZero)))
205 return I->getOperand(1);
208 // Compute the KnownZero/KnownOne bits to simplify things downstream.
209 ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
210 return 0;
213 // If this is the root being simplified, allow it to have multiple uses,
214 // just set the DemandedMask to all bits so that we can try to simplify the
215 // operands. This allows visitTruncInst (for example) to simplify the
216 // operand of a trunc without duplicating all the logic below.
217 if (Depth == 0 && !V->hasOneUse())
218 DemandedMask = APInt::getAllOnesValue(BitWidth);
220 switch (I->getOpcode()) {
221 default:
222 ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
223 break;
224 case Instruction::And:
225 // If either the LHS or the RHS are Zero, the result is zero.
226 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
227 RHSKnownZero, RHSKnownOne, Depth+1) ||
228 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
229 LHSKnownZero, LHSKnownOne, Depth+1))
230 return I;
231 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
232 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
234 // If all of the demanded bits are known 1 on one side, return the other.
235 // These bits cannot contribute to the result of the 'and'.
236 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
237 (DemandedMask & ~LHSKnownZero))
238 return I->getOperand(0);
239 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
240 (DemandedMask & ~RHSKnownZero))
241 return I->getOperand(1);
243 // If all of the demanded bits in the inputs are known zeros, return zero.
244 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
245 return Constant::getNullValue(VTy);
247 // If the RHS is a constant, see if we can simplify it.
248 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
249 return I;
251 // Output known-1 bits are only known if set in both the LHS & RHS.
252 KnownOne = RHSKnownOne & LHSKnownOne;
253 // Output known-0 are known to be clear if zero in either the LHS | RHS.
254 KnownZero = RHSKnownZero | LHSKnownZero;
255 break;
256 case Instruction::Or:
257 // If either the LHS or the RHS are One, the result is One.
258 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
259 RHSKnownZero, RHSKnownOne, Depth+1) ||
260 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
261 LHSKnownZero, LHSKnownOne, Depth+1))
262 return I;
263 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
264 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
266 // If all of the demanded bits are known zero on one side, return the other.
267 // These bits cannot contribute to the result of the 'or'.
268 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
269 (DemandedMask & ~LHSKnownOne))
270 return I->getOperand(0);
271 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
272 (DemandedMask & ~RHSKnownOne))
273 return I->getOperand(1);
275 // If all of the potentially set bits on one side are known to be set on
276 // the other side, just use the 'other' side.
277 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
278 (DemandedMask & (~RHSKnownZero)))
279 return I->getOperand(0);
280 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
281 (DemandedMask & (~LHSKnownZero)))
282 return I->getOperand(1);
284 // If the RHS is a constant, see if we can simplify it.
285 if (ShrinkDemandedConstant(I, 1, DemandedMask))
286 return I;
288 // Output known-0 bits are only known if clear in both the LHS & RHS.
289 KnownZero = RHSKnownZero & LHSKnownZero;
290 // Output known-1 are known to be set if set in either the LHS | RHS.
291 KnownOne = RHSKnownOne | LHSKnownOne;
292 break;
293 case Instruction::Xor: {
294 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
295 RHSKnownZero, RHSKnownOne, Depth+1) ||
296 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
297 LHSKnownZero, LHSKnownOne, Depth+1))
298 return I;
299 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
300 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
302 // If all of the demanded bits are known zero on one side, return the other.
303 // These bits cannot contribute to the result of the 'xor'.
304 if ((DemandedMask & RHSKnownZero) == DemandedMask)
305 return I->getOperand(0);
306 if ((DemandedMask & LHSKnownZero) == DemandedMask)
307 return I->getOperand(1);
309 // If all of the demanded bits are known to be zero on one side or the
310 // other, turn this into an *inclusive* or.
311 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
312 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
313 Instruction *Or =
314 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
315 I->getName());
316 return InsertNewInstWith(Or, *I);
319 // If all of the demanded bits on one side are known, and all of the set
320 // bits on that side are also known to be set on the other side, turn this
321 // into an AND, as we know the bits will be cleared.
322 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
323 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
324 // all known
325 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
326 Constant *AndC = Constant::getIntegerValue(VTy,
327 ~RHSKnownOne & DemandedMask);
328 Instruction *And =
329 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
330 return InsertNewInstWith(And, *I);
334 // If the RHS is a constant, see if we can simplify it.
335 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
336 if (ShrinkDemandedConstant(I, 1, DemandedMask))
337 return I;
339 // If our LHS is an 'and' and if it has one use, and if any of the bits we
340 // are flipping are known to be set, then the xor is just resetting those
341 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
342 // simplifying both of them.
343 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
344 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
345 isa<ConstantInt>(I->getOperand(1)) &&
346 isa<ConstantInt>(LHSInst->getOperand(1)) &&
347 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
348 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
349 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
350 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
352 Constant *AndC =
353 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
354 Instruction *NewAnd =
355 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
356 InsertNewInstWith(NewAnd, *I);
358 Constant *XorC =
359 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
360 Instruction *NewXor =
361 BinaryOperator::CreateXor(NewAnd, XorC, "tmp");
362 return InsertNewInstWith(NewXor, *I);
365 // Output known-0 bits are known if clear or set in both the LHS & RHS.
366 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
367 // Output known-1 are known to be set if set in only one of the LHS, RHS.
368 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
369 break;
371 case Instruction::Select:
372 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
373 RHSKnownZero, RHSKnownOne, Depth+1) ||
374 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
375 LHSKnownZero, LHSKnownOne, Depth+1))
376 return I;
377 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
378 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
380 // If the operands are constants, see if we can simplify them.
381 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
382 ShrinkDemandedConstant(I, 2, DemandedMask))
383 return I;
385 // Only known if known in both the LHS and RHS.
386 KnownOne = RHSKnownOne & LHSKnownOne;
387 KnownZero = RHSKnownZero & LHSKnownZero;
388 break;
389 case Instruction::Trunc: {
390 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
391 DemandedMask = DemandedMask.zext(truncBf);
392 KnownZero = KnownZero.zext(truncBf);
393 KnownOne = KnownOne.zext(truncBf);
394 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
395 KnownZero, KnownOne, Depth+1))
396 return I;
397 DemandedMask = DemandedMask.trunc(BitWidth);
398 KnownZero = KnownZero.trunc(BitWidth);
399 KnownOne = KnownOne.trunc(BitWidth);
400 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
401 break;
403 case Instruction::BitCast:
404 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
405 return 0; // vector->int or fp->int?
407 if (const VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
408 if (const VectorType *SrcVTy =
409 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
410 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
411 // Don't touch a bitcast between vectors of different element counts.
412 return 0;
413 } else
414 // Don't touch a scalar-to-vector bitcast.
415 return 0;
416 } else if (I->getOperand(0)->getType()->isVectorTy())
417 // Don't touch a vector-to-scalar bitcast.
418 return 0;
420 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
421 KnownZero, KnownOne, Depth+1))
422 return I;
423 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
424 break;
425 case Instruction::ZExt: {
426 // Compute the bits in the result that are not present in the input.
427 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
429 DemandedMask = DemandedMask.trunc(SrcBitWidth);
430 KnownZero = KnownZero.trunc(SrcBitWidth);
431 KnownOne = KnownOne.trunc(SrcBitWidth);
432 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
433 KnownZero, KnownOne, Depth+1))
434 return I;
435 DemandedMask = DemandedMask.zext(BitWidth);
436 KnownZero = KnownZero.zext(BitWidth);
437 KnownOne = KnownOne.zext(BitWidth);
438 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
439 // The top bits are known to be zero.
440 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
441 break;
443 case Instruction::SExt: {
444 // Compute the bits in the result that are not present in the input.
445 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
447 APInt InputDemandedBits = DemandedMask &
448 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
450 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
451 // If any of the sign extended bits are demanded, we know that the sign
452 // bit is demanded.
453 if ((NewBits & DemandedMask) != 0)
454 InputDemandedBits.setBit(SrcBitWidth-1);
456 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
457 KnownZero = KnownZero.trunc(SrcBitWidth);
458 KnownOne = KnownOne.trunc(SrcBitWidth);
459 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
460 KnownZero, KnownOne, Depth+1))
461 return I;
462 InputDemandedBits = InputDemandedBits.zext(BitWidth);
463 KnownZero = KnownZero.zext(BitWidth);
464 KnownOne = KnownOne.zext(BitWidth);
465 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
467 // If the sign bit of the input is known set or clear, then we know the
468 // top bits of the result.
470 // If the input sign bit is known zero, or if the NewBits are not demanded
471 // convert this into a zero extension.
472 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
473 // Convert to ZExt cast
474 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
475 return InsertNewInstWith(NewCast, *I);
476 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set
477 KnownOne |= NewBits;
479 break;
481 case Instruction::Add: {
482 // Figure out what the input bits are. If the top bits of the and result
483 // are not demanded, then the add doesn't demand them from its input
484 // either.
485 unsigned NLZ = DemandedMask.countLeadingZeros();
487 // If there is a constant on the RHS, there are a variety of xformations
488 // we can do.
489 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
490 // If null, this should be simplified elsewhere. Some of the xforms here
491 // won't work if the RHS is zero.
492 if (RHS->isZero())
493 break;
495 // If the top bit of the output is demanded, demand everything from the
496 // input. Otherwise, we demand all the input bits except NLZ top bits.
497 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
499 // Find information about known zero/one bits in the input.
500 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
501 LHSKnownZero, LHSKnownOne, Depth+1))
502 return I;
504 // If the RHS of the add has bits set that can't affect the input, reduce
505 // the constant.
506 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
507 return I;
509 // Avoid excess work.
510 if (LHSKnownZero == 0 && LHSKnownOne == 0)
511 break;
513 // Turn it into OR if input bits are zero.
514 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
515 Instruction *Or =
516 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
517 I->getName());
518 return InsertNewInstWith(Or, *I);
521 // We can say something about the output known-zero and known-one bits,
522 // depending on potential carries from the input constant and the
523 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
524 // bits set and the RHS constant is 0x01001, then we know we have a known
525 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
527 // To compute this, we first compute the potential carry bits. These are
528 // the bits which may be modified. I'm not aware of a better way to do
529 // this scan.
530 const APInt &RHSVal = RHS->getValue();
531 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
533 // Now that we know which bits have carries, compute the known-1/0 sets.
535 // Bits are known one if they are known zero in one operand and one in the
536 // other, and there is no input carry.
537 KnownOne = ((LHSKnownZero & RHSVal) |
538 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
540 // Bits are known zero if they are known zero in both operands and there
541 // is no input carry.
542 KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
543 } else {
544 // If the high-bits of this ADD are not demanded, then it does not demand
545 // the high bits of its LHS or RHS.
546 if (DemandedMask[BitWidth-1] == 0) {
547 // Right fill the mask of bits for this ADD to demand the most
548 // significant bit and all those below it.
549 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
550 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
551 LHSKnownZero, LHSKnownOne, Depth+1) ||
552 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
553 LHSKnownZero, LHSKnownOne, Depth+1))
554 return I;
557 break;
559 case Instruction::Sub:
560 // If the high-bits of this SUB are not demanded, then it does not demand
561 // the high bits of its LHS or RHS.
562 if (DemandedMask[BitWidth-1] == 0) {
563 // Right fill the mask of bits for this SUB to demand the most
564 // significant bit and all those below it.
565 uint32_t NLZ = DemandedMask.countLeadingZeros();
566 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
567 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
568 LHSKnownZero, LHSKnownOne, Depth+1) ||
569 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
570 LHSKnownZero, LHSKnownOne, Depth+1))
571 return I;
573 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
574 // the known zeros and ones.
575 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
576 break;
577 case Instruction::Shl:
578 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
579 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
580 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
582 // If the shift is NUW/NSW, then it does demand the high bits.
583 ShlOperator *IOp = cast<ShlOperator>(I);
584 if (IOp->hasNoSignedWrap())
585 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
586 else if (IOp->hasNoUnsignedWrap())
587 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
589 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
590 KnownZero, KnownOne, Depth+1))
591 return I;
592 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
593 KnownZero <<= ShiftAmt;
594 KnownOne <<= ShiftAmt;
595 // low bits known zero.
596 if (ShiftAmt)
597 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
599 break;
600 case Instruction::LShr:
601 // For a logical shift right
602 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
603 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
605 // Unsigned shift right.
606 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
608 // If the shift is exact, then it does demand the low bits (and knows that
609 // they are zero).
610 if (cast<LShrOperator>(I)->isExact())
611 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
613 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
614 KnownZero, KnownOne, Depth+1))
615 return I;
616 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
617 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
618 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
619 if (ShiftAmt) {
620 // Compute the new bits that are at the top now.
621 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
622 KnownZero |= HighBits; // high bits known zero.
625 break;
626 case Instruction::AShr:
627 // If this is an arithmetic shift right and only the low-bit is set, we can
628 // always convert this into a logical shr, even if the shift amount is
629 // variable. The low bit of the shift cannot be an input sign bit unless
630 // the shift amount is >= the size of the datatype, which is undefined.
631 if (DemandedMask == 1) {
632 // Perform the logical shift right.
633 Instruction *NewVal = BinaryOperator::CreateLShr(
634 I->getOperand(0), I->getOperand(1), I->getName());
635 return InsertNewInstWith(NewVal, *I);
638 // If the sign bit is the only bit demanded by this ashr, then there is no
639 // need to do it, the shift doesn't change the high bit.
640 if (DemandedMask.isSignBit())
641 return I->getOperand(0);
643 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
644 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
646 // Signed shift right.
647 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
648 // If any of the "high bits" are demanded, we should set the sign bit as
649 // demanded.
650 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
651 DemandedMaskIn.setBit(BitWidth-1);
653 // If the shift is exact, then it does demand the low bits (and knows that
654 // they are zero).
655 if (cast<AShrOperator>(I)->isExact())
656 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
658 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
659 KnownZero, KnownOne, Depth+1))
660 return I;
661 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
662 // Compute the new bits that are at the top now.
663 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
664 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
665 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
667 // Handle the sign bits.
668 APInt SignBit(APInt::getSignBit(BitWidth));
669 // Adjust to where it is now in the mask.
670 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
672 // If the input sign bit is known to be zero, or if none of the top bits
673 // are demanded, turn this into an unsigned shift right.
674 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
675 (HighBits & ~DemandedMask) == HighBits) {
676 // Perform the logical shift right.
677 Instruction *NewVal = BinaryOperator::CreateLShr(
678 I->getOperand(0), SA, I->getName());
679 return InsertNewInstWith(NewVal, *I);
680 } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
681 KnownOne |= HighBits;
684 break;
685 case Instruction::SRem:
686 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
687 // X % -1 demands all the bits because we don't want to introduce
688 // INT_MIN % -1 (== undef) by accident.
689 if (Rem->isAllOnesValue())
690 break;
691 APInt RA = Rem->getValue().abs();
692 if (RA.isPowerOf2()) {
693 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
694 return I->getOperand(0);
696 APInt LowBits = RA - 1;
697 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
698 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
699 LHSKnownZero, LHSKnownOne, Depth+1))
700 return I;
702 // The low bits of LHS are unchanged by the srem.
703 KnownZero = LHSKnownZero & LowBits;
704 KnownOne = LHSKnownOne & LowBits;
706 // If LHS is non-negative or has all low bits zero, then the upper bits
707 // are all zero.
708 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
709 KnownZero |= ~LowBits;
711 // If LHS is negative and not all low bits are zero, then the upper bits
712 // are all one.
713 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
714 KnownOne |= ~LowBits;
716 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
720 // The sign bit is the LHS's sign bit, except when the result of the
721 // remainder is zero.
722 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
723 APInt Mask2 = APInt::getSignBit(BitWidth);
724 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
725 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne,
726 Depth+1);
727 // If it's known zero, our sign bit is also zero.
728 if (LHSKnownZero.isNegative())
729 KnownZero |= LHSKnownZero;
731 break;
732 case Instruction::URem: {
733 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
734 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
735 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
736 KnownZero2, KnownOne2, Depth+1) ||
737 SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
738 KnownZero2, KnownOne2, Depth+1))
739 return I;
741 unsigned Leaders = KnownZero2.countLeadingOnes();
742 Leaders = std::max(Leaders,
743 KnownZero2.countLeadingOnes());
744 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
745 break;
747 case Instruction::Call:
748 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
749 switch (II->getIntrinsicID()) {
750 default: break;
751 case Intrinsic::bswap: {
752 // If the only bits demanded come from one byte of the bswap result,
753 // just shift the input byte into position to eliminate the bswap.
754 unsigned NLZ = DemandedMask.countLeadingZeros();
755 unsigned NTZ = DemandedMask.countTrailingZeros();
757 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
758 // we need all the bits down to bit 8. Likewise, round NLZ. If we
759 // have 14 leading zeros, round to 8.
760 NLZ &= ~7;
761 NTZ &= ~7;
762 // If we need exactly one byte, we can do this transformation.
763 if (BitWidth-NLZ-NTZ == 8) {
764 unsigned ResultBit = NTZ;
765 unsigned InputBit = BitWidth-NTZ-8;
767 // Replace this with either a left or right shift to get the byte into
768 // the right place.
769 Instruction *NewVal;
770 if (InputBit > ResultBit)
771 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
772 ConstantInt::get(I->getType(), InputBit-ResultBit));
773 else
774 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
775 ConstantInt::get(I->getType(), ResultBit-InputBit));
776 NewVal->takeName(I);
777 return InsertNewInstWith(NewVal, *I);
780 // TODO: Could compute known zero/one bits based on the input.
781 break;
783 case Intrinsic::x86_sse42_crc32_64_8:
784 case Intrinsic::x86_sse42_crc32_64_64:
785 KnownZero = APInt::getHighBitsSet(64, 32);
786 return 0;
789 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
790 break;
793 // If the client is only demanding bits that we know, return the known
794 // constant.
795 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
796 return Constant::getIntegerValue(VTy, KnownOne);
797 return 0;
801 /// SimplifyDemandedVectorElts - The specified value produces a vector with
802 /// any number of elements. DemandedElts contains the set of elements that are
803 /// actually used by the caller. This method analyzes which elements of the
804 /// operand are undef and returns that information in UndefElts.
806 /// If the information about demanded elements can be used to simplify the
807 /// operation, the operation is simplified, then the resultant value is
808 /// returned. This returns null if no change was made.
809 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
810 APInt &UndefElts,
811 unsigned Depth) {
812 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
813 APInt EltMask(APInt::getAllOnesValue(VWidth));
814 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
816 if (isa<UndefValue>(V)) {
817 // If the entire vector is undefined, just return this info.
818 UndefElts = EltMask;
819 return 0;
822 if (DemandedElts == 0) { // If nothing is demanded, provide undef.
823 UndefElts = EltMask;
824 return UndefValue::get(V->getType());
827 UndefElts = 0;
828 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
829 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
830 Constant *Undef = UndefValue::get(EltTy);
832 std::vector<Constant*> Elts;
833 for (unsigned i = 0; i != VWidth; ++i)
834 if (!DemandedElts[i]) { // If not demanded, set to undef.
835 Elts.push_back(Undef);
836 UndefElts.setBit(i);
837 } else if (isa<UndefValue>(CV->getOperand(i))) { // Already undef.
838 Elts.push_back(Undef);
839 UndefElts.setBit(i);
840 } else { // Otherwise, defined.
841 Elts.push_back(CV->getOperand(i));
844 // If we changed the constant, return it.
845 Constant *NewCP = ConstantVector::get(Elts);
846 return NewCP != CV ? NewCP : 0;
849 if (isa<ConstantAggregateZero>(V)) {
850 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
851 // set to undef.
853 // Check if this is identity. If so, return 0 since we are not simplifying
854 // anything.
855 if (DemandedElts.isAllOnesValue())
856 return 0;
858 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
859 Constant *Zero = Constant::getNullValue(EltTy);
860 Constant *Undef = UndefValue::get(EltTy);
861 std::vector<Constant*> Elts;
862 for (unsigned i = 0; i != VWidth; ++i) {
863 Constant *Elt = DemandedElts[i] ? Zero : Undef;
864 Elts.push_back(Elt);
866 UndefElts = DemandedElts ^ EltMask;
867 return ConstantVector::get(Elts);
870 // Limit search depth.
871 if (Depth == 10)
872 return 0;
874 // If multiple users are using the root value, proceed with
875 // simplification conservatively assuming that all elements
876 // are needed.
877 if (!V->hasOneUse()) {
878 // Quit if we find multiple users of a non-root value though.
879 // They'll be handled when it's their turn to be visited by
880 // the main instcombine process.
881 if (Depth != 0)
882 // TODO: Just compute the UndefElts information recursively.
883 return 0;
885 // Conservatively assume that all elements are needed.
886 DemandedElts = EltMask;
889 Instruction *I = dyn_cast<Instruction>(V);
890 if (!I) return 0; // Only analyze instructions.
892 bool MadeChange = false;
893 APInt UndefElts2(VWidth, 0);
894 Value *TmpV;
895 switch (I->getOpcode()) {
896 default: break;
898 case Instruction::InsertElement: {
899 // If this is a variable index, we don't know which element it overwrites.
900 // demand exactly the same input as we produce.
901 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
902 if (Idx == 0) {
903 // Note that we can't propagate undef elt info, because we don't know
904 // which elt is getting updated.
905 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
906 UndefElts2, Depth+1);
907 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
908 break;
911 // If this is inserting an element that isn't demanded, remove this
912 // insertelement.
913 unsigned IdxNo = Idx->getZExtValue();
914 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
915 Worklist.Add(I);
916 return I->getOperand(0);
919 // Otherwise, the element inserted overwrites whatever was there, so the
920 // input demanded set is simpler than the output set.
921 APInt DemandedElts2 = DemandedElts;
922 DemandedElts2.clearBit(IdxNo);
923 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
924 UndefElts, Depth+1);
925 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
927 // The inserted element is defined.
928 UndefElts.clearBit(IdxNo);
929 break;
931 case Instruction::ShuffleVector: {
932 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
933 uint64_t LHSVWidth =
934 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
935 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
936 for (unsigned i = 0; i < VWidth; i++) {
937 if (DemandedElts[i]) {
938 unsigned MaskVal = Shuffle->getMaskValue(i);
939 if (MaskVal != -1u) {
940 assert(MaskVal < LHSVWidth * 2 &&
941 "shufflevector mask index out of range!");
942 if (MaskVal < LHSVWidth)
943 LeftDemanded.setBit(MaskVal);
944 else
945 RightDemanded.setBit(MaskVal - LHSVWidth);
950 APInt UndefElts4(LHSVWidth, 0);
951 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
952 UndefElts4, Depth+1);
953 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
955 APInt UndefElts3(LHSVWidth, 0);
956 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
957 UndefElts3, Depth+1);
958 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
960 bool NewUndefElts = false;
961 for (unsigned i = 0; i < VWidth; i++) {
962 unsigned MaskVal = Shuffle->getMaskValue(i);
963 if (MaskVal == -1u) {
964 UndefElts.setBit(i);
965 } else if (MaskVal < LHSVWidth) {
966 if (UndefElts4[MaskVal]) {
967 NewUndefElts = true;
968 UndefElts.setBit(i);
970 } else {
971 if (UndefElts3[MaskVal - LHSVWidth]) {
972 NewUndefElts = true;
973 UndefElts.setBit(i);
978 if (NewUndefElts) {
979 // Add additional discovered undefs.
980 std::vector<Constant*> Elts;
981 for (unsigned i = 0; i < VWidth; ++i) {
982 if (UndefElts[i])
983 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
984 else
985 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
986 Shuffle->getMaskValue(i)));
988 I->setOperand(2, ConstantVector::get(Elts));
989 MadeChange = true;
991 break;
993 case Instruction::BitCast: {
994 // Vector->vector casts only.
995 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
996 if (!VTy) break;
997 unsigned InVWidth = VTy->getNumElements();
998 APInt InputDemandedElts(InVWidth, 0);
999 unsigned Ratio;
1001 if (VWidth == InVWidth) {
1002 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1003 // elements as are demanded of us.
1004 Ratio = 1;
1005 InputDemandedElts = DemandedElts;
1006 } else if (VWidth > InVWidth) {
1007 // Untested so far.
1008 break;
1010 // If there are more elements in the result than there are in the source,
1011 // then an input element is live if any of the corresponding output
1012 // elements are live.
1013 Ratio = VWidth/InVWidth;
1014 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1015 if (DemandedElts[OutIdx])
1016 InputDemandedElts.setBit(OutIdx/Ratio);
1018 } else {
1019 // Untested so far.
1020 break;
1022 // If there are more elements in the source than there are in the result,
1023 // then an input element is live if the corresponding output element is
1024 // live.
1025 Ratio = InVWidth/VWidth;
1026 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1027 if (DemandedElts[InIdx/Ratio])
1028 InputDemandedElts.setBit(InIdx);
1031 // div/rem demand all inputs, because they don't want divide by zero.
1032 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1033 UndefElts2, Depth+1);
1034 if (TmpV) {
1035 I->setOperand(0, TmpV);
1036 MadeChange = true;
1039 UndefElts = UndefElts2;
1040 if (VWidth > InVWidth) {
1041 llvm_unreachable("Unimp");
1042 // If there are more elements in the result than there are in the source,
1043 // then an output element is undef if the corresponding input element is
1044 // undef.
1045 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1046 if (UndefElts2[OutIdx/Ratio])
1047 UndefElts.setBit(OutIdx);
1048 } else if (VWidth < InVWidth) {
1049 llvm_unreachable("Unimp");
1050 // If there are more elements in the source than there are in the result,
1051 // then a result element is undef if all of the corresponding input
1052 // elements are undef.
1053 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1054 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1055 if (!UndefElts2[InIdx]) // Not undef?
1056 UndefElts.clearBit(InIdx/Ratio); // Clear undef bit.
1058 break;
1060 case Instruction::And:
1061 case Instruction::Or:
1062 case Instruction::Xor:
1063 case Instruction::Add:
1064 case Instruction::Sub:
1065 case Instruction::Mul:
1066 // div/rem demand all inputs, because they don't want divide by zero.
1067 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1068 UndefElts, Depth+1);
1069 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1070 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1071 UndefElts2, Depth+1);
1072 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1074 // Output elements are undefined if both are undefined. Consider things
1075 // like undef&0. The result is known zero, not undef.
1076 UndefElts &= UndefElts2;
1077 break;
1079 case Instruction::Call: {
1080 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1081 if (!II) break;
1082 switch (II->getIntrinsicID()) {
1083 default: break;
1085 // Binary vector operations that work column-wise. A dest element is a
1086 // function of the corresponding input elements from the two inputs.
1087 case Intrinsic::x86_sse_sub_ss:
1088 case Intrinsic::x86_sse_mul_ss:
1089 case Intrinsic::x86_sse_min_ss:
1090 case Intrinsic::x86_sse_max_ss:
1091 case Intrinsic::x86_sse2_sub_sd:
1092 case Intrinsic::x86_sse2_mul_sd:
1093 case Intrinsic::x86_sse2_min_sd:
1094 case Intrinsic::x86_sse2_max_sd:
1095 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1096 UndefElts, Depth+1);
1097 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1098 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1099 UndefElts2, Depth+1);
1100 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1102 // If only the low elt is demanded and this is a scalarizable intrinsic,
1103 // scalarize it now.
1104 if (DemandedElts == 1) {
1105 switch (II->getIntrinsicID()) {
1106 default: break;
1107 case Intrinsic::x86_sse_sub_ss:
1108 case Intrinsic::x86_sse_mul_ss:
1109 case Intrinsic::x86_sse2_sub_sd:
1110 case Intrinsic::x86_sse2_mul_sd:
1111 // TODO: Lower MIN/MAX/ABS/etc
1112 Value *LHS = II->getArgOperand(0);
1113 Value *RHS = II->getArgOperand(1);
1114 // Extract the element as scalars.
1115 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1116 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1117 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1118 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1120 switch (II->getIntrinsicID()) {
1121 default: llvm_unreachable("Case stmts out of sync!");
1122 case Intrinsic::x86_sse_sub_ss:
1123 case Intrinsic::x86_sse2_sub_sd:
1124 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1125 II->getName()), *II);
1126 break;
1127 case Intrinsic::x86_sse_mul_ss:
1128 case Intrinsic::x86_sse2_mul_sd:
1129 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1130 II->getName()), *II);
1131 break;
1134 Instruction *New =
1135 InsertElementInst::Create(
1136 UndefValue::get(II->getType()), TmpV,
1137 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1138 II->getName());
1139 InsertNewInstWith(New, *II);
1140 return New;
1144 // Output elements are undefined if both are undefined. Consider things
1145 // like undef&0. The result is known zero, not undef.
1146 UndefElts &= UndefElts2;
1147 break;
1149 break;
1152 return MadeChange ? I : 0;