1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 // 1. All loops are transformed to have a SINGLE canonical induction variable
17 // which starts at zero and steps by one.
18 // 2. The canonical induction variable is guaranteed to be the first PHI node
19 // in the loop header block.
20 // 3. The canonical induction variable is guaranteed to be in a wide enough
21 // type so that IV expressions need not be (directly) zero-extended or
23 // 4. Any pointer arithmetic recurrences are raised to use array subscripts.
25 // If the trip count of a loop is computable, this pass also makes the following
27 // 1. The exit condition for the loop is canonicalized to compare the
28 // induction value against the exit value. This turns loops like:
29 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 // 2. Any use outside of the loop of an expression derived from the indvar
31 // is changed to compute the derived value outside of the loop, eliminating
32 // the dependence on the exit value of the induction variable. If the only
33 // purpose of the loop is to compute the exit value of some derived
34 // expression, this transformation will make the loop dead.
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
39 //===----------------------------------------------------------------------===//
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/LLVMContext.h"
48 #include "llvm/Type.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/IVUsers.h"
51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Support/CFG.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Target/TargetData.h"
61 #include "llvm/ADT/DenseMap.h"
62 #include "llvm/ADT/SmallVector.h"
63 #include "llvm/ADT/Statistic.h"
64 #include "llvm/ADT/STLExtras.h"
67 STATISTIC(NumRemoved
, "Number of aux indvars removed");
68 STATISTIC(NumWidened
, "Number of indvars widened");
69 STATISTIC(NumInserted
, "Number of canonical indvars added");
70 STATISTIC(NumReplaced
, "Number of exit values replaced");
71 STATISTIC(NumLFTR
, "Number of loop exit tests replaced");
72 STATISTIC(NumElimIdentity
, "Number of IV identities eliminated");
73 STATISTIC(NumElimExt
, "Number of IV sign/zero extends eliminated");
74 STATISTIC(NumElimRem
, "Number of IV remainder operations eliminated");
75 STATISTIC(NumElimCmp
, "Number of IV comparisons eliminated");
76 STATISTIC(NumElimIV
, "Number of congruent IVs eliminated");
78 static cl::opt
<bool> DisableIVRewrite(
79 "disable-iv-rewrite", cl::Hidden
,
80 cl::desc("Disable canonical induction variable rewriting"));
83 class IndVarSimplify
: public LoopPass
{
84 typedef DenseMap
< const SCEV
*, AssertingVH
<PHINode
> > ExprToIVMapTy
;
92 ExprToIVMapTy ExprToIVMap
;
93 SmallVector
<WeakVH
, 16> DeadInsts
;
97 static char ID
; // Pass identification, replacement for typeid
98 IndVarSimplify() : LoopPass(ID
), IU(0), LI(0), SE(0), DT(0), TD(0),
100 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
103 virtual bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
105 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
106 AU
.addRequired
<DominatorTree
>();
107 AU
.addRequired
<LoopInfo
>();
108 AU
.addRequired
<ScalarEvolution
>();
109 AU
.addRequiredID(LoopSimplifyID
);
110 AU
.addRequiredID(LCSSAID
);
111 if (!DisableIVRewrite
)
112 AU
.addRequired
<IVUsers
>();
113 AU
.addPreserved
<ScalarEvolution
>();
114 AU
.addPreservedID(LoopSimplifyID
);
115 AU
.addPreservedID(LCSSAID
);
116 if (!DisableIVRewrite
)
117 AU
.addPreserved
<IVUsers
>();
118 AU
.setPreservesCFG();
122 virtual void releaseMemory() {
127 bool isValidRewrite(Value
*FromVal
, Value
*ToVal
);
129 void SimplifyIVUsers(SCEVExpander
&Rewriter
);
130 void SimplifyIVUsersNoRewrite(Loop
*L
, SCEVExpander
&Rewriter
);
132 bool EliminateIVUser(Instruction
*UseInst
, Instruction
*IVOperand
);
133 void EliminateIVComparison(ICmpInst
*ICmp
, Value
*IVOperand
);
134 void EliminateIVRemainder(BinaryOperator
*Rem
,
137 bool isSimpleIVUser(Instruction
*I
, const Loop
*L
);
138 void RewriteNonIntegerIVs(Loop
*L
);
140 ICmpInst
*LinearFunctionTestReplace(Loop
*L
, const SCEV
*BackedgeTakenCount
,
142 SCEVExpander
&Rewriter
);
144 void RewriteLoopExitValues(Loop
*L
, SCEVExpander
&Rewriter
);
146 void SimplifyCongruentIVs(Loop
*L
);
148 void RewriteIVExpressions(Loop
*L
, SCEVExpander
&Rewriter
);
150 void SinkUnusedInvariants(Loop
*L
);
152 void HandleFloatingPointIV(Loop
*L
, PHINode
*PH
);
156 char IndVarSimplify::ID
= 0;
157 INITIALIZE_PASS_BEGIN(IndVarSimplify
, "indvars",
158 "Induction Variable Simplification", false, false)
159 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
160 INITIALIZE_PASS_DEPENDENCY(LoopInfo
)
161 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution
)
162 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
163 INITIALIZE_PASS_DEPENDENCY(LCSSA
)
164 INITIALIZE_PASS_DEPENDENCY(IVUsers
)
165 INITIALIZE_PASS_END(IndVarSimplify
, "indvars",
166 "Induction Variable Simplification", false, false)
168 Pass
*llvm::createIndVarSimplifyPass() {
169 return new IndVarSimplify();
172 /// isValidRewrite - Return true if the SCEV expansion generated by the
173 /// rewriter can replace the original value. SCEV guarantees that it
174 /// produces the same value, but the way it is produced may be illegal IR.
175 /// Ideally, this function will only be called for verification.
176 bool IndVarSimplify::isValidRewrite(Value
*FromVal
, Value
*ToVal
) {
177 // If an SCEV expression subsumed multiple pointers, its expansion could
178 // reassociate the GEP changing the base pointer. This is illegal because the
179 // final address produced by a GEP chain must be inbounds relative to its
180 // underlying object. Otherwise basic alias analysis, among other things,
181 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
182 // producing an expression involving multiple pointers. Until then, we must
185 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
186 // because it understands lcssa phis while SCEV does not.
187 Value
*FromPtr
= FromVal
;
188 Value
*ToPtr
= ToVal
;
189 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(FromVal
)) {
190 FromPtr
= GEP
->getPointerOperand();
192 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(ToVal
)) {
193 ToPtr
= GEP
->getPointerOperand();
195 if (FromPtr
!= FromVal
|| ToPtr
!= ToVal
) {
196 // Quickly check the common case
197 if (FromPtr
== ToPtr
)
200 // SCEV may have rewritten an expression that produces the GEP's pointer
201 // operand. That's ok as long as the pointer operand has the same base
202 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
203 // base of a recurrence. This handles the case in which SCEV expansion
204 // converts a pointer type recurrence into a nonrecurrent pointer base
205 // indexed by an integer recurrence.
206 const SCEV
*FromBase
= SE
->getPointerBase(SE
->getSCEV(FromPtr
));
207 const SCEV
*ToBase
= SE
->getPointerBase(SE
->getSCEV(ToPtr
));
208 if (FromBase
== ToBase
)
211 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
212 << *FromBase
<< " != " << *ToBase
<< "\n");
219 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
220 /// count expression can be safely and cheaply expanded into an instruction
221 /// sequence that can be used by LinearFunctionTestReplace.
222 static bool canExpandBackedgeTakenCount(Loop
*L
, ScalarEvolution
*SE
) {
223 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
224 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
) ||
225 BackedgeTakenCount
->isZero())
228 if (!L
->getExitingBlock())
231 // Can't rewrite non-branch yet.
232 BranchInst
*BI
= dyn_cast
<BranchInst
>(L
->getExitingBlock()->getTerminator());
236 // Special case: If the backedge-taken count is a UDiv, it's very likely a
237 // UDiv that ScalarEvolution produced in order to compute a precise
238 // expression, rather than a UDiv from the user's code. If we can't find a
239 // UDiv in the code with some simple searching, assume the former and forego
240 // rewriting the loop.
241 if (isa
<SCEVUDivExpr
>(BackedgeTakenCount
)) {
242 ICmpInst
*OrigCond
= dyn_cast
<ICmpInst
>(BI
->getCondition());
243 if (!OrigCond
) return false;
244 const SCEV
*R
= SE
->getSCEV(OrigCond
->getOperand(1));
245 R
= SE
->getMinusSCEV(R
, SE
->getConstant(R
->getType(), 1));
246 if (R
!= BackedgeTakenCount
) {
247 const SCEV
*L
= SE
->getSCEV(OrigCond
->getOperand(0));
248 L
= SE
->getMinusSCEV(L
, SE
->getConstant(L
->getType(), 1));
249 if (L
!= BackedgeTakenCount
)
256 /// getBackedgeIVType - Get the widest type used by the loop test after peeking
259 /// TODO: Unnecessary once LinearFunctionTestReplace is removed.
260 static const Type
*getBackedgeIVType(Loop
*L
) {
261 if (!L
->getExitingBlock())
264 // Can't rewrite non-branch yet.
265 BranchInst
*BI
= dyn_cast
<BranchInst
>(L
->getExitingBlock()->getTerminator());
269 ICmpInst
*Cond
= dyn_cast
<ICmpInst
>(BI
->getCondition());
274 for(User::op_iterator OI
= Cond
->op_begin(), OE
= Cond
->op_end();
276 assert((!Ty
|| Ty
== (*OI
)->getType()) && "bad icmp operand types");
277 TruncInst
*Trunc
= dyn_cast
<TruncInst
>(*OI
);
281 return Trunc
->getSrcTy();
286 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
287 /// loop to be a canonical != comparison against the incremented loop induction
288 /// variable. This pass is able to rewrite the exit tests of any loop where the
289 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
290 /// is actually a much broader range than just linear tests.
291 ICmpInst
*IndVarSimplify::
292 LinearFunctionTestReplace(Loop
*L
,
293 const SCEV
*BackedgeTakenCount
,
295 SCEVExpander
&Rewriter
) {
296 assert(canExpandBackedgeTakenCount(L
, SE
) && "precondition");
297 BranchInst
*BI
= cast
<BranchInst
>(L
->getExitingBlock()->getTerminator());
299 // If the exiting block is not the same as the backedge block, we must compare
300 // against the preincremented value, otherwise we prefer to compare against
301 // the post-incremented value.
303 const SCEV
*RHS
= BackedgeTakenCount
;
304 if (L
->getExitingBlock() == L
->getLoopLatch()) {
305 // Add one to the "backedge-taken" count to get the trip count.
306 // If this addition may overflow, we have to be more pessimistic and
307 // cast the induction variable before doing the add.
308 const SCEV
*Zero
= SE
->getConstant(BackedgeTakenCount
->getType(), 0);
310 SE
->getAddExpr(BackedgeTakenCount
,
311 SE
->getConstant(BackedgeTakenCount
->getType(), 1));
312 if ((isa
<SCEVConstant
>(N
) && !N
->isZero()) ||
313 SE
->isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_NE
, N
, Zero
)) {
314 // No overflow. Cast the sum.
315 RHS
= SE
->getTruncateOrZeroExtend(N
, IndVar
->getType());
317 // Potential overflow. Cast before doing the add.
318 RHS
= SE
->getTruncateOrZeroExtend(BackedgeTakenCount
,
320 RHS
= SE
->getAddExpr(RHS
,
321 SE
->getConstant(IndVar
->getType(), 1));
324 // The BackedgeTaken expression contains the number of times that the
325 // backedge branches to the loop header. This is one less than the
326 // number of times the loop executes, so use the incremented indvar.
327 CmpIndVar
= IndVar
->getIncomingValueForBlock(L
->getExitingBlock());
329 // We have to use the preincremented value...
330 RHS
= SE
->getTruncateOrZeroExtend(BackedgeTakenCount
,
335 // Expand the code for the iteration count.
336 assert(SE
->isLoopInvariant(RHS
, L
) &&
337 "Computed iteration count is not loop invariant!");
338 Value
*ExitCnt
= Rewriter
.expandCodeFor(RHS
, IndVar
->getType(), BI
);
340 // Insert a new icmp_ne or icmp_eq instruction before the branch.
341 ICmpInst::Predicate Opcode
;
342 if (L
->contains(BI
->getSuccessor(0)))
343 Opcode
= ICmpInst::ICMP_NE
;
345 Opcode
= ICmpInst::ICMP_EQ
;
347 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
348 << " LHS:" << *CmpIndVar
<< '\n'
350 << (Opcode
== ICmpInst::ICMP_NE
? "!=" : "==") << "\n"
351 << " RHS:\t" << *RHS
<< "\n");
353 ICmpInst
*Cond
= new ICmpInst(BI
, Opcode
, CmpIndVar
, ExitCnt
, "exitcond");
354 Cond
->setDebugLoc(BI
->getDebugLoc());
355 Value
*OrigCond
= BI
->getCondition();
356 // It's tempting to use replaceAllUsesWith here to fully replace the old
357 // comparison, but that's not immediately safe, since users of the old
358 // comparison may not be dominated by the new comparison. Instead, just
359 // update the branch to use the new comparison; in the common case this
360 // will make old comparison dead.
361 BI
->setCondition(Cond
);
362 DeadInsts
.push_back(OrigCond
);
369 /// RewriteLoopExitValues - Check to see if this loop has a computable
370 /// loop-invariant execution count. If so, this means that we can compute the
371 /// final value of any expressions that are recurrent in the loop, and
372 /// substitute the exit values from the loop into any instructions outside of
373 /// the loop that use the final values of the current expressions.
375 /// This is mostly redundant with the regular IndVarSimplify activities that
376 /// happen later, except that it's more powerful in some cases, because it's
377 /// able to brute-force evaluate arbitrary instructions as long as they have
378 /// constant operands at the beginning of the loop.
379 void IndVarSimplify::RewriteLoopExitValues(Loop
*L
, SCEVExpander
&Rewriter
) {
380 // Verify the input to the pass in already in LCSSA form.
381 assert(L
->isLCSSAForm(*DT
));
383 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
384 L
->getUniqueExitBlocks(ExitBlocks
);
386 // Find all values that are computed inside the loop, but used outside of it.
387 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
388 // the exit blocks of the loop to find them.
389 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
390 BasicBlock
*ExitBB
= ExitBlocks
[i
];
392 // If there are no PHI nodes in this exit block, then no values defined
393 // inside the loop are used on this path, skip it.
394 PHINode
*PN
= dyn_cast
<PHINode
>(ExitBB
->begin());
397 unsigned NumPreds
= PN
->getNumIncomingValues();
399 // Iterate over all of the PHI nodes.
400 BasicBlock::iterator BBI
= ExitBB
->begin();
401 while ((PN
= dyn_cast
<PHINode
>(BBI
++))) {
403 continue; // dead use, don't replace it
405 // SCEV only supports integer expressions for now.
406 if (!PN
->getType()->isIntegerTy() && !PN
->getType()->isPointerTy())
409 // It's necessary to tell ScalarEvolution about this explicitly so that
410 // it can walk the def-use list and forget all SCEVs, as it may not be
411 // watching the PHI itself. Once the new exit value is in place, there
412 // may not be a def-use connection between the loop and every instruction
413 // which got a SCEVAddRecExpr for that loop.
416 // Iterate over all of the values in all the PHI nodes.
417 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
418 // If the value being merged in is not integer or is not defined
419 // in the loop, skip it.
420 Value
*InVal
= PN
->getIncomingValue(i
);
421 if (!isa
<Instruction
>(InVal
))
424 // If this pred is for a subloop, not L itself, skip it.
425 if (LI
->getLoopFor(PN
->getIncomingBlock(i
)) != L
)
426 continue; // The Block is in a subloop, skip it.
428 // Check that InVal is defined in the loop.
429 Instruction
*Inst
= cast
<Instruction
>(InVal
);
430 if (!L
->contains(Inst
))
433 // Okay, this instruction has a user outside of the current loop
434 // and varies predictably *inside* the loop. Evaluate the value it
435 // contains when the loop exits, if possible.
436 const SCEV
*ExitValue
= SE
->getSCEVAtScope(Inst
, L
->getParentLoop());
437 if (!SE
->isLoopInvariant(ExitValue
, L
))
440 Value
*ExitVal
= Rewriter
.expandCodeFor(ExitValue
, PN
->getType(), Inst
);
442 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
<< '\n'
443 << " LoopVal = " << *Inst
<< "\n");
445 if (!isValidRewrite(Inst
, ExitVal
)) {
446 DeadInsts
.push_back(ExitVal
);
452 PN
->setIncomingValue(i
, ExitVal
);
454 // If this instruction is dead now, delete it.
455 RecursivelyDeleteTriviallyDeadInstructions(Inst
);
458 // Completely replace a single-pred PHI. This is safe, because the
459 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
461 PN
->replaceAllUsesWith(ExitVal
);
462 RecursivelyDeleteTriviallyDeadInstructions(PN
);
466 // Clone the PHI and delete the original one. This lets IVUsers and
467 // any other maps purge the original user from their records.
468 PHINode
*NewPN
= cast
<PHINode
>(PN
->clone());
470 NewPN
->insertBefore(PN
);
471 PN
->replaceAllUsesWith(NewPN
);
472 PN
->eraseFromParent();
477 // The insertion point instruction may have been deleted; clear it out
478 // so that the rewriter doesn't trip over it later.
479 Rewriter
.clearInsertPoint();
482 void IndVarSimplify::RewriteNonIntegerIVs(Loop
*L
) {
483 // First step. Check to see if there are any floating-point recurrences.
484 // If there are, change them into integer recurrences, permitting analysis by
485 // the SCEV routines.
487 BasicBlock
*Header
= L
->getHeader();
489 SmallVector
<WeakVH
, 8> PHIs
;
490 for (BasicBlock::iterator I
= Header
->begin();
491 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
494 for (unsigned i
= 0, e
= PHIs
.size(); i
!= e
; ++i
)
495 if (PHINode
*PN
= dyn_cast_or_null
<PHINode
>(&*PHIs
[i
]))
496 HandleFloatingPointIV(L
, PN
);
498 // If the loop previously had floating-point IV, ScalarEvolution
499 // may not have been able to compute a trip count. Now that we've done some
500 // re-writing, the trip count may be computable.
505 /// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
506 /// loop. IVUsers is treated as a worklist. Each successive simplification may
507 /// push more users which may themselves be candidates for simplification.
509 /// This is the old approach to IV simplification to be replaced by
510 /// SimplifyIVUsersNoRewrite.
512 void IndVarSimplify::SimplifyIVUsers(SCEVExpander
&Rewriter
) {
513 // Each round of simplification involves a round of eliminating operations
514 // followed by a round of widening IVs. A single IVUsers worklist is used
515 // across all rounds. The inner loop advances the user. If widening exposes
516 // more uses, then another pass through the outer loop is triggered.
517 for (IVUsers::iterator I
= IU
->begin(); I
!= IU
->end(); ++I
) {
518 Instruction
*UseInst
= I
->getUser();
519 Value
*IVOperand
= I
->getOperandValToReplace();
521 if (ICmpInst
*ICmp
= dyn_cast
<ICmpInst
>(UseInst
)) {
522 EliminateIVComparison(ICmp
, IVOperand
);
525 if (BinaryOperator
*Rem
= dyn_cast
<BinaryOperator
>(UseInst
)) {
526 bool IsSigned
= Rem
->getOpcode() == Instruction::SRem
;
527 if (IsSigned
|| Rem
->getOpcode() == Instruction::URem
) {
528 EliminateIVRemainder(Rem
, IVOperand
, IsSigned
);
536 // Collect information about induction variables that are used by sign/zero
537 // extend operations. This information is recorded by CollectExtend and
538 // provides the input to WidenIV.
540 const Type
*WidestNativeType
; // Widest integer type created [sz]ext
541 bool IsSigned
; // Was an sext user seen before a zext?
543 WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
547 /// CollectExtend - Update information about the induction variable that is
548 /// extended by this sign or zero extend operation. This is used to determine
549 /// the final width of the IV before actually widening it.
550 static void CollectExtend(CastInst
*Cast
, bool IsSigned
, WideIVInfo
&WI
,
551 ScalarEvolution
*SE
, const TargetData
*TD
) {
552 const Type
*Ty
= Cast
->getType();
553 uint64_t Width
= SE
->getTypeSizeInBits(Ty
);
554 if (TD
&& !TD
->isLegalInteger(Width
))
557 if (!WI
.WidestNativeType
) {
558 WI
.WidestNativeType
= SE
->getEffectiveSCEVType(Ty
);
559 WI
.IsSigned
= IsSigned
;
563 // We extend the IV to satisfy the sign of its first user, arbitrarily.
564 if (WI
.IsSigned
!= IsSigned
)
567 if (Width
> SE
->getTypeSizeInBits(WI
.WidestNativeType
))
568 WI
.WidestNativeType
= SE
->getEffectiveSCEVType(Ty
);
572 /// WidenIV - The goal of this transform is to remove sign and zero extends
573 /// without creating any new induction variables. To do this, it creates a new
574 /// phi of the wider type and redirects all users, either removing extends or
575 /// inserting truncs whenever we stop propagating the type.
580 const Type
*WideType
;
591 Instruction
*WideInc
;
592 const SCEV
*WideIncExpr
;
593 SmallVectorImpl
<WeakVH
> &DeadInsts
;
595 SmallPtrSet
<Instruction
*,16> Widened
;
596 SmallVector
<std::pair
<Use
*, Instruction
*>, 8> NarrowIVUsers
;
599 WidenIV(PHINode
*PN
, const WideIVInfo
&WI
, LoopInfo
*LInfo
,
600 ScalarEvolution
*SEv
, DominatorTree
*DTree
,
601 SmallVectorImpl
<WeakVH
> &DI
) :
603 WideType(WI
.WidestNativeType
),
604 IsSigned(WI
.IsSigned
),
606 L(LI
->getLoopFor(OrigPhi
->getParent())),
613 assert(L
->getHeader() == OrigPhi
->getParent() && "Phi must be an IV");
616 PHINode
*CreateWideIV(SCEVExpander
&Rewriter
);
619 Instruction
*CloneIVUser(Instruction
*NarrowUse
,
620 Instruction
*NarrowDef
,
621 Instruction
*WideDef
);
623 const SCEVAddRecExpr
*GetWideRecurrence(Instruction
*NarrowUse
);
625 Instruction
*WidenIVUse(Use
&NarrowDefUse
, Instruction
*NarrowDef
,
626 Instruction
*WideDef
);
628 void pushNarrowIVUsers(Instruction
*NarrowDef
, Instruction
*WideDef
);
630 } // anonymous namespace
632 static Value
*getExtend( Value
*NarrowOper
, const Type
*WideType
,
633 bool IsSigned
, IRBuilder
<> &Builder
) {
634 return IsSigned
? Builder
.CreateSExt(NarrowOper
, WideType
) :
635 Builder
.CreateZExt(NarrowOper
, WideType
);
638 /// CloneIVUser - Instantiate a wide operation to replace a narrow
639 /// operation. This only needs to handle operations that can evaluation to
640 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
641 Instruction
*WidenIV::CloneIVUser(Instruction
*NarrowUse
,
642 Instruction
*NarrowDef
,
643 Instruction
*WideDef
) {
644 unsigned Opcode
= NarrowUse
->getOpcode();
648 case Instruction::Add
:
649 case Instruction::Mul
:
650 case Instruction::UDiv
:
651 case Instruction::Sub
:
652 case Instruction::And
:
653 case Instruction::Or
:
654 case Instruction::Xor
:
655 case Instruction::Shl
:
656 case Instruction::LShr
:
657 case Instruction::AShr
:
658 DEBUG(dbgs() << "Cloning IVUser: " << *NarrowUse
<< "\n");
660 IRBuilder
<> Builder(NarrowUse
);
662 // Replace NarrowDef operands with WideDef. Otherwise, we don't know
663 // anything about the narrow operand yet so must insert a [sz]ext. It is
664 // probably loop invariant and will be folded or hoisted. If it actually
665 // comes from a widened IV, it should be removed during a future call to
667 Value
*LHS
= (NarrowUse
->getOperand(0) == NarrowDef
) ? WideDef
:
668 getExtend(NarrowUse
->getOperand(0), WideType
, IsSigned
, Builder
);
669 Value
*RHS
= (NarrowUse
->getOperand(1) == NarrowDef
) ? WideDef
:
670 getExtend(NarrowUse
->getOperand(1), WideType
, IsSigned
, Builder
);
672 BinaryOperator
*NarrowBO
= cast
<BinaryOperator
>(NarrowUse
);
673 BinaryOperator
*WideBO
= BinaryOperator::Create(NarrowBO
->getOpcode(),
675 NarrowBO
->getName());
676 Builder
.Insert(WideBO
);
677 if (const OverflowingBinaryOperator
*OBO
=
678 dyn_cast
<OverflowingBinaryOperator
>(NarrowBO
)) {
679 if (OBO
->hasNoUnsignedWrap()) WideBO
->setHasNoUnsignedWrap();
680 if (OBO
->hasNoSignedWrap()) WideBO
->setHasNoSignedWrap();
687 /// HoistStep - Attempt to hoist an IV increment above a potential use.
689 /// To successfully hoist, two criteria must be met:
690 /// - IncV operands dominate InsertPos and
691 /// - InsertPos dominates IncV
693 /// Meeting the second condition means that we don't need to check all of IncV's
694 /// existing uses (it's moving up in the domtree).
696 /// This does not yet recursively hoist the operands, although that would
697 /// not be difficult.
698 static bool HoistStep(Instruction
*IncV
, Instruction
*InsertPos
,
699 const DominatorTree
*DT
)
701 if (DT
->dominates(IncV
, InsertPos
))
704 if (!DT
->dominates(InsertPos
->getParent(), IncV
->getParent()))
707 if (IncV
->mayHaveSideEffects())
710 // Attempt to hoist IncV
711 for (User::op_iterator OI
= IncV
->op_begin(), OE
= IncV
->op_end();
713 Instruction
*OInst
= dyn_cast
<Instruction
>(OI
);
714 if (OInst
&& !DT
->dominates(OInst
, InsertPos
))
717 IncV
->moveBefore(InsertPos
);
721 // GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
722 // perspective after widening it's type? In other words, can the extend be
723 // safely hoisted out of the loop with SCEV reducing the value to a recurrence
724 // on the same loop. If so, return the sign or zero extended
725 // recurrence. Otherwise return NULL.
726 const SCEVAddRecExpr
*WidenIV::GetWideRecurrence(Instruction
*NarrowUse
) {
727 if (!SE
->isSCEVable(NarrowUse
->getType()))
730 const SCEV
*NarrowExpr
= SE
->getSCEV(NarrowUse
);
731 if (SE
->getTypeSizeInBits(NarrowExpr
->getType())
732 >= SE
->getTypeSizeInBits(WideType
)) {
733 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
734 // index. So don't follow this use.
738 const SCEV
*WideExpr
= IsSigned
?
739 SE
->getSignExtendExpr(NarrowExpr
, WideType
) :
740 SE
->getZeroExtendExpr(NarrowExpr
, WideType
);
741 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(WideExpr
);
742 if (!AddRec
|| AddRec
->getLoop() != L
)
748 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
749 /// widened. If so, return the wide clone of the user.
750 Instruction
*WidenIV::WidenIVUse(Use
&NarrowDefUse
, Instruction
*NarrowDef
,
751 Instruction
*WideDef
) {
752 Instruction
*NarrowUse
= cast
<Instruction
>(NarrowDefUse
.getUser());
754 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
755 if (isa
<PHINode
>(NarrowUse
) && LI
->getLoopFor(NarrowUse
->getParent()) != L
)
758 // Our raison d'etre! Eliminate sign and zero extension.
759 if (IsSigned
? isa
<SExtInst
>(NarrowUse
) : isa
<ZExtInst
>(NarrowUse
)) {
760 Value
*NewDef
= WideDef
;
761 if (NarrowUse
->getType() != WideType
) {
762 unsigned CastWidth
= SE
->getTypeSizeInBits(NarrowUse
->getType());
763 unsigned IVWidth
= SE
->getTypeSizeInBits(WideType
);
764 if (CastWidth
< IVWidth
) {
765 // The cast isn't as wide as the IV, so insert a Trunc.
766 IRBuilder
<> Builder(NarrowDefUse
);
767 NewDef
= Builder
.CreateTrunc(WideDef
, NarrowUse
->getType());
770 // A wider extend was hidden behind a narrower one. This may induce
771 // another round of IV widening in which the intermediate IV becomes
772 // dead. It should be very rare.
773 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
774 << " not wide enough to subsume " << *NarrowUse
<< "\n");
775 NarrowUse
->replaceUsesOfWith(NarrowDef
, WideDef
);
779 if (NewDef
!= NarrowUse
) {
780 DEBUG(dbgs() << "INDVARS: eliminating " << *NarrowUse
781 << " replaced by " << *WideDef
<< "\n");
783 NarrowUse
->replaceAllUsesWith(NewDef
);
784 DeadInsts
.push_back(NarrowUse
);
786 // Now that the extend is gone, we want to expose it's uses for potential
787 // further simplification. We don't need to directly inform SimplifyIVUsers
788 // of the new users, because their parent IV will be processed later as a
789 // new loop phi. If we preserved IVUsers analysis, we would also want to
790 // push the uses of WideDef here.
792 // No further widening is needed. The deceased [sz]ext had done it for us.
796 // Does this user itself evaluate to a recurrence after widening?
797 const SCEVAddRecExpr
*WideAddRec
= GetWideRecurrence(NarrowUse
);
799 // This user does not evaluate to a recurence after widening, so don't
800 // follow it. Instead insert a Trunc to kill off the original use,
801 // eventually isolating the original narrow IV so it can be removed.
802 IRBuilder
<> Builder(NarrowDefUse
);
803 Value
*Trunc
= Builder
.CreateTrunc(WideDef
, NarrowDef
->getType());
804 NarrowUse
->replaceUsesOfWith(NarrowDef
, Trunc
);
807 // We assume that block terminators are not SCEVable. We wouldn't want to
808 // insert a Trunc after a terminator if there happens to be a critical edge.
809 assert(NarrowUse
!= NarrowUse
->getParent()->getTerminator() &&
810 "SCEV is not expected to evaluate a block terminator");
812 // Reuse the IV increment that SCEVExpander created as long as it dominates
814 Instruction
*WideUse
= 0;
815 if (WideAddRec
== WideIncExpr
&& HoistStep(WideInc
, NarrowUse
, DT
)) {
819 WideUse
= CloneIVUser(NarrowUse
, NarrowDef
, WideDef
);
823 // Evaluation of WideAddRec ensured that the narrow expression could be
824 // extended outside the loop without overflow. This suggests that the wide use
825 // evaluates to the same expression as the extended narrow use, but doesn't
826 // absolutely guarantee it. Hence the following failsafe check. In rare cases
827 // where it fails, we simply throw away the newly created wide use.
828 if (WideAddRec
!= SE
->getSCEV(WideUse
)) {
829 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
830 << ": " << *SE
->getSCEV(WideUse
) << " != " << *WideAddRec
<< "\n");
831 DeadInsts
.push_back(WideUse
);
835 // Returning WideUse pushes it on the worklist.
839 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
841 void WidenIV::pushNarrowIVUsers(Instruction
*NarrowDef
, Instruction
*WideDef
) {
842 for (Value::use_iterator UI
= NarrowDef
->use_begin(),
843 UE
= NarrowDef
->use_end(); UI
!= UE
; ++UI
) {
844 Use
&U
= UI
.getUse();
846 // Handle data flow merges and bizarre phi cycles.
847 if (!Widened
.insert(cast
<Instruction
>(U
.getUser())))
850 NarrowIVUsers
.push_back(std::make_pair(&UI
.getUse(), WideDef
));
854 /// CreateWideIV - Process a single induction variable. First use the
855 /// SCEVExpander to create a wide induction variable that evaluates to the same
856 /// recurrence as the original narrow IV. Then use a worklist to forward
857 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
858 /// interesting IV users, the narrow IV will be isolated for removal by
861 /// It would be simpler to delete uses as they are processed, but we must avoid
862 /// invalidating SCEV expressions.
864 PHINode
*WidenIV::CreateWideIV(SCEVExpander
&Rewriter
) {
865 // Is this phi an induction variable?
866 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(OrigPhi
));
870 // Widen the induction variable expression.
871 const SCEV
*WideIVExpr
= IsSigned
?
872 SE
->getSignExtendExpr(AddRec
, WideType
) :
873 SE
->getZeroExtendExpr(AddRec
, WideType
);
875 assert(SE
->getEffectiveSCEVType(WideIVExpr
->getType()) == WideType
&&
876 "Expect the new IV expression to preserve its type");
878 // Can the IV be extended outside the loop without overflow?
879 AddRec
= dyn_cast
<SCEVAddRecExpr
>(WideIVExpr
);
880 if (!AddRec
|| AddRec
->getLoop() != L
)
883 // An AddRec must have loop-invariant operands. Since this AddRec is
884 // materialized by a loop header phi, the expression cannot have any post-loop
885 // operands, so they must dominate the loop header.
886 assert(SE
->properlyDominates(AddRec
->getStart(), L
->getHeader()) &&
887 SE
->properlyDominates(AddRec
->getStepRecurrence(*SE
), L
->getHeader())
888 && "Loop header phi recurrence inputs do not dominate the loop");
890 // The rewriter provides a value for the desired IV expression. This may
891 // either find an existing phi or materialize a new one. Either way, we
892 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
893 // of the phi-SCC dominates the loop entry.
894 Instruction
*InsertPt
= L
->getHeader()->begin();
895 WidePhi
= cast
<PHINode
>(Rewriter
.expandCodeFor(AddRec
, WideType
, InsertPt
));
897 // Remembering the WideIV increment generated by SCEVExpander allows
898 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
899 // employ a general reuse mechanism because the call above is the only call to
900 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
901 if (BasicBlock
*LatchBlock
= L
->getLoopLatch()) {
903 cast
<Instruction
>(WidePhi
->getIncomingValueForBlock(LatchBlock
));
904 WideIncExpr
= SE
->getSCEV(WideInc
);
907 DEBUG(dbgs() << "Wide IV: " << *WidePhi
<< "\n");
910 // Traverse the def-use chain using a worklist starting at the original IV.
911 assert(Widened
.empty() && NarrowIVUsers
.empty() && "expect initial state" );
913 Widened
.insert(OrigPhi
);
914 pushNarrowIVUsers(OrigPhi
, WidePhi
);
916 while (!NarrowIVUsers
.empty()) {
918 Instruction
*WideDef
;
919 tie(UsePtr
, WideDef
) = NarrowIVUsers
.pop_back_val();
920 Use
&NarrowDefUse
= *UsePtr
;
922 // Process a def-use edge. This may replace the use, so don't hold a
923 // use_iterator across it.
924 Instruction
*NarrowDef
= cast
<Instruction
>(NarrowDefUse
.get());
925 Instruction
*WideUse
= WidenIVUse(NarrowDefUse
, NarrowDef
, WideDef
);
927 // Follow all def-use edges from the previous narrow use.
929 pushNarrowIVUsers(cast
<Instruction
>(NarrowDefUse
.getUser()), WideUse
);
931 // WidenIVUse may have removed the def-use edge.
932 if (NarrowDef
->use_empty())
933 DeadInsts
.push_back(NarrowDef
);
938 void IndVarSimplify::EliminateIVComparison(ICmpInst
*ICmp
, Value
*IVOperand
) {
939 unsigned IVOperIdx
= 0;
940 ICmpInst::Predicate Pred
= ICmp
->getPredicate();
941 if (IVOperand
!= ICmp
->getOperand(0)) {
943 assert(IVOperand
== ICmp
->getOperand(1) && "Can't find IVOperand");
945 Pred
= ICmpInst::getSwappedPredicate(Pred
);
948 // Get the SCEVs for the ICmp operands.
949 const SCEV
*S
= SE
->getSCEV(ICmp
->getOperand(IVOperIdx
));
950 const SCEV
*X
= SE
->getSCEV(ICmp
->getOperand(1 - IVOperIdx
));
952 // Simplify unnecessary loops away.
953 const Loop
*ICmpLoop
= LI
->getLoopFor(ICmp
->getParent());
954 S
= SE
->getSCEVAtScope(S
, ICmpLoop
);
955 X
= SE
->getSCEVAtScope(X
, ICmpLoop
);
957 // If the condition is always true or always false, replace it with
959 if (SE
->isKnownPredicate(Pred
, S
, X
))
960 ICmp
->replaceAllUsesWith(ConstantInt::getTrue(ICmp
->getContext()));
961 else if (SE
->isKnownPredicate(ICmpInst::getInversePredicate(Pred
), S
, X
))
962 ICmp
->replaceAllUsesWith(ConstantInt::getFalse(ICmp
->getContext()));
966 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp
<< '\n');
969 DeadInsts
.push_back(ICmp
);
972 void IndVarSimplify::EliminateIVRemainder(BinaryOperator
*Rem
,
975 // We're only interested in the case where we know something about
977 if (IVOperand
!= Rem
->getOperand(0))
980 // Get the SCEVs for the ICmp operands.
981 const SCEV
*S
= SE
->getSCEV(Rem
->getOperand(0));
982 const SCEV
*X
= SE
->getSCEV(Rem
->getOperand(1));
984 // Simplify unnecessary loops away.
985 const Loop
*ICmpLoop
= LI
->getLoopFor(Rem
->getParent());
986 S
= SE
->getSCEVAtScope(S
, ICmpLoop
);
987 X
= SE
->getSCEVAtScope(X
, ICmpLoop
);
989 // i % n --> i if i is in [0,n).
990 if ((!IsSigned
|| SE
->isKnownNonNegative(S
)) &&
991 SE
->isKnownPredicate(IsSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
,
993 Rem
->replaceAllUsesWith(Rem
->getOperand(0));
995 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
996 const SCEV
*LessOne
=
997 SE
->getMinusSCEV(S
, SE
->getConstant(S
->getType(), 1));
998 if (IsSigned
&& !SE
->isKnownNonNegative(LessOne
))
1001 if (!SE
->isKnownPredicate(IsSigned
?
1002 ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
,
1006 ICmpInst
*ICmp
= new ICmpInst(Rem
, ICmpInst::ICMP_EQ
,
1007 Rem
->getOperand(0), Rem
->getOperand(1),
1010 SelectInst::Create(ICmp
,
1011 ConstantInt::get(Rem
->getType(), 0),
1012 Rem
->getOperand(0), "tmp", Rem
);
1013 Rem
->replaceAllUsesWith(Sel
);
1016 // Inform IVUsers about the new users.
1018 if (Instruction
*I
= dyn_cast
<Instruction
>(Rem
->getOperand(0)))
1019 IU
->AddUsersIfInteresting(I
);
1021 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem
<< '\n');
1024 DeadInsts
.push_back(Rem
);
1027 /// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
1028 /// no observable side-effect given the range of IV values.
1029 bool IndVarSimplify::EliminateIVUser(Instruction
*UseInst
,
1030 Instruction
*IVOperand
) {
1031 if (ICmpInst
*ICmp
= dyn_cast
<ICmpInst
>(UseInst
)) {
1032 EliminateIVComparison(ICmp
, IVOperand
);
1035 if (BinaryOperator
*Rem
= dyn_cast
<BinaryOperator
>(UseInst
)) {
1036 bool IsSigned
= Rem
->getOpcode() == Instruction::SRem
;
1037 if (IsSigned
|| Rem
->getOpcode() == Instruction::URem
) {
1038 EliminateIVRemainder(Rem
, IVOperand
, IsSigned
);
1043 // Eliminate any operation that SCEV can prove is an identity function.
1044 if (!SE
->isSCEVable(UseInst
->getType()) ||
1045 (UseInst
->getType() != IVOperand
->getType()) ||
1046 (SE
->getSCEV(UseInst
) != SE
->getSCEV(IVOperand
)))
1049 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst
<< '\n');
1051 UseInst
->replaceAllUsesWith(IVOperand
);
1054 DeadInsts
.push_back(UseInst
);
1058 /// pushIVUsers - Add all uses of Def to the current IV's worklist.
1060 static void pushIVUsers(
1062 SmallPtrSet
<Instruction
*,16> &Simplified
,
1063 SmallVectorImpl
< std::pair
<Instruction
*,Instruction
*> > &SimpleIVUsers
) {
1065 for (Value::use_iterator UI
= Def
->use_begin(), E
= Def
->use_end();
1067 Instruction
*User
= cast
<Instruction
>(*UI
);
1069 // Avoid infinite or exponential worklist processing.
1070 // Also ensure unique worklist users.
1071 // If Def is a LoopPhi, it may not be in the Simplified set, so check for
1072 // self edges first.
1073 if (User
!= Def
&& Simplified
.insert(User
))
1074 SimpleIVUsers
.push_back(std::make_pair(User
, Def
));
1078 /// isSimpleIVUser - Return true if this instruction generates a simple SCEV
1079 /// expression in terms of that IV.
1081 /// This is similar to IVUsers' isInsteresting() but processes each instruction
1082 /// non-recursively when the operand is already known to be a simpleIVUser.
1084 bool IndVarSimplify::isSimpleIVUser(Instruction
*I
, const Loop
*L
) {
1085 if (!SE
->isSCEVable(I
->getType()))
1088 // Get the symbolic expression for this instruction.
1089 const SCEV
*S
= SE
->getSCEV(I
);
1091 // We assume that terminators are not SCEVable.
1092 assert((!S
|| I
!= I
->getParent()->getTerminator()) &&
1093 "can't fold terminators");
1095 // Only consider affine recurrences.
1096 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
);
1097 if (AR
&& AR
->getLoop() == L
)
1103 /// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
1104 /// of IV users. Each successive simplification may push more users which may
1105 /// themselves be candidates for simplification.
1107 /// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
1108 /// simplifies instructions in-place during analysis. Rather than rewriting
1109 /// induction variables bottom-up from their users, it transforms a chain of
1110 /// IVUsers top-down, updating the IR only when it encouters a clear
1111 /// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
1112 /// needed, but only used to generate a new IV (phi) of wider type for sign/zero
1113 /// extend elimination.
1115 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
1117 void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop
*L
, SCEVExpander
&Rewriter
) {
1118 std::map
<PHINode
*, WideIVInfo
> WideIVMap
;
1120 SmallVector
<PHINode
*, 8> LoopPhis
;
1121 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ++I
) {
1122 LoopPhis
.push_back(cast
<PHINode
>(I
));
1124 // Each round of simplification iterates through the SimplifyIVUsers worklist
1125 // for all current phis, then determines whether any IVs can be
1126 // widened. Widening adds new phis to LoopPhis, inducing another round of
1127 // simplification on the wide IVs.
1128 while (!LoopPhis
.empty()) {
1129 // Evaluate as many IV expressions as possible before widening any IVs. This
1130 // forces SCEV to set no-wrap flags before evaluating sign/zero
1131 // extension. The first time SCEV attempts to normalize sign/zero extension,
1132 // the result becomes final. So for the most predictable results, we delay
1133 // evaluation of sign/zero extend evaluation until needed, and avoid running
1134 // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
1136 PHINode
*CurrIV
= LoopPhis
.pop_back_val();
1138 // Information about sign/zero extensions of CurrIV.
1141 // Instructions processed by SimplifyIVUsers for CurrIV.
1142 SmallPtrSet
<Instruction
*,16> Simplified
;
1144 // Use-def pairs if IV users waiting to be processed for CurrIV.
1145 SmallVector
<std::pair
<Instruction
*, Instruction
*>, 8> SimpleIVUsers
;
1147 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
1148 // called multiple times for the same LoopPhi. This is the proper thing to
1149 // do for loop header phis that use each other.
1150 pushIVUsers(CurrIV
, Simplified
, SimpleIVUsers
);
1152 while (!SimpleIVUsers
.empty()) {
1153 Instruction
*UseInst
, *Operand
;
1154 tie(UseInst
, Operand
) = SimpleIVUsers
.pop_back_val();
1155 // Bypass back edges to avoid extra work.
1156 if (UseInst
== CurrIV
) continue;
1158 if (EliminateIVUser(UseInst
, Operand
)) {
1159 pushIVUsers(Operand
, Simplified
, SimpleIVUsers
);
1162 if (CastInst
*Cast
= dyn_cast
<CastInst
>(UseInst
)) {
1163 bool IsSigned
= Cast
->getOpcode() == Instruction::SExt
;
1164 if (IsSigned
|| Cast
->getOpcode() == Instruction::ZExt
) {
1165 CollectExtend(Cast
, IsSigned
, WI
, SE
, TD
);
1169 if (isSimpleIVUser(UseInst
, L
)) {
1170 pushIVUsers(UseInst
, Simplified
, SimpleIVUsers
);
1173 if (WI
.WidestNativeType
) {
1174 WideIVMap
[CurrIV
] = WI
;
1176 } while(!LoopPhis
.empty());
1178 for (std::map
<PHINode
*, WideIVInfo
>::const_iterator I
= WideIVMap
.begin(),
1179 E
= WideIVMap
.end(); I
!= E
; ++I
) {
1180 WidenIV
Widener(I
->first
, I
->second
, LI
, SE
, DT
, DeadInsts
);
1181 if (PHINode
*WidePhi
= Widener
.CreateWideIV(Rewriter
)) {
1183 LoopPhis
.push_back(WidePhi
);
1190 /// SimplifyCongruentIVs - Check for congruent phis in this loop header and
1191 /// populate ExprToIVMap for use later.
1193 void IndVarSimplify::SimplifyCongruentIVs(Loop
*L
) {
1194 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ++I
) {
1195 PHINode
*Phi
= cast
<PHINode
>(I
);
1196 const SCEV
*S
= SE
->getSCEV(Phi
);
1197 ExprToIVMapTy::const_iterator Pos
;
1199 tie(Pos
, Inserted
) = ExprToIVMap
.insert(std::make_pair(S
, Phi
));
1202 PHINode
*OrigPhi
= Pos
->second
;
1203 // Replacing the congruent phi is sufficient because acyclic redundancy
1204 // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1205 // that a phi is congruent, it's almost certain to be the head of an IV
1206 // user cycle that is isomorphic with the original phi. So it's worth
1207 // eagerly cleaning up the common case of a single IV increment.
1208 if (BasicBlock
*LatchBlock
= L
->getLoopLatch()) {
1209 Instruction
*OrigInc
=
1210 cast
<Instruction
>(OrigPhi
->getIncomingValueForBlock(LatchBlock
));
1211 Instruction
*IsomorphicInc
=
1212 cast
<Instruction
>(Phi
->getIncomingValueForBlock(LatchBlock
));
1213 if (OrigInc
!= IsomorphicInc
&&
1214 SE
->getSCEV(OrigInc
) == SE
->getSCEV(IsomorphicInc
) &&
1215 HoistStep(OrigInc
, IsomorphicInc
, DT
)) {
1216 DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1217 << *IsomorphicInc
<< '\n');
1218 IsomorphicInc
->replaceAllUsesWith(OrigInc
);
1219 DeadInsts
.push_back(IsomorphicInc
);
1222 DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
<< '\n');
1224 Phi
->replaceAllUsesWith(OrigPhi
);
1225 DeadInsts
.push_back(Phi
);
1229 bool IndVarSimplify::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
1230 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1231 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1232 // canonicalization can be a pessimization without LSR to "clean up"
1234 // - We depend on having a preheader; in particular,
1235 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1236 // and we're in trouble if we can't find the induction variable even when
1237 // we've manually inserted one.
1238 if (!L
->isLoopSimplifyForm())
1241 if (!DisableIVRewrite
)
1242 IU
= &getAnalysis
<IVUsers
>();
1243 LI
= &getAnalysis
<LoopInfo
>();
1244 SE
= &getAnalysis
<ScalarEvolution
>();
1245 DT
= &getAnalysis
<DominatorTree
>();
1246 TD
= getAnalysisIfAvailable
<TargetData
>();
1248 ExprToIVMap
.clear();
1252 // If there are any floating-point recurrences, attempt to
1253 // transform them to use integer recurrences.
1254 RewriteNonIntegerIVs(L
);
1256 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
1258 // Create a rewriter object which we'll use to transform the code with.
1259 SCEVExpander
Rewriter(*SE
, "indvars");
1261 // Eliminate redundant IV users.
1263 // Simplification works best when run before other consumers of SCEV. We
1264 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1265 // other expressions involving loop IVs have been evaluated. This helps SCEV
1266 // set no-wrap flags before normalizing sign/zero extension.
1267 if (DisableIVRewrite
) {
1268 Rewriter
.disableCanonicalMode();
1269 SimplifyIVUsersNoRewrite(L
, Rewriter
);
1272 // Check to see if this loop has a computable loop-invariant execution count.
1273 // If so, this means that we can compute the final value of any expressions
1274 // that are recurrent in the loop, and substitute the exit values from the
1275 // loop into any instructions outside of the loop that use the final values of
1276 // the current expressions.
1278 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
1279 RewriteLoopExitValues(L
, Rewriter
);
1281 // Eliminate redundant IV users.
1282 if (!DisableIVRewrite
)
1283 SimplifyIVUsers(Rewriter
);
1285 // Eliminate redundant IV cycles and populate ExprToIVMap.
1286 // TODO: use ExprToIVMap to allow LFTR without canonical IVs
1287 if (DisableIVRewrite
)
1288 SimplifyCongruentIVs(L
);
1290 // Compute the type of the largest recurrence expression, and decide whether
1291 // a canonical induction variable should be inserted.
1292 const Type
*LargestType
= 0;
1293 bool NeedCannIV
= false;
1294 bool ExpandBECount
= canExpandBackedgeTakenCount(L
, SE
);
1295 if (ExpandBECount
) {
1296 // If we have a known trip count and a single exit block, we'll be
1297 // rewriting the loop exit test condition below, which requires a
1298 // canonical induction variable.
1300 const Type
*Ty
= BackedgeTakenCount
->getType();
1301 if (DisableIVRewrite
) {
1302 // In this mode, SimplifyIVUsers may have already widened the IV used by
1303 // the backedge test and inserted a Trunc on the compare's operand. Get
1304 // the wider type to avoid creating a redundant narrow IV only used by the
1306 LargestType
= getBackedgeIVType(L
);
1309 SE
->getTypeSizeInBits(Ty
) >
1310 SE
->getTypeSizeInBits(LargestType
))
1311 LargestType
= SE
->getEffectiveSCEVType(Ty
);
1313 if (!DisableIVRewrite
) {
1314 for (IVUsers::const_iterator I
= IU
->begin(), E
= IU
->end(); I
!= E
; ++I
) {
1317 SE
->getEffectiveSCEVType(I
->getOperandValToReplace()->getType());
1319 SE
->getTypeSizeInBits(Ty
) >
1320 SE
->getTypeSizeInBits(LargestType
))
1325 // Now that we know the largest of the induction variable expressions
1326 // in this loop, insert a canonical induction variable of the largest size.
1327 PHINode
*IndVar
= 0;
1329 // Check to see if the loop already has any canonical-looking induction
1330 // variables. If any are present and wider than the planned canonical
1331 // induction variable, temporarily remove them, so that the Rewriter
1332 // doesn't attempt to reuse them.
1333 SmallVector
<PHINode
*, 2> OldCannIVs
;
1334 while (PHINode
*OldCannIV
= L
->getCanonicalInductionVariable()) {
1335 if (SE
->getTypeSizeInBits(OldCannIV
->getType()) >
1336 SE
->getTypeSizeInBits(LargestType
))
1337 OldCannIV
->removeFromParent();
1340 OldCannIVs
.push_back(OldCannIV
);
1343 IndVar
= Rewriter
.getOrInsertCanonicalInductionVariable(L
, LargestType
);
1347 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar
<< '\n');
1349 // Now that the official induction variable is established, reinsert
1350 // any old canonical-looking variables after it so that the IR remains
1351 // consistent. They will be deleted as part of the dead-PHI deletion at
1352 // the end of the pass.
1353 while (!OldCannIVs
.empty()) {
1354 PHINode
*OldCannIV
= OldCannIVs
.pop_back_val();
1355 OldCannIV
->insertBefore(L
->getHeader()->getFirstNonPHI());
1359 // If we have a trip count expression, rewrite the loop's exit condition
1360 // using it. We can currently only handle loops with a single exit.
1361 ICmpInst
*NewICmp
= 0;
1362 if (ExpandBECount
) {
1363 assert(canExpandBackedgeTakenCount(L
, SE
) &&
1364 "canonical IV disrupted BackedgeTaken expansion");
1365 assert(NeedCannIV
&&
1366 "LinearFunctionTestReplace requires a canonical induction variable");
1367 NewICmp
= LinearFunctionTestReplace(L
, BackedgeTakenCount
, IndVar
,
1370 // Rewrite IV-derived expressions.
1371 if (!DisableIVRewrite
)
1372 RewriteIVExpressions(L
, Rewriter
);
1374 // Clear the rewriter cache, because values that are in the rewriter's cache
1375 // can be deleted in the loop below, causing the AssertingVH in the cache to
1378 ExprToIVMap
.clear();
1380 // Now that we're done iterating through lists, clean up any instructions
1381 // which are now dead.
1382 while (!DeadInsts
.empty())
1383 if (Instruction
*Inst
=
1384 dyn_cast_or_null
<Instruction
>(&*DeadInsts
.pop_back_val()))
1385 RecursivelyDeleteTriviallyDeadInstructions(Inst
);
1387 // The Rewriter may not be used from this point on.
1389 // Loop-invariant instructions in the preheader that aren't used in the
1390 // loop may be sunk below the loop to reduce register pressure.
1391 SinkUnusedInvariants(L
);
1393 // For completeness, inform IVUsers of the IV use in the newly-created
1394 // loop exit test instruction.
1396 IU
->AddUsersIfInteresting(cast
<Instruction
>(NewICmp
->getOperand(0)));
1398 // Clean up dead instructions.
1399 Changed
|= DeleteDeadPHIs(L
->getHeader());
1400 // Check a post-condition.
1401 assert(L
->isLCSSAForm(*DT
) && "Indvars did not leave the loop in lcssa form!");
1405 // FIXME: It is an extremely bad idea to indvar substitute anything more
1406 // complex than affine induction variables. Doing so will put expensive
1407 // polynomial evaluations inside of the loop, and the str reduction pass
1408 // currently can only reduce affine polynomials. For now just disable
1409 // indvar subst on anything more complex than an affine addrec, unless
1410 // it can be expanded to a trivial value.
1411 static bool isSafe(const SCEV
*S
, const Loop
*L
, ScalarEvolution
*SE
) {
1412 // Loop-invariant values are safe.
1413 if (SE
->isLoopInvariant(S
, L
)) return true;
1415 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
1416 // to transform them into efficient code.
1417 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
1418 return AR
->isAffine();
1420 // An add is safe it all its operands are safe.
1421 if (const SCEVCommutativeExpr
*Commutative
= dyn_cast
<SCEVCommutativeExpr
>(S
)) {
1422 for (SCEVCommutativeExpr::op_iterator I
= Commutative
->op_begin(),
1423 E
= Commutative
->op_end(); I
!= E
; ++I
)
1424 if (!isSafe(*I
, L
, SE
)) return false;
1428 // A cast is safe if its operand is.
1429 if (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(S
))
1430 return isSafe(C
->getOperand(), L
, SE
);
1432 // A udiv is safe if its operands are.
1433 if (const SCEVUDivExpr
*UD
= dyn_cast
<SCEVUDivExpr
>(S
))
1434 return isSafe(UD
->getLHS(), L
, SE
) &&
1435 isSafe(UD
->getRHS(), L
, SE
);
1437 // SCEVUnknown is always safe.
1438 if (isa
<SCEVUnknown
>(S
))
1441 // Nothing else is safe.
1445 void IndVarSimplify::RewriteIVExpressions(Loop
*L
, SCEVExpander
&Rewriter
) {
1446 // Rewrite all induction variable expressions in terms of the canonical
1447 // induction variable.
1449 // If there were induction variables of other sizes or offsets, manually
1450 // add the offsets to the primary induction variable and cast, avoiding
1451 // the need for the code evaluation methods to insert induction variables
1452 // of different sizes.
1453 for (IVUsers::iterator UI
= IU
->begin(), E
= IU
->end(); UI
!= E
; ++UI
) {
1454 Value
*Op
= UI
->getOperandValToReplace();
1455 const Type
*UseTy
= Op
->getType();
1456 Instruction
*User
= UI
->getUser();
1458 // Compute the final addrec to expand into code.
1459 const SCEV
*AR
= IU
->getReplacementExpr(*UI
);
1461 // Evaluate the expression out of the loop, if possible.
1462 if (!L
->contains(UI
->getUser())) {
1463 const SCEV
*ExitVal
= SE
->getSCEVAtScope(AR
, L
->getParentLoop());
1464 if (SE
->isLoopInvariant(ExitVal
, L
))
1468 // FIXME: It is an extremely bad idea to indvar substitute anything more
1469 // complex than affine induction variables. Doing so will put expensive
1470 // polynomial evaluations inside of the loop, and the str reduction pass
1471 // currently can only reduce affine polynomials. For now just disable
1472 // indvar subst on anything more complex than an affine addrec, unless
1473 // it can be expanded to a trivial value.
1474 if (!isSafe(AR
, L
, SE
))
1477 // Determine the insertion point for this user. By default, insert
1478 // immediately before the user. The SCEVExpander class will automatically
1479 // hoist loop invariants out of the loop. For PHI nodes, there may be
1480 // multiple uses, so compute the nearest common dominator for the
1482 Instruction
*InsertPt
= User
;
1483 if (PHINode
*PHI
= dyn_cast
<PHINode
>(InsertPt
))
1484 for (unsigned i
= 0, e
= PHI
->getNumIncomingValues(); i
!= e
; ++i
)
1485 if (PHI
->getIncomingValue(i
) == Op
) {
1486 if (InsertPt
== User
)
1487 InsertPt
= PHI
->getIncomingBlock(i
)->getTerminator();
1490 DT
->findNearestCommonDominator(InsertPt
->getParent(),
1491 PHI
->getIncomingBlock(i
))
1495 // Now expand it into actual Instructions and patch it into place.
1496 Value
*NewVal
= Rewriter
.expandCodeFor(AR
, UseTy
, InsertPt
);
1498 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR
<< "' " << *Op
<< '\n'
1499 << " into = " << *NewVal
<< "\n");
1501 if (!isValidRewrite(Op
, NewVal
)) {
1502 DeadInsts
.push_back(NewVal
);
1505 // Inform ScalarEvolution that this value is changing. The change doesn't
1506 // affect its value, but it does potentially affect which use lists the
1507 // value will be on after the replacement, which affects ScalarEvolution's
1508 // ability to walk use lists and drop dangling pointers when a value is
1510 SE
->forgetValue(User
);
1512 // Patch the new value into place.
1514 NewVal
->takeName(Op
);
1515 if (Instruction
*NewValI
= dyn_cast
<Instruction
>(NewVal
))
1516 NewValI
->setDebugLoc(User
->getDebugLoc());
1517 User
->replaceUsesOfWith(Op
, NewVal
);
1518 UI
->setOperandValToReplace(NewVal
);
1523 // The old value may be dead now.
1524 DeadInsts
.push_back(Op
);
1528 /// If there's a single exit block, sink any loop-invariant values that
1529 /// were defined in the preheader but not used inside the loop into the
1530 /// exit block to reduce register pressure in the loop.
1531 void IndVarSimplify::SinkUnusedInvariants(Loop
*L
) {
1532 BasicBlock
*ExitBlock
= L
->getExitBlock();
1533 if (!ExitBlock
) return;
1535 BasicBlock
*Preheader
= L
->getLoopPreheader();
1536 if (!Preheader
) return;
1538 Instruction
*InsertPt
= ExitBlock
->getFirstNonPHI();
1539 BasicBlock::iterator I
= Preheader
->getTerminator();
1540 while (I
!= Preheader
->begin()) {
1542 // New instructions were inserted at the end of the preheader.
1543 if (isa
<PHINode
>(I
))
1546 // Don't move instructions which might have side effects, since the side
1547 // effects need to complete before instructions inside the loop. Also don't
1548 // move instructions which might read memory, since the loop may modify
1549 // memory. Note that it's okay if the instruction might have undefined
1550 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1552 if (I
->mayHaveSideEffects() || I
->mayReadFromMemory())
1555 // Skip debug info intrinsics.
1556 if (isa
<DbgInfoIntrinsic
>(I
))
1559 // Don't sink static AllocaInsts out of the entry block, which would
1560 // turn them into dynamic allocas!
1561 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
))
1562 if (AI
->isStaticAlloca())
1565 // Determine if there is a use in or before the loop (direct or
1567 bool UsedInLoop
= false;
1568 for (Value::use_iterator UI
= I
->use_begin(), UE
= I
->use_end();
1571 BasicBlock
*UseBB
= cast
<Instruction
>(U
)->getParent();
1572 if (PHINode
*P
= dyn_cast
<PHINode
>(U
)) {
1574 PHINode::getIncomingValueNumForOperand(UI
.getOperandNo());
1575 UseBB
= P
->getIncomingBlock(i
);
1577 if (UseBB
== Preheader
|| L
->contains(UseBB
)) {
1583 // If there is, the def must remain in the preheader.
1587 // Otherwise, sink it to the exit block.
1588 Instruction
*ToMove
= I
;
1591 if (I
!= Preheader
->begin()) {
1592 // Skip debug info intrinsics.
1595 } while (isa
<DbgInfoIntrinsic
>(I
) && I
!= Preheader
->begin());
1597 if (isa
<DbgInfoIntrinsic
>(I
) && I
== Preheader
->begin())
1603 ToMove
->moveBefore(InsertPt
);
1609 /// ConvertToSInt - Convert APF to an integer, if possible.
1610 static bool ConvertToSInt(const APFloat
&APF
, int64_t &IntVal
) {
1611 bool isExact
= false;
1612 if (&APF
.getSemantics() == &APFloat::PPCDoubleDouble
)
1614 // See if we can convert this to an int64_t
1616 if (APF
.convertToInteger(&UIntVal
, 64, true, APFloat::rmTowardZero
,
1617 &isExact
) != APFloat::opOK
|| !isExact
)
1623 /// HandleFloatingPointIV - If the loop has floating induction variable
1624 /// then insert corresponding integer induction variable if possible.
1626 /// for(double i = 0; i < 10000; ++i)
1628 /// is converted into
1629 /// for(int i = 0; i < 10000; ++i)
1632 void IndVarSimplify::HandleFloatingPointIV(Loop
*L
, PHINode
*PN
) {
1633 unsigned IncomingEdge
= L
->contains(PN
->getIncomingBlock(0));
1634 unsigned BackEdge
= IncomingEdge
^1;
1636 // Check incoming value.
1637 ConstantFP
*InitValueVal
=
1638 dyn_cast
<ConstantFP
>(PN
->getIncomingValue(IncomingEdge
));
1641 if (!InitValueVal
|| !ConvertToSInt(InitValueVal
->getValueAPF(), InitValue
))
1644 // Check IV increment. Reject this PN if increment operation is not
1645 // an add or increment value can not be represented by an integer.
1646 BinaryOperator
*Incr
=
1647 dyn_cast
<BinaryOperator
>(PN
->getIncomingValue(BackEdge
));
1648 if (Incr
== 0 || Incr
->getOpcode() != Instruction::FAdd
) return;
1650 // If this is not an add of the PHI with a constantfp, or if the constant fp
1651 // is not an integer, bail out.
1652 ConstantFP
*IncValueVal
= dyn_cast
<ConstantFP
>(Incr
->getOperand(1));
1654 if (IncValueVal
== 0 || Incr
->getOperand(0) != PN
||
1655 !ConvertToSInt(IncValueVal
->getValueAPF(), IncValue
))
1658 // Check Incr uses. One user is PN and the other user is an exit condition
1659 // used by the conditional terminator.
1660 Value::use_iterator IncrUse
= Incr
->use_begin();
1661 Instruction
*U1
= cast
<Instruction
>(*IncrUse
++);
1662 if (IncrUse
== Incr
->use_end()) return;
1663 Instruction
*U2
= cast
<Instruction
>(*IncrUse
++);
1664 if (IncrUse
!= Incr
->use_end()) return;
1666 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
1667 // only used by a branch, we can't transform it.
1668 FCmpInst
*Compare
= dyn_cast
<FCmpInst
>(U1
);
1670 Compare
= dyn_cast
<FCmpInst
>(U2
);
1671 if (Compare
== 0 || !Compare
->hasOneUse() ||
1672 !isa
<BranchInst
>(Compare
->use_back()))
1675 BranchInst
*TheBr
= cast
<BranchInst
>(Compare
->use_back());
1677 // We need to verify that the branch actually controls the iteration count
1678 // of the loop. If not, the new IV can overflow and no one will notice.
1679 // The branch block must be in the loop and one of the successors must be out
1681 assert(TheBr
->isConditional() && "Can't use fcmp if not conditional");
1682 if (!L
->contains(TheBr
->getParent()) ||
1683 (L
->contains(TheBr
->getSuccessor(0)) &&
1684 L
->contains(TheBr
->getSuccessor(1))))
1688 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
1690 ConstantFP
*ExitValueVal
= dyn_cast
<ConstantFP
>(Compare
->getOperand(1));
1692 if (ExitValueVal
== 0 ||
1693 !ConvertToSInt(ExitValueVal
->getValueAPF(), ExitValue
))
1696 // Find new predicate for integer comparison.
1697 CmpInst::Predicate NewPred
= CmpInst::BAD_ICMP_PREDICATE
;
1698 switch (Compare
->getPredicate()) {
1699 default: return; // Unknown comparison.
1700 case CmpInst::FCMP_OEQ
:
1701 case CmpInst::FCMP_UEQ
: NewPred
= CmpInst::ICMP_EQ
; break;
1702 case CmpInst::FCMP_ONE
:
1703 case CmpInst::FCMP_UNE
: NewPred
= CmpInst::ICMP_NE
; break;
1704 case CmpInst::FCMP_OGT
:
1705 case CmpInst::FCMP_UGT
: NewPred
= CmpInst::ICMP_SGT
; break;
1706 case CmpInst::FCMP_OGE
:
1707 case CmpInst::FCMP_UGE
: NewPred
= CmpInst::ICMP_SGE
; break;
1708 case CmpInst::FCMP_OLT
:
1709 case CmpInst::FCMP_ULT
: NewPred
= CmpInst::ICMP_SLT
; break;
1710 case CmpInst::FCMP_OLE
:
1711 case CmpInst::FCMP_ULE
: NewPred
= CmpInst::ICMP_SLE
; break;
1714 // We convert the floating point induction variable to a signed i32 value if
1715 // we can. This is only safe if the comparison will not overflow in a way
1716 // that won't be trapped by the integer equivalent operations. Check for this
1718 // TODO: We could use i64 if it is native and the range requires it.
1720 // The start/stride/exit values must all fit in signed i32.
1721 if (!isInt
<32>(InitValue
) || !isInt
<32>(IncValue
) || !isInt
<32>(ExitValue
))
1724 // If not actually striding (add x, 0.0), avoid touching the code.
1728 // Positive and negative strides have different safety conditions.
1730 // If we have a positive stride, we require the init to be less than the
1731 // exit value and an equality or less than comparison.
1732 if (InitValue
>= ExitValue
||
1733 NewPred
== CmpInst::ICMP_SGT
|| NewPred
== CmpInst::ICMP_SGE
)
1736 uint32_t Range
= uint32_t(ExitValue
-InitValue
);
1737 if (NewPred
== CmpInst::ICMP_SLE
) {
1738 // Normalize SLE -> SLT, check for infinite loop.
1739 if (++Range
== 0) return; // Range overflows.
1742 unsigned Leftover
= Range
% uint32_t(IncValue
);
1744 // If this is an equality comparison, we require that the strided value
1745 // exactly land on the exit value, otherwise the IV condition will wrap
1746 // around and do things the fp IV wouldn't.
1747 if ((NewPred
== CmpInst::ICMP_EQ
|| NewPred
== CmpInst::ICMP_NE
) &&
1751 // If the stride would wrap around the i32 before exiting, we can't
1752 // transform the IV.
1753 if (Leftover
!= 0 && int32_t(ExitValue
+IncValue
) < ExitValue
)
1757 // If we have a negative stride, we require the init to be greater than the
1758 // exit value and an equality or greater than comparison.
1759 if (InitValue
>= ExitValue
||
1760 NewPred
== CmpInst::ICMP_SLT
|| NewPred
== CmpInst::ICMP_SLE
)
1763 uint32_t Range
= uint32_t(InitValue
-ExitValue
);
1764 if (NewPred
== CmpInst::ICMP_SGE
) {
1765 // Normalize SGE -> SGT, check for infinite loop.
1766 if (++Range
== 0) return; // Range overflows.
1769 unsigned Leftover
= Range
% uint32_t(-IncValue
);
1771 // If this is an equality comparison, we require that the strided value
1772 // exactly land on the exit value, otherwise the IV condition will wrap
1773 // around and do things the fp IV wouldn't.
1774 if ((NewPred
== CmpInst::ICMP_EQ
|| NewPred
== CmpInst::ICMP_NE
) &&
1778 // If the stride would wrap around the i32 before exiting, we can't
1779 // transform the IV.
1780 if (Leftover
!= 0 && int32_t(ExitValue
+IncValue
) > ExitValue
)
1784 const IntegerType
*Int32Ty
= Type::getInt32Ty(PN
->getContext());
1786 // Insert new integer induction variable.
1787 PHINode
*NewPHI
= PHINode::Create(Int32Ty
, 2, PN
->getName()+".int", PN
);
1788 NewPHI
->addIncoming(ConstantInt::get(Int32Ty
, InitValue
),
1789 PN
->getIncomingBlock(IncomingEdge
));
1792 BinaryOperator::CreateAdd(NewPHI
, ConstantInt::get(Int32Ty
, IncValue
),
1793 Incr
->getName()+".int", Incr
);
1794 NewPHI
->addIncoming(NewAdd
, PN
->getIncomingBlock(BackEdge
));
1796 ICmpInst
*NewCompare
= new ICmpInst(TheBr
, NewPred
, NewAdd
,
1797 ConstantInt::get(Int32Ty
, ExitValue
),
1798 Compare
->getName());
1800 // In the following deletions, PN may become dead and may be deleted.
1801 // Use a WeakVH to observe whether this happens.
1804 // Delete the old floating point exit comparison. The branch starts using the
1806 NewCompare
->takeName(Compare
);
1807 Compare
->replaceAllUsesWith(NewCompare
);
1808 RecursivelyDeleteTriviallyDeadInstructions(Compare
);
1810 // Delete the old floating point increment.
1811 Incr
->replaceAllUsesWith(UndefValue::get(Incr
->getType()));
1812 RecursivelyDeleteTriviallyDeadInstructions(Incr
);
1814 // If the FP induction variable still has uses, this is because something else
1815 // in the loop uses its value. In order to canonicalize the induction
1816 // variable, we chose to eliminate the IV and rewrite it in terms of an
1819 // We give preference to sitofp over uitofp because it is faster on most
1822 Value
*Conv
= new SIToFPInst(NewPHI
, PN
->getType(), "indvar.conv",
1823 PN
->getParent()->getFirstNonPHI());
1824 PN
->replaceAllUsesWith(Conv
);
1825 RecursivelyDeleteTriviallyDeadInstructions(PN
);
1828 // Add a new IVUsers entry for the newly-created integer PHI.
1830 IU
->AddUsersIfInteresting(NewPHI
);