Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / Transforms / Scalar / JumpThreading.cpp
blobb500d5b4fdffb95b1ef617e14c066dcf9e9ea5eb
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LazyValueInfo.h"
22 #include "llvm/Analysis/Loads.h"
23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Transforms/Utils/SSAUpdater.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ValueHandle.h"
36 #include "llvm/Support/raw_ostream.h"
37 using namespace llvm;
39 STATISTIC(NumThreads, "Number of jumps threaded");
40 STATISTIC(NumFolds, "Number of terminators folded");
41 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
43 static cl::opt<unsigned>
44 Threshold("jump-threading-threshold",
45 cl::desc("Max block size to duplicate for jump threading"),
46 cl::init(6), cl::Hidden);
48 namespace {
49 // These are at global scope so static functions can use them too.
50 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
51 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
53 // This is used to keep track of what kind of constant we're currently hoping
54 // to find.
55 enum ConstantPreference {
56 WantInteger,
57 WantBlockAddress
60 /// This pass performs 'jump threading', which looks at blocks that have
61 /// multiple predecessors and multiple successors. If one or more of the
62 /// predecessors of the block can be proven to always jump to one of the
63 /// successors, we forward the edge from the predecessor to the successor by
64 /// duplicating the contents of this block.
65 ///
66 /// An example of when this can occur is code like this:
67 ///
68 /// if () { ...
69 /// X = 4;
70 /// }
71 /// if (X < 3) {
72 ///
73 /// In this case, the unconditional branch at the end of the first if can be
74 /// revectored to the false side of the second if.
75 ///
76 class JumpThreading : public FunctionPass {
77 TargetData *TD;
78 LazyValueInfo *LVI;
79 #ifdef NDEBUG
80 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
81 #else
82 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
83 #endif
84 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
86 // RAII helper for updating the recursion stack.
87 struct RecursionSetRemover {
88 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
89 std::pair<Value*, BasicBlock*> ThePair;
91 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
92 std::pair<Value*, BasicBlock*> P)
93 : TheSet(S), ThePair(P) { }
95 ~RecursionSetRemover() {
96 TheSet.erase(ThePair);
99 public:
100 static char ID; // Pass identification
101 JumpThreading() : FunctionPass(ID) {
102 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
105 bool runOnFunction(Function &F);
107 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
108 AU.addRequired<LazyValueInfo>();
109 AU.addPreserved<LazyValueInfo>();
112 void FindLoopHeaders(Function &F);
113 bool ProcessBlock(BasicBlock *BB);
114 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
115 BasicBlock *SuccBB);
116 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
117 const SmallVectorImpl<BasicBlock *> &PredBBs);
119 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
120 PredValueInfo &Result,
121 ConstantPreference Preference);
122 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
123 ConstantPreference Preference);
125 bool ProcessBranchOnPHI(PHINode *PN);
126 bool ProcessBranchOnXOR(BinaryOperator *BO);
128 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
132 char JumpThreading::ID = 0;
133 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
134 "Jump Threading", false, false)
135 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
136 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
137 "Jump Threading", false, false)
139 // Public interface to the Jump Threading pass
140 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
142 /// runOnFunction - Top level algorithm.
144 bool JumpThreading::runOnFunction(Function &F) {
145 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
146 TD = getAnalysisIfAvailable<TargetData>();
147 LVI = &getAnalysis<LazyValueInfo>();
149 FindLoopHeaders(F);
151 bool Changed, EverChanged = false;
152 do {
153 Changed = false;
154 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
155 BasicBlock *BB = I;
156 // Thread all of the branches we can over this block.
157 while (ProcessBlock(BB))
158 Changed = true;
160 ++I;
162 // If the block is trivially dead, zap it. This eliminates the successor
163 // edges which simplifies the CFG.
164 if (pred_begin(BB) == pred_end(BB) &&
165 BB != &BB->getParent()->getEntryBlock()) {
166 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName()
167 << "' with terminator: " << *BB->getTerminator() << '\n');
168 LoopHeaders.erase(BB);
169 LVI->eraseBlock(BB);
170 DeleteDeadBlock(BB);
171 Changed = true;
172 continue;
175 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
177 // Can't thread an unconditional jump, but if the block is "almost
178 // empty", we can replace uses of it with uses of the successor and make
179 // this dead.
180 if (BI && BI->isUnconditional() &&
181 BB != &BB->getParent()->getEntryBlock() &&
182 // If the terminator is the only non-phi instruction, try to nuke it.
183 BB->getFirstNonPHIOrDbg()->isTerminator()) {
184 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
185 // block, we have to make sure it isn't in the LoopHeaders set. We
186 // reinsert afterward if needed.
187 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
188 BasicBlock *Succ = BI->getSuccessor(0);
190 // FIXME: It is always conservatively correct to drop the info
191 // for a block even if it doesn't get erased. This isn't totally
192 // awesome, but it allows us to use AssertingVH to prevent nasty
193 // dangling pointer issues within LazyValueInfo.
194 LVI->eraseBlock(BB);
195 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
196 Changed = true;
197 // If we deleted BB and BB was the header of a loop, then the
198 // successor is now the header of the loop.
199 BB = Succ;
202 if (ErasedFromLoopHeaders)
203 LoopHeaders.insert(BB);
206 EverChanged |= Changed;
207 } while (Changed);
209 LoopHeaders.clear();
210 return EverChanged;
213 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
214 /// thread across it.
215 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
216 /// Ignore PHI nodes, these will be flattened when duplication happens.
217 BasicBlock::const_iterator I = BB->getFirstNonPHI();
219 // FIXME: THREADING will delete values that are just used to compute the
220 // branch, so they shouldn't count against the duplication cost.
223 // Sum up the cost of each instruction until we get to the terminator. Don't
224 // include the terminator because the copy won't include it.
225 unsigned Size = 0;
226 for (; !isa<TerminatorInst>(I); ++I) {
227 // Debugger intrinsics don't incur code size.
228 if (isa<DbgInfoIntrinsic>(I)) continue;
230 // If this is a pointer->pointer bitcast, it is free.
231 if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
232 continue;
234 // All other instructions count for at least one unit.
235 ++Size;
237 // Calls are more expensive. If they are non-intrinsic calls, we model them
238 // as having cost of 4. If they are a non-vector intrinsic, we model them
239 // as having cost of 2 total, and if they are a vector intrinsic, we model
240 // them as having cost 1.
241 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
242 if (!isa<IntrinsicInst>(CI))
243 Size += 3;
244 else if (!CI->getType()->isVectorTy())
245 Size += 1;
249 // Threading through a switch statement is particularly profitable. If this
250 // block ends in a switch, decrease its cost to make it more likely to happen.
251 if (isa<SwitchInst>(I))
252 Size = Size > 6 ? Size-6 : 0;
254 // The same holds for indirect branches, but slightly more so.
255 if (isa<IndirectBrInst>(I))
256 Size = Size > 8 ? Size-8 : 0;
258 return Size;
261 /// FindLoopHeaders - We do not want jump threading to turn proper loop
262 /// structures into irreducible loops. Doing this breaks up the loop nesting
263 /// hierarchy and pessimizes later transformations. To prevent this from
264 /// happening, we first have to find the loop headers. Here we approximate this
265 /// by finding targets of backedges in the CFG.
267 /// Note that there definitely are cases when we want to allow threading of
268 /// edges across a loop header. For example, threading a jump from outside the
269 /// loop (the preheader) to an exit block of the loop is definitely profitable.
270 /// It is also almost always profitable to thread backedges from within the loop
271 /// to exit blocks, and is often profitable to thread backedges to other blocks
272 /// within the loop (forming a nested loop). This simple analysis is not rich
273 /// enough to track all of these properties and keep it up-to-date as the CFG
274 /// mutates, so we don't allow any of these transformations.
276 void JumpThreading::FindLoopHeaders(Function &F) {
277 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
278 FindFunctionBackedges(F, Edges);
280 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
281 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
284 /// getKnownConstant - Helper method to determine if we can thread over a
285 /// terminator with the given value as its condition, and if so what value to
286 /// use for that. What kind of value this is depends on whether we want an
287 /// integer or a block address, but an undef is always accepted.
288 /// Returns null if Val is null or not an appropriate constant.
289 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
290 if (!Val)
291 return 0;
293 // Undef is "known" enough.
294 if (UndefValue *U = dyn_cast<UndefValue>(Val))
295 return U;
297 if (Preference == WantBlockAddress)
298 return dyn_cast<BlockAddress>(Val->stripPointerCasts());
300 return dyn_cast<ConstantInt>(Val);
303 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
304 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
305 /// in any of our predecessors. If so, return the known list of value and pred
306 /// BB in the result vector.
308 /// This returns true if there were any known values.
310 bool JumpThreading::
311 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
312 ConstantPreference Preference) {
313 // This method walks up use-def chains recursively. Because of this, we could
314 // get into an infinite loop going around loops in the use-def chain. To
315 // prevent this, keep track of what (value, block) pairs we've already visited
316 // and terminate the search if we loop back to them
317 if (!RecursionSet.insert(std::make_pair(V, BB)).second)
318 return false;
320 // An RAII help to remove this pair from the recursion set once the recursion
321 // stack pops back out again.
322 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
324 // If V is a constant, then it is known in all predecessors.
325 if (Constant *KC = getKnownConstant(V, Preference)) {
326 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
327 Result.push_back(std::make_pair(KC, *PI));
329 return true;
332 // If V is a non-instruction value, or an instruction in a different block,
333 // then it can't be derived from a PHI.
334 Instruction *I = dyn_cast<Instruction>(V);
335 if (I == 0 || I->getParent() != BB) {
337 // Okay, if this is a live-in value, see if it has a known value at the end
338 // of any of our predecessors.
340 // FIXME: This should be an edge property, not a block end property.
341 /// TODO: Per PR2563, we could infer value range information about a
342 /// predecessor based on its terminator.
344 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
345 // "I" is a non-local compare-with-a-constant instruction. This would be
346 // able to handle value inequalities better, for example if the compare is
347 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
348 // Perhaps getConstantOnEdge should be smart enough to do this?
350 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
351 BasicBlock *P = *PI;
352 // If the value is known by LazyValueInfo to be a constant in a
353 // predecessor, use that information to try to thread this block.
354 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
355 if (Constant *KC = getKnownConstant(PredCst, Preference))
356 Result.push_back(std::make_pair(KC, P));
359 return !Result.empty();
362 /// If I is a PHI node, then we know the incoming values for any constants.
363 if (PHINode *PN = dyn_cast<PHINode>(I)) {
364 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
365 Value *InVal = PN->getIncomingValue(i);
366 if (Constant *KC = getKnownConstant(InVal, Preference)) {
367 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
368 } else {
369 Constant *CI = LVI->getConstantOnEdge(InVal,
370 PN->getIncomingBlock(i), BB);
371 if (Constant *KC = getKnownConstant(CI, Preference))
372 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
376 return !Result.empty();
379 PredValueInfoTy LHSVals, RHSVals;
381 // Handle some boolean conditions.
382 if (I->getType()->getPrimitiveSizeInBits() == 1) {
383 assert(Preference == WantInteger && "One-bit non-integer type?");
384 // X | true -> true
385 // X & false -> false
386 if (I->getOpcode() == Instruction::Or ||
387 I->getOpcode() == Instruction::And) {
388 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
389 WantInteger);
390 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
391 WantInteger);
393 if (LHSVals.empty() && RHSVals.empty())
394 return false;
396 ConstantInt *InterestingVal;
397 if (I->getOpcode() == Instruction::Or)
398 InterestingVal = ConstantInt::getTrue(I->getContext());
399 else
400 InterestingVal = ConstantInt::getFalse(I->getContext());
402 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
404 // Scan for the sentinel. If we find an undef, force it to the
405 // interesting value: x|undef -> true and x&undef -> false.
406 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
407 if (LHSVals[i].first == InterestingVal ||
408 isa<UndefValue>(LHSVals[i].first)) {
409 Result.push_back(LHSVals[i]);
410 Result.back().first = InterestingVal;
411 LHSKnownBBs.insert(LHSVals[i].second);
413 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
414 if (RHSVals[i].first == InterestingVal ||
415 isa<UndefValue>(RHSVals[i].first)) {
416 // If we already inferred a value for this block on the LHS, don't
417 // re-add it.
418 if (!LHSKnownBBs.count(RHSVals[i].second)) {
419 Result.push_back(RHSVals[i]);
420 Result.back().first = InterestingVal;
424 return !Result.empty();
427 // Handle the NOT form of XOR.
428 if (I->getOpcode() == Instruction::Xor &&
429 isa<ConstantInt>(I->getOperand(1)) &&
430 cast<ConstantInt>(I->getOperand(1))->isOne()) {
431 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
432 WantInteger);
433 if (Result.empty())
434 return false;
436 // Invert the known values.
437 for (unsigned i = 0, e = Result.size(); i != e; ++i)
438 Result[i].first = ConstantExpr::getNot(Result[i].first);
440 return true;
443 // Try to simplify some other binary operator values.
444 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
445 assert(Preference != WantBlockAddress
446 && "A binary operator creating a block address?");
447 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
448 PredValueInfoTy LHSVals;
449 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
450 WantInteger);
452 // Try to use constant folding to simplify the binary operator.
453 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
454 Constant *V = LHSVals[i].first;
455 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
457 if (Constant *KC = getKnownConstant(Folded, WantInteger))
458 Result.push_back(std::make_pair(KC, LHSVals[i].second));
462 return !Result.empty();
465 // Handle compare with phi operand, where the PHI is defined in this block.
466 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
467 assert(Preference == WantInteger && "Compares only produce integers");
468 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
469 if (PN && PN->getParent() == BB) {
470 // We can do this simplification if any comparisons fold to true or false.
471 // See if any do.
472 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
473 BasicBlock *PredBB = PN->getIncomingBlock(i);
474 Value *LHS = PN->getIncomingValue(i);
475 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
477 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
478 if (Res == 0) {
479 if (!isa<Constant>(RHS))
480 continue;
482 LazyValueInfo::Tristate
483 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
484 cast<Constant>(RHS), PredBB, BB);
485 if (ResT == LazyValueInfo::Unknown)
486 continue;
487 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
490 if (Constant *KC = getKnownConstant(Res, WantInteger))
491 Result.push_back(std::make_pair(KC, PredBB));
494 return !Result.empty();
498 // If comparing a live-in value against a constant, see if we know the
499 // live-in value on any predecessors.
500 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
501 if (!isa<Instruction>(Cmp->getOperand(0)) ||
502 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
503 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
505 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
506 BasicBlock *P = *PI;
507 // If the value is known by LazyValueInfo to be a constant in a
508 // predecessor, use that information to try to thread this block.
509 LazyValueInfo::Tristate Res =
510 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
511 RHSCst, P, BB);
512 if (Res == LazyValueInfo::Unknown)
513 continue;
515 Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
516 Result.push_back(std::make_pair(ResC, P));
519 return !Result.empty();
522 // Try to find a constant value for the LHS of a comparison,
523 // and evaluate it statically if we can.
524 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
525 PredValueInfoTy LHSVals;
526 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
527 WantInteger);
529 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
530 Constant *V = LHSVals[i].first;
531 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
532 V, CmpConst);
533 if (Constant *KC = getKnownConstant(Folded, WantInteger))
534 Result.push_back(std::make_pair(KC, LHSVals[i].second));
537 return !Result.empty();
542 if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
543 // Handle select instructions where at least one operand is a known constant
544 // and we can figure out the condition value for any predecessor block.
545 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
546 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
547 PredValueInfoTy Conds;
548 if ((TrueVal || FalseVal) &&
549 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
550 WantInteger)) {
551 for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
552 Constant *Cond = Conds[i].first;
554 // Figure out what value to use for the condition.
555 bool KnownCond;
556 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
557 // A known boolean.
558 KnownCond = CI->isOne();
559 } else {
560 assert(isa<UndefValue>(Cond) && "Unexpected condition value");
561 // Either operand will do, so be sure to pick the one that's a known
562 // constant.
563 // FIXME: Do this more cleverly if both values are known constants?
564 KnownCond = (TrueVal != 0);
567 // See if the select has a known constant value for this predecessor.
568 if (Constant *Val = KnownCond ? TrueVal : FalseVal)
569 Result.push_back(std::make_pair(Val, Conds[i].second));
572 return !Result.empty();
576 // If all else fails, see if LVI can figure out a constant value for us.
577 Constant *CI = LVI->getConstant(V, BB);
578 if (Constant *KC = getKnownConstant(CI, Preference)) {
579 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
580 Result.push_back(std::make_pair(KC, *PI));
583 return !Result.empty();
588 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
589 /// in an undefined jump, decide which block is best to revector to.
591 /// Since we can pick an arbitrary destination, we pick the successor with the
592 /// fewest predecessors. This should reduce the in-degree of the others.
594 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
595 TerminatorInst *BBTerm = BB->getTerminator();
596 unsigned MinSucc = 0;
597 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
598 // Compute the successor with the minimum number of predecessors.
599 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
600 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
601 TestBB = BBTerm->getSuccessor(i);
602 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
603 if (NumPreds < MinNumPreds) {
604 MinSucc = i;
605 MinNumPreds = NumPreds;
609 return MinSucc;
612 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
613 if (!BB->hasAddressTaken()) return false;
615 // If the block has its address taken, it may be a tree of dead constants
616 // hanging off of it. These shouldn't keep the block alive.
617 BlockAddress *BA = BlockAddress::get(BB);
618 BA->removeDeadConstantUsers();
619 return !BA->use_empty();
622 /// ProcessBlock - If there are any predecessors whose control can be threaded
623 /// through to a successor, transform them now.
624 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
625 // If the block is trivially dead, just return and let the caller nuke it.
626 // This simplifies other transformations.
627 if (pred_begin(BB) == pred_end(BB) &&
628 BB != &BB->getParent()->getEntryBlock())
629 return false;
631 // If this block has a single predecessor, and if that pred has a single
632 // successor, merge the blocks. This encourages recursive jump threading
633 // because now the condition in this block can be threaded through
634 // predecessors of our predecessor block.
635 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
636 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
637 SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
638 // If SinglePred was a loop header, BB becomes one.
639 if (LoopHeaders.erase(SinglePred))
640 LoopHeaders.insert(BB);
642 // Remember if SinglePred was the entry block of the function. If so, we
643 // will need to move BB back to the entry position.
644 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
645 LVI->eraseBlock(SinglePred);
646 MergeBasicBlockIntoOnlyPred(BB);
648 if (isEntry && BB != &BB->getParent()->getEntryBlock())
649 BB->moveBefore(&BB->getParent()->getEntryBlock());
650 return true;
654 // What kind of constant we're looking for.
655 ConstantPreference Preference = WantInteger;
657 // Look to see if the terminator is a conditional branch, switch or indirect
658 // branch, if not we can't thread it.
659 Value *Condition;
660 Instruction *Terminator = BB->getTerminator();
661 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
662 // Can't thread an unconditional jump.
663 if (BI->isUnconditional()) return false;
664 Condition = BI->getCondition();
665 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
666 Condition = SI->getCondition();
667 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
668 Condition = IB->getAddress()->stripPointerCasts();
669 Preference = WantBlockAddress;
670 } else {
671 return false; // Must be an invoke.
674 // Run constant folding to see if we can reduce the condition to a simple
675 // constant.
676 if (Instruction *I = dyn_cast<Instruction>(Condition)) {
677 Value *SimpleVal = ConstantFoldInstruction(I, TD);
678 if (SimpleVal) {
679 I->replaceAllUsesWith(SimpleVal);
680 I->eraseFromParent();
681 Condition = SimpleVal;
685 // If the terminator is branching on an undef, we can pick any of the
686 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
687 if (isa<UndefValue>(Condition)) {
688 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
690 // Fold the branch/switch.
691 TerminatorInst *BBTerm = BB->getTerminator();
692 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
693 if (i == BestSucc) continue;
694 BBTerm->getSuccessor(i)->removePredecessor(BB, true);
697 DEBUG(dbgs() << " In block '" << BB->getName()
698 << "' folding undef terminator: " << *BBTerm << '\n');
699 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
700 BBTerm->eraseFromParent();
701 return true;
704 // If the terminator of this block is branching on a constant, simplify the
705 // terminator to an unconditional branch. This can occur due to threading in
706 // other blocks.
707 if (getKnownConstant(Condition, Preference)) {
708 DEBUG(dbgs() << " In block '" << BB->getName()
709 << "' folding terminator: " << *BB->getTerminator() << '\n');
710 ++NumFolds;
711 ConstantFoldTerminator(BB, true);
712 return true;
715 Instruction *CondInst = dyn_cast<Instruction>(Condition);
717 // All the rest of our checks depend on the condition being an instruction.
718 if (CondInst == 0) {
719 // FIXME: Unify this with code below.
720 if (ProcessThreadableEdges(Condition, BB, Preference))
721 return true;
722 return false;
726 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
727 // For a comparison where the LHS is outside this block, it's possible
728 // that we've branched on it before. Used LVI to see if we can simplify
729 // the branch based on that.
730 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
731 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
732 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
733 if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
734 (!isa<Instruction>(CondCmp->getOperand(0)) ||
735 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
736 // For predecessor edge, determine if the comparison is true or false
737 // on that edge. If they're all true or all false, we can simplify the
738 // branch.
739 // FIXME: We could handle mixed true/false by duplicating code.
740 LazyValueInfo::Tristate Baseline =
741 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
742 CondConst, *PI, BB);
743 if (Baseline != LazyValueInfo::Unknown) {
744 // Check that all remaining incoming values match the first one.
745 while (++PI != PE) {
746 LazyValueInfo::Tristate Ret =
747 LVI->getPredicateOnEdge(CondCmp->getPredicate(),
748 CondCmp->getOperand(0), CondConst, *PI, BB);
749 if (Ret != Baseline) break;
752 // If we terminated early, then one of the values didn't match.
753 if (PI == PE) {
754 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
755 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
756 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
757 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
758 CondBr->eraseFromParent();
759 return true;
765 // Check for some cases that are worth simplifying. Right now we want to look
766 // for loads that are used by a switch or by the condition for the branch. If
767 // we see one, check to see if it's partially redundant. If so, insert a PHI
768 // which can then be used to thread the values.
770 Value *SimplifyValue = CondInst;
771 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
772 if (isa<Constant>(CondCmp->getOperand(1)))
773 SimplifyValue = CondCmp->getOperand(0);
775 // TODO: There are other places where load PRE would be profitable, such as
776 // more complex comparisons.
777 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
778 if (SimplifyPartiallyRedundantLoad(LI))
779 return true;
782 // Handle a variety of cases where we are branching on something derived from
783 // a PHI node in the current block. If we can prove that any predecessors
784 // compute a predictable value based on a PHI node, thread those predecessors.
786 if (ProcessThreadableEdges(CondInst, BB, Preference))
787 return true;
789 // If this is an otherwise-unfoldable branch on a phi node in the current
790 // block, see if we can simplify.
791 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
792 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
793 return ProcessBranchOnPHI(PN);
796 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
797 if (CondInst->getOpcode() == Instruction::Xor &&
798 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
799 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
802 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
803 // "(X == 4)", thread through this block.
805 return false;
809 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
810 /// load instruction, eliminate it by replacing it with a PHI node. This is an
811 /// important optimization that encourages jump threading, and needs to be run
812 /// interlaced with other jump threading tasks.
813 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
814 // Don't hack volatile loads.
815 if (LI->isVolatile()) return false;
817 // If the load is defined in a block with exactly one predecessor, it can't be
818 // partially redundant.
819 BasicBlock *LoadBB = LI->getParent();
820 if (LoadBB->getSinglePredecessor())
821 return false;
823 Value *LoadedPtr = LI->getOperand(0);
825 // If the loaded operand is defined in the LoadBB, it can't be available.
826 // TODO: Could do simple PHI translation, that would be fun :)
827 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
828 if (PtrOp->getParent() == LoadBB)
829 return false;
831 // Scan a few instructions up from the load, to see if it is obviously live at
832 // the entry to its block.
833 BasicBlock::iterator BBIt = LI;
835 if (Value *AvailableVal =
836 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
837 // If the value if the load is locally available within the block, just use
838 // it. This frequently occurs for reg2mem'd allocas.
839 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
841 // If the returned value is the load itself, replace with an undef. This can
842 // only happen in dead loops.
843 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
844 LI->replaceAllUsesWith(AvailableVal);
845 LI->eraseFromParent();
846 return true;
849 // Otherwise, if we scanned the whole block and got to the top of the block,
850 // we know the block is locally transparent to the load. If not, something
851 // might clobber its value.
852 if (BBIt != LoadBB->begin())
853 return false;
856 SmallPtrSet<BasicBlock*, 8> PredsScanned;
857 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
858 AvailablePredsTy AvailablePreds;
859 BasicBlock *OneUnavailablePred = 0;
861 // If we got here, the loaded value is transparent through to the start of the
862 // block. Check to see if it is available in any of the predecessor blocks.
863 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
864 PI != PE; ++PI) {
865 BasicBlock *PredBB = *PI;
867 // If we already scanned this predecessor, skip it.
868 if (!PredsScanned.insert(PredBB))
869 continue;
871 // Scan the predecessor to see if the value is available in the pred.
872 BBIt = PredBB->end();
873 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
874 if (!PredAvailable) {
875 OneUnavailablePred = PredBB;
876 continue;
879 // If so, this load is partially redundant. Remember this info so that we
880 // can create a PHI node.
881 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
884 // If the loaded value isn't available in any predecessor, it isn't partially
885 // redundant.
886 if (AvailablePreds.empty()) return false;
888 // Okay, the loaded value is available in at least one (and maybe all!)
889 // predecessors. If the value is unavailable in more than one unique
890 // predecessor, we want to insert a merge block for those common predecessors.
891 // This ensures that we only have to insert one reload, thus not increasing
892 // code size.
893 BasicBlock *UnavailablePred = 0;
895 // If there is exactly one predecessor where the value is unavailable, the
896 // already computed 'OneUnavailablePred' block is it. If it ends in an
897 // unconditional branch, we know that it isn't a critical edge.
898 if (PredsScanned.size() == AvailablePreds.size()+1 &&
899 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
900 UnavailablePred = OneUnavailablePred;
901 } else if (PredsScanned.size() != AvailablePreds.size()) {
902 // Otherwise, we had multiple unavailable predecessors or we had a critical
903 // edge from the one.
904 SmallVector<BasicBlock*, 8> PredsToSplit;
905 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
907 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
908 AvailablePredSet.insert(AvailablePreds[i].first);
910 // Add all the unavailable predecessors to the PredsToSplit list.
911 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
912 PI != PE; ++PI) {
913 BasicBlock *P = *PI;
914 // If the predecessor is an indirect goto, we can't split the edge.
915 if (isa<IndirectBrInst>(P->getTerminator()))
916 return false;
918 if (!AvailablePredSet.count(P))
919 PredsToSplit.push_back(P);
922 // Split them out to their own block.
923 UnavailablePred =
924 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
925 "thread-pre-split", this);
928 // If the value isn't available in all predecessors, then there will be
929 // exactly one where it isn't available. Insert a load on that edge and add
930 // it to the AvailablePreds list.
931 if (UnavailablePred) {
932 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
933 "Can't handle critical edge here!");
934 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
935 LI->getAlignment(),
936 UnavailablePred->getTerminator());
937 NewVal->setDebugLoc(LI->getDebugLoc());
938 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
941 // Now we know that each predecessor of this block has a value in
942 // AvailablePreds, sort them for efficient access as we're walking the preds.
943 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
945 // Create a PHI node at the start of the block for the PRE'd load value.
946 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
947 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
948 LoadBB->begin());
949 PN->takeName(LI);
950 PN->setDebugLoc(LI->getDebugLoc());
952 // Insert new entries into the PHI for each predecessor. A single block may
953 // have multiple entries here.
954 for (pred_iterator PI = PB; PI != PE; ++PI) {
955 BasicBlock *P = *PI;
956 AvailablePredsTy::iterator I =
957 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
958 std::make_pair(P, (Value*)0));
960 assert(I != AvailablePreds.end() && I->first == P &&
961 "Didn't find entry for predecessor!");
963 PN->addIncoming(I->second, I->first);
966 //cerr << "PRE: " << *LI << *PN << "\n";
968 LI->replaceAllUsesWith(PN);
969 LI->eraseFromParent();
971 return true;
974 /// FindMostPopularDest - The specified list contains multiple possible
975 /// threadable destinations. Pick the one that occurs the most frequently in
976 /// the list.
977 static BasicBlock *
978 FindMostPopularDest(BasicBlock *BB,
979 const SmallVectorImpl<std::pair<BasicBlock*,
980 BasicBlock*> > &PredToDestList) {
981 assert(!PredToDestList.empty());
983 // Determine popularity. If there are multiple possible destinations, we
984 // explicitly choose to ignore 'undef' destinations. We prefer to thread
985 // blocks with known and real destinations to threading undef. We'll handle
986 // them later if interesting.
987 DenseMap<BasicBlock*, unsigned> DestPopularity;
988 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
989 if (PredToDestList[i].second)
990 DestPopularity[PredToDestList[i].second]++;
992 // Find the most popular dest.
993 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
994 BasicBlock *MostPopularDest = DPI->first;
995 unsigned Popularity = DPI->second;
996 SmallVector<BasicBlock*, 4> SamePopularity;
998 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
999 // If the popularity of this entry isn't higher than the popularity we've
1000 // seen so far, ignore it.
1001 if (DPI->second < Popularity)
1002 ; // ignore.
1003 else if (DPI->second == Popularity) {
1004 // If it is the same as what we've seen so far, keep track of it.
1005 SamePopularity.push_back(DPI->first);
1006 } else {
1007 // If it is more popular, remember it.
1008 SamePopularity.clear();
1009 MostPopularDest = DPI->first;
1010 Popularity = DPI->second;
1014 // Okay, now we know the most popular destination. If there is more than one
1015 // destination, we need to determine one. This is arbitrary, but we need
1016 // to make a deterministic decision. Pick the first one that appears in the
1017 // successor list.
1018 if (!SamePopularity.empty()) {
1019 SamePopularity.push_back(MostPopularDest);
1020 TerminatorInst *TI = BB->getTerminator();
1021 for (unsigned i = 0; ; ++i) {
1022 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1024 if (std::find(SamePopularity.begin(), SamePopularity.end(),
1025 TI->getSuccessor(i)) == SamePopularity.end())
1026 continue;
1028 MostPopularDest = TI->getSuccessor(i);
1029 break;
1033 // Okay, we have finally picked the most popular destination.
1034 return MostPopularDest;
1037 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1038 ConstantPreference Preference) {
1039 // If threading this would thread across a loop header, don't even try to
1040 // thread the edge.
1041 if (LoopHeaders.count(BB))
1042 return false;
1044 PredValueInfoTy PredValues;
1045 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
1046 return false;
1048 assert(!PredValues.empty() &&
1049 "ComputeValueKnownInPredecessors returned true with no values");
1051 DEBUG(dbgs() << "IN BB: " << *BB;
1052 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1053 dbgs() << " BB '" << BB->getName() << "': FOUND condition = "
1054 << *PredValues[i].first
1055 << " for pred '" << PredValues[i].second->getName() << "'.\n";
1058 // Decide what we want to thread through. Convert our list of known values to
1059 // a list of known destinations for each pred. This also discards duplicate
1060 // predecessors and keeps track of the undefined inputs (which are represented
1061 // as a null dest in the PredToDestList).
1062 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1063 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1065 BasicBlock *OnlyDest = 0;
1066 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1068 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1069 BasicBlock *Pred = PredValues[i].second;
1070 if (!SeenPreds.insert(Pred))
1071 continue; // Duplicate predecessor entry.
1073 // If the predecessor ends with an indirect goto, we can't change its
1074 // destination.
1075 if (isa<IndirectBrInst>(Pred->getTerminator()))
1076 continue;
1078 Constant *Val = PredValues[i].first;
1080 BasicBlock *DestBB;
1081 if (isa<UndefValue>(Val))
1082 DestBB = 0;
1083 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1084 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1085 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1086 DestBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(Val)));
1087 else {
1088 assert(isa<IndirectBrInst>(BB->getTerminator())
1089 && "Unexpected terminator");
1090 DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1093 // If we have exactly one destination, remember it for efficiency below.
1094 if (PredToDestList.empty())
1095 OnlyDest = DestBB;
1096 else if (OnlyDest != DestBB)
1097 OnlyDest = MultipleDestSentinel;
1099 PredToDestList.push_back(std::make_pair(Pred, DestBB));
1102 // If all edges were unthreadable, we fail.
1103 if (PredToDestList.empty())
1104 return false;
1106 // Determine which is the most common successor. If we have many inputs and
1107 // this block is a switch, we want to start by threading the batch that goes
1108 // to the most popular destination first. If we only know about one
1109 // threadable destination (the common case) we can avoid this.
1110 BasicBlock *MostPopularDest = OnlyDest;
1112 if (MostPopularDest == MultipleDestSentinel)
1113 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1115 // Now that we know what the most popular destination is, factor all
1116 // predecessors that will jump to it into a single predecessor.
1117 SmallVector<BasicBlock*, 16> PredsToFactor;
1118 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1119 if (PredToDestList[i].second == MostPopularDest) {
1120 BasicBlock *Pred = PredToDestList[i].first;
1122 // This predecessor may be a switch or something else that has multiple
1123 // edges to the block. Factor each of these edges by listing them
1124 // according to # occurrences in PredsToFactor.
1125 TerminatorInst *PredTI = Pred->getTerminator();
1126 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1127 if (PredTI->getSuccessor(i) == BB)
1128 PredsToFactor.push_back(Pred);
1131 // If the threadable edges are branching on an undefined value, we get to pick
1132 // the destination that these predecessors should get to.
1133 if (MostPopularDest == 0)
1134 MostPopularDest = BB->getTerminator()->
1135 getSuccessor(GetBestDestForJumpOnUndef(BB));
1137 // Ok, try to thread it!
1138 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1141 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1142 /// a PHI node in the current block. See if there are any simplifications we
1143 /// can do based on inputs to the phi node.
1145 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1146 BasicBlock *BB = PN->getParent();
1148 // TODO: We could make use of this to do it once for blocks with common PHI
1149 // values.
1150 SmallVector<BasicBlock*, 1> PredBBs;
1151 PredBBs.resize(1);
1153 // If any of the predecessor blocks end in an unconditional branch, we can
1154 // *duplicate* the conditional branch into that block in order to further
1155 // encourage jump threading and to eliminate cases where we have branch on a
1156 // phi of an icmp (branch on icmp is much better).
1157 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1158 BasicBlock *PredBB = PN->getIncomingBlock(i);
1159 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1160 if (PredBr->isUnconditional()) {
1161 PredBBs[0] = PredBB;
1162 // Try to duplicate BB into PredBB.
1163 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1164 return true;
1168 return false;
1171 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1172 /// a xor instruction in the current block. See if there are any
1173 /// simplifications we can do based on inputs to the xor.
1175 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1176 BasicBlock *BB = BO->getParent();
1178 // If either the LHS or RHS of the xor is a constant, don't do this
1179 // optimization.
1180 if (isa<ConstantInt>(BO->getOperand(0)) ||
1181 isa<ConstantInt>(BO->getOperand(1)))
1182 return false;
1184 // If the first instruction in BB isn't a phi, we won't be able to infer
1185 // anything special about any particular predecessor.
1186 if (!isa<PHINode>(BB->front()))
1187 return false;
1189 // If we have a xor as the branch input to this block, and we know that the
1190 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1191 // the condition into the predecessor and fix that value to true, saving some
1192 // logical ops on that path and encouraging other paths to simplify.
1194 // This copies something like this:
1196 // BB:
1197 // %X = phi i1 [1], [%X']
1198 // %Y = icmp eq i32 %A, %B
1199 // %Z = xor i1 %X, %Y
1200 // br i1 %Z, ...
1202 // Into:
1203 // BB':
1204 // %Y = icmp ne i32 %A, %B
1205 // br i1 %Z, ...
1207 PredValueInfoTy XorOpValues;
1208 bool isLHS = true;
1209 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1210 WantInteger)) {
1211 assert(XorOpValues.empty());
1212 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1213 WantInteger))
1214 return false;
1215 isLHS = false;
1218 assert(!XorOpValues.empty() &&
1219 "ComputeValueKnownInPredecessors returned true with no values");
1221 // Scan the information to see which is most popular: true or false. The
1222 // predecessors can be of the set true, false, or undef.
1223 unsigned NumTrue = 0, NumFalse = 0;
1224 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1225 if (isa<UndefValue>(XorOpValues[i].first))
1226 // Ignore undefs for the count.
1227 continue;
1228 if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1229 ++NumFalse;
1230 else
1231 ++NumTrue;
1234 // Determine which value to split on, true, false, or undef if neither.
1235 ConstantInt *SplitVal = 0;
1236 if (NumTrue > NumFalse)
1237 SplitVal = ConstantInt::getTrue(BB->getContext());
1238 else if (NumTrue != 0 || NumFalse != 0)
1239 SplitVal = ConstantInt::getFalse(BB->getContext());
1241 // Collect all of the blocks that this can be folded into so that we can
1242 // factor this once and clone it once.
1243 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1244 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1245 if (XorOpValues[i].first != SplitVal &&
1246 !isa<UndefValue>(XorOpValues[i].first))
1247 continue;
1249 BlocksToFoldInto.push_back(XorOpValues[i].second);
1252 // If we inferred a value for all of the predecessors, then duplication won't
1253 // help us. However, we can just replace the LHS or RHS with the constant.
1254 if (BlocksToFoldInto.size() ==
1255 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1256 if (SplitVal == 0) {
1257 // If all preds provide undef, just nuke the xor, because it is undef too.
1258 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1259 BO->eraseFromParent();
1260 } else if (SplitVal->isZero()) {
1261 // If all preds provide 0, replace the xor with the other input.
1262 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1263 BO->eraseFromParent();
1264 } else {
1265 // If all preds provide 1, set the computed value to 1.
1266 BO->setOperand(!isLHS, SplitVal);
1269 return true;
1272 // Try to duplicate BB into PredBB.
1273 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1277 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1278 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1279 /// NewPred using the entries from OldPred (suitably mapped).
1280 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1281 BasicBlock *OldPred,
1282 BasicBlock *NewPred,
1283 DenseMap<Instruction*, Value*> &ValueMap) {
1284 for (BasicBlock::iterator PNI = PHIBB->begin();
1285 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1286 // Ok, we have a PHI node. Figure out what the incoming value was for the
1287 // DestBlock.
1288 Value *IV = PN->getIncomingValueForBlock(OldPred);
1290 // Remap the value if necessary.
1291 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1292 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1293 if (I != ValueMap.end())
1294 IV = I->second;
1297 PN->addIncoming(IV, NewPred);
1301 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1302 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1303 /// across BB. Transform the IR to reflect this change.
1304 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1305 const SmallVectorImpl<BasicBlock*> &PredBBs,
1306 BasicBlock *SuccBB) {
1307 // If threading to the same block as we come from, we would infinite loop.
1308 if (SuccBB == BB) {
1309 DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
1310 << "' - would thread to self!\n");
1311 return false;
1314 // If threading this would thread across a loop header, don't thread the edge.
1315 // See the comments above FindLoopHeaders for justifications and caveats.
1316 if (LoopHeaders.count(BB)) {
1317 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName()
1318 << "' to dest BB '" << SuccBB->getName()
1319 << "' - it might create an irreducible loop!\n");
1320 return false;
1323 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1324 if (JumpThreadCost > Threshold) {
1325 DEBUG(dbgs() << " Not threading BB '" << BB->getName()
1326 << "' - Cost is too high: " << JumpThreadCost << "\n");
1327 return false;
1330 // And finally, do it! Start by factoring the predecessors is needed.
1331 BasicBlock *PredBB;
1332 if (PredBBs.size() == 1)
1333 PredBB = PredBBs[0];
1334 else {
1335 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1336 << " common predecessors.\n");
1337 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1338 ".thr_comm", this);
1341 // And finally, do it!
1342 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '"
1343 << SuccBB->getName() << "' with cost: " << JumpThreadCost
1344 << ", across block:\n "
1345 << *BB << "\n");
1347 LVI->threadEdge(PredBB, BB, SuccBB);
1349 // We are going to have to map operands from the original BB block to the new
1350 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1351 // account for entry from PredBB.
1352 DenseMap<Instruction*, Value*> ValueMapping;
1354 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1355 BB->getName()+".thread",
1356 BB->getParent(), BB);
1357 NewBB->moveAfter(PredBB);
1359 BasicBlock::iterator BI = BB->begin();
1360 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1361 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1363 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1364 // mapping and using it to remap operands in the cloned instructions.
1365 for (; !isa<TerminatorInst>(BI); ++BI) {
1366 Instruction *New = BI->clone();
1367 New->setName(BI->getName());
1368 NewBB->getInstList().push_back(New);
1369 ValueMapping[BI] = New;
1371 // Remap operands to patch up intra-block references.
1372 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1373 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1374 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1375 if (I != ValueMapping.end())
1376 New->setOperand(i, I->second);
1380 // We didn't copy the terminator from BB over to NewBB, because there is now
1381 // an unconditional jump to SuccBB. Insert the unconditional jump.
1382 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
1383 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1385 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1386 // PHI nodes for NewBB now.
1387 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1389 // If there were values defined in BB that are used outside the block, then we
1390 // now have to update all uses of the value to use either the original value,
1391 // the cloned value, or some PHI derived value. This can require arbitrary
1392 // PHI insertion, of which we are prepared to do, clean these up now.
1393 SSAUpdater SSAUpdate;
1394 SmallVector<Use*, 16> UsesToRename;
1395 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1396 // Scan all uses of this instruction to see if it is used outside of its
1397 // block, and if so, record them in UsesToRename.
1398 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1399 ++UI) {
1400 Instruction *User = cast<Instruction>(*UI);
1401 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1402 if (UserPN->getIncomingBlock(UI) == BB)
1403 continue;
1404 } else if (User->getParent() == BB)
1405 continue;
1407 UsesToRename.push_back(&UI.getUse());
1410 // If there are no uses outside the block, we're done with this instruction.
1411 if (UsesToRename.empty())
1412 continue;
1414 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1416 // We found a use of I outside of BB. Rename all uses of I that are outside
1417 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1418 // with the two values we know.
1419 SSAUpdate.Initialize(I->getType(), I->getName());
1420 SSAUpdate.AddAvailableValue(BB, I);
1421 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1423 while (!UsesToRename.empty())
1424 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1425 DEBUG(dbgs() << "\n");
1429 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
1430 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1431 // us to simplify any PHI nodes in BB.
1432 TerminatorInst *PredTerm = PredBB->getTerminator();
1433 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1434 if (PredTerm->getSuccessor(i) == BB) {
1435 BB->removePredecessor(PredBB, true);
1436 PredTerm->setSuccessor(i, NewBB);
1439 // At this point, the IR is fully up to date and consistent. Do a quick scan
1440 // over the new instructions and zap any that are constants or dead. This
1441 // frequently happens because of phi translation.
1442 SimplifyInstructionsInBlock(NewBB, TD);
1444 // Threaded an edge!
1445 ++NumThreads;
1446 return true;
1449 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1450 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1451 /// If we can duplicate the contents of BB up into PredBB do so now, this
1452 /// improves the odds that the branch will be on an analyzable instruction like
1453 /// a compare.
1454 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1455 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1456 assert(!PredBBs.empty() && "Can't handle an empty set");
1458 // If BB is a loop header, then duplicating this block outside the loop would
1459 // cause us to transform this into an irreducible loop, don't do this.
1460 // See the comments above FindLoopHeaders for justifications and caveats.
1461 if (LoopHeaders.count(BB)) {
1462 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
1463 << "' into predecessor block '" << PredBBs[0]->getName()
1464 << "' - it might create an irreducible loop!\n");
1465 return false;
1468 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1469 if (DuplicationCost > Threshold) {
1470 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
1471 << "' - Cost is too high: " << DuplicationCost << "\n");
1472 return false;
1475 // And finally, do it! Start by factoring the predecessors is needed.
1476 BasicBlock *PredBB;
1477 if (PredBBs.size() == 1)
1478 PredBB = PredBBs[0];
1479 else {
1480 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1481 << " common predecessors.\n");
1482 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1483 ".thr_comm", this);
1486 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1487 // of PredBB.
1488 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '"
1489 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1490 << DuplicationCost << " block is:" << *BB << "\n");
1492 // Unless PredBB ends with an unconditional branch, split the edge so that we
1493 // can just clone the bits from BB into the end of the new PredBB.
1494 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1496 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1497 PredBB = SplitEdge(PredBB, BB, this);
1498 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1501 // We are going to have to map operands from the original BB block into the
1502 // PredBB block. Evaluate PHI nodes in BB.
1503 DenseMap<Instruction*, Value*> ValueMapping;
1505 BasicBlock::iterator BI = BB->begin();
1506 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1507 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1509 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1510 // mapping and using it to remap operands in the cloned instructions.
1511 for (; BI != BB->end(); ++BI) {
1512 Instruction *New = BI->clone();
1514 // Remap operands to patch up intra-block references.
1515 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1516 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1517 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1518 if (I != ValueMapping.end())
1519 New->setOperand(i, I->second);
1522 // If this instruction can be simplified after the operands are updated,
1523 // just use the simplified value instead. This frequently happens due to
1524 // phi translation.
1525 if (Value *IV = SimplifyInstruction(New, TD)) {
1526 delete New;
1527 ValueMapping[BI] = IV;
1528 } else {
1529 // Otherwise, insert the new instruction into the block.
1530 New->setName(BI->getName());
1531 PredBB->getInstList().insert(OldPredBranch, New);
1532 ValueMapping[BI] = New;
1536 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1537 // add entries to the PHI nodes for branch from PredBB now.
1538 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1539 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1540 ValueMapping);
1541 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1542 ValueMapping);
1544 // If there were values defined in BB that are used outside the block, then we
1545 // now have to update all uses of the value to use either the original value,
1546 // the cloned value, or some PHI derived value. This can require arbitrary
1547 // PHI insertion, of which we are prepared to do, clean these up now.
1548 SSAUpdater SSAUpdate;
1549 SmallVector<Use*, 16> UsesToRename;
1550 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1551 // Scan all uses of this instruction to see if it is used outside of its
1552 // block, and if so, record them in UsesToRename.
1553 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1554 ++UI) {
1555 Instruction *User = cast<Instruction>(*UI);
1556 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1557 if (UserPN->getIncomingBlock(UI) == BB)
1558 continue;
1559 } else if (User->getParent() == BB)
1560 continue;
1562 UsesToRename.push_back(&UI.getUse());
1565 // If there are no uses outside the block, we're done with this instruction.
1566 if (UsesToRename.empty())
1567 continue;
1569 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1571 // We found a use of I outside of BB. Rename all uses of I that are outside
1572 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1573 // with the two values we know.
1574 SSAUpdate.Initialize(I->getType(), I->getName());
1575 SSAUpdate.AddAvailableValue(BB, I);
1576 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1578 while (!UsesToRename.empty())
1579 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1580 DEBUG(dbgs() << "\n");
1583 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1584 // that we nuked.
1585 BB->removePredecessor(PredBB, true);
1587 // Remove the unconditional branch at the end of the PredBB block.
1588 OldPredBranch->eraseFromParent();
1590 ++NumDupes;
1591 return true;