1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Jump Threading pass.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LazyValueInfo.h"
22 #include "llvm/Analysis/Loads.h"
23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Transforms/Utils/SSAUpdater.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ValueHandle.h"
36 #include "llvm/Support/raw_ostream.h"
39 STATISTIC(NumThreads
, "Number of jumps threaded");
40 STATISTIC(NumFolds
, "Number of terminators folded");
41 STATISTIC(NumDupes
, "Number of branch blocks duplicated to eliminate phi");
43 static cl::opt
<unsigned>
44 Threshold("jump-threading-threshold",
45 cl::desc("Max block size to duplicate for jump threading"),
46 cl::init(6), cl::Hidden
);
49 // These are at global scope so static functions can use them too.
50 typedef SmallVectorImpl
<std::pair
<Constant
*, BasicBlock
*> > PredValueInfo
;
51 typedef SmallVector
<std::pair
<Constant
*, BasicBlock
*>, 8> PredValueInfoTy
;
53 // This is used to keep track of what kind of constant we're currently hoping
55 enum ConstantPreference
{
60 /// This pass performs 'jump threading', which looks at blocks that have
61 /// multiple predecessors and multiple successors. If one or more of the
62 /// predecessors of the block can be proven to always jump to one of the
63 /// successors, we forward the edge from the predecessor to the successor by
64 /// duplicating the contents of this block.
66 /// An example of when this can occur is code like this:
73 /// In this case, the unconditional branch at the end of the first if can be
74 /// revectored to the false side of the second if.
76 class JumpThreading
: public FunctionPass
{
80 SmallPtrSet
<BasicBlock
*, 16> LoopHeaders
;
82 SmallSet
<AssertingVH
<BasicBlock
>, 16> LoopHeaders
;
84 DenseSet
<std::pair
<Value
*, BasicBlock
*> > RecursionSet
;
86 // RAII helper for updating the recursion stack.
87 struct RecursionSetRemover
{
88 DenseSet
<std::pair
<Value
*, BasicBlock
*> > &TheSet
;
89 std::pair
<Value
*, BasicBlock
*> ThePair
;
91 RecursionSetRemover(DenseSet
<std::pair
<Value
*, BasicBlock
*> > &S
,
92 std::pair
<Value
*, BasicBlock
*> P
)
93 : TheSet(S
), ThePair(P
) { }
95 ~RecursionSetRemover() {
96 TheSet
.erase(ThePair
);
100 static char ID
; // Pass identification
101 JumpThreading() : FunctionPass(ID
) {
102 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
105 bool runOnFunction(Function
&F
);
107 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
108 AU
.addRequired
<LazyValueInfo
>();
109 AU
.addPreserved
<LazyValueInfo
>();
112 void FindLoopHeaders(Function
&F
);
113 bool ProcessBlock(BasicBlock
*BB
);
114 bool ThreadEdge(BasicBlock
*BB
, const SmallVectorImpl
<BasicBlock
*> &PredBBs
,
116 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock
*BB
,
117 const SmallVectorImpl
<BasicBlock
*> &PredBBs
);
119 bool ComputeValueKnownInPredecessors(Value
*V
, BasicBlock
*BB
,
120 PredValueInfo
&Result
,
121 ConstantPreference Preference
);
122 bool ProcessThreadableEdges(Value
*Cond
, BasicBlock
*BB
,
123 ConstantPreference Preference
);
125 bool ProcessBranchOnPHI(PHINode
*PN
);
126 bool ProcessBranchOnXOR(BinaryOperator
*BO
);
128 bool SimplifyPartiallyRedundantLoad(LoadInst
*LI
);
132 char JumpThreading::ID
= 0;
133 INITIALIZE_PASS_BEGIN(JumpThreading
, "jump-threading",
134 "Jump Threading", false, false)
135 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo
)
136 INITIALIZE_PASS_END(JumpThreading
, "jump-threading",
137 "Jump Threading", false, false)
139 // Public interface to the Jump Threading pass
140 FunctionPass
*llvm::createJumpThreadingPass() { return new JumpThreading(); }
142 /// runOnFunction - Top level algorithm.
144 bool JumpThreading::runOnFunction(Function
&F
) {
145 DEBUG(dbgs() << "Jump threading on function '" << F
.getName() << "'\n");
146 TD
= getAnalysisIfAvailable
<TargetData
>();
147 LVI
= &getAnalysis
<LazyValueInfo
>();
151 bool Changed
, EverChanged
= false;
154 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
;) {
156 // Thread all of the branches we can over this block.
157 while (ProcessBlock(BB
))
162 // If the block is trivially dead, zap it. This eliminates the successor
163 // edges which simplifies the CFG.
164 if (pred_begin(BB
) == pred_end(BB
) &&
165 BB
!= &BB
->getParent()->getEntryBlock()) {
166 DEBUG(dbgs() << " JT: Deleting dead block '" << BB
->getName()
167 << "' with terminator: " << *BB
->getTerminator() << '\n');
168 LoopHeaders
.erase(BB
);
175 BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
177 // Can't thread an unconditional jump, but if the block is "almost
178 // empty", we can replace uses of it with uses of the successor and make
180 if (BI
&& BI
->isUnconditional() &&
181 BB
!= &BB
->getParent()->getEntryBlock() &&
182 // If the terminator is the only non-phi instruction, try to nuke it.
183 BB
->getFirstNonPHIOrDbg()->isTerminator()) {
184 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
185 // block, we have to make sure it isn't in the LoopHeaders set. We
186 // reinsert afterward if needed.
187 bool ErasedFromLoopHeaders
= LoopHeaders
.erase(BB
);
188 BasicBlock
*Succ
= BI
->getSuccessor(0);
190 // FIXME: It is always conservatively correct to drop the info
191 // for a block even if it doesn't get erased. This isn't totally
192 // awesome, but it allows us to use AssertingVH to prevent nasty
193 // dangling pointer issues within LazyValueInfo.
195 if (TryToSimplifyUncondBranchFromEmptyBlock(BB
)) {
197 // If we deleted BB and BB was the header of a loop, then the
198 // successor is now the header of the loop.
202 if (ErasedFromLoopHeaders
)
203 LoopHeaders
.insert(BB
);
206 EverChanged
|= Changed
;
213 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
214 /// thread across it.
215 static unsigned getJumpThreadDuplicationCost(const BasicBlock
*BB
) {
216 /// Ignore PHI nodes, these will be flattened when duplication happens.
217 BasicBlock::const_iterator I
= BB
->getFirstNonPHI();
219 // FIXME: THREADING will delete values that are just used to compute the
220 // branch, so they shouldn't count against the duplication cost.
223 // Sum up the cost of each instruction until we get to the terminator. Don't
224 // include the terminator because the copy won't include it.
226 for (; !isa
<TerminatorInst
>(I
); ++I
) {
227 // Debugger intrinsics don't incur code size.
228 if (isa
<DbgInfoIntrinsic
>(I
)) continue;
230 // If this is a pointer->pointer bitcast, it is free.
231 if (isa
<BitCastInst
>(I
) && I
->getType()->isPointerTy())
234 // All other instructions count for at least one unit.
237 // Calls are more expensive. If they are non-intrinsic calls, we model them
238 // as having cost of 4. If they are a non-vector intrinsic, we model them
239 // as having cost of 2 total, and if they are a vector intrinsic, we model
240 // them as having cost 1.
241 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
242 if (!isa
<IntrinsicInst
>(CI
))
244 else if (!CI
->getType()->isVectorTy())
249 // Threading through a switch statement is particularly profitable. If this
250 // block ends in a switch, decrease its cost to make it more likely to happen.
251 if (isa
<SwitchInst
>(I
))
252 Size
= Size
> 6 ? Size
-6 : 0;
254 // The same holds for indirect branches, but slightly more so.
255 if (isa
<IndirectBrInst
>(I
))
256 Size
= Size
> 8 ? Size
-8 : 0;
261 /// FindLoopHeaders - We do not want jump threading to turn proper loop
262 /// structures into irreducible loops. Doing this breaks up the loop nesting
263 /// hierarchy and pessimizes later transformations. To prevent this from
264 /// happening, we first have to find the loop headers. Here we approximate this
265 /// by finding targets of backedges in the CFG.
267 /// Note that there definitely are cases when we want to allow threading of
268 /// edges across a loop header. For example, threading a jump from outside the
269 /// loop (the preheader) to an exit block of the loop is definitely profitable.
270 /// It is also almost always profitable to thread backedges from within the loop
271 /// to exit blocks, and is often profitable to thread backedges to other blocks
272 /// within the loop (forming a nested loop). This simple analysis is not rich
273 /// enough to track all of these properties and keep it up-to-date as the CFG
274 /// mutates, so we don't allow any of these transformations.
276 void JumpThreading::FindLoopHeaders(Function
&F
) {
277 SmallVector
<std::pair
<const BasicBlock
*,const BasicBlock
*>, 32> Edges
;
278 FindFunctionBackedges(F
, Edges
);
280 for (unsigned i
= 0, e
= Edges
.size(); i
!= e
; ++i
)
281 LoopHeaders
.insert(const_cast<BasicBlock
*>(Edges
[i
].second
));
284 /// getKnownConstant - Helper method to determine if we can thread over a
285 /// terminator with the given value as its condition, and if so what value to
286 /// use for that. What kind of value this is depends on whether we want an
287 /// integer or a block address, but an undef is always accepted.
288 /// Returns null if Val is null or not an appropriate constant.
289 static Constant
*getKnownConstant(Value
*Val
, ConstantPreference Preference
) {
293 // Undef is "known" enough.
294 if (UndefValue
*U
= dyn_cast
<UndefValue
>(Val
))
297 if (Preference
== WantBlockAddress
)
298 return dyn_cast
<BlockAddress
>(Val
->stripPointerCasts());
300 return dyn_cast
<ConstantInt
>(Val
);
303 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
304 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
305 /// in any of our predecessors. If so, return the known list of value and pred
306 /// BB in the result vector.
308 /// This returns true if there were any known values.
311 ComputeValueKnownInPredecessors(Value
*V
, BasicBlock
*BB
, PredValueInfo
&Result
,
312 ConstantPreference Preference
) {
313 // This method walks up use-def chains recursively. Because of this, we could
314 // get into an infinite loop going around loops in the use-def chain. To
315 // prevent this, keep track of what (value, block) pairs we've already visited
316 // and terminate the search if we loop back to them
317 if (!RecursionSet
.insert(std::make_pair(V
, BB
)).second
)
320 // An RAII help to remove this pair from the recursion set once the recursion
321 // stack pops back out again.
322 RecursionSetRemover
remover(RecursionSet
, std::make_pair(V
, BB
));
324 // If V is a constant, then it is known in all predecessors.
325 if (Constant
*KC
= getKnownConstant(V
, Preference
)) {
326 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
327 Result
.push_back(std::make_pair(KC
, *PI
));
332 // If V is a non-instruction value, or an instruction in a different block,
333 // then it can't be derived from a PHI.
334 Instruction
*I
= dyn_cast
<Instruction
>(V
);
335 if (I
== 0 || I
->getParent() != BB
) {
337 // Okay, if this is a live-in value, see if it has a known value at the end
338 // of any of our predecessors.
340 // FIXME: This should be an edge property, not a block end property.
341 /// TODO: Per PR2563, we could infer value range information about a
342 /// predecessor based on its terminator.
344 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
345 // "I" is a non-local compare-with-a-constant instruction. This would be
346 // able to handle value inequalities better, for example if the compare is
347 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
348 // Perhaps getConstantOnEdge should be smart enough to do this?
350 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
352 // If the value is known by LazyValueInfo to be a constant in a
353 // predecessor, use that information to try to thread this block.
354 Constant
*PredCst
= LVI
->getConstantOnEdge(V
, P
, BB
);
355 if (Constant
*KC
= getKnownConstant(PredCst
, Preference
))
356 Result
.push_back(std::make_pair(KC
, P
));
359 return !Result
.empty();
362 /// If I is a PHI node, then we know the incoming values for any constants.
363 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
364 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
365 Value
*InVal
= PN
->getIncomingValue(i
);
366 if (Constant
*KC
= getKnownConstant(InVal
, Preference
)) {
367 Result
.push_back(std::make_pair(KC
, PN
->getIncomingBlock(i
)));
369 Constant
*CI
= LVI
->getConstantOnEdge(InVal
,
370 PN
->getIncomingBlock(i
), BB
);
371 if (Constant
*KC
= getKnownConstant(CI
, Preference
))
372 Result
.push_back(std::make_pair(KC
, PN
->getIncomingBlock(i
)));
376 return !Result
.empty();
379 PredValueInfoTy LHSVals
, RHSVals
;
381 // Handle some boolean conditions.
382 if (I
->getType()->getPrimitiveSizeInBits() == 1) {
383 assert(Preference
== WantInteger
&& "One-bit non-integer type?");
385 // X & false -> false
386 if (I
->getOpcode() == Instruction::Or
||
387 I
->getOpcode() == Instruction::And
) {
388 ComputeValueKnownInPredecessors(I
->getOperand(0), BB
, LHSVals
,
390 ComputeValueKnownInPredecessors(I
->getOperand(1), BB
, RHSVals
,
393 if (LHSVals
.empty() && RHSVals
.empty())
396 ConstantInt
*InterestingVal
;
397 if (I
->getOpcode() == Instruction::Or
)
398 InterestingVal
= ConstantInt::getTrue(I
->getContext());
400 InterestingVal
= ConstantInt::getFalse(I
->getContext());
402 SmallPtrSet
<BasicBlock
*, 4> LHSKnownBBs
;
404 // Scan for the sentinel. If we find an undef, force it to the
405 // interesting value: x|undef -> true and x&undef -> false.
406 for (unsigned i
= 0, e
= LHSVals
.size(); i
!= e
; ++i
)
407 if (LHSVals
[i
].first
== InterestingVal
||
408 isa
<UndefValue
>(LHSVals
[i
].first
)) {
409 Result
.push_back(LHSVals
[i
]);
410 Result
.back().first
= InterestingVal
;
411 LHSKnownBBs
.insert(LHSVals
[i
].second
);
413 for (unsigned i
= 0, e
= RHSVals
.size(); i
!= e
; ++i
)
414 if (RHSVals
[i
].first
== InterestingVal
||
415 isa
<UndefValue
>(RHSVals
[i
].first
)) {
416 // If we already inferred a value for this block on the LHS, don't
418 if (!LHSKnownBBs
.count(RHSVals
[i
].second
)) {
419 Result
.push_back(RHSVals
[i
]);
420 Result
.back().first
= InterestingVal
;
424 return !Result
.empty();
427 // Handle the NOT form of XOR.
428 if (I
->getOpcode() == Instruction::Xor
&&
429 isa
<ConstantInt
>(I
->getOperand(1)) &&
430 cast
<ConstantInt
>(I
->getOperand(1))->isOne()) {
431 ComputeValueKnownInPredecessors(I
->getOperand(0), BB
, Result
,
436 // Invert the known values.
437 for (unsigned i
= 0, e
= Result
.size(); i
!= e
; ++i
)
438 Result
[i
].first
= ConstantExpr::getNot(Result
[i
].first
);
443 // Try to simplify some other binary operator values.
444 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
445 assert(Preference
!= WantBlockAddress
446 && "A binary operator creating a block address?");
447 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
448 PredValueInfoTy LHSVals
;
449 ComputeValueKnownInPredecessors(BO
->getOperand(0), BB
, LHSVals
,
452 // Try to use constant folding to simplify the binary operator.
453 for (unsigned i
= 0, e
= LHSVals
.size(); i
!= e
; ++i
) {
454 Constant
*V
= LHSVals
[i
].first
;
455 Constant
*Folded
= ConstantExpr::get(BO
->getOpcode(), V
, CI
);
457 if (Constant
*KC
= getKnownConstant(Folded
, WantInteger
))
458 Result
.push_back(std::make_pair(KC
, LHSVals
[i
].second
));
462 return !Result
.empty();
465 // Handle compare with phi operand, where the PHI is defined in this block.
466 if (CmpInst
*Cmp
= dyn_cast
<CmpInst
>(I
)) {
467 assert(Preference
== WantInteger
&& "Compares only produce integers");
468 PHINode
*PN
= dyn_cast
<PHINode
>(Cmp
->getOperand(0));
469 if (PN
&& PN
->getParent() == BB
) {
470 // We can do this simplification if any comparisons fold to true or false.
472 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
473 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
474 Value
*LHS
= PN
->getIncomingValue(i
);
475 Value
*RHS
= Cmp
->getOperand(1)->DoPHITranslation(BB
, PredBB
);
477 Value
*Res
= SimplifyCmpInst(Cmp
->getPredicate(), LHS
, RHS
, TD
);
479 if (!isa
<Constant
>(RHS
))
482 LazyValueInfo::Tristate
483 ResT
= LVI
->getPredicateOnEdge(Cmp
->getPredicate(), LHS
,
484 cast
<Constant
>(RHS
), PredBB
, BB
);
485 if (ResT
== LazyValueInfo::Unknown
)
487 Res
= ConstantInt::get(Type::getInt1Ty(LHS
->getContext()), ResT
);
490 if (Constant
*KC
= getKnownConstant(Res
, WantInteger
))
491 Result
.push_back(std::make_pair(KC
, PredBB
));
494 return !Result
.empty();
498 // If comparing a live-in value against a constant, see if we know the
499 // live-in value on any predecessors.
500 if (isa
<Constant
>(Cmp
->getOperand(1)) && Cmp
->getType()->isIntegerTy()) {
501 if (!isa
<Instruction
>(Cmp
->getOperand(0)) ||
502 cast
<Instruction
>(Cmp
->getOperand(0))->getParent() != BB
) {
503 Constant
*RHSCst
= cast
<Constant
>(Cmp
->getOperand(1));
505 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
);PI
!= E
; ++PI
){
507 // If the value is known by LazyValueInfo to be a constant in a
508 // predecessor, use that information to try to thread this block.
509 LazyValueInfo::Tristate Res
=
510 LVI
->getPredicateOnEdge(Cmp
->getPredicate(), Cmp
->getOperand(0),
512 if (Res
== LazyValueInfo::Unknown
)
515 Constant
*ResC
= ConstantInt::get(Cmp
->getType(), Res
);
516 Result
.push_back(std::make_pair(ResC
, P
));
519 return !Result
.empty();
522 // Try to find a constant value for the LHS of a comparison,
523 // and evaluate it statically if we can.
524 if (Constant
*CmpConst
= dyn_cast
<Constant
>(Cmp
->getOperand(1))) {
525 PredValueInfoTy LHSVals
;
526 ComputeValueKnownInPredecessors(I
->getOperand(0), BB
, LHSVals
,
529 for (unsigned i
= 0, e
= LHSVals
.size(); i
!= e
; ++i
) {
530 Constant
*V
= LHSVals
[i
].first
;
531 Constant
*Folded
= ConstantExpr::getCompare(Cmp
->getPredicate(),
533 if (Constant
*KC
= getKnownConstant(Folded
, WantInteger
))
534 Result
.push_back(std::make_pair(KC
, LHSVals
[i
].second
));
537 return !Result
.empty();
542 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
)) {
543 // Handle select instructions where at least one operand is a known constant
544 // and we can figure out the condition value for any predecessor block.
545 Constant
*TrueVal
= getKnownConstant(SI
->getTrueValue(), Preference
);
546 Constant
*FalseVal
= getKnownConstant(SI
->getFalseValue(), Preference
);
547 PredValueInfoTy Conds
;
548 if ((TrueVal
|| FalseVal
) &&
549 ComputeValueKnownInPredecessors(SI
->getCondition(), BB
, Conds
,
551 for (unsigned i
= 0, e
= Conds
.size(); i
!= e
; ++i
) {
552 Constant
*Cond
= Conds
[i
].first
;
554 // Figure out what value to use for the condition.
556 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Cond
)) {
558 KnownCond
= CI
->isOne();
560 assert(isa
<UndefValue
>(Cond
) && "Unexpected condition value");
561 // Either operand will do, so be sure to pick the one that's a known
563 // FIXME: Do this more cleverly if both values are known constants?
564 KnownCond
= (TrueVal
!= 0);
567 // See if the select has a known constant value for this predecessor.
568 if (Constant
*Val
= KnownCond
? TrueVal
: FalseVal
)
569 Result
.push_back(std::make_pair(Val
, Conds
[i
].second
));
572 return !Result
.empty();
576 // If all else fails, see if LVI can figure out a constant value for us.
577 Constant
*CI
= LVI
->getConstant(V
, BB
);
578 if (Constant
*KC
= getKnownConstant(CI
, Preference
)) {
579 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
580 Result
.push_back(std::make_pair(KC
, *PI
));
583 return !Result
.empty();
588 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
589 /// in an undefined jump, decide which block is best to revector to.
591 /// Since we can pick an arbitrary destination, we pick the successor with the
592 /// fewest predecessors. This should reduce the in-degree of the others.
594 static unsigned GetBestDestForJumpOnUndef(BasicBlock
*BB
) {
595 TerminatorInst
*BBTerm
= BB
->getTerminator();
596 unsigned MinSucc
= 0;
597 BasicBlock
*TestBB
= BBTerm
->getSuccessor(MinSucc
);
598 // Compute the successor with the minimum number of predecessors.
599 unsigned MinNumPreds
= std::distance(pred_begin(TestBB
), pred_end(TestBB
));
600 for (unsigned i
= 1, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
601 TestBB
= BBTerm
->getSuccessor(i
);
602 unsigned NumPreds
= std::distance(pred_begin(TestBB
), pred_end(TestBB
));
603 if (NumPreds
< MinNumPreds
) {
605 MinNumPreds
= NumPreds
;
612 static bool hasAddressTakenAndUsed(BasicBlock
*BB
) {
613 if (!BB
->hasAddressTaken()) return false;
615 // If the block has its address taken, it may be a tree of dead constants
616 // hanging off of it. These shouldn't keep the block alive.
617 BlockAddress
*BA
= BlockAddress::get(BB
);
618 BA
->removeDeadConstantUsers();
619 return !BA
->use_empty();
622 /// ProcessBlock - If there are any predecessors whose control can be threaded
623 /// through to a successor, transform them now.
624 bool JumpThreading::ProcessBlock(BasicBlock
*BB
) {
625 // If the block is trivially dead, just return and let the caller nuke it.
626 // This simplifies other transformations.
627 if (pred_begin(BB
) == pred_end(BB
) &&
628 BB
!= &BB
->getParent()->getEntryBlock())
631 // If this block has a single predecessor, and if that pred has a single
632 // successor, merge the blocks. This encourages recursive jump threading
633 // because now the condition in this block can be threaded through
634 // predecessors of our predecessor block.
635 if (BasicBlock
*SinglePred
= BB
->getSinglePredecessor()) {
636 if (SinglePred
->getTerminator()->getNumSuccessors() == 1 &&
637 SinglePred
!= BB
&& !hasAddressTakenAndUsed(BB
)) {
638 // If SinglePred was a loop header, BB becomes one.
639 if (LoopHeaders
.erase(SinglePred
))
640 LoopHeaders
.insert(BB
);
642 // Remember if SinglePred was the entry block of the function. If so, we
643 // will need to move BB back to the entry position.
644 bool isEntry
= SinglePred
== &SinglePred
->getParent()->getEntryBlock();
645 LVI
->eraseBlock(SinglePred
);
646 MergeBasicBlockIntoOnlyPred(BB
);
648 if (isEntry
&& BB
!= &BB
->getParent()->getEntryBlock())
649 BB
->moveBefore(&BB
->getParent()->getEntryBlock());
654 // What kind of constant we're looking for.
655 ConstantPreference Preference
= WantInteger
;
657 // Look to see if the terminator is a conditional branch, switch or indirect
658 // branch, if not we can't thread it.
660 Instruction
*Terminator
= BB
->getTerminator();
661 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Terminator
)) {
662 // Can't thread an unconditional jump.
663 if (BI
->isUnconditional()) return false;
664 Condition
= BI
->getCondition();
665 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(Terminator
)) {
666 Condition
= SI
->getCondition();
667 } else if (IndirectBrInst
*IB
= dyn_cast
<IndirectBrInst
>(Terminator
)) {
668 Condition
= IB
->getAddress()->stripPointerCasts();
669 Preference
= WantBlockAddress
;
671 return false; // Must be an invoke.
674 // Run constant folding to see if we can reduce the condition to a simple
676 if (Instruction
*I
= dyn_cast
<Instruction
>(Condition
)) {
677 Value
*SimpleVal
= ConstantFoldInstruction(I
, TD
);
679 I
->replaceAllUsesWith(SimpleVal
);
680 I
->eraseFromParent();
681 Condition
= SimpleVal
;
685 // If the terminator is branching on an undef, we can pick any of the
686 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
687 if (isa
<UndefValue
>(Condition
)) {
688 unsigned BestSucc
= GetBestDestForJumpOnUndef(BB
);
690 // Fold the branch/switch.
691 TerminatorInst
*BBTerm
= BB
->getTerminator();
692 for (unsigned i
= 0, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
693 if (i
== BestSucc
) continue;
694 BBTerm
->getSuccessor(i
)->removePredecessor(BB
, true);
697 DEBUG(dbgs() << " In block '" << BB
->getName()
698 << "' folding undef terminator: " << *BBTerm
<< '\n');
699 BranchInst::Create(BBTerm
->getSuccessor(BestSucc
), BBTerm
);
700 BBTerm
->eraseFromParent();
704 // If the terminator of this block is branching on a constant, simplify the
705 // terminator to an unconditional branch. This can occur due to threading in
707 if (getKnownConstant(Condition
, Preference
)) {
708 DEBUG(dbgs() << " In block '" << BB
->getName()
709 << "' folding terminator: " << *BB
->getTerminator() << '\n');
711 ConstantFoldTerminator(BB
, true);
715 Instruction
*CondInst
= dyn_cast
<Instruction
>(Condition
);
717 // All the rest of our checks depend on the condition being an instruction.
719 // FIXME: Unify this with code below.
720 if (ProcessThreadableEdges(Condition
, BB
, Preference
))
726 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(CondInst
)) {
727 // For a comparison where the LHS is outside this block, it's possible
728 // that we've branched on it before. Used LVI to see if we can simplify
729 // the branch based on that.
730 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
731 Constant
*CondConst
= dyn_cast
<Constant
>(CondCmp
->getOperand(1));
732 pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
);
733 if (CondBr
&& CondConst
&& CondBr
->isConditional() && PI
!= PE
&&
734 (!isa
<Instruction
>(CondCmp
->getOperand(0)) ||
735 cast
<Instruction
>(CondCmp
->getOperand(0))->getParent() != BB
)) {
736 // For predecessor edge, determine if the comparison is true or false
737 // on that edge. If they're all true or all false, we can simplify the
739 // FIXME: We could handle mixed true/false by duplicating code.
740 LazyValueInfo::Tristate Baseline
=
741 LVI
->getPredicateOnEdge(CondCmp
->getPredicate(), CondCmp
->getOperand(0),
743 if (Baseline
!= LazyValueInfo::Unknown
) {
744 // Check that all remaining incoming values match the first one.
746 LazyValueInfo::Tristate Ret
=
747 LVI
->getPredicateOnEdge(CondCmp
->getPredicate(),
748 CondCmp
->getOperand(0), CondConst
, *PI
, BB
);
749 if (Ret
!= Baseline
) break;
752 // If we terminated early, then one of the values didn't match.
754 unsigned ToRemove
= Baseline
== LazyValueInfo::True
? 1 : 0;
755 unsigned ToKeep
= Baseline
== LazyValueInfo::True
? 0 : 1;
756 CondBr
->getSuccessor(ToRemove
)->removePredecessor(BB
, true);
757 BranchInst::Create(CondBr
->getSuccessor(ToKeep
), CondBr
);
758 CondBr
->eraseFromParent();
765 // Check for some cases that are worth simplifying. Right now we want to look
766 // for loads that are used by a switch or by the condition for the branch. If
767 // we see one, check to see if it's partially redundant. If so, insert a PHI
768 // which can then be used to thread the values.
770 Value
*SimplifyValue
= CondInst
;
771 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(SimplifyValue
))
772 if (isa
<Constant
>(CondCmp
->getOperand(1)))
773 SimplifyValue
= CondCmp
->getOperand(0);
775 // TODO: There are other places where load PRE would be profitable, such as
776 // more complex comparisons.
777 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(SimplifyValue
))
778 if (SimplifyPartiallyRedundantLoad(LI
))
782 // Handle a variety of cases where we are branching on something derived from
783 // a PHI node in the current block. If we can prove that any predecessors
784 // compute a predictable value based on a PHI node, thread those predecessors.
786 if (ProcessThreadableEdges(CondInst
, BB
, Preference
))
789 // If this is an otherwise-unfoldable branch on a phi node in the current
790 // block, see if we can simplify.
791 if (PHINode
*PN
= dyn_cast
<PHINode
>(CondInst
))
792 if (PN
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
793 return ProcessBranchOnPHI(PN
);
796 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
797 if (CondInst
->getOpcode() == Instruction::Xor
&&
798 CondInst
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
799 return ProcessBranchOnXOR(cast
<BinaryOperator
>(CondInst
));
802 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
803 // "(X == 4)", thread through this block.
809 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
810 /// load instruction, eliminate it by replacing it with a PHI node. This is an
811 /// important optimization that encourages jump threading, and needs to be run
812 /// interlaced with other jump threading tasks.
813 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst
*LI
) {
814 // Don't hack volatile loads.
815 if (LI
->isVolatile()) return false;
817 // If the load is defined in a block with exactly one predecessor, it can't be
818 // partially redundant.
819 BasicBlock
*LoadBB
= LI
->getParent();
820 if (LoadBB
->getSinglePredecessor())
823 Value
*LoadedPtr
= LI
->getOperand(0);
825 // If the loaded operand is defined in the LoadBB, it can't be available.
826 // TODO: Could do simple PHI translation, that would be fun :)
827 if (Instruction
*PtrOp
= dyn_cast
<Instruction
>(LoadedPtr
))
828 if (PtrOp
->getParent() == LoadBB
)
831 // Scan a few instructions up from the load, to see if it is obviously live at
832 // the entry to its block.
833 BasicBlock::iterator BBIt
= LI
;
835 if (Value
*AvailableVal
=
836 FindAvailableLoadedValue(LoadedPtr
, LoadBB
, BBIt
, 6)) {
837 // If the value if the load is locally available within the block, just use
838 // it. This frequently occurs for reg2mem'd allocas.
839 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
841 // If the returned value is the load itself, replace with an undef. This can
842 // only happen in dead loops.
843 if (AvailableVal
== LI
) AvailableVal
= UndefValue::get(LI
->getType());
844 LI
->replaceAllUsesWith(AvailableVal
);
845 LI
->eraseFromParent();
849 // Otherwise, if we scanned the whole block and got to the top of the block,
850 // we know the block is locally transparent to the load. If not, something
851 // might clobber its value.
852 if (BBIt
!= LoadBB
->begin())
856 SmallPtrSet
<BasicBlock
*, 8> PredsScanned
;
857 typedef SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> AvailablePredsTy
;
858 AvailablePredsTy AvailablePreds
;
859 BasicBlock
*OneUnavailablePred
= 0;
861 // If we got here, the loaded value is transparent through to the start of the
862 // block. Check to see if it is available in any of the predecessor blocks.
863 for (pred_iterator PI
= pred_begin(LoadBB
), PE
= pred_end(LoadBB
);
865 BasicBlock
*PredBB
= *PI
;
867 // If we already scanned this predecessor, skip it.
868 if (!PredsScanned
.insert(PredBB
))
871 // Scan the predecessor to see if the value is available in the pred.
872 BBIt
= PredBB
->end();
873 Value
*PredAvailable
= FindAvailableLoadedValue(LoadedPtr
, PredBB
, BBIt
, 6);
874 if (!PredAvailable
) {
875 OneUnavailablePred
= PredBB
;
879 // If so, this load is partially redundant. Remember this info so that we
880 // can create a PHI node.
881 AvailablePreds
.push_back(std::make_pair(PredBB
, PredAvailable
));
884 // If the loaded value isn't available in any predecessor, it isn't partially
886 if (AvailablePreds
.empty()) return false;
888 // Okay, the loaded value is available in at least one (and maybe all!)
889 // predecessors. If the value is unavailable in more than one unique
890 // predecessor, we want to insert a merge block for those common predecessors.
891 // This ensures that we only have to insert one reload, thus not increasing
893 BasicBlock
*UnavailablePred
= 0;
895 // If there is exactly one predecessor where the value is unavailable, the
896 // already computed 'OneUnavailablePred' block is it. If it ends in an
897 // unconditional branch, we know that it isn't a critical edge.
898 if (PredsScanned
.size() == AvailablePreds
.size()+1 &&
899 OneUnavailablePred
->getTerminator()->getNumSuccessors() == 1) {
900 UnavailablePred
= OneUnavailablePred
;
901 } else if (PredsScanned
.size() != AvailablePreds
.size()) {
902 // Otherwise, we had multiple unavailable predecessors or we had a critical
903 // edge from the one.
904 SmallVector
<BasicBlock
*, 8> PredsToSplit
;
905 SmallPtrSet
<BasicBlock
*, 8> AvailablePredSet
;
907 for (unsigned i
= 0, e
= AvailablePreds
.size(); i
!= e
; ++i
)
908 AvailablePredSet
.insert(AvailablePreds
[i
].first
);
910 // Add all the unavailable predecessors to the PredsToSplit list.
911 for (pred_iterator PI
= pred_begin(LoadBB
), PE
= pred_end(LoadBB
);
914 // If the predecessor is an indirect goto, we can't split the edge.
915 if (isa
<IndirectBrInst
>(P
->getTerminator()))
918 if (!AvailablePredSet
.count(P
))
919 PredsToSplit
.push_back(P
);
922 // Split them out to their own block.
924 SplitBlockPredecessors(LoadBB
, &PredsToSplit
[0], PredsToSplit
.size(),
925 "thread-pre-split", this);
928 // If the value isn't available in all predecessors, then there will be
929 // exactly one where it isn't available. Insert a load on that edge and add
930 // it to the AvailablePreds list.
931 if (UnavailablePred
) {
932 assert(UnavailablePred
->getTerminator()->getNumSuccessors() == 1 &&
933 "Can't handle critical edge here!");
934 LoadInst
*NewVal
= new LoadInst(LoadedPtr
, LI
->getName()+".pr", false,
936 UnavailablePred
->getTerminator());
937 NewVal
->setDebugLoc(LI
->getDebugLoc());
938 AvailablePreds
.push_back(std::make_pair(UnavailablePred
, NewVal
));
941 // Now we know that each predecessor of this block has a value in
942 // AvailablePreds, sort them for efficient access as we're walking the preds.
943 array_pod_sort(AvailablePreds
.begin(), AvailablePreds
.end());
945 // Create a PHI node at the start of the block for the PRE'd load value.
946 pred_iterator PB
= pred_begin(LoadBB
), PE
= pred_end(LoadBB
);
947 PHINode
*PN
= PHINode::Create(LI
->getType(), std::distance(PB
, PE
), "",
950 PN
->setDebugLoc(LI
->getDebugLoc());
952 // Insert new entries into the PHI for each predecessor. A single block may
953 // have multiple entries here.
954 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
956 AvailablePredsTy::iterator I
=
957 std::lower_bound(AvailablePreds
.begin(), AvailablePreds
.end(),
958 std::make_pair(P
, (Value
*)0));
960 assert(I
!= AvailablePreds
.end() && I
->first
== P
&&
961 "Didn't find entry for predecessor!");
963 PN
->addIncoming(I
->second
, I
->first
);
966 //cerr << "PRE: " << *LI << *PN << "\n";
968 LI
->replaceAllUsesWith(PN
);
969 LI
->eraseFromParent();
974 /// FindMostPopularDest - The specified list contains multiple possible
975 /// threadable destinations. Pick the one that occurs the most frequently in
978 FindMostPopularDest(BasicBlock
*BB
,
979 const SmallVectorImpl
<std::pair
<BasicBlock
*,
980 BasicBlock
*> > &PredToDestList
) {
981 assert(!PredToDestList
.empty());
983 // Determine popularity. If there are multiple possible destinations, we
984 // explicitly choose to ignore 'undef' destinations. We prefer to thread
985 // blocks with known and real destinations to threading undef. We'll handle
986 // them later if interesting.
987 DenseMap
<BasicBlock
*, unsigned> DestPopularity
;
988 for (unsigned i
= 0, e
= PredToDestList
.size(); i
!= e
; ++i
)
989 if (PredToDestList
[i
].second
)
990 DestPopularity
[PredToDestList
[i
].second
]++;
992 // Find the most popular dest.
993 DenseMap
<BasicBlock
*, unsigned>::iterator DPI
= DestPopularity
.begin();
994 BasicBlock
*MostPopularDest
= DPI
->first
;
995 unsigned Popularity
= DPI
->second
;
996 SmallVector
<BasicBlock
*, 4> SamePopularity
;
998 for (++DPI
; DPI
!= DestPopularity
.end(); ++DPI
) {
999 // If the popularity of this entry isn't higher than the popularity we've
1000 // seen so far, ignore it.
1001 if (DPI
->second
< Popularity
)
1003 else if (DPI
->second
== Popularity
) {
1004 // If it is the same as what we've seen so far, keep track of it.
1005 SamePopularity
.push_back(DPI
->first
);
1007 // If it is more popular, remember it.
1008 SamePopularity
.clear();
1009 MostPopularDest
= DPI
->first
;
1010 Popularity
= DPI
->second
;
1014 // Okay, now we know the most popular destination. If there is more than one
1015 // destination, we need to determine one. This is arbitrary, but we need
1016 // to make a deterministic decision. Pick the first one that appears in the
1018 if (!SamePopularity
.empty()) {
1019 SamePopularity
.push_back(MostPopularDest
);
1020 TerminatorInst
*TI
= BB
->getTerminator();
1021 for (unsigned i
= 0; ; ++i
) {
1022 assert(i
!= TI
->getNumSuccessors() && "Didn't find any successor!");
1024 if (std::find(SamePopularity
.begin(), SamePopularity
.end(),
1025 TI
->getSuccessor(i
)) == SamePopularity
.end())
1028 MostPopularDest
= TI
->getSuccessor(i
);
1033 // Okay, we have finally picked the most popular destination.
1034 return MostPopularDest
;
1037 bool JumpThreading::ProcessThreadableEdges(Value
*Cond
, BasicBlock
*BB
,
1038 ConstantPreference Preference
) {
1039 // If threading this would thread across a loop header, don't even try to
1041 if (LoopHeaders
.count(BB
))
1044 PredValueInfoTy PredValues
;
1045 if (!ComputeValueKnownInPredecessors(Cond
, BB
, PredValues
, Preference
))
1048 assert(!PredValues
.empty() &&
1049 "ComputeValueKnownInPredecessors returned true with no values");
1051 DEBUG(dbgs() << "IN BB: " << *BB
;
1052 for (unsigned i
= 0, e
= PredValues
.size(); i
!= e
; ++i
) {
1053 dbgs() << " BB '" << BB
->getName() << "': FOUND condition = "
1054 << *PredValues
[i
].first
1055 << " for pred '" << PredValues
[i
].second
->getName() << "'.\n";
1058 // Decide what we want to thread through. Convert our list of known values to
1059 // a list of known destinations for each pred. This also discards duplicate
1060 // predecessors and keeps track of the undefined inputs (which are represented
1061 // as a null dest in the PredToDestList).
1062 SmallPtrSet
<BasicBlock
*, 16> SeenPreds
;
1063 SmallVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 16> PredToDestList
;
1065 BasicBlock
*OnlyDest
= 0;
1066 BasicBlock
*MultipleDestSentinel
= (BasicBlock
*)(intptr_t)~0ULL;
1068 for (unsigned i
= 0, e
= PredValues
.size(); i
!= e
; ++i
) {
1069 BasicBlock
*Pred
= PredValues
[i
].second
;
1070 if (!SeenPreds
.insert(Pred
))
1071 continue; // Duplicate predecessor entry.
1073 // If the predecessor ends with an indirect goto, we can't change its
1075 if (isa
<IndirectBrInst
>(Pred
->getTerminator()))
1078 Constant
*Val
= PredValues
[i
].first
;
1081 if (isa
<UndefValue
>(Val
))
1083 else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator()))
1084 DestBB
= BI
->getSuccessor(cast
<ConstantInt
>(Val
)->isZero());
1085 else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator()))
1086 DestBB
= SI
->getSuccessor(SI
->findCaseValue(cast
<ConstantInt
>(Val
)));
1088 assert(isa
<IndirectBrInst
>(BB
->getTerminator())
1089 && "Unexpected terminator");
1090 DestBB
= cast
<BlockAddress
>(Val
)->getBasicBlock();
1093 // If we have exactly one destination, remember it for efficiency below.
1094 if (PredToDestList
.empty())
1096 else if (OnlyDest
!= DestBB
)
1097 OnlyDest
= MultipleDestSentinel
;
1099 PredToDestList
.push_back(std::make_pair(Pred
, DestBB
));
1102 // If all edges were unthreadable, we fail.
1103 if (PredToDestList
.empty())
1106 // Determine which is the most common successor. If we have many inputs and
1107 // this block is a switch, we want to start by threading the batch that goes
1108 // to the most popular destination first. If we only know about one
1109 // threadable destination (the common case) we can avoid this.
1110 BasicBlock
*MostPopularDest
= OnlyDest
;
1112 if (MostPopularDest
== MultipleDestSentinel
)
1113 MostPopularDest
= FindMostPopularDest(BB
, PredToDestList
);
1115 // Now that we know what the most popular destination is, factor all
1116 // predecessors that will jump to it into a single predecessor.
1117 SmallVector
<BasicBlock
*, 16> PredsToFactor
;
1118 for (unsigned i
= 0, e
= PredToDestList
.size(); i
!= e
; ++i
)
1119 if (PredToDestList
[i
].second
== MostPopularDest
) {
1120 BasicBlock
*Pred
= PredToDestList
[i
].first
;
1122 // This predecessor may be a switch or something else that has multiple
1123 // edges to the block. Factor each of these edges by listing them
1124 // according to # occurrences in PredsToFactor.
1125 TerminatorInst
*PredTI
= Pred
->getTerminator();
1126 for (unsigned i
= 0, e
= PredTI
->getNumSuccessors(); i
!= e
; ++i
)
1127 if (PredTI
->getSuccessor(i
) == BB
)
1128 PredsToFactor
.push_back(Pred
);
1131 // If the threadable edges are branching on an undefined value, we get to pick
1132 // the destination that these predecessors should get to.
1133 if (MostPopularDest
== 0)
1134 MostPopularDest
= BB
->getTerminator()->
1135 getSuccessor(GetBestDestForJumpOnUndef(BB
));
1137 // Ok, try to thread it!
1138 return ThreadEdge(BB
, PredsToFactor
, MostPopularDest
);
1141 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1142 /// a PHI node in the current block. See if there are any simplifications we
1143 /// can do based on inputs to the phi node.
1145 bool JumpThreading::ProcessBranchOnPHI(PHINode
*PN
) {
1146 BasicBlock
*BB
= PN
->getParent();
1148 // TODO: We could make use of this to do it once for blocks with common PHI
1150 SmallVector
<BasicBlock
*, 1> PredBBs
;
1153 // If any of the predecessor blocks end in an unconditional branch, we can
1154 // *duplicate* the conditional branch into that block in order to further
1155 // encourage jump threading and to eliminate cases where we have branch on a
1156 // phi of an icmp (branch on icmp is much better).
1157 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1158 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
1159 if (BranchInst
*PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator()))
1160 if (PredBr
->isUnconditional()) {
1161 PredBBs
[0] = PredBB
;
1162 // Try to duplicate BB into PredBB.
1163 if (DuplicateCondBranchOnPHIIntoPred(BB
, PredBBs
))
1171 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1172 /// a xor instruction in the current block. See if there are any
1173 /// simplifications we can do based on inputs to the xor.
1175 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator
*BO
) {
1176 BasicBlock
*BB
= BO
->getParent();
1178 // If either the LHS or RHS of the xor is a constant, don't do this
1180 if (isa
<ConstantInt
>(BO
->getOperand(0)) ||
1181 isa
<ConstantInt
>(BO
->getOperand(1)))
1184 // If the first instruction in BB isn't a phi, we won't be able to infer
1185 // anything special about any particular predecessor.
1186 if (!isa
<PHINode
>(BB
->front()))
1189 // If we have a xor as the branch input to this block, and we know that the
1190 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1191 // the condition into the predecessor and fix that value to true, saving some
1192 // logical ops on that path and encouraging other paths to simplify.
1194 // This copies something like this:
1197 // %X = phi i1 [1], [%X']
1198 // %Y = icmp eq i32 %A, %B
1199 // %Z = xor i1 %X, %Y
1204 // %Y = icmp ne i32 %A, %B
1207 PredValueInfoTy XorOpValues
;
1209 if (!ComputeValueKnownInPredecessors(BO
->getOperand(0), BB
, XorOpValues
,
1211 assert(XorOpValues
.empty());
1212 if (!ComputeValueKnownInPredecessors(BO
->getOperand(1), BB
, XorOpValues
,
1218 assert(!XorOpValues
.empty() &&
1219 "ComputeValueKnownInPredecessors returned true with no values");
1221 // Scan the information to see which is most popular: true or false. The
1222 // predecessors can be of the set true, false, or undef.
1223 unsigned NumTrue
= 0, NumFalse
= 0;
1224 for (unsigned i
= 0, e
= XorOpValues
.size(); i
!= e
; ++i
) {
1225 if (isa
<UndefValue
>(XorOpValues
[i
].first
))
1226 // Ignore undefs for the count.
1228 if (cast
<ConstantInt
>(XorOpValues
[i
].first
)->isZero())
1234 // Determine which value to split on, true, false, or undef if neither.
1235 ConstantInt
*SplitVal
= 0;
1236 if (NumTrue
> NumFalse
)
1237 SplitVal
= ConstantInt::getTrue(BB
->getContext());
1238 else if (NumTrue
!= 0 || NumFalse
!= 0)
1239 SplitVal
= ConstantInt::getFalse(BB
->getContext());
1241 // Collect all of the blocks that this can be folded into so that we can
1242 // factor this once and clone it once.
1243 SmallVector
<BasicBlock
*, 8> BlocksToFoldInto
;
1244 for (unsigned i
= 0, e
= XorOpValues
.size(); i
!= e
; ++i
) {
1245 if (XorOpValues
[i
].first
!= SplitVal
&&
1246 !isa
<UndefValue
>(XorOpValues
[i
].first
))
1249 BlocksToFoldInto
.push_back(XorOpValues
[i
].second
);
1252 // If we inferred a value for all of the predecessors, then duplication won't
1253 // help us. However, we can just replace the LHS or RHS with the constant.
1254 if (BlocksToFoldInto
.size() ==
1255 cast
<PHINode
>(BB
->front()).getNumIncomingValues()) {
1256 if (SplitVal
== 0) {
1257 // If all preds provide undef, just nuke the xor, because it is undef too.
1258 BO
->replaceAllUsesWith(UndefValue::get(BO
->getType()));
1259 BO
->eraseFromParent();
1260 } else if (SplitVal
->isZero()) {
1261 // If all preds provide 0, replace the xor with the other input.
1262 BO
->replaceAllUsesWith(BO
->getOperand(isLHS
));
1263 BO
->eraseFromParent();
1265 // If all preds provide 1, set the computed value to 1.
1266 BO
->setOperand(!isLHS
, SplitVal
);
1272 // Try to duplicate BB into PredBB.
1273 return DuplicateCondBranchOnPHIIntoPred(BB
, BlocksToFoldInto
);
1277 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1278 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1279 /// NewPred using the entries from OldPred (suitably mapped).
1280 static void AddPHINodeEntriesForMappedBlock(BasicBlock
*PHIBB
,
1281 BasicBlock
*OldPred
,
1282 BasicBlock
*NewPred
,
1283 DenseMap
<Instruction
*, Value
*> &ValueMap
) {
1284 for (BasicBlock::iterator PNI
= PHIBB
->begin();
1285 PHINode
*PN
= dyn_cast
<PHINode
>(PNI
); ++PNI
) {
1286 // Ok, we have a PHI node. Figure out what the incoming value was for the
1288 Value
*IV
= PN
->getIncomingValueForBlock(OldPred
);
1290 // Remap the value if necessary.
1291 if (Instruction
*Inst
= dyn_cast
<Instruction
>(IV
)) {
1292 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMap
.find(Inst
);
1293 if (I
!= ValueMap
.end())
1297 PN
->addIncoming(IV
, NewPred
);
1301 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1302 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1303 /// across BB. Transform the IR to reflect this change.
1304 bool JumpThreading::ThreadEdge(BasicBlock
*BB
,
1305 const SmallVectorImpl
<BasicBlock
*> &PredBBs
,
1306 BasicBlock
*SuccBB
) {
1307 // If threading to the same block as we come from, we would infinite loop.
1309 DEBUG(dbgs() << " Not threading across BB '" << BB
->getName()
1310 << "' - would thread to self!\n");
1314 // If threading this would thread across a loop header, don't thread the edge.
1315 // See the comments above FindLoopHeaders for justifications and caveats.
1316 if (LoopHeaders
.count(BB
)) {
1317 DEBUG(dbgs() << " Not threading across loop header BB '" << BB
->getName()
1318 << "' to dest BB '" << SuccBB
->getName()
1319 << "' - it might create an irreducible loop!\n");
1323 unsigned JumpThreadCost
= getJumpThreadDuplicationCost(BB
);
1324 if (JumpThreadCost
> Threshold
) {
1325 DEBUG(dbgs() << " Not threading BB '" << BB
->getName()
1326 << "' - Cost is too high: " << JumpThreadCost
<< "\n");
1330 // And finally, do it! Start by factoring the predecessors is needed.
1332 if (PredBBs
.size() == 1)
1333 PredBB
= PredBBs
[0];
1335 DEBUG(dbgs() << " Factoring out " << PredBBs
.size()
1336 << " common predecessors.\n");
1337 PredBB
= SplitBlockPredecessors(BB
, &PredBBs
[0], PredBBs
.size(),
1341 // And finally, do it!
1342 DEBUG(dbgs() << " Threading edge from '" << PredBB
->getName() << "' to '"
1343 << SuccBB
->getName() << "' with cost: " << JumpThreadCost
1344 << ", across block:\n "
1347 LVI
->threadEdge(PredBB
, BB
, SuccBB
);
1349 // We are going to have to map operands from the original BB block to the new
1350 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1351 // account for entry from PredBB.
1352 DenseMap
<Instruction
*, Value
*> ValueMapping
;
1354 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(),
1355 BB
->getName()+".thread",
1356 BB
->getParent(), BB
);
1357 NewBB
->moveAfter(PredBB
);
1359 BasicBlock::iterator BI
= BB
->begin();
1360 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
1361 ValueMapping
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
1363 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1364 // mapping and using it to remap operands in the cloned instructions.
1365 for (; !isa
<TerminatorInst
>(BI
); ++BI
) {
1366 Instruction
*New
= BI
->clone();
1367 New
->setName(BI
->getName());
1368 NewBB
->getInstList().push_back(New
);
1369 ValueMapping
[BI
] = New
;
1371 // Remap operands to patch up intra-block references.
1372 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
1373 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
1374 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMapping
.find(Inst
);
1375 if (I
!= ValueMapping
.end())
1376 New
->setOperand(i
, I
->second
);
1380 // We didn't copy the terminator from BB over to NewBB, because there is now
1381 // an unconditional jump to SuccBB. Insert the unconditional jump.
1382 BranchInst
*NewBI
=BranchInst::Create(SuccBB
, NewBB
);
1383 NewBI
->setDebugLoc(BB
->getTerminator()->getDebugLoc());
1385 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1386 // PHI nodes for NewBB now.
1387 AddPHINodeEntriesForMappedBlock(SuccBB
, BB
, NewBB
, ValueMapping
);
1389 // If there were values defined in BB that are used outside the block, then we
1390 // now have to update all uses of the value to use either the original value,
1391 // the cloned value, or some PHI derived value. This can require arbitrary
1392 // PHI insertion, of which we are prepared to do, clean these up now.
1393 SSAUpdater SSAUpdate
;
1394 SmallVector
<Use
*, 16> UsesToRename
;
1395 for (BasicBlock::iterator I
= BB
->begin(); I
!= BB
->end(); ++I
) {
1396 // Scan all uses of this instruction to see if it is used outside of its
1397 // block, and if so, record them in UsesToRename.
1398 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
;
1400 Instruction
*User
= cast
<Instruction
>(*UI
);
1401 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
1402 if (UserPN
->getIncomingBlock(UI
) == BB
)
1404 } else if (User
->getParent() == BB
)
1407 UsesToRename
.push_back(&UI
.getUse());
1410 // If there are no uses outside the block, we're done with this instruction.
1411 if (UsesToRename
.empty())
1414 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I
<< "\n");
1416 // We found a use of I outside of BB. Rename all uses of I that are outside
1417 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1418 // with the two values we know.
1419 SSAUpdate
.Initialize(I
->getType(), I
->getName());
1420 SSAUpdate
.AddAvailableValue(BB
, I
);
1421 SSAUpdate
.AddAvailableValue(NewBB
, ValueMapping
[I
]);
1423 while (!UsesToRename
.empty())
1424 SSAUpdate
.RewriteUse(*UsesToRename
.pop_back_val());
1425 DEBUG(dbgs() << "\n");
1429 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
1430 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1431 // us to simplify any PHI nodes in BB.
1432 TerminatorInst
*PredTerm
= PredBB
->getTerminator();
1433 for (unsigned i
= 0, e
= PredTerm
->getNumSuccessors(); i
!= e
; ++i
)
1434 if (PredTerm
->getSuccessor(i
) == BB
) {
1435 BB
->removePredecessor(PredBB
, true);
1436 PredTerm
->setSuccessor(i
, NewBB
);
1439 // At this point, the IR is fully up to date and consistent. Do a quick scan
1440 // over the new instructions and zap any that are constants or dead. This
1441 // frequently happens because of phi translation.
1442 SimplifyInstructionsInBlock(NewBB
, TD
);
1444 // Threaded an edge!
1449 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1450 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1451 /// If we can duplicate the contents of BB up into PredBB do so now, this
1452 /// improves the odds that the branch will be on an analyzable instruction like
1454 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock
*BB
,
1455 const SmallVectorImpl
<BasicBlock
*> &PredBBs
) {
1456 assert(!PredBBs
.empty() && "Can't handle an empty set");
1458 // If BB is a loop header, then duplicating this block outside the loop would
1459 // cause us to transform this into an irreducible loop, don't do this.
1460 // See the comments above FindLoopHeaders for justifications and caveats.
1461 if (LoopHeaders
.count(BB
)) {
1462 DEBUG(dbgs() << " Not duplicating loop header '" << BB
->getName()
1463 << "' into predecessor block '" << PredBBs
[0]->getName()
1464 << "' - it might create an irreducible loop!\n");
1468 unsigned DuplicationCost
= getJumpThreadDuplicationCost(BB
);
1469 if (DuplicationCost
> Threshold
) {
1470 DEBUG(dbgs() << " Not duplicating BB '" << BB
->getName()
1471 << "' - Cost is too high: " << DuplicationCost
<< "\n");
1475 // And finally, do it! Start by factoring the predecessors is needed.
1477 if (PredBBs
.size() == 1)
1478 PredBB
= PredBBs
[0];
1480 DEBUG(dbgs() << " Factoring out " << PredBBs
.size()
1481 << " common predecessors.\n");
1482 PredBB
= SplitBlockPredecessors(BB
, &PredBBs
[0], PredBBs
.size(),
1486 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1488 DEBUG(dbgs() << " Duplicating block '" << BB
->getName() << "' into end of '"
1489 << PredBB
->getName() << "' to eliminate branch on phi. Cost: "
1490 << DuplicationCost
<< " block is:" << *BB
<< "\n");
1492 // Unless PredBB ends with an unconditional branch, split the edge so that we
1493 // can just clone the bits from BB into the end of the new PredBB.
1494 BranchInst
*OldPredBranch
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
1496 if (OldPredBranch
== 0 || !OldPredBranch
->isUnconditional()) {
1497 PredBB
= SplitEdge(PredBB
, BB
, this);
1498 OldPredBranch
= cast
<BranchInst
>(PredBB
->getTerminator());
1501 // We are going to have to map operands from the original BB block into the
1502 // PredBB block. Evaluate PHI nodes in BB.
1503 DenseMap
<Instruction
*, Value
*> ValueMapping
;
1505 BasicBlock::iterator BI
= BB
->begin();
1506 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
1507 ValueMapping
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
1509 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1510 // mapping and using it to remap operands in the cloned instructions.
1511 for (; BI
!= BB
->end(); ++BI
) {
1512 Instruction
*New
= BI
->clone();
1514 // Remap operands to patch up intra-block references.
1515 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
1516 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
1517 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMapping
.find(Inst
);
1518 if (I
!= ValueMapping
.end())
1519 New
->setOperand(i
, I
->second
);
1522 // If this instruction can be simplified after the operands are updated,
1523 // just use the simplified value instead. This frequently happens due to
1525 if (Value
*IV
= SimplifyInstruction(New
, TD
)) {
1527 ValueMapping
[BI
] = IV
;
1529 // Otherwise, insert the new instruction into the block.
1530 New
->setName(BI
->getName());
1531 PredBB
->getInstList().insert(OldPredBranch
, New
);
1532 ValueMapping
[BI
] = New
;
1536 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1537 // add entries to the PHI nodes for branch from PredBB now.
1538 BranchInst
*BBBranch
= cast
<BranchInst
>(BB
->getTerminator());
1539 AddPHINodeEntriesForMappedBlock(BBBranch
->getSuccessor(0), BB
, PredBB
,
1541 AddPHINodeEntriesForMappedBlock(BBBranch
->getSuccessor(1), BB
, PredBB
,
1544 // If there were values defined in BB that are used outside the block, then we
1545 // now have to update all uses of the value to use either the original value,
1546 // the cloned value, or some PHI derived value. This can require arbitrary
1547 // PHI insertion, of which we are prepared to do, clean these up now.
1548 SSAUpdater SSAUpdate
;
1549 SmallVector
<Use
*, 16> UsesToRename
;
1550 for (BasicBlock::iterator I
= BB
->begin(); I
!= BB
->end(); ++I
) {
1551 // Scan all uses of this instruction to see if it is used outside of its
1552 // block, and if so, record them in UsesToRename.
1553 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
;
1555 Instruction
*User
= cast
<Instruction
>(*UI
);
1556 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
1557 if (UserPN
->getIncomingBlock(UI
) == BB
)
1559 } else if (User
->getParent() == BB
)
1562 UsesToRename
.push_back(&UI
.getUse());
1565 // If there are no uses outside the block, we're done with this instruction.
1566 if (UsesToRename
.empty())
1569 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I
<< "\n");
1571 // We found a use of I outside of BB. Rename all uses of I that are outside
1572 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1573 // with the two values we know.
1574 SSAUpdate
.Initialize(I
->getType(), I
->getName());
1575 SSAUpdate
.AddAvailableValue(BB
, I
);
1576 SSAUpdate
.AddAvailableValue(PredBB
, ValueMapping
[I
]);
1578 while (!UsesToRename
.empty())
1579 SSAUpdate
.RewriteUse(*UsesToRename
.pop_back_val());
1580 DEBUG(dbgs() << "\n");
1583 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1585 BB
->removePredecessor(PredBB
, true);
1587 // Remove the unconditional branch at the end of the PredBB block.
1588 OldPredBranch
->eraseFromParent();