1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
24 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
26 // %i.next = add %i, 1
27 // %c = icmp eq %i.next, %n
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using // it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
36 // TODO: More sophistication in the way Formulae are generated and filtered.
38 // TODO: Handle multiple loops at a time.
40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41 // instead of a GlobalValue?
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 // smaller encoding (on x86 at least).
46 // TODO: When a negated register is used by an add (such as in a list of
47 // multiple base registers, or as the increment expression in an addrec),
48 // we may not actually need both reg and (-1 * reg) in registers; the
49 // negation can be implemented by using a sub instead of an add. The
50 // lack of support for taking this into consideration when making
51 // register pressure decisions is partly worked around by the "Special"
54 //===----------------------------------------------------------------------===//
56 #define DEBUG_TYPE "loop-reduce"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Constants.h"
59 #include "llvm/Instructions.h"
60 #include "llvm/IntrinsicInst.h"
61 #include "llvm/DerivedTypes.h"
62 #include "llvm/Analysis/IVUsers.h"
63 #include "llvm/Analysis/Dominators.h"
64 #include "llvm/Analysis/LoopPass.h"
65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
66 #include "llvm/Assembly/Writer.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/ADT/SmallBitVector.h"
70 #include "llvm/ADT/SetVector.h"
71 #include "llvm/ADT/DenseSet.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ValueHandle.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Target/TargetLowering.h"
81 /// RegSortData - This class holds data which is used to order reuse candidates.
84 /// UsedByIndices - This represents the set of LSRUse indices which reference
85 /// a particular register.
86 SmallBitVector UsedByIndices
;
90 void print(raw_ostream
&OS
) const;
96 void RegSortData::print(raw_ostream
&OS
) const {
97 OS
<< "[NumUses=" << UsedByIndices
.count() << ']';
100 void RegSortData::dump() const {
101 print(errs()); errs() << '\n';
106 /// RegUseTracker - Map register candidates to information about how they are
108 class RegUseTracker
{
109 typedef DenseMap
<const SCEV
*, RegSortData
> RegUsesTy
;
111 RegUsesTy RegUsesMap
;
112 SmallVector
<const SCEV
*, 16> RegSequence
;
115 void CountRegister(const SCEV
*Reg
, size_t LUIdx
);
116 void DropRegister(const SCEV
*Reg
, size_t LUIdx
);
117 void SwapAndDropUse(size_t LUIdx
, size_t LastLUIdx
);
119 bool isRegUsedByUsesOtherThan(const SCEV
*Reg
, size_t LUIdx
) const;
121 const SmallBitVector
&getUsedByIndices(const SCEV
*Reg
) const;
125 typedef SmallVectorImpl
<const SCEV
*>::iterator iterator
;
126 typedef SmallVectorImpl
<const SCEV
*>::const_iterator const_iterator
;
127 iterator
begin() { return RegSequence
.begin(); }
128 iterator
end() { return RegSequence
.end(); }
129 const_iterator
begin() const { return RegSequence
.begin(); }
130 const_iterator
end() const { return RegSequence
.end(); }
136 RegUseTracker::CountRegister(const SCEV
*Reg
, size_t LUIdx
) {
137 std::pair
<RegUsesTy::iterator
, bool> Pair
=
138 RegUsesMap
.insert(std::make_pair(Reg
, RegSortData()));
139 RegSortData
&RSD
= Pair
.first
->second
;
141 RegSequence
.push_back(Reg
);
142 RSD
.UsedByIndices
.resize(std::max(RSD
.UsedByIndices
.size(), LUIdx
+ 1));
143 RSD
.UsedByIndices
.set(LUIdx
);
147 RegUseTracker::DropRegister(const SCEV
*Reg
, size_t LUIdx
) {
148 RegUsesTy::iterator It
= RegUsesMap
.find(Reg
);
149 assert(It
!= RegUsesMap
.end());
150 RegSortData
&RSD
= It
->second
;
151 assert(RSD
.UsedByIndices
.size() > LUIdx
);
152 RSD
.UsedByIndices
.reset(LUIdx
);
156 RegUseTracker::SwapAndDropUse(size_t LUIdx
, size_t LastLUIdx
) {
157 assert(LUIdx
<= LastLUIdx
);
159 // Update RegUses. The data structure is not optimized for this purpose;
160 // we must iterate through it and update each of the bit vectors.
161 for (RegUsesTy::iterator I
= RegUsesMap
.begin(), E
= RegUsesMap
.end();
163 SmallBitVector
&UsedByIndices
= I
->second
.UsedByIndices
;
164 if (LUIdx
< UsedByIndices
.size())
165 UsedByIndices
[LUIdx
] =
166 LastLUIdx
< UsedByIndices
.size() ? UsedByIndices
[LastLUIdx
] : 0;
167 UsedByIndices
.resize(std::min(UsedByIndices
.size(), LastLUIdx
));
172 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV
*Reg
, size_t LUIdx
) const {
173 RegUsesTy::const_iterator I
= RegUsesMap
.find(Reg
);
174 if (I
== RegUsesMap
.end())
176 const SmallBitVector
&UsedByIndices
= I
->second
.UsedByIndices
;
177 int i
= UsedByIndices
.find_first();
178 if (i
== -1) return false;
179 if ((size_t)i
!= LUIdx
) return true;
180 return UsedByIndices
.find_next(i
) != -1;
183 const SmallBitVector
&RegUseTracker::getUsedByIndices(const SCEV
*Reg
) const {
184 RegUsesTy::const_iterator I
= RegUsesMap
.find(Reg
);
185 assert(I
!= RegUsesMap
.end() && "Unknown register!");
186 return I
->second
.UsedByIndices
;
189 void RegUseTracker::clear() {
196 /// Formula - This class holds information that describes a formula for
197 /// computing satisfying a use. It may include broken-out immediates and scaled
200 /// AM - This is used to represent complex addressing, as well as other kinds
201 /// of interesting uses.
202 TargetLowering::AddrMode AM
;
204 /// BaseRegs - The list of "base" registers for this use. When this is
205 /// non-empty, AM.HasBaseReg should be set to true.
206 SmallVector
<const SCEV
*, 2> BaseRegs
;
208 /// ScaledReg - The 'scaled' register for this use. This should be non-null
209 /// when AM.Scale is not zero.
210 const SCEV
*ScaledReg
;
212 /// UnfoldedOffset - An additional constant offset which added near the
213 /// use. This requires a temporary register, but the offset itself can
214 /// live in an add immediate field rather than a register.
215 int64_t UnfoldedOffset
;
217 Formula() : ScaledReg(0), UnfoldedOffset(0) {}
219 void InitialMatch(const SCEV
*S
, Loop
*L
, ScalarEvolution
&SE
);
221 unsigned getNumRegs() const;
222 const Type
*getType() const;
224 void DeleteBaseReg(const SCEV
*&S
);
226 bool referencesReg(const SCEV
*S
) const;
227 bool hasRegsUsedByUsesOtherThan(size_t LUIdx
,
228 const RegUseTracker
&RegUses
) const;
230 void print(raw_ostream
&OS
) const;
236 /// DoInitialMatch - Recursion helper for InitialMatch.
237 static void DoInitialMatch(const SCEV
*S
, Loop
*L
,
238 SmallVectorImpl
<const SCEV
*> &Good
,
239 SmallVectorImpl
<const SCEV
*> &Bad
,
240 ScalarEvolution
&SE
) {
241 // Collect expressions which properly dominate the loop header.
242 if (SE
.properlyDominates(S
, L
->getHeader())) {
247 // Look at add operands.
248 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
249 for (SCEVAddExpr::op_iterator I
= Add
->op_begin(), E
= Add
->op_end();
251 DoInitialMatch(*I
, L
, Good
, Bad
, SE
);
255 // Look at addrec operands.
256 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
257 if (!AR
->getStart()->isZero()) {
258 DoInitialMatch(AR
->getStart(), L
, Good
, Bad
, SE
);
259 DoInitialMatch(SE
.getAddRecExpr(SE
.getConstant(AR
->getType(), 0),
260 AR
->getStepRecurrence(SE
),
261 // FIXME: AR->getNoWrapFlags()
262 AR
->getLoop(), SCEV::FlagAnyWrap
),
267 // Handle a multiplication by -1 (negation) if it didn't fold.
268 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
))
269 if (Mul
->getOperand(0)->isAllOnesValue()) {
270 SmallVector
<const SCEV
*, 4> Ops(Mul
->op_begin()+1, Mul
->op_end());
271 const SCEV
*NewMul
= SE
.getMulExpr(Ops
);
273 SmallVector
<const SCEV
*, 4> MyGood
;
274 SmallVector
<const SCEV
*, 4> MyBad
;
275 DoInitialMatch(NewMul
, L
, MyGood
, MyBad
, SE
);
276 const SCEV
*NegOne
= SE
.getSCEV(ConstantInt::getAllOnesValue(
277 SE
.getEffectiveSCEVType(NewMul
->getType())));
278 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= MyGood
.begin(),
279 E
= MyGood
.end(); I
!= E
; ++I
)
280 Good
.push_back(SE
.getMulExpr(NegOne
, *I
));
281 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= MyBad
.begin(),
282 E
= MyBad
.end(); I
!= E
; ++I
)
283 Bad
.push_back(SE
.getMulExpr(NegOne
, *I
));
287 // Ok, we can't do anything interesting. Just stuff the whole thing into a
288 // register and hope for the best.
292 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
293 /// attempting to keep all loop-invariant and loop-computable values in a
294 /// single base register.
295 void Formula::InitialMatch(const SCEV
*S
, Loop
*L
, ScalarEvolution
&SE
) {
296 SmallVector
<const SCEV
*, 4> Good
;
297 SmallVector
<const SCEV
*, 4> Bad
;
298 DoInitialMatch(S
, L
, Good
, Bad
, SE
);
300 const SCEV
*Sum
= SE
.getAddExpr(Good
);
302 BaseRegs
.push_back(Sum
);
303 AM
.HasBaseReg
= true;
306 const SCEV
*Sum
= SE
.getAddExpr(Bad
);
308 BaseRegs
.push_back(Sum
);
309 AM
.HasBaseReg
= true;
313 /// getNumRegs - Return the total number of register operands used by this
314 /// formula. This does not include register uses implied by non-constant
316 unsigned Formula::getNumRegs() const {
317 return !!ScaledReg
+ BaseRegs
.size();
320 /// getType - Return the type of this formula, if it has one, or null
321 /// otherwise. This type is meaningless except for the bit size.
322 const Type
*Formula::getType() const {
323 return !BaseRegs
.empty() ? BaseRegs
.front()->getType() :
324 ScaledReg
? ScaledReg
->getType() :
325 AM
.BaseGV
? AM
.BaseGV
->getType() :
329 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
330 void Formula::DeleteBaseReg(const SCEV
*&S
) {
331 if (&S
!= &BaseRegs
.back())
332 std::swap(S
, BaseRegs
.back());
336 /// referencesReg - Test if this formula references the given register.
337 bool Formula::referencesReg(const SCEV
*S
) const {
338 return S
== ScaledReg
||
339 std::find(BaseRegs
.begin(), BaseRegs
.end(), S
) != BaseRegs
.end();
342 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
343 /// which are used by uses other than the use with the given index.
344 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx
,
345 const RegUseTracker
&RegUses
) const {
347 if (RegUses
.isRegUsedByUsesOtherThan(ScaledReg
, LUIdx
))
349 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= BaseRegs
.begin(),
350 E
= BaseRegs
.end(); I
!= E
; ++I
)
351 if (RegUses
.isRegUsedByUsesOtherThan(*I
, LUIdx
))
356 void Formula::print(raw_ostream
&OS
) const {
359 if (!First
) OS
<< " + "; else First
= false;
360 WriteAsOperand(OS
, AM
.BaseGV
, /*PrintType=*/false);
362 if (AM
.BaseOffs
!= 0) {
363 if (!First
) OS
<< " + "; else First
= false;
366 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= BaseRegs
.begin(),
367 E
= BaseRegs
.end(); I
!= E
; ++I
) {
368 if (!First
) OS
<< " + "; else First
= false;
369 OS
<< "reg(" << **I
<< ')';
371 if (AM
.HasBaseReg
&& BaseRegs
.empty()) {
372 if (!First
) OS
<< " + "; else First
= false;
373 OS
<< "**error: HasBaseReg**";
374 } else if (!AM
.HasBaseReg
&& !BaseRegs
.empty()) {
375 if (!First
) OS
<< " + "; else First
= false;
376 OS
<< "**error: !HasBaseReg**";
379 if (!First
) OS
<< " + "; else First
= false;
380 OS
<< AM
.Scale
<< "*reg(";
387 if (UnfoldedOffset
!= 0) {
388 if (!First
) OS
<< " + "; else First
= false;
389 OS
<< "imm(" << UnfoldedOffset
<< ')';
393 void Formula::dump() const {
394 print(errs()); errs() << '\n';
397 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
398 /// without changing its value.
399 static bool isAddRecSExtable(const SCEVAddRecExpr
*AR
, ScalarEvolution
&SE
) {
401 IntegerType::get(SE
.getContext(), SE
.getTypeSizeInBits(AR
->getType()) + 1);
402 return isa
<SCEVAddRecExpr
>(SE
.getSignExtendExpr(AR
, WideTy
));
405 /// isAddSExtable - Return true if the given add can be sign-extended
406 /// without changing its value.
407 static bool isAddSExtable(const SCEVAddExpr
*A
, ScalarEvolution
&SE
) {
409 IntegerType::get(SE
.getContext(), SE
.getTypeSizeInBits(A
->getType()) + 1);
410 return isa
<SCEVAddExpr
>(SE
.getSignExtendExpr(A
, WideTy
));
413 /// isMulSExtable - Return true if the given mul can be sign-extended
414 /// without changing its value.
415 static bool isMulSExtable(const SCEVMulExpr
*M
, ScalarEvolution
&SE
) {
417 IntegerType::get(SE
.getContext(),
418 SE
.getTypeSizeInBits(M
->getType()) * M
->getNumOperands());
419 return isa
<SCEVMulExpr
>(SE
.getSignExtendExpr(M
, WideTy
));
422 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
423 /// and if the remainder is known to be zero, or null otherwise. If
424 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
425 /// to Y, ignoring that the multiplication may overflow, which is useful when
426 /// the result will be used in a context where the most significant bits are
428 static const SCEV
*getExactSDiv(const SCEV
*LHS
, const SCEV
*RHS
,
430 bool IgnoreSignificantBits
= false) {
431 // Handle the trivial case, which works for any SCEV type.
433 return SE
.getConstant(LHS
->getType(), 1);
435 // Handle a few RHS special cases.
436 const SCEVConstant
*RC
= dyn_cast
<SCEVConstant
>(RHS
);
438 const APInt
&RA
= RC
->getValue()->getValue();
439 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
441 if (RA
.isAllOnesValue())
442 return SE
.getMulExpr(LHS
, RC
);
443 // Handle x /s 1 as x.
448 // Check for a division of a constant by a constant.
449 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(LHS
)) {
452 const APInt
&LA
= C
->getValue()->getValue();
453 const APInt
&RA
= RC
->getValue()->getValue();
454 if (LA
.srem(RA
) != 0)
456 return SE
.getConstant(LA
.sdiv(RA
));
459 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
460 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
)) {
461 if (IgnoreSignificantBits
|| isAddRecSExtable(AR
, SE
)) {
462 const SCEV
*Step
= getExactSDiv(AR
->getStepRecurrence(SE
), RHS
, SE
,
463 IgnoreSignificantBits
);
465 const SCEV
*Start
= getExactSDiv(AR
->getStart(), RHS
, SE
,
466 IgnoreSignificantBits
);
467 if (!Start
) return 0;
468 // FlagNW is independent of the start value, step direction, and is
469 // preserved with smaller magnitude steps.
470 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
471 return SE
.getAddRecExpr(Start
, Step
, AR
->getLoop(), SCEV::FlagAnyWrap
);
476 // Distribute the sdiv over add operands, if the add doesn't overflow.
477 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(LHS
)) {
478 if (IgnoreSignificantBits
|| isAddSExtable(Add
, SE
)) {
479 SmallVector
<const SCEV
*, 8> Ops
;
480 for (SCEVAddExpr::op_iterator I
= Add
->op_begin(), E
= Add
->op_end();
482 const SCEV
*Op
= getExactSDiv(*I
, RHS
, SE
,
483 IgnoreSignificantBits
);
487 return SE
.getAddExpr(Ops
);
492 // Check for a multiply operand that we can pull RHS out of.
493 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
494 if (IgnoreSignificantBits
|| isMulSExtable(Mul
, SE
)) {
495 SmallVector
<const SCEV
*, 4> Ops
;
497 for (SCEVMulExpr::op_iterator I
= Mul
->op_begin(), E
= Mul
->op_end();
501 if (const SCEV
*Q
= getExactSDiv(S
, RHS
, SE
,
502 IgnoreSignificantBits
)) {
508 return Found
? SE
.getMulExpr(Ops
) : 0;
513 // Otherwise we don't know.
517 /// ExtractImmediate - If S involves the addition of a constant integer value,
518 /// return that integer value, and mutate S to point to a new SCEV with that
520 static int64_t ExtractImmediate(const SCEV
*&S
, ScalarEvolution
&SE
) {
521 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
)) {
522 if (C
->getValue()->getValue().getMinSignedBits() <= 64) {
523 S
= SE
.getConstant(C
->getType(), 0);
524 return C
->getValue()->getSExtValue();
526 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
527 SmallVector
<const SCEV
*, 8> NewOps(Add
->op_begin(), Add
->op_end());
528 int64_t Result
= ExtractImmediate(NewOps
.front(), SE
);
530 S
= SE
.getAddExpr(NewOps
);
532 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
533 SmallVector
<const SCEV
*, 8> NewOps(AR
->op_begin(), AR
->op_end());
534 int64_t Result
= ExtractImmediate(NewOps
.front(), SE
);
536 S
= SE
.getAddRecExpr(NewOps
, AR
->getLoop(),
537 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
544 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
545 /// return that symbol, and mutate S to point to a new SCEV with that
547 static GlobalValue
*ExtractSymbol(const SCEV
*&S
, ScalarEvolution
&SE
) {
548 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
549 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(U
->getValue())) {
550 S
= SE
.getConstant(GV
->getType(), 0);
553 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
554 SmallVector
<const SCEV
*, 8> NewOps(Add
->op_begin(), Add
->op_end());
555 GlobalValue
*Result
= ExtractSymbol(NewOps
.back(), SE
);
557 S
= SE
.getAddExpr(NewOps
);
559 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
560 SmallVector
<const SCEV
*, 8> NewOps(AR
->op_begin(), AR
->op_end());
561 GlobalValue
*Result
= ExtractSymbol(NewOps
.front(), SE
);
563 S
= SE
.getAddRecExpr(NewOps
, AR
->getLoop(),
564 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
571 /// isAddressUse - Returns true if the specified instruction is using the
572 /// specified value as an address.
573 static bool isAddressUse(Instruction
*Inst
, Value
*OperandVal
) {
574 bool isAddress
= isa
<LoadInst
>(Inst
);
575 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
576 if (SI
->getOperand(1) == OperandVal
)
578 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
579 // Addressing modes can also be folded into prefetches and a variety
581 switch (II
->getIntrinsicID()) {
583 case Intrinsic::prefetch
:
584 case Intrinsic::x86_sse_storeu_ps
:
585 case Intrinsic::x86_sse2_storeu_pd
:
586 case Intrinsic::x86_sse2_storeu_dq
:
587 case Intrinsic::x86_sse2_storel_dq
:
588 if (II
->getArgOperand(0) == OperandVal
)
596 /// getAccessType - Return the type of the memory being accessed.
597 static const Type
*getAccessType(const Instruction
*Inst
) {
598 const Type
*AccessTy
= Inst
->getType();
599 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
))
600 AccessTy
= SI
->getOperand(0)->getType();
601 else if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
602 // Addressing modes can also be folded into prefetches and a variety
604 switch (II
->getIntrinsicID()) {
606 case Intrinsic::x86_sse_storeu_ps
:
607 case Intrinsic::x86_sse2_storeu_pd
:
608 case Intrinsic::x86_sse2_storeu_dq
:
609 case Intrinsic::x86_sse2_storel_dq
:
610 AccessTy
= II
->getArgOperand(0)->getType();
615 // All pointers have the same requirements, so canonicalize them to an
616 // arbitrary pointer type to minimize variation.
617 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(AccessTy
))
618 AccessTy
= PointerType::get(IntegerType::get(PTy
->getContext(), 1),
619 PTy
->getAddressSpace());
624 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
625 /// specified set are trivially dead, delete them and see if this makes any of
626 /// their operands subsequently dead.
628 DeleteTriviallyDeadInstructions(SmallVectorImpl
<WeakVH
> &DeadInsts
) {
629 bool Changed
= false;
631 while (!DeadInsts
.empty()) {
632 Instruction
*I
= dyn_cast_or_null
<Instruction
>(&*DeadInsts
.pop_back_val());
634 if (I
== 0 || !isInstructionTriviallyDead(I
))
637 for (User::op_iterator OI
= I
->op_begin(), E
= I
->op_end(); OI
!= E
; ++OI
)
638 if (Instruction
*U
= dyn_cast
<Instruction
>(*OI
)) {
641 DeadInsts
.push_back(U
);
644 I
->eraseFromParent();
653 /// Cost - This class is used to measure and compare candidate formulae.
655 /// TODO: Some of these could be merged. Also, a lexical ordering
656 /// isn't always optimal.
660 unsigned NumBaseAdds
;
666 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
669 bool operator<(const Cost
&Other
) const;
673 void RateFormula(const Formula
&F
,
674 SmallPtrSet
<const SCEV
*, 16> &Regs
,
675 const DenseSet
<const SCEV
*> &VisitedRegs
,
677 const SmallVectorImpl
<int64_t> &Offsets
,
678 ScalarEvolution
&SE
, DominatorTree
&DT
);
680 void print(raw_ostream
&OS
) const;
684 void RateRegister(const SCEV
*Reg
,
685 SmallPtrSet
<const SCEV
*, 16> &Regs
,
687 ScalarEvolution
&SE
, DominatorTree
&DT
);
688 void RatePrimaryRegister(const SCEV
*Reg
,
689 SmallPtrSet
<const SCEV
*, 16> &Regs
,
691 ScalarEvolution
&SE
, DominatorTree
&DT
);
696 /// RateRegister - Tally up interesting quantities from the given register.
697 void Cost::RateRegister(const SCEV
*Reg
,
698 SmallPtrSet
<const SCEV
*, 16> &Regs
,
700 ScalarEvolution
&SE
, DominatorTree
&DT
) {
701 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Reg
)) {
702 if (AR
->getLoop() == L
)
703 AddRecCost
+= 1; /// TODO: This should be a function of the stride.
705 // If this is an addrec for a loop that's already been visited by LSR,
706 // don't second-guess its addrec phi nodes. LSR isn't currently smart
707 // enough to reason about more than one loop at a time. Consider these
708 // registers free and leave them alone.
709 else if (L
->contains(AR
->getLoop()) ||
710 (!AR
->getLoop()->contains(L
) &&
711 DT
.dominates(L
->getHeader(), AR
->getLoop()->getHeader()))) {
712 for (BasicBlock::iterator I
= AR
->getLoop()->getHeader()->begin();
713 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
714 if (SE
.isSCEVable(PN
->getType()) &&
715 (SE
.getEffectiveSCEVType(PN
->getType()) ==
716 SE
.getEffectiveSCEVType(AR
->getType())) &&
717 SE
.getSCEV(PN
) == AR
)
720 // If this isn't one of the addrecs that the loop already has, it
721 // would require a costly new phi and add. TODO: This isn't
722 // precisely modeled right now.
724 if (!Regs
.count(AR
->getStart()))
725 RateRegister(AR
->getStart(), Regs
, L
, SE
, DT
);
728 // Add the step value register, if it needs one.
729 // TODO: The non-affine case isn't precisely modeled here.
730 if (!AR
->isAffine() || !isa
<SCEVConstant
>(AR
->getOperand(1)))
731 if (!Regs
.count(AR
->getStart()))
732 RateRegister(AR
->getOperand(1), Regs
, L
, SE
, DT
);
736 // Rough heuristic; favor registers which don't require extra setup
737 // instructions in the preheader.
738 if (!isa
<SCEVUnknown
>(Reg
) &&
739 !isa
<SCEVConstant
>(Reg
) &&
740 !(isa
<SCEVAddRecExpr
>(Reg
) &&
741 (isa
<SCEVUnknown
>(cast
<SCEVAddRecExpr
>(Reg
)->getStart()) ||
742 isa
<SCEVConstant
>(cast
<SCEVAddRecExpr
>(Reg
)->getStart()))))
745 NumIVMuls
+= isa
<SCEVMulExpr
>(Reg
) &&
746 SE
.hasComputableLoopEvolution(Reg
, L
);
749 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
751 void Cost::RatePrimaryRegister(const SCEV
*Reg
,
752 SmallPtrSet
<const SCEV
*, 16> &Regs
,
754 ScalarEvolution
&SE
, DominatorTree
&DT
) {
755 if (Regs
.insert(Reg
))
756 RateRegister(Reg
, Regs
, L
, SE
, DT
);
759 void Cost::RateFormula(const Formula
&F
,
760 SmallPtrSet
<const SCEV
*, 16> &Regs
,
761 const DenseSet
<const SCEV
*> &VisitedRegs
,
763 const SmallVectorImpl
<int64_t> &Offsets
,
764 ScalarEvolution
&SE
, DominatorTree
&DT
) {
765 // Tally up the registers.
766 if (const SCEV
*ScaledReg
= F
.ScaledReg
) {
767 if (VisitedRegs
.count(ScaledReg
)) {
771 RatePrimaryRegister(ScaledReg
, Regs
, L
, SE
, DT
);
773 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= F
.BaseRegs
.begin(),
774 E
= F
.BaseRegs
.end(); I
!= E
; ++I
) {
775 const SCEV
*BaseReg
= *I
;
776 if (VisitedRegs
.count(BaseReg
)) {
780 RatePrimaryRegister(BaseReg
, Regs
, L
, SE
, DT
);
783 // Determine how many (unfolded) adds we'll need inside the loop.
784 size_t NumBaseParts
= F
.BaseRegs
.size() + (F
.UnfoldedOffset
!= 0);
785 if (NumBaseParts
> 1)
786 NumBaseAdds
+= NumBaseParts
- 1;
788 // Tally up the non-zero immediates.
789 for (SmallVectorImpl
<int64_t>::const_iterator I
= Offsets
.begin(),
790 E
= Offsets
.end(); I
!= E
; ++I
) {
791 int64_t Offset
= (uint64_t)*I
+ F
.AM
.BaseOffs
;
793 ImmCost
+= 64; // Handle symbolic values conservatively.
794 // TODO: This should probably be the pointer size.
795 else if (Offset
!= 0)
796 ImmCost
+= APInt(64, Offset
, true).getMinSignedBits();
800 /// Loose - Set this cost to a losing value.
810 /// operator< - Choose the lower cost.
811 bool Cost::operator<(const Cost
&Other
) const {
812 if (NumRegs
!= Other
.NumRegs
)
813 return NumRegs
< Other
.NumRegs
;
814 if (AddRecCost
!= Other
.AddRecCost
)
815 return AddRecCost
< Other
.AddRecCost
;
816 if (NumIVMuls
!= Other
.NumIVMuls
)
817 return NumIVMuls
< Other
.NumIVMuls
;
818 if (NumBaseAdds
!= Other
.NumBaseAdds
)
819 return NumBaseAdds
< Other
.NumBaseAdds
;
820 if (ImmCost
!= Other
.ImmCost
)
821 return ImmCost
< Other
.ImmCost
;
822 if (SetupCost
!= Other
.SetupCost
)
823 return SetupCost
< Other
.SetupCost
;
827 void Cost::print(raw_ostream
&OS
) const {
828 OS
<< NumRegs
<< " reg" << (NumRegs
== 1 ? "" : "s");
830 OS
<< ", with addrec cost " << AddRecCost
;
832 OS
<< ", plus " << NumIVMuls
<< " IV mul" << (NumIVMuls
== 1 ? "" : "s");
833 if (NumBaseAdds
!= 0)
834 OS
<< ", plus " << NumBaseAdds
<< " base add"
835 << (NumBaseAdds
== 1 ? "" : "s");
837 OS
<< ", plus " << ImmCost
<< " imm cost";
839 OS
<< ", plus " << SetupCost
<< " setup cost";
842 void Cost::dump() const {
843 print(errs()); errs() << '\n';
848 /// LSRFixup - An operand value in an instruction which is to be replaced
849 /// with some equivalent, possibly strength-reduced, replacement.
851 /// UserInst - The instruction which will be updated.
852 Instruction
*UserInst
;
854 /// OperandValToReplace - The operand of the instruction which will
855 /// be replaced. The operand may be used more than once; every instance
856 /// will be replaced.
857 Value
*OperandValToReplace
;
859 /// PostIncLoops - If this user is to use the post-incremented value of an
860 /// induction variable, this variable is non-null and holds the loop
861 /// associated with the induction variable.
862 PostIncLoopSet PostIncLoops
;
864 /// LUIdx - The index of the LSRUse describing the expression which
865 /// this fixup needs, minus an offset (below).
868 /// Offset - A constant offset to be added to the LSRUse expression.
869 /// This allows multiple fixups to share the same LSRUse with different
870 /// offsets, for example in an unrolled loop.
873 bool isUseFullyOutsideLoop(const Loop
*L
) const;
877 void print(raw_ostream
&OS
) const;
884 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
886 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
887 /// value outside of the given loop.
888 bool LSRFixup::isUseFullyOutsideLoop(const Loop
*L
) const {
889 // PHI nodes use their value in their incoming blocks.
890 if (const PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
)) {
891 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
892 if (PN
->getIncomingValue(i
) == OperandValToReplace
&&
893 L
->contains(PN
->getIncomingBlock(i
)))
898 return !L
->contains(UserInst
);
901 void LSRFixup::print(raw_ostream
&OS
) const {
903 // Store is common and interesting enough to be worth special-casing.
904 if (StoreInst
*Store
= dyn_cast
<StoreInst
>(UserInst
)) {
906 WriteAsOperand(OS
, Store
->getOperand(0), /*PrintType=*/false);
907 } else if (UserInst
->getType()->isVoidTy())
908 OS
<< UserInst
->getOpcodeName();
910 WriteAsOperand(OS
, UserInst
, /*PrintType=*/false);
912 OS
<< ", OperandValToReplace=";
913 WriteAsOperand(OS
, OperandValToReplace
, /*PrintType=*/false);
915 for (PostIncLoopSet::const_iterator I
= PostIncLoops
.begin(),
916 E
= PostIncLoops
.end(); I
!= E
; ++I
) {
917 OS
<< ", PostIncLoop=";
918 WriteAsOperand(OS
, (*I
)->getHeader(), /*PrintType=*/false);
921 if (LUIdx
!= ~size_t(0))
922 OS
<< ", LUIdx=" << LUIdx
;
925 OS
<< ", Offset=" << Offset
;
928 void LSRFixup::dump() const {
929 print(errs()); errs() << '\n';
934 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
935 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
936 struct UniquifierDenseMapInfo
{
937 static SmallVector
<const SCEV
*, 2> getEmptyKey() {
938 SmallVector
<const SCEV
*, 2> V
;
939 V
.push_back(reinterpret_cast<const SCEV
*>(-1));
943 static SmallVector
<const SCEV
*, 2> getTombstoneKey() {
944 SmallVector
<const SCEV
*, 2> V
;
945 V
.push_back(reinterpret_cast<const SCEV
*>(-2));
949 static unsigned getHashValue(const SmallVector
<const SCEV
*, 2> &V
) {
951 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= V
.begin(),
952 E
= V
.end(); I
!= E
; ++I
)
953 Result
^= DenseMapInfo
<const SCEV
*>::getHashValue(*I
);
957 static bool isEqual(const SmallVector
<const SCEV
*, 2> &LHS
,
958 const SmallVector
<const SCEV
*, 2> &RHS
) {
963 /// LSRUse - This class holds the state that LSR keeps for each use in
964 /// IVUsers, as well as uses invented by LSR itself. It includes information
965 /// about what kinds of things can be folded into the user, information about
966 /// the user itself, and information about how the use may be satisfied.
967 /// TODO: Represent multiple users of the same expression in common?
969 DenseSet
<SmallVector
<const SCEV
*, 2>, UniquifierDenseMapInfo
> Uniquifier
;
972 /// KindType - An enum for a kind of use, indicating what types of
973 /// scaled and immediate operands it might support.
975 Basic
, ///< A normal use, with no folding.
976 Special
, ///< A special case of basic, allowing -1 scales.
977 Address
, ///< An address use; folding according to TargetLowering
978 ICmpZero
///< An equality icmp with both operands folded into one.
979 // TODO: Add a generic icmp too?
983 const Type
*AccessTy
;
985 SmallVector
<int64_t, 8> Offsets
;
989 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
990 /// LSRUse are outside of the loop, in which case some special-case heuristics
992 bool AllFixupsOutsideLoop
;
994 /// WidestFixupType - This records the widest use type for any fixup using
995 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
996 /// max fixup widths to be equivalent, because the narrower one may be relying
997 /// on the implicit truncation to truncate away bogus bits.
998 const Type
*WidestFixupType
;
1000 /// Formulae - A list of ways to build a value that can satisfy this user.
1001 /// After the list is populated, one of these is selected heuristically and
1002 /// used to formulate a replacement for OperandValToReplace in UserInst.
1003 SmallVector
<Formula
, 12> Formulae
;
1005 /// Regs - The set of register candidates used by all formulae in this LSRUse.
1006 SmallPtrSet
<const SCEV
*, 4> Regs
;
1008 LSRUse(KindType K
, const Type
*T
) : Kind(K
), AccessTy(T
),
1009 MinOffset(INT64_MAX
),
1010 MaxOffset(INT64_MIN
),
1011 AllFixupsOutsideLoop(true),
1012 WidestFixupType(0) {}
1014 bool HasFormulaWithSameRegs(const Formula
&F
) const;
1015 bool InsertFormula(const Formula
&F
);
1016 void DeleteFormula(Formula
&F
);
1017 void RecomputeRegs(size_t LUIdx
, RegUseTracker
&Reguses
);
1019 void print(raw_ostream
&OS
) const;
1025 /// HasFormula - Test whether this use as a formula which has the same
1026 /// registers as the given formula.
1027 bool LSRUse::HasFormulaWithSameRegs(const Formula
&F
) const {
1028 SmallVector
<const SCEV
*, 2> Key
= F
.BaseRegs
;
1029 if (F
.ScaledReg
) Key
.push_back(F
.ScaledReg
);
1030 // Unstable sort by host order ok, because this is only used for uniquifying.
1031 std::sort(Key
.begin(), Key
.end());
1032 return Uniquifier
.count(Key
);
1035 /// InsertFormula - If the given formula has not yet been inserted, add it to
1036 /// the list, and return true. Return false otherwise.
1037 bool LSRUse::InsertFormula(const Formula
&F
) {
1038 SmallVector
<const SCEV
*, 2> Key
= F
.BaseRegs
;
1039 if (F
.ScaledReg
) Key
.push_back(F
.ScaledReg
);
1040 // Unstable sort by host order ok, because this is only used for uniquifying.
1041 std::sort(Key
.begin(), Key
.end());
1043 if (!Uniquifier
.insert(Key
).second
)
1046 // Using a register to hold the value of 0 is not profitable.
1047 assert((!F
.ScaledReg
|| !F
.ScaledReg
->isZero()) &&
1048 "Zero allocated in a scaled register!");
1050 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
=
1051 F
.BaseRegs
.begin(), E
= F
.BaseRegs
.end(); I
!= E
; ++I
)
1052 assert(!(*I
)->isZero() && "Zero allocated in a base register!");
1055 // Add the formula to the list.
1056 Formulae
.push_back(F
);
1058 // Record registers now being used by this use.
1059 if (F
.ScaledReg
) Regs
.insert(F
.ScaledReg
);
1060 Regs
.insert(F
.BaseRegs
.begin(), F
.BaseRegs
.end());
1065 /// DeleteFormula - Remove the given formula from this use's list.
1066 void LSRUse::DeleteFormula(Formula
&F
) {
1067 if (&F
!= &Formulae
.back())
1068 std::swap(F
, Formulae
.back());
1069 Formulae
.pop_back();
1070 assert(!Formulae
.empty() && "LSRUse has no formulae left!");
1073 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
1074 void LSRUse::RecomputeRegs(size_t LUIdx
, RegUseTracker
&RegUses
) {
1075 // Now that we've filtered out some formulae, recompute the Regs set.
1076 SmallPtrSet
<const SCEV
*, 4> OldRegs
= Regs
;
1078 for (SmallVectorImpl
<Formula
>::const_iterator I
= Formulae
.begin(),
1079 E
= Formulae
.end(); I
!= E
; ++I
) {
1080 const Formula
&F
= *I
;
1081 if (F
.ScaledReg
) Regs
.insert(F
.ScaledReg
);
1082 Regs
.insert(F
.BaseRegs
.begin(), F
.BaseRegs
.end());
1085 // Update the RegTracker.
1086 for (SmallPtrSet
<const SCEV
*, 4>::iterator I
= OldRegs
.begin(),
1087 E
= OldRegs
.end(); I
!= E
; ++I
)
1088 if (!Regs
.count(*I
))
1089 RegUses
.DropRegister(*I
, LUIdx
);
1092 void LSRUse::print(raw_ostream
&OS
) const {
1093 OS
<< "LSR Use: Kind=";
1095 case Basic
: OS
<< "Basic"; break;
1096 case Special
: OS
<< "Special"; break;
1097 case ICmpZero
: OS
<< "ICmpZero"; break;
1099 OS
<< "Address of ";
1100 if (AccessTy
->isPointerTy())
1101 OS
<< "pointer"; // the full pointer type could be really verbose
1106 OS
<< ", Offsets={";
1107 for (SmallVectorImpl
<int64_t>::const_iterator I
= Offsets
.begin(),
1108 E
= Offsets
.end(); I
!= E
; ++I
) {
1110 if (llvm::next(I
) != E
)
1115 if (AllFixupsOutsideLoop
)
1116 OS
<< ", all-fixups-outside-loop";
1118 if (WidestFixupType
)
1119 OS
<< ", widest fixup type: " << *WidestFixupType
;
1122 void LSRUse::dump() const {
1123 print(errs()); errs() << '\n';
1126 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1127 /// be completely folded into the user instruction at isel time. This includes
1128 /// address-mode folding and special icmp tricks.
1129 static bool isLegalUse(const TargetLowering::AddrMode
&AM
,
1130 LSRUse::KindType Kind
, const Type
*AccessTy
,
1131 const TargetLowering
*TLI
) {
1133 case LSRUse::Address
:
1134 // If we have low-level target information, ask the target if it can
1135 // completely fold this address.
1136 if (TLI
) return TLI
->isLegalAddressingMode(AM
, AccessTy
);
1138 // Otherwise, just guess that reg+reg addressing is legal.
1139 return !AM
.BaseGV
&& AM
.BaseOffs
== 0 && AM
.Scale
<= 1;
1141 case LSRUse::ICmpZero
:
1142 // There's not even a target hook for querying whether it would be legal to
1143 // fold a GV into an ICmp.
1147 // ICmp only has two operands; don't allow more than two non-trivial parts.
1148 if (AM
.Scale
!= 0 && AM
.HasBaseReg
&& AM
.BaseOffs
!= 0)
1151 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1152 // putting the scaled register in the other operand of the icmp.
1153 if (AM
.Scale
!= 0 && AM
.Scale
!= -1)
1156 // If we have low-level target information, ask the target if it can fold an
1157 // integer immediate on an icmp.
1158 if (AM
.BaseOffs
!= 0) {
1159 if (TLI
) return TLI
->isLegalICmpImmediate(-AM
.BaseOffs
);
1166 // Only handle single-register values.
1167 return !AM
.BaseGV
&& AM
.Scale
== 0 && AM
.BaseOffs
== 0;
1169 case LSRUse::Special
:
1170 // Only handle -1 scales, or no scale.
1171 return AM
.Scale
== 0 || AM
.Scale
== -1;
1177 static bool isLegalUse(TargetLowering::AddrMode AM
,
1178 int64_t MinOffset
, int64_t MaxOffset
,
1179 LSRUse::KindType Kind
, const Type
*AccessTy
,
1180 const TargetLowering
*TLI
) {
1181 // Check for overflow.
1182 if (((int64_t)((uint64_t)AM
.BaseOffs
+ MinOffset
) > AM
.BaseOffs
) !=
1185 AM
.BaseOffs
= (uint64_t)AM
.BaseOffs
+ MinOffset
;
1186 if (isLegalUse(AM
, Kind
, AccessTy
, TLI
)) {
1187 AM
.BaseOffs
= (uint64_t)AM
.BaseOffs
- MinOffset
;
1188 // Check for overflow.
1189 if (((int64_t)((uint64_t)AM
.BaseOffs
+ MaxOffset
) > AM
.BaseOffs
) !=
1192 AM
.BaseOffs
= (uint64_t)AM
.BaseOffs
+ MaxOffset
;
1193 return isLegalUse(AM
, Kind
, AccessTy
, TLI
);
1198 static bool isAlwaysFoldable(int64_t BaseOffs
,
1199 GlobalValue
*BaseGV
,
1201 LSRUse::KindType Kind
, const Type
*AccessTy
,
1202 const TargetLowering
*TLI
) {
1203 // Fast-path: zero is always foldable.
1204 if (BaseOffs
== 0 && !BaseGV
) return true;
1206 // Conservatively, create an address with an immediate and a
1207 // base and a scale.
1208 TargetLowering::AddrMode AM
;
1209 AM
.BaseOffs
= BaseOffs
;
1211 AM
.HasBaseReg
= HasBaseReg
;
1212 AM
.Scale
= Kind
== LSRUse::ICmpZero
? -1 : 1;
1214 // Canonicalize a scale of 1 to a base register if the formula doesn't
1215 // already have a base register.
1216 if (!AM
.HasBaseReg
&& AM
.Scale
== 1) {
1218 AM
.HasBaseReg
= true;
1221 return isLegalUse(AM
, Kind
, AccessTy
, TLI
);
1224 static bool isAlwaysFoldable(const SCEV
*S
,
1225 int64_t MinOffset
, int64_t MaxOffset
,
1227 LSRUse::KindType Kind
, const Type
*AccessTy
,
1228 const TargetLowering
*TLI
,
1229 ScalarEvolution
&SE
) {
1230 // Fast-path: zero is always foldable.
1231 if (S
->isZero()) return true;
1233 // Conservatively, create an address with an immediate and a
1234 // base and a scale.
1235 int64_t BaseOffs
= ExtractImmediate(S
, SE
);
1236 GlobalValue
*BaseGV
= ExtractSymbol(S
, SE
);
1238 // If there's anything else involved, it's not foldable.
1239 if (!S
->isZero()) return false;
1241 // Fast-path: zero is always foldable.
1242 if (BaseOffs
== 0 && !BaseGV
) return true;
1244 // Conservatively, create an address with an immediate and a
1245 // base and a scale.
1246 TargetLowering::AddrMode AM
;
1247 AM
.BaseOffs
= BaseOffs
;
1249 AM
.HasBaseReg
= HasBaseReg
;
1250 AM
.Scale
= Kind
== LSRUse::ICmpZero
? -1 : 1;
1252 return isLegalUse(AM
, MinOffset
, MaxOffset
, Kind
, AccessTy
, TLI
);
1257 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1258 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1259 struct UseMapDenseMapInfo
{
1260 static std::pair
<const SCEV
*, LSRUse::KindType
> getEmptyKey() {
1261 return std::make_pair(reinterpret_cast<const SCEV
*>(-1), LSRUse::Basic
);
1264 static std::pair
<const SCEV
*, LSRUse::KindType
> getTombstoneKey() {
1265 return std::make_pair(reinterpret_cast<const SCEV
*>(-2), LSRUse::Basic
);
1269 getHashValue(const std::pair
<const SCEV
*, LSRUse::KindType
> &V
) {
1270 unsigned Result
= DenseMapInfo
<const SCEV
*>::getHashValue(V
.first
);
1271 Result
^= DenseMapInfo
<unsigned>::getHashValue(unsigned(V
.second
));
1275 static bool isEqual(const std::pair
<const SCEV
*, LSRUse::KindType
> &LHS
,
1276 const std::pair
<const SCEV
*, LSRUse::KindType
> &RHS
) {
1281 /// LSRInstance - This class holds state for the main loop strength reduction
1285 ScalarEvolution
&SE
;
1288 const TargetLowering
*const TLI
;
1292 /// IVIncInsertPos - This is the insert position that the current loop's
1293 /// induction variable increment should be placed. In simple loops, this is
1294 /// the latch block's terminator. But in more complicated cases, this is a
1295 /// position which will dominate all the in-loop post-increment users.
1296 Instruction
*IVIncInsertPos
;
1298 /// Factors - Interesting factors between use strides.
1299 SmallSetVector
<int64_t, 8> Factors
;
1301 /// Types - Interesting use types, to facilitate truncation reuse.
1302 SmallSetVector
<const Type
*, 4> Types
;
1304 /// Fixups - The list of operands which are to be replaced.
1305 SmallVector
<LSRFixup
, 16> Fixups
;
1307 /// Uses - The list of interesting uses.
1308 SmallVector
<LSRUse
, 16> Uses
;
1310 /// RegUses - Track which uses use which register candidates.
1311 RegUseTracker RegUses
;
1313 void OptimizeShadowIV();
1314 bool FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
);
1315 ICmpInst
*OptimizeMax(ICmpInst
*Cond
, IVStrideUse
* &CondUse
);
1316 void OptimizeLoopTermCond();
1318 void CollectInterestingTypesAndFactors();
1319 void CollectFixupsAndInitialFormulae();
1321 LSRFixup
&getNewFixup() {
1322 Fixups
.push_back(LSRFixup());
1323 return Fixups
.back();
1326 // Support for sharing of LSRUses between LSRFixups.
1327 typedef DenseMap
<std::pair
<const SCEV
*, LSRUse::KindType
>,
1329 UseMapDenseMapInfo
> UseMapTy
;
1332 bool reconcileNewOffset(LSRUse
&LU
, int64_t NewOffset
, bool HasBaseReg
,
1333 LSRUse::KindType Kind
, const Type
*AccessTy
);
1335 std::pair
<size_t, int64_t> getUse(const SCEV
*&Expr
,
1336 LSRUse::KindType Kind
,
1337 const Type
*AccessTy
);
1339 void DeleteUse(LSRUse
&LU
, size_t LUIdx
);
1341 LSRUse
*FindUseWithSimilarFormula(const Formula
&F
, const LSRUse
&OrigLU
);
1344 void InsertInitialFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
);
1345 void InsertSupplementalFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
);
1346 void CountRegisters(const Formula
&F
, size_t LUIdx
);
1347 bool InsertFormula(LSRUse
&LU
, unsigned LUIdx
, const Formula
&F
);
1349 void CollectLoopInvariantFixupsAndFormulae();
1351 void GenerateReassociations(LSRUse
&LU
, unsigned LUIdx
, Formula Base
,
1352 unsigned Depth
= 0);
1353 void GenerateCombinations(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1354 void GenerateSymbolicOffsets(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1355 void GenerateConstantOffsets(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1356 void GenerateICmpZeroScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1357 void GenerateScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1358 void GenerateTruncates(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1359 void GenerateCrossUseConstantOffsets();
1360 void GenerateAllReuseFormulae();
1362 void FilterOutUndesirableDedicatedRegisters();
1364 size_t EstimateSearchSpaceComplexity() const;
1365 void NarrowSearchSpaceByDetectingSupersets();
1366 void NarrowSearchSpaceByCollapsingUnrolledCode();
1367 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1368 void NarrowSearchSpaceByPickingWinnerRegs();
1369 void NarrowSearchSpaceUsingHeuristics();
1371 void SolveRecurse(SmallVectorImpl
<const Formula
*> &Solution
,
1373 SmallVectorImpl
<const Formula
*> &Workspace
,
1374 const Cost
&CurCost
,
1375 const SmallPtrSet
<const SCEV
*, 16> &CurRegs
,
1376 DenseSet
<const SCEV
*> &VisitedRegs
) const;
1377 void Solve(SmallVectorImpl
<const Formula
*> &Solution
) const;
1379 BasicBlock::iterator
1380 HoistInsertPosition(BasicBlock::iterator IP
,
1381 const SmallVectorImpl
<Instruction
*> &Inputs
) const;
1382 BasicBlock::iterator
AdjustInsertPositionForExpand(BasicBlock::iterator IP
,
1384 const LSRUse
&LU
) const;
1386 Value
*Expand(const LSRFixup
&LF
,
1388 BasicBlock::iterator IP
,
1389 SCEVExpander
&Rewriter
,
1390 SmallVectorImpl
<WeakVH
> &DeadInsts
) const;
1391 void RewriteForPHI(PHINode
*PN
, const LSRFixup
&LF
,
1393 SCEVExpander
&Rewriter
,
1394 SmallVectorImpl
<WeakVH
> &DeadInsts
,
1396 void Rewrite(const LSRFixup
&LF
,
1398 SCEVExpander
&Rewriter
,
1399 SmallVectorImpl
<WeakVH
> &DeadInsts
,
1401 void ImplementSolution(const SmallVectorImpl
<const Formula
*> &Solution
,
1404 LSRInstance(const TargetLowering
*tli
, Loop
*l
, Pass
*P
);
1406 bool getChanged() const { return Changed
; }
1408 void print_factors_and_types(raw_ostream
&OS
) const;
1409 void print_fixups(raw_ostream
&OS
) const;
1410 void print_uses(raw_ostream
&OS
) const;
1411 void print(raw_ostream
&OS
) const;
1417 /// OptimizeShadowIV - If IV is used in a int-to-float cast
1418 /// inside the loop then try to eliminate the cast operation.
1419 void LSRInstance::OptimizeShadowIV() {
1420 const SCEV
*BackedgeTakenCount
= SE
.getBackedgeTakenCount(L
);
1421 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
1424 for (IVUsers::const_iterator UI
= IU
.begin(), E
= IU
.end();
1425 UI
!= E
; /* empty */) {
1426 IVUsers::const_iterator CandidateUI
= UI
;
1428 Instruction
*ShadowUse
= CandidateUI
->getUser();
1429 const Type
*DestTy
= NULL
;
1431 /* If shadow use is a int->float cast then insert a second IV
1432 to eliminate this cast.
1434 for (unsigned i = 0; i < n; ++i)
1440 for (unsigned i = 0; i < n; ++i, ++d)
1443 if (UIToFPInst
*UCast
= dyn_cast
<UIToFPInst
>(CandidateUI
->getUser()))
1444 DestTy
= UCast
->getDestTy();
1445 else if (SIToFPInst
*SCast
= dyn_cast
<SIToFPInst
>(CandidateUI
->getUser()))
1446 DestTy
= SCast
->getDestTy();
1447 if (!DestTy
) continue;
1450 // If target does not support DestTy natively then do not apply
1451 // this transformation.
1452 EVT DVT
= TLI
->getValueType(DestTy
);
1453 if (!TLI
->isTypeLegal(DVT
)) continue;
1456 PHINode
*PH
= dyn_cast
<PHINode
>(ShadowUse
->getOperand(0));
1458 if (PH
->getNumIncomingValues() != 2) continue;
1460 const Type
*SrcTy
= PH
->getType();
1461 int Mantissa
= DestTy
->getFPMantissaWidth();
1462 if (Mantissa
== -1) continue;
1463 if ((int)SE
.getTypeSizeInBits(SrcTy
) > Mantissa
)
1466 unsigned Entry
, Latch
;
1467 if (PH
->getIncomingBlock(0) == L
->getLoopPreheader()) {
1475 ConstantInt
*Init
= dyn_cast
<ConstantInt
>(PH
->getIncomingValue(Entry
));
1476 if (!Init
) continue;
1477 Constant
*NewInit
= ConstantFP::get(DestTy
, Init
->getZExtValue());
1479 BinaryOperator
*Incr
=
1480 dyn_cast
<BinaryOperator
>(PH
->getIncomingValue(Latch
));
1481 if (!Incr
) continue;
1482 if (Incr
->getOpcode() != Instruction::Add
1483 && Incr
->getOpcode() != Instruction::Sub
)
1486 /* Initialize new IV, double d = 0.0 in above example. */
1487 ConstantInt
*C
= NULL
;
1488 if (Incr
->getOperand(0) == PH
)
1489 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(1));
1490 else if (Incr
->getOperand(1) == PH
)
1491 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(0));
1497 // Ignore negative constants, as the code below doesn't handle them
1498 // correctly. TODO: Remove this restriction.
1499 if (!C
->getValue().isStrictlyPositive()) continue;
1501 /* Add new PHINode. */
1502 PHINode
*NewPH
= PHINode::Create(DestTy
, 2, "IV.S.", PH
);
1504 /* create new increment. '++d' in above example. */
1505 Constant
*CFP
= ConstantFP::get(DestTy
, C
->getZExtValue());
1506 BinaryOperator
*NewIncr
=
1507 BinaryOperator::Create(Incr
->getOpcode() == Instruction::Add
?
1508 Instruction::FAdd
: Instruction::FSub
,
1509 NewPH
, CFP
, "IV.S.next.", Incr
);
1511 NewPH
->addIncoming(NewInit
, PH
->getIncomingBlock(Entry
));
1512 NewPH
->addIncoming(NewIncr
, PH
->getIncomingBlock(Latch
));
1514 /* Remove cast operation */
1515 ShadowUse
->replaceAllUsesWith(NewPH
);
1516 ShadowUse
->eraseFromParent();
1522 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1523 /// set the IV user and stride information and return true, otherwise return
1525 bool LSRInstance::FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
) {
1526 for (IVUsers::iterator UI
= IU
.begin(), E
= IU
.end(); UI
!= E
; ++UI
)
1527 if (UI
->getUser() == Cond
) {
1528 // NOTE: we could handle setcc instructions with multiple uses here, but
1529 // InstCombine does it as well for simple uses, it's not clear that it
1530 // occurs enough in real life to handle.
1537 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
1538 /// a max computation.
1540 /// This is a narrow solution to a specific, but acute, problem. For loops
1546 /// } while (++i < n);
1548 /// the trip count isn't just 'n', because 'n' might not be positive. And
1549 /// unfortunately this can come up even for loops where the user didn't use
1550 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1551 /// will commonly be lowered like this:
1557 /// } while (++i < n);
1560 /// and then it's possible for subsequent optimization to obscure the if
1561 /// test in such a way that indvars can't find it.
1563 /// When indvars can't find the if test in loops like this, it creates a
1564 /// max expression, which allows it to give the loop a canonical
1565 /// induction variable:
1568 /// max = n < 1 ? 1 : n;
1571 /// } while (++i != max);
1573 /// Canonical induction variables are necessary because the loop passes
1574 /// are designed around them. The most obvious example of this is the
1575 /// LoopInfo analysis, which doesn't remember trip count values. It
1576 /// expects to be able to rediscover the trip count each time it is
1577 /// needed, and it does this using a simple analysis that only succeeds if
1578 /// the loop has a canonical induction variable.
1580 /// However, when it comes time to generate code, the maximum operation
1581 /// can be quite costly, especially if it's inside of an outer loop.
1583 /// This function solves this problem by detecting this type of loop and
1584 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1585 /// the instructions for the maximum computation.
1587 ICmpInst
*LSRInstance::OptimizeMax(ICmpInst
*Cond
, IVStrideUse
* &CondUse
) {
1588 // Check that the loop matches the pattern we're looking for.
1589 if (Cond
->getPredicate() != CmpInst::ICMP_EQ
&&
1590 Cond
->getPredicate() != CmpInst::ICMP_NE
)
1593 SelectInst
*Sel
= dyn_cast
<SelectInst
>(Cond
->getOperand(1));
1594 if (!Sel
|| !Sel
->hasOneUse()) return Cond
;
1596 const SCEV
*BackedgeTakenCount
= SE
.getBackedgeTakenCount(L
);
1597 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
1599 const SCEV
*One
= SE
.getConstant(BackedgeTakenCount
->getType(), 1);
1601 // Add one to the backedge-taken count to get the trip count.
1602 const SCEV
*IterationCount
= SE
.getAddExpr(One
, BackedgeTakenCount
);
1603 if (IterationCount
!= SE
.getSCEV(Sel
)) return Cond
;
1605 // Check for a max calculation that matches the pattern. There's no check
1606 // for ICMP_ULE here because the comparison would be with zero, which
1607 // isn't interesting.
1608 CmpInst::Predicate Pred
= ICmpInst::BAD_ICMP_PREDICATE
;
1609 const SCEVNAryExpr
*Max
= 0;
1610 if (const SCEVSMaxExpr
*S
= dyn_cast
<SCEVSMaxExpr
>(BackedgeTakenCount
)) {
1611 Pred
= ICmpInst::ICMP_SLE
;
1613 } else if (const SCEVSMaxExpr
*S
= dyn_cast
<SCEVSMaxExpr
>(IterationCount
)) {
1614 Pred
= ICmpInst::ICMP_SLT
;
1616 } else if (const SCEVUMaxExpr
*U
= dyn_cast
<SCEVUMaxExpr
>(IterationCount
)) {
1617 Pred
= ICmpInst::ICMP_ULT
;
1624 // To handle a max with more than two operands, this optimization would
1625 // require additional checking and setup.
1626 if (Max
->getNumOperands() != 2)
1629 const SCEV
*MaxLHS
= Max
->getOperand(0);
1630 const SCEV
*MaxRHS
= Max
->getOperand(1);
1632 // ScalarEvolution canonicalizes constants to the left. For < and >, look
1633 // for a comparison with 1. For <= and >=, a comparison with zero.
1635 (ICmpInst::isTrueWhenEqual(Pred
) ? !MaxLHS
->isZero() : (MaxLHS
!= One
)))
1638 // Check the relevant induction variable for conformance to
1640 const SCEV
*IV
= SE
.getSCEV(Cond
->getOperand(0));
1641 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(IV
);
1642 if (!AR
|| !AR
->isAffine() ||
1643 AR
->getStart() != One
||
1644 AR
->getStepRecurrence(SE
) != One
)
1647 assert(AR
->getLoop() == L
&&
1648 "Loop condition operand is an addrec in a different loop!");
1650 // Check the right operand of the select, and remember it, as it will
1651 // be used in the new comparison instruction.
1653 if (ICmpInst::isTrueWhenEqual(Pred
)) {
1654 // Look for n+1, and grab n.
1655 if (AddOperator
*BO
= dyn_cast
<AddOperator
>(Sel
->getOperand(1)))
1656 if (isa
<ConstantInt
>(BO
->getOperand(1)) &&
1657 cast
<ConstantInt
>(BO
->getOperand(1))->isOne() &&
1658 SE
.getSCEV(BO
->getOperand(0)) == MaxRHS
)
1659 NewRHS
= BO
->getOperand(0);
1660 if (AddOperator
*BO
= dyn_cast
<AddOperator
>(Sel
->getOperand(2)))
1661 if (isa
<ConstantInt
>(BO
->getOperand(1)) &&
1662 cast
<ConstantInt
>(BO
->getOperand(1))->isOne() &&
1663 SE
.getSCEV(BO
->getOperand(0)) == MaxRHS
)
1664 NewRHS
= BO
->getOperand(0);
1667 } else if (SE
.getSCEV(Sel
->getOperand(1)) == MaxRHS
)
1668 NewRHS
= Sel
->getOperand(1);
1669 else if (SE
.getSCEV(Sel
->getOperand(2)) == MaxRHS
)
1670 NewRHS
= Sel
->getOperand(2);
1671 else if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(MaxRHS
))
1672 NewRHS
= SU
->getValue();
1674 // Max doesn't match expected pattern.
1677 // Determine the new comparison opcode. It may be signed or unsigned,
1678 // and the original comparison may be either equality or inequality.
1679 if (Cond
->getPredicate() == CmpInst::ICMP_EQ
)
1680 Pred
= CmpInst::getInversePredicate(Pred
);
1682 // Ok, everything looks ok to change the condition into an SLT or SGE and
1683 // delete the max calculation.
1685 new ICmpInst(Cond
, Pred
, Cond
->getOperand(0), NewRHS
, "scmp");
1687 // Delete the max calculation instructions.
1688 Cond
->replaceAllUsesWith(NewCond
);
1689 CondUse
->setUser(NewCond
);
1690 Instruction
*Cmp
= cast
<Instruction
>(Sel
->getOperand(0));
1691 Cond
->eraseFromParent();
1692 Sel
->eraseFromParent();
1693 if (Cmp
->use_empty())
1694 Cmp
->eraseFromParent();
1698 /// OptimizeLoopTermCond - Change loop terminating condition to use the
1699 /// postinc iv when possible.
1701 LSRInstance::OptimizeLoopTermCond() {
1702 SmallPtrSet
<Instruction
*, 4> PostIncs
;
1704 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1705 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
1706 L
->getExitingBlocks(ExitingBlocks
);
1708 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
1709 BasicBlock
*ExitingBlock
= ExitingBlocks
[i
];
1711 // Get the terminating condition for the loop if possible. If we
1712 // can, we want to change it to use a post-incremented version of its
1713 // induction variable, to allow coalescing the live ranges for the IV into
1714 // one register value.
1716 BranchInst
*TermBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
1719 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1720 if (TermBr
->isUnconditional() || !isa
<ICmpInst
>(TermBr
->getCondition()))
1723 // Search IVUsesByStride to find Cond's IVUse if there is one.
1724 IVStrideUse
*CondUse
= 0;
1725 ICmpInst
*Cond
= cast
<ICmpInst
>(TermBr
->getCondition());
1726 if (!FindIVUserForCond(Cond
, CondUse
))
1729 // If the trip count is computed in terms of a max (due to ScalarEvolution
1730 // being unable to find a sufficient guard, for example), change the loop
1731 // comparison to use SLT or ULT instead of NE.
1732 // One consequence of doing this now is that it disrupts the count-down
1733 // optimization. That's not always a bad thing though, because in such
1734 // cases it may still be worthwhile to avoid a max.
1735 Cond
= OptimizeMax(Cond
, CondUse
);
1737 // If this exiting block dominates the latch block, it may also use
1738 // the post-inc value if it won't be shared with other uses.
1739 // Check for dominance.
1740 if (!DT
.dominates(ExitingBlock
, LatchBlock
))
1743 // Conservatively avoid trying to use the post-inc value in non-latch
1744 // exits if there may be pre-inc users in intervening blocks.
1745 if (LatchBlock
!= ExitingBlock
)
1746 for (IVUsers::const_iterator UI
= IU
.begin(), E
= IU
.end(); UI
!= E
; ++UI
)
1747 // Test if the use is reachable from the exiting block. This dominator
1748 // query is a conservative approximation of reachability.
1749 if (&*UI
!= CondUse
&&
1750 !DT
.properlyDominates(UI
->getUser()->getParent(), ExitingBlock
)) {
1751 // Conservatively assume there may be reuse if the quotient of their
1752 // strides could be a legal scale.
1753 const SCEV
*A
= IU
.getStride(*CondUse
, L
);
1754 const SCEV
*B
= IU
.getStride(*UI
, L
);
1755 if (!A
|| !B
) continue;
1756 if (SE
.getTypeSizeInBits(A
->getType()) !=
1757 SE
.getTypeSizeInBits(B
->getType())) {
1758 if (SE
.getTypeSizeInBits(A
->getType()) >
1759 SE
.getTypeSizeInBits(B
->getType()))
1760 B
= SE
.getSignExtendExpr(B
, A
->getType());
1762 A
= SE
.getSignExtendExpr(A
, B
->getType());
1764 if (const SCEVConstant
*D
=
1765 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(B
, A
, SE
))) {
1766 const ConstantInt
*C
= D
->getValue();
1767 // Stride of one or negative one can have reuse with non-addresses.
1768 if (C
->isOne() || C
->isAllOnesValue())
1769 goto decline_post_inc
;
1770 // Avoid weird situations.
1771 if (C
->getValue().getMinSignedBits() >= 64 ||
1772 C
->getValue().isMinSignedValue())
1773 goto decline_post_inc
;
1774 // Without TLI, assume that any stride might be valid, and so any
1775 // use might be shared.
1777 goto decline_post_inc
;
1778 // Check for possible scaled-address reuse.
1779 const Type
*AccessTy
= getAccessType(UI
->getUser());
1780 TargetLowering::AddrMode AM
;
1781 AM
.Scale
= C
->getSExtValue();
1782 if (TLI
->isLegalAddressingMode(AM
, AccessTy
))
1783 goto decline_post_inc
;
1784 AM
.Scale
= -AM
.Scale
;
1785 if (TLI
->isLegalAddressingMode(AM
, AccessTy
))
1786 goto decline_post_inc
;
1790 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
1793 // It's possible for the setcc instruction to be anywhere in the loop, and
1794 // possible for it to have multiple users. If it is not immediately before
1795 // the exiting block branch, move it.
1796 if (&*++BasicBlock::iterator(Cond
) != TermBr
) {
1797 if (Cond
->hasOneUse()) {
1798 Cond
->moveBefore(TermBr
);
1800 // Clone the terminating condition and insert into the loopend.
1801 ICmpInst
*OldCond
= Cond
;
1802 Cond
= cast
<ICmpInst
>(Cond
->clone());
1803 Cond
->setName(L
->getHeader()->getName() + ".termcond");
1804 ExitingBlock
->getInstList().insert(TermBr
, Cond
);
1806 // Clone the IVUse, as the old use still exists!
1807 CondUse
= &IU
.AddUser(Cond
, CondUse
->getOperandValToReplace());
1808 TermBr
->replaceUsesOfWith(OldCond
, Cond
);
1812 // If we get to here, we know that we can transform the setcc instruction to
1813 // use the post-incremented version of the IV, allowing us to coalesce the
1814 // live ranges for the IV correctly.
1815 CondUse
->transformToPostInc(L
);
1818 PostIncs
.insert(Cond
);
1822 // Determine an insertion point for the loop induction variable increment. It
1823 // must dominate all the post-inc comparisons we just set up, and it must
1824 // dominate the loop latch edge.
1825 IVIncInsertPos
= L
->getLoopLatch()->getTerminator();
1826 for (SmallPtrSet
<Instruction
*, 4>::const_iterator I
= PostIncs
.begin(),
1827 E
= PostIncs
.end(); I
!= E
; ++I
) {
1829 DT
.findNearestCommonDominator(IVIncInsertPos
->getParent(),
1831 if (BB
== (*I
)->getParent())
1832 IVIncInsertPos
= *I
;
1833 else if (BB
!= IVIncInsertPos
->getParent())
1834 IVIncInsertPos
= BB
->getTerminator();
1838 /// reconcileNewOffset - Determine if the given use can accommodate a fixup
1839 /// at the given offset and other details. If so, update the use and
1842 LSRInstance::reconcileNewOffset(LSRUse
&LU
, int64_t NewOffset
, bool HasBaseReg
,
1843 LSRUse::KindType Kind
, const Type
*AccessTy
) {
1844 int64_t NewMinOffset
= LU
.MinOffset
;
1845 int64_t NewMaxOffset
= LU
.MaxOffset
;
1846 const Type
*NewAccessTy
= AccessTy
;
1848 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1849 // something conservative, however this can pessimize in the case that one of
1850 // the uses will have all its uses outside the loop, for example.
1851 if (LU
.Kind
!= Kind
)
1853 // Conservatively assume HasBaseReg is true for now.
1854 if (NewOffset
< LU
.MinOffset
) {
1855 if (!isAlwaysFoldable(LU
.MaxOffset
- NewOffset
, 0, HasBaseReg
,
1856 Kind
, AccessTy
, TLI
))
1858 NewMinOffset
= NewOffset
;
1859 } else if (NewOffset
> LU
.MaxOffset
) {
1860 if (!isAlwaysFoldable(NewOffset
- LU
.MinOffset
, 0, HasBaseReg
,
1861 Kind
, AccessTy
, TLI
))
1863 NewMaxOffset
= NewOffset
;
1865 // Check for a mismatched access type, and fall back conservatively as needed.
1866 // TODO: Be less conservative when the type is similar and can use the same
1867 // addressing modes.
1868 if (Kind
== LSRUse::Address
&& AccessTy
!= LU
.AccessTy
)
1869 NewAccessTy
= Type::getVoidTy(AccessTy
->getContext());
1872 LU
.MinOffset
= NewMinOffset
;
1873 LU
.MaxOffset
= NewMaxOffset
;
1874 LU
.AccessTy
= NewAccessTy
;
1875 if (NewOffset
!= LU
.Offsets
.back())
1876 LU
.Offsets
.push_back(NewOffset
);
1880 /// getUse - Return an LSRUse index and an offset value for a fixup which
1881 /// needs the given expression, with the given kind and optional access type.
1882 /// Either reuse an existing use or create a new one, as needed.
1883 std::pair
<size_t, int64_t>
1884 LSRInstance::getUse(const SCEV
*&Expr
,
1885 LSRUse::KindType Kind
, const Type
*AccessTy
) {
1886 const SCEV
*Copy
= Expr
;
1887 int64_t Offset
= ExtractImmediate(Expr
, SE
);
1889 // Basic uses can't accept any offset, for example.
1890 if (!isAlwaysFoldable(Offset
, 0, /*HasBaseReg=*/true, Kind
, AccessTy
, TLI
)) {
1895 std::pair
<UseMapTy::iterator
, bool> P
=
1896 UseMap
.insert(std::make_pair(std::make_pair(Expr
, Kind
), 0));
1898 // A use already existed with this base.
1899 size_t LUIdx
= P
.first
->second
;
1900 LSRUse
&LU
= Uses
[LUIdx
];
1901 if (reconcileNewOffset(LU
, Offset
, /*HasBaseReg=*/true, Kind
, AccessTy
))
1903 return std::make_pair(LUIdx
, Offset
);
1906 // Create a new use.
1907 size_t LUIdx
= Uses
.size();
1908 P
.first
->second
= LUIdx
;
1909 Uses
.push_back(LSRUse(Kind
, AccessTy
));
1910 LSRUse
&LU
= Uses
[LUIdx
];
1912 // We don't need to track redundant offsets, but we don't need to go out
1913 // of our way here to avoid them.
1914 if (LU
.Offsets
.empty() || Offset
!= LU
.Offsets
.back())
1915 LU
.Offsets
.push_back(Offset
);
1917 LU
.MinOffset
= Offset
;
1918 LU
.MaxOffset
= Offset
;
1919 return std::make_pair(LUIdx
, Offset
);
1922 /// DeleteUse - Delete the given use from the Uses list.
1923 void LSRInstance::DeleteUse(LSRUse
&LU
, size_t LUIdx
) {
1924 if (&LU
!= &Uses
.back())
1925 std::swap(LU
, Uses
.back());
1929 RegUses
.SwapAndDropUse(LUIdx
, Uses
.size());
1932 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1933 /// a formula that has the same registers as the given formula.
1935 LSRInstance::FindUseWithSimilarFormula(const Formula
&OrigF
,
1936 const LSRUse
&OrigLU
) {
1937 // Search all uses for the formula. This could be more clever.
1938 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
1939 LSRUse
&LU
= Uses
[LUIdx
];
1940 // Check whether this use is close enough to OrigLU, to see whether it's
1941 // worthwhile looking through its formulae.
1942 // Ignore ICmpZero uses because they may contain formulae generated by
1943 // GenerateICmpZeroScales, in which case adding fixup offsets may
1945 if (&LU
!= &OrigLU
&&
1946 LU
.Kind
!= LSRUse::ICmpZero
&&
1947 LU
.Kind
== OrigLU
.Kind
&& OrigLU
.AccessTy
== LU
.AccessTy
&&
1948 LU
.WidestFixupType
== OrigLU
.WidestFixupType
&&
1949 LU
.HasFormulaWithSameRegs(OrigF
)) {
1950 // Scan through this use's formulae.
1951 for (SmallVectorImpl
<Formula
>::const_iterator I
= LU
.Formulae
.begin(),
1952 E
= LU
.Formulae
.end(); I
!= E
; ++I
) {
1953 const Formula
&F
= *I
;
1954 // Check to see if this formula has the same registers and symbols
1956 if (F
.BaseRegs
== OrigF
.BaseRegs
&&
1957 F
.ScaledReg
== OrigF
.ScaledReg
&&
1958 F
.AM
.BaseGV
== OrigF
.AM
.BaseGV
&&
1959 F
.AM
.Scale
== OrigF
.AM
.Scale
&&
1960 F
.UnfoldedOffset
== OrigF
.UnfoldedOffset
) {
1961 if (F
.AM
.BaseOffs
== 0)
1963 // This is the formula where all the registers and symbols matched;
1964 // there aren't going to be any others. Since we declined it, we
1965 // can skip the rest of the formulae and procede to the next LSRUse.
1972 // Nothing looked good.
1976 void LSRInstance::CollectInterestingTypesAndFactors() {
1977 SmallSetVector
<const SCEV
*, 4> Strides
;
1979 // Collect interesting types and strides.
1980 SmallVector
<const SCEV
*, 4> Worklist
;
1981 for (IVUsers::const_iterator UI
= IU
.begin(), E
= IU
.end(); UI
!= E
; ++UI
) {
1982 const SCEV
*Expr
= IU
.getExpr(*UI
);
1984 // Collect interesting types.
1985 Types
.insert(SE
.getEffectiveSCEVType(Expr
->getType()));
1987 // Add strides for mentioned loops.
1988 Worklist
.push_back(Expr
);
1990 const SCEV
*S
= Worklist
.pop_back_val();
1991 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
1992 Strides
.insert(AR
->getStepRecurrence(SE
));
1993 Worklist
.push_back(AR
->getStart());
1994 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
1995 Worklist
.append(Add
->op_begin(), Add
->op_end());
1997 } while (!Worklist
.empty());
2000 // Compute interesting factors from the set of interesting strides.
2001 for (SmallSetVector
<const SCEV
*, 4>::const_iterator
2002 I
= Strides
.begin(), E
= Strides
.end(); I
!= E
; ++I
)
2003 for (SmallSetVector
<const SCEV
*, 4>::const_iterator NewStrideIter
=
2004 llvm::next(I
); NewStrideIter
!= E
; ++NewStrideIter
) {
2005 const SCEV
*OldStride
= *I
;
2006 const SCEV
*NewStride
= *NewStrideIter
;
2008 if (SE
.getTypeSizeInBits(OldStride
->getType()) !=
2009 SE
.getTypeSizeInBits(NewStride
->getType())) {
2010 if (SE
.getTypeSizeInBits(OldStride
->getType()) >
2011 SE
.getTypeSizeInBits(NewStride
->getType()))
2012 NewStride
= SE
.getSignExtendExpr(NewStride
, OldStride
->getType());
2014 OldStride
= SE
.getSignExtendExpr(OldStride
, NewStride
->getType());
2016 if (const SCEVConstant
*Factor
=
2017 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(NewStride
, OldStride
,
2019 if (Factor
->getValue()->getValue().getMinSignedBits() <= 64)
2020 Factors
.insert(Factor
->getValue()->getValue().getSExtValue());
2021 } else if (const SCEVConstant
*Factor
=
2022 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(OldStride
,
2025 if (Factor
->getValue()->getValue().getMinSignedBits() <= 64)
2026 Factors
.insert(Factor
->getValue()->getValue().getSExtValue());
2030 // If all uses use the same type, don't bother looking for truncation-based
2032 if (Types
.size() == 1)
2035 DEBUG(print_factors_and_types(dbgs()));
2038 void LSRInstance::CollectFixupsAndInitialFormulae() {
2039 for (IVUsers::const_iterator UI
= IU
.begin(), E
= IU
.end(); UI
!= E
; ++UI
) {
2041 LSRFixup
&LF
= getNewFixup();
2042 LF
.UserInst
= UI
->getUser();
2043 LF
.OperandValToReplace
= UI
->getOperandValToReplace();
2044 LF
.PostIncLoops
= UI
->getPostIncLoops();
2046 LSRUse::KindType Kind
= LSRUse::Basic
;
2047 const Type
*AccessTy
= 0;
2048 if (isAddressUse(LF
.UserInst
, LF
.OperandValToReplace
)) {
2049 Kind
= LSRUse::Address
;
2050 AccessTy
= getAccessType(LF
.UserInst
);
2053 const SCEV
*S
= IU
.getExpr(*UI
);
2055 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2056 // (N - i == 0), and this allows (N - i) to be the expression that we work
2057 // with rather than just N or i, so we can consider the register
2058 // requirements for both N and i at the same time. Limiting this code to
2059 // equality icmps is not a problem because all interesting loops use
2060 // equality icmps, thanks to IndVarSimplify.
2061 if (ICmpInst
*CI
= dyn_cast
<ICmpInst
>(LF
.UserInst
))
2062 if (CI
->isEquality()) {
2063 // Swap the operands if needed to put the OperandValToReplace on the
2064 // left, for consistency.
2065 Value
*NV
= CI
->getOperand(1);
2066 if (NV
== LF
.OperandValToReplace
) {
2067 CI
->setOperand(1, CI
->getOperand(0));
2068 CI
->setOperand(0, NV
);
2069 NV
= CI
->getOperand(1);
2073 // x == y --> x - y == 0
2074 const SCEV
*N
= SE
.getSCEV(NV
);
2075 if (SE
.isLoopInvariant(N
, L
)) {
2076 // S is normalized, so normalize N before folding it into S
2077 // to keep the result normalized.
2078 N
= TransformForPostIncUse(Normalize
, N
, CI
, 0,
2079 LF
.PostIncLoops
, SE
, DT
);
2080 Kind
= LSRUse::ICmpZero
;
2081 S
= SE
.getMinusSCEV(N
, S
);
2084 // -1 and the negations of all interesting strides (except the negation
2085 // of -1) are now also interesting.
2086 for (size_t i
= 0, e
= Factors
.size(); i
!= e
; ++i
)
2087 if (Factors
[i
] != -1)
2088 Factors
.insert(-(uint64_t)Factors
[i
]);
2092 // Set up the initial formula for this use.
2093 std::pair
<size_t, int64_t> P
= getUse(S
, Kind
, AccessTy
);
2095 LF
.Offset
= P
.second
;
2096 LSRUse
&LU
= Uses
[LF
.LUIdx
];
2097 LU
.AllFixupsOutsideLoop
&= LF
.isUseFullyOutsideLoop(L
);
2098 if (!LU
.WidestFixupType
||
2099 SE
.getTypeSizeInBits(LU
.WidestFixupType
) <
2100 SE
.getTypeSizeInBits(LF
.OperandValToReplace
->getType()))
2101 LU
.WidestFixupType
= LF
.OperandValToReplace
->getType();
2103 // If this is the first use of this LSRUse, give it a formula.
2104 if (LU
.Formulae
.empty()) {
2105 InsertInitialFormula(S
, LU
, LF
.LUIdx
);
2106 CountRegisters(LU
.Formulae
.back(), LF
.LUIdx
);
2110 DEBUG(print_fixups(dbgs()));
2113 /// InsertInitialFormula - Insert a formula for the given expression into
2114 /// the given use, separating out loop-variant portions from loop-invariant
2115 /// and loop-computable portions.
2117 LSRInstance::InsertInitialFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
) {
2119 F
.InitialMatch(S
, L
, SE
);
2120 bool Inserted
= InsertFormula(LU
, LUIdx
, F
);
2121 assert(Inserted
&& "Initial formula already exists!"); (void)Inserted
;
2124 /// InsertSupplementalFormula - Insert a simple single-register formula for
2125 /// the given expression into the given use.
2127 LSRInstance::InsertSupplementalFormula(const SCEV
*S
,
2128 LSRUse
&LU
, size_t LUIdx
) {
2130 F
.BaseRegs
.push_back(S
);
2131 F
.AM
.HasBaseReg
= true;
2132 bool Inserted
= InsertFormula(LU
, LUIdx
, F
);
2133 assert(Inserted
&& "Supplemental formula already exists!"); (void)Inserted
;
2136 /// CountRegisters - Note which registers are used by the given formula,
2137 /// updating RegUses.
2138 void LSRInstance::CountRegisters(const Formula
&F
, size_t LUIdx
) {
2140 RegUses
.CountRegister(F
.ScaledReg
, LUIdx
);
2141 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= F
.BaseRegs
.begin(),
2142 E
= F
.BaseRegs
.end(); I
!= E
; ++I
)
2143 RegUses
.CountRegister(*I
, LUIdx
);
2146 /// InsertFormula - If the given formula has not yet been inserted, add it to
2147 /// the list, and return true. Return false otherwise.
2148 bool LSRInstance::InsertFormula(LSRUse
&LU
, unsigned LUIdx
, const Formula
&F
) {
2149 if (!LU
.InsertFormula(F
))
2152 CountRegisters(F
, LUIdx
);
2156 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2157 /// loop-invariant values which we're tracking. These other uses will pin these
2158 /// values in registers, making them less profitable for elimination.
2159 /// TODO: This currently misses non-constant addrec step registers.
2160 /// TODO: Should this give more weight to users inside the loop?
2162 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2163 SmallVector
<const SCEV
*, 8> Worklist(RegUses
.begin(), RegUses
.end());
2164 SmallPtrSet
<const SCEV
*, 8> Inserted
;
2166 while (!Worklist
.empty()) {
2167 const SCEV
*S
= Worklist
.pop_back_val();
2169 if (const SCEVNAryExpr
*N
= dyn_cast
<SCEVNAryExpr
>(S
))
2170 Worklist
.append(N
->op_begin(), N
->op_end());
2171 else if (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(S
))
2172 Worklist
.push_back(C
->getOperand());
2173 else if (const SCEVUDivExpr
*D
= dyn_cast
<SCEVUDivExpr
>(S
)) {
2174 Worklist
.push_back(D
->getLHS());
2175 Worklist
.push_back(D
->getRHS());
2176 } else if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
2177 if (!Inserted
.insert(U
)) continue;
2178 const Value
*V
= U
->getValue();
2179 if (const Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
2180 // Look for instructions defined outside the loop.
2181 if (L
->contains(Inst
)) continue;
2182 } else if (isa
<UndefValue
>(V
))
2183 // Undef doesn't have a live range, so it doesn't matter.
2185 for (Value::const_use_iterator UI
= V
->use_begin(), UE
= V
->use_end();
2187 const Instruction
*UserInst
= dyn_cast
<Instruction
>(*UI
);
2188 // Ignore non-instructions.
2191 // Ignore instructions in other functions (as can happen with
2193 if (UserInst
->getParent()->getParent() != L
->getHeader()->getParent())
2195 // Ignore instructions not dominated by the loop.
2196 const BasicBlock
*UseBB
= !isa
<PHINode
>(UserInst
) ?
2197 UserInst
->getParent() :
2198 cast
<PHINode
>(UserInst
)->getIncomingBlock(
2199 PHINode::getIncomingValueNumForOperand(UI
.getOperandNo()));
2200 if (!DT
.dominates(L
->getHeader(), UseBB
))
2202 // Ignore uses which are part of other SCEV expressions, to avoid
2203 // analyzing them multiple times.
2204 if (SE
.isSCEVable(UserInst
->getType())) {
2205 const SCEV
*UserS
= SE
.getSCEV(const_cast<Instruction
*>(UserInst
));
2206 // If the user is a no-op, look through to its uses.
2207 if (!isa
<SCEVUnknown
>(UserS
))
2211 SE
.getUnknown(const_cast<Instruction
*>(UserInst
)));
2215 // Ignore icmp instructions which are already being analyzed.
2216 if (const ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(UserInst
)) {
2217 unsigned OtherIdx
= !UI
.getOperandNo();
2218 Value
*OtherOp
= const_cast<Value
*>(ICI
->getOperand(OtherIdx
));
2219 if (SE
.hasComputableLoopEvolution(SE
.getSCEV(OtherOp
), L
))
2223 LSRFixup
&LF
= getNewFixup();
2224 LF
.UserInst
= const_cast<Instruction
*>(UserInst
);
2225 LF
.OperandValToReplace
= UI
.getUse();
2226 std::pair
<size_t, int64_t> P
= getUse(S
, LSRUse::Basic
, 0);
2228 LF
.Offset
= P
.second
;
2229 LSRUse
&LU
= Uses
[LF
.LUIdx
];
2230 LU
.AllFixupsOutsideLoop
&= LF
.isUseFullyOutsideLoop(L
);
2231 if (!LU
.WidestFixupType
||
2232 SE
.getTypeSizeInBits(LU
.WidestFixupType
) <
2233 SE
.getTypeSizeInBits(LF
.OperandValToReplace
->getType()))
2234 LU
.WidestFixupType
= LF
.OperandValToReplace
->getType();
2235 InsertSupplementalFormula(U
, LU
, LF
.LUIdx
);
2236 CountRegisters(LU
.Formulae
.back(), Uses
.size() - 1);
2243 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
2244 /// separate registers. If C is non-null, multiply each subexpression by C.
2245 static void CollectSubexprs(const SCEV
*S
, const SCEVConstant
*C
,
2246 SmallVectorImpl
<const SCEV
*> &Ops
,
2248 ScalarEvolution
&SE
) {
2249 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
2250 // Break out add operands.
2251 for (SCEVAddExpr::op_iterator I
= Add
->op_begin(), E
= Add
->op_end();
2253 CollectSubexprs(*I
, C
, Ops
, L
, SE
);
2255 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2256 // Split a non-zero base out of an addrec.
2257 if (!AR
->getStart()->isZero()) {
2258 CollectSubexprs(SE
.getAddRecExpr(SE
.getConstant(AR
->getType(), 0),
2259 AR
->getStepRecurrence(SE
),
2261 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
2264 CollectSubexprs(AR
->getStart(), C
, Ops
, L
, SE
);
2267 } else if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
2268 // Break (C * (a + b + c)) into C*a + C*b + C*c.
2269 if (Mul
->getNumOperands() == 2)
2270 if (const SCEVConstant
*Op0
=
2271 dyn_cast
<SCEVConstant
>(Mul
->getOperand(0))) {
2272 CollectSubexprs(Mul
->getOperand(1),
2273 C
? cast
<SCEVConstant
>(SE
.getMulExpr(C
, Op0
)) : Op0
,
2279 // Otherwise use the value itself, optionally with a scale applied.
2280 Ops
.push_back(C
? SE
.getMulExpr(C
, S
) : S
);
2283 /// GenerateReassociations - Split out subexpressions from adds and the bases of
2285 void LSRInstance::GenerateReassociations(LSRUse
&LU
, unsigned LUIdx
,
2288 // Arbitrarily cap recursion to protect compile time.
2289 if (Depth
>= 3) return;
2291 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
) {
2292 const SCEV
*BaseReg
= Base
.BaseRegs
[i
];
2294 SmallVector
<const SCEV
*, 8> AddOps
;
2295 CollectSubexprs(BaseReg
, 0, AddOps
, L
, SE
);
2297 if (AddOps
.size() == 1) continue;
2299 for (SmallVectorImpl
<const SCEV
*>::const_iterator J
= AddOps
.begin(),
2300 JE
= AddOps
.end(); J
!= JE
; ++J
) {
2302 // Loop-variant "unknown" values are uninteresting; we won't be able to
2303 // do anything meaningful with them.
2304 if (isa
<SCEVUnknown
>(*J
) && !SE
.isLoopInvariant(*J
, L
))
2307 // Don't pull a constant into a register if the constant could be folded
2308 // into an immediate field.
2309 if (isAlwaysFoldable(*J
, LU
.MinOffset
, LU
.MaxOffset
,
2310 Base
.getNumRegs() > 1,
2311 LU
.Kind
, LU
.AccessTy
, TLI
, SE
))
2314 // Collect all operands except *J.
2315 SmallVector
<const SCEV
*, 8> InnerAddOps
2316 (((const SmallVector
<const SCEV
*, 8> &)AddOps
).begin(), J
);
2318 (llvm::next(J
), ((const SmallVector
<const SCEV
*, 8> &)AddOps
).end());
2320 // Don't leave just a constant behind in a register if the constant could
2321 // be folded into an immediate field.
2322 if (InnerAddOps
.size() == 1 &&
2323 isAlwaysFoldable(InnerAddOps
[0], LU
.MinOffset
, LU
.MaxOffset
,
2324 Base
.getNumRegs() > 1,
2325 LU
.Kind
, LU
.AccessTy
, TLI
, SE
))
2328 const SCEV
*InnerSum
= SE
.getAddExpr(InnerAddOps
);
2329 if (InnerSum
->isZero())
2333 // Add the remaining pieces of the add back into the new formula.
2334 const SCEVConstant
*InnerSumSC
= dyn_cast
<SCEVConstant
>(InnerSum
);
2335 if (TLI
&& InnerSumSC
&&
2336 SE
.getTypeSizeInBits(InnerSumSC
->getType()) <= 64 &&
2337 TLI
->isLegalAddImmediate((uint64_t)F
.UnfoldedOffset
+
2338 InnerSumSC
->getValue()->getZExtValue())) {
2339 F
.UnfoldedOffset
= (uint64_t)F
.UnfoldedOffset
+
2340 InnerSumSC
->getValue()->getZExtValue();
2341 F
.BaseRegs
.erase(F
.BaseRegs
.begin() + i
);
2343 F
.BaseRegs
[i
] = InnerSum
;
2345 // Add J as its own register, or an unfolded immediate.
2346 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(*J
);
2347 if (TLI
&& SC
&& SE
.getTypeSizeInBits(SC
->getType()) <= 64 &&
2348 TLI
->isLegalAddImmediate((uint64_t)F
.UnfoldedOffset
+
2349 SC
->getValue()->getZExtValue()))
2350 F
.UnfoldedOffset
= (uint64_t)F
.UnfoldedOffset
+
2351 SC
->getValue()->getZExtValue();
2353 F
.BaseRegs
.push_back(*J
);
2355 if (InsertFormula(LU
, LUIdx
, F
))
2356 // If that formula hadn't been seen before, recurse to find more like
2358 GenerateReassociations(LU
, LUIdx
, LU
.Formulae
.back(), Depth
+1);
2363 /// GenerateCombinations - Generate a formula consisting of all of the
2364 /// loop-dominating registers added into a single register.
2365 void LSRInstance::GenerateCombinations(LSRUse
&LU
, unsigned LUIdx
,
2367 // This method is only interesting on a plurality of registers.
2368 if (Base
.BaseRegs
.size() <= 1) return;
2372 SmallVector
<const SCEV
*, 4> Ops
;
2373 for (SmallVectorImpl
<const SCEV
*>::const_iterator
2374 I
= Base
.BaseRegs
.begin(), E
= Base
.BaseRegs
.end(); I
!= E
; ++I
) {
2375 const SCEV
*BaseReg
= *I
;
2376 if (SE
.properlyDominates(BaseReg
, L
->getHeader()) &&
2377 !SE
.hasComputableLoopEvolution(BaseReg
, L
))
2378 Ops
.push_back(BaseReg
);
2380 F
.BaseRegs
.push_back(BaseReg
);
2382 if (Ops
.size() > 1) {
2383 const SCEV
*Sum
= SE
.getAddExpr(Ops
);
2384 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2385 // opportunity to fold something. For now, just ignore such cases
2386 // rather than proceed with zero in a register.
2387 if (!Sum
->isZero()) {
2388 F
.BaseRegs
.push_back(Sum
);
2389 (void)InsertFormula(LU
, LUIdx
, F
);
2394 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2395 void LSRInstance::GenerateSymbolicOffsets(LSRUse
&LU
, unsigned LUIdx
,
2397 // We can't add a symbolic offset if the address already contains one.
2398 if (Base
.AM
.BaseGV
) return;
2400 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
) {
2401 const SCEV
*G
= Base
.BaseRegs
[i
];
2402 GlobalValue
*GV
= ExtractSymbol(G
, SE
);
2403 if (G
->isZero() || !GV
)
2407 if (!isLegalUse(F
.AM
, LU
.MinOffset
, LU
.MaxOffset
,
2408 LU
.Kind
, LU
.AccessTy
, TLI
))
2411 (void)InsertFormula(LU
, LUIdx
, F
);
2415 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2416 void LSRInstance::GenerateConstantOffsets(LSRUse
&LU
, unsigned LUIdx
,
2418 // TODO: For now, just add the min and max offset, because it usually isn't
2419 // worthwhile looking at everything inbetween.
2420 SmallVector
<int64_t, 2> Worklist
;
2421 Worklist
.push_back(LU
.MinOffset
);
2422 if (LU
.MaxOffset
!= LU
.MinOffset
)
2423 Worklist
.push_back(LU
.MaxOffset
);
2425 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
) {
2426 const SCEV
*G
= Base
.BaseRegs
[i
];
2428 for (SmallVectorImpl
<int64_t>::const_iterator I
= Worklist
.begin(),
2429 E
= Worklist
.end(); I
!= E
; ++I
) {
2431 F
.AM
.BaseOffs
= (uint64_t)Base
.AM
.BaseOffs
- *I
;
2432 if (isLegalUse(F
.AM
, LU
.MinOffset
- *I
, LU
.MaxOffset
- *I
,
2433 LU
.Kind
, LU
.AccessTy
, TLI
)) {
2434 // Add the offset to the base register.
2435 const SCEV
*NewG
= SE
.getAddExpr(SE
.getConstant(G
->getType(), *I
), G
);
2436 // If it cancelled out, drop the base register, otherwise update it.
2437 if (NewG
->isZero()) {
2438 std::swap(F
.BaseRegs
[i
], F
.BaseRegs
.back());
2439 F
.BaseRegs
.pop_back();
2441 F
.BaseRegs
[i
] = NewG
;
2443 (void)InsertFormula(LU
, LUIdx
, F
);
2447 int64_t Imm
= ExtractImmediate(G
, SE
);
2448 if (G
->isZero() || Imm
== 0)
2451 F
.AM
.BaseOffs
= (uint64_t)F
.AM
.BaseOffs
+ Imm
;
2452 if (!isLegalUse(F
.AM
, LU
.MinOffset
, LU
.MaxOffset
,
2453 LU
.Kind
, LU
.AccessTy
, TLI
))
2456 (void)InsertFormula(LU
, LUIdx
, F
);
2460 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2461 /// the comparison. For example, x == y -> x*c == y*c.
2462 void LSRInstance::GenerateICmpZeroScales(LSRUse
&LU
, unsigned LUIdx
,
2464 if (LU
.Kind
!= LSRUse::ICmpZero
) return;
2466 // Determine the integer type for the base formula.
2467 const Type
*IntTy
= Base
.getType();
2469 if (SE
.getTypeSizeInBits(IntTy
) > 64) return;
2471 // Don't do this if there is more than one offset.
2472 if (LU
.MinOffset
!= LU
.MaxOffset
) return;
2474 assert(!Base
.AM
.BaseGV
&& "ICmpZero use is not legal!");
2476 // Check each interesting stride.
2477 for (SmallSetVector
<int64_t, 8>::const_iterator
2478 I
= Factors
.begin(), E
= Factors
.end(); I
!= E
; ++I
) {
2479 int64_t Factor
= *I
;
2481 // Check that the multiplication doesn't overflow.
2482 if (Base
.AM
.BaseOffs
== INT64_MIN
&& Factor
== -1)
2484 int64_t NewBaseOffs
= (uint64_t)Base
.AM
.BaseOffs
* Factor
;
2485 if (NewBaseOffs
/ Factor
!= Base
.AM
.BaseOffs
)
2488 // Check that multiplying with the use offset doesn't overflow.
2489 int64_t Offset
= LU
.MinOffset
;
2490 if (Offset
== INT64_MIN
&& Factor
== -1)
2492 Offset
= (uint64_t)Offset
* Factor
;
2493 if (Offset
/ Factor
!= LU
.MinOffset
)
2497 F
.AM
.BaseOffs
= NewBaseOffs
;
2499 // Check that this scale is legal.
2500 if (!isLegalUse(F
.AM
, Offset
, Offset
, LU
.Kind
, LU
.AccessTy
, TLI
))
2503 // Compensate for the use having MinOffset built into it.
2504 F
.AM
.BaseOffs
= (uint64_t)F
.AM
.BaseOffs
+ Offset
- LU
.MinOffset
;
2506 const SCEV
*FactorS
= SE
.getConstant(IntTy
, Factor
);
2508 // Check that multiplying with each base register doesn't overflow.
2509 for (size_t i
= 0, e
= F
.BaseRegs
.size(); i
!= e
; ++i
) {
2510 F
.BaseRegs
[i
] = SE
.getMulExpr(F
.BaseRegs
[i
], FactorS
);
2511 if (getExactSDiv(F
.BaseRegs
[i
], FactorS
, SE
) != Base
.BaseRegs
[i
])
2515 // Check that multiplying with the scaled register doesn't overflow.
2517 F
.ScaledReg
= SE
.getMulExpr(F
.ScaledReg
, FactorS
);
2518 if (getExactSDiv(F
.ScaledReg
, FactorS
, SE
) != Base
.ScaledReg
)
2522 // Check that multiplying with the unfolded offset doesn't overflow.
2523 if (F
.UnfoldedOffset
!= 0) {
2524 if (F
.UnfoldedOffset
== INT64_MIN
&& Factor
== -1)
2526 F
.UnfoldedOffset
= (uint64_t)F
.UnfoldedOffset
* Factor
;
2527 if (F
.UnfoldedOffset
/ Factor
!= Base
.UnfoldedOffset
)
2531 // If we make it here and it's legal, add it.
2532 (void)InsertFormula(LU
, LUIdx
, F
);
2537 /// GenerateScales - Generate stride factor reuse formulae by making use of
2538 /// scaled-offset address modes, for example.
2539 void LSRInstance::GenerateScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
) {
2540 // Determine the integer type for the base formula.
2541 const Type
*IntTy
= Base
.getType();
2544 // If this Formula already has a scaled register, we can't add another one.
2545 if (Base
.AM
.Scale
!= 0) return;
2547 // Check each interesting stride.
2548 for (SmallSetVector
<int64_t, 8>::const_iterator
2549 I
= Factors
.begin(), E
= Factors
.end(); I
!= E
; ++I
) {
2550 int64_t Factor
= *I
;
2552 Base
.AM
.Scale
= Factor
;
2553 Base
.AM
.HasBaseReg
= Base
.BaseRegs
.size() > 1;
2554 // Check whether this scale is going to be legal.
2555 if (!isLegalUse(Base
.AM
, LU
.MinOffset
, LU
.MaxOffset
,
2556 LU
.Kind
, LU
.AccessTy
, TLI
)) {
2557 // As a special-case, handle special out-of-loop Basic users specially.
2558 // TODO: Reconsider this special case.
2559 if (LU
.Kind
== LSRUse::Basic
&&
2560 isLegalUse(Base
.AM
, LU
.MinOffset
, LU
.MaxOffset
,
2561 LSRUse::Special
, LU
.AccessTy
, TLI
) &&
2562 LU
.AllFixupsOutsideLoop
)
2563 LU
.Kind
= LSRUse::Special
;
2567 // For an ICmpZero, negating a solitary base register won't lead to
2569 if (LU
.Kind
== LSRUse::ICmpZero
&&
2570 !Base
.AM
.HasBaseReg
&& Base
.AM
.BaseOffs
== 0 && !Base
.AM
.BaseGV
)
2572 // For each addrec base reg, apply the scale, if possible.
2573 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
)
2574 if (const SCEVAddRecExpr
*AR
=
2575 dyn_cast
<SCEVAddRecExpr
>(Base
.BaseRegs
[i
])) {
2576 const SCEV
*FactorS
= SE
.getConstant(IntTy
, Factor
);
2577 if (FactorS
->isZero())
2579 // Divide out the factor, ignoring high bits, since we'll be
2580 // scaling the value back up in the end.
2581 if (const SCEV
*Quotient
= getExactSDiv(AR
, FactorS
, SE
, true)) {
2582 // TODO: This could be optimized to avoid all the copying.
2584 F
.ScaledReg
= Quotient
;
2585 F
.DeleteBaseReg(F
.BaseRegs
[i
]);
2586 (void)InsertFormula(LU
, LUIdx
, F
);
2592 /// GenerateTruncates - Generate reuse formulae from different IV types.
2593 void LSRInstance::GenerateTruncates(LSRUse
&LU
, unsigned LUIdx
, Formula Base
) {
2594 // This requires TargetLowering to tell us which truncates are free.
2597 // Don't bother truncating symbolic values.
2598 if (Base
.AM
.BaseGV
) return;
2600 // Determine the integer type for the base formula.
2601 const Type
*DstTy
= Base
.getType();
2603 DstTy
= SE
.getEffectiveSCEVType(DstTy
);
2605 for (SmallSetVector
<const Type
*, 4>::const_iterator
2606 I
= Types
.begin(), E
= Types
.end(); I
!= E
; ++I
) {
2607 const Type
*SrcTy
= *I
;
2608 if (SrcTy
!= DstTy
&& TLI
->isTruncateFree(SrcTy
, DstTy
)) {
2611 if (F
.ScaledReg
) F
.ScaledReg
= SE
.getAnyExtendExpr(F
.ScaledReg
, *I
);
2612 for (SmallVectorImpl
<const SCEV
*>::iterator J
= F
.BaseRegs
.begin(),
2613 JE
= F
.BaseRegs
.end(); J
!= JE
; ++J
)
2614 *J
= SE
.getAnyExtendExpr(*J
, SrcTy
);
2616 // TODO: This assumes we've done basic processing on all uses and
2617 // have an idea what the register usage is.
2618 if (!F
.hasRegsUsedByUsesOtherThan(LUIdx
, RegUses
))
2621 (void)InsertFormula(LU
, LUIdx
, F
);
2628 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2629 /// defer modifications so that the search phase doesn't have to worry about
2630 /// the data structures moving underneath it.
2634 const SCEV
*OrigReg
;
2636 WorkItem(size_t LI
, int64_t I
, const SCEV
*R
)
2637 : LUIdx(LI
), Imm(I
), OrigReg(R
) {}
2639 void print(raw_ostream
&OS
) const;
2645 void WorkItem::print(raw_ostream
&OS
) const {
2646 OS
<< "in formulae referencing " << *OrigReg
<< " in use " << LUIdx
2647 << " , add offset " << Imm
;
2650 void WorkItem::dump() const {
2651 print(errs()); errs() << '\n';
2654 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2655 /// distance apart and try to form reuse opportunities between them.
2656 void LSRInstance::GenerateCrossUseConstantOffsets() {
2657 // Group the registers by their value without any added constant offset.
2658 typedef std::map
<int64_t, const SCEV
*> ImmMapTy
;
2659 typedef DenseMap
<const SCEV
*, ImmMapTy
> RegMapTy
;
2661 DenseMap
<const SCEV
*, SmallBitVector
> UsedByIndicesMap
;
2662 SmallVector
<const SCEV
*, 8> Sequence
;
2663 for (RegUseTracker::const_iterator I
= RegUses
.begin(), E
= RegUses
.end();
2665 const SCEV
*Reg
= *I
;
2666 int64_t Imm
= ExtractImmediate(Reg
, SE
);
2667 std::pair
<RegMapTy::iterator
, bool> Pair
=
2668 Map
.insert(std::make_pair(Reg
, ImmMapTy()));
2670 Sequence
.push_back(Reg
);
2671 Pair
.first
->second
.insert(std::make_pair(Imm
, *I
));
2672 UsedByIndicesMap
[Reg
] |= RegUses
.getUsedByIndices(*I
);
2675 // Now examine each set of registers with the same base value. Build up
2676 // a list of work to do and do the work in a separate step so that we're
2677 // not adding formulae and register counts while we're searching.
2678 SmallVector
<WorkItem
, 32> WorkItems
;
2679 SmallSet
<std::pair
<size_t, int64_t>, 32> UniqueItems
;
2680 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= Sequence
.begin(),
2681 E
= Sequence
.end(); I
!= E
; ++I
) {
2682 const SCEV
*Reg
= *I
;
2683 const ImmMapTy
&Imms
= Map
.find(Reg
)->second
;
2685 // It's not worthwhile looking for reuse if there's only one offset.
2686 if (Imms
.size() == 1)
2689 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg
<< ':';
2690 for (ImmMapTy::const_iterator J
= Imms
.begin(), JE
= Imms
.end();
2692 dbgs() << ' ' << J
->first
;
2695 // Examine each offset.
2696 for (ImmMapTy::const_iterator J
= Imms
.begin(), JE
= Imms
.end();
2698 const SCEV
*OrigReg
= J
->second
;
2700 int64_t JImm
= J
->first
;
2701 const SmallBitVector
&UsedByIndices
= RegUses
.getUsedByIndices(OrigReg
);
2703 if (!isa
<SCEVConstant
>(OrigReg
) &&
2704 UsedByIndicesMap
[Reg
].count() == 1) {
2705 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
<< '\n');
2709 // Conservatively examine offsets between this orig reg a few selected
2711 ImmMapTy::const_iterator OtherImms
[] = {
2712 Imms
.begin(), prior(Imms
.end()),
2713 Imms
.lower_bound((Imms
.begin()->first
+ prior(Imms
.end())->first
) / 2)
2715 for (size_t i
= 0, e
= array_lengthof(OtherImms
); i
!= e
; ++i
) {
2716 ImmMapTy::const_iterator M
= OtherImms
[i
];
2717 if (M
== J
|| M
== JE
) continue;
2719 // Compute the difference between the two.
2720 int64_t Imm
= (uint64_t)JImm
- M
->first
;
2721 for (int LUIdx
= UsedByIndices
.find_first(); LUIdx
!= -1;
2722 LUIdx
= UsedByIndices
.find_next(LUIdx
))
2723 // Make a memo of this use, offset, and register tuple.
2724 if (UniqueItems
.insert(std::make_pair(LUIdx
, Imm
)))
2725 WorkItems
.push_back(WorkItem(LUIdx
, Imm
, OrigReg
));
2732 UsedByIndicesMap
.clear();
2733 UniqueItems
.clear();
2735 // Now iterate through the worklist and add new formulae.
2736 for (SmallVectorImpl
<WorkItem
>::const_iterator I
= WorkItems
.begin(),
2737 E
= WorkItems
.end(); I
!= E
; ++I
) {
2738 const WorkItem
&WI
= *I
;
2739 size_t LUIdx
= WI
.LUIdx
;
2740 LSRUse
&LU
= Uses
[LUIdx
];
2741 int64_t Imm
= WI
.Imm
;
2742 const SCEV
*OrigReg
= WI
.OrigReg
;
2744 const Type
*IntTy
= SE
.getEffectiveSCEVType(OrigReg
->getType());
2745 const SCEV
*NegImmS
= SE
.getSCEV(ConstantInt::get(IntTy
, -(uint64_t)Imm
));
2746 unsigned BitWidth
= SE
.getTypeSizeInBits(IntTy
);
2748 // TODO: Use a more targeted data structure.
2749 for (size_t L
= 0, LE
= LU
.Formulae
.size(); L
!= LE
; ++L
) {
2750 const Formula
&F
= LU
.Formulae
[L
];
2751 // Use the immediate in the scaled register.
2752 if (F
.ScaledReg
== OrigReg
) {
2753 int64_t Offs
= (uint64_t)F
.AM
.BaseOffs
+
2754 Imm
* (uint64_t)F
.AM
.Scale
;
2755 // Don't create 50 + reg(-50).
2756 if (F
.referencesReg(SE
.getSCEV(
2757 ConstantInt::get(IntTy
, -(uint64_t)Offs
))))
2760 NewF
.AM
.BaseOffs
= Offs
;
2761 if (!isLegalUse(NewF
.AM
, LU
.MinOffset
, LU
.MaxOffset
,
2762 LU
.Kind
, LU
.AccessTy
, TLI
))
2764 NewF
.ScaledReg
= SE
.getAddExpr(NegImmS
, NewF
.ScaledReg
);
2766 // If the new scale is a constant in a register, and adding the constant
2767 // value to the immediate would produce a value closer to zero than the
2768 // immediate itself, then the formula isn't worthwhile.
2769 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(NewF
.ScaledReg
))
2770 if (C
->getValue()->getValue().isNegative() !=
2771 (NewF
.AM
.BaseOffs
< 0) &&
2772 (C
->getValue()->getValue().abs() * APInt(BitWidth
, F
.AM
.Scale
))
2773 .ule(abs64(NewF
.AM
.BaseOffs
)))
2777 (void)InsertFormula(LU
, LUIdx
, NewF
);
2779 // Use the immediate in a base register.
2780 for (size_t N
= 0, NE
= F
.BaseRegs
.size(); N
!= NE
; ++N
) {
2781 const SCEV
*BaseReg
= F
.BaseRegs
[N
];
2782 if (BaseReg
!= OrigReg
)
2785 NewF
.AM
.BaseOffs
= (uint64_t)NewF
.AM
.BaseOffs
+ Imm
;
2786 if (!isLegalUse(NewF
.AM
, LU
.MinOffset
, LU
.MaxOffset
,
2787 LU
.Kind
, LU
.AccessTy
, TLI
)) {
2789 !TLI
->isLegalAddImmediate((uint64_t)NewF
.UnfoldedOffset
+ Imm
))
2792 NewF
.UnfoldedOffset
= (uint64_t)NewF
.UnfoldedOffset
+ Imm
;
2794 NewF
.BaseRegs
[N
] = SE
.getAddExpr(NegImmS
, BaseReg
);
2796 // If the new formula has a constant in a register, and adding the
2797 // constant value to the immediate would produce a value closer to
2798 // zero than the immediate itself, then the formula isn't worthwhile.
2799 for (SmallVectorImpl
<const SCEV
*>::const_iterator
2800 J
= NewF
.BaseRegs
.begin(), JE
= NewF
.BaseRegs
.end();
2802 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(*J
))
2803 if ((C
->getValue()->getValue() + NewF
.AM
.BaseOffs
).abs().slt(
2804 abs64(NewF
.AM
.BaseOffs
)) &&
2805 (C
->getValue()->getValue() +
2806 NewF
.AM
.BaseOffs
).countTrailingZeros() >=
2807 CountTrailingZeros_64(NewF
.AM
.BaseOffs
))
2811 (void)InsertFormula(LU
, LUIdx
, NewF
);
2820 /// GenerateAllReuseFormulae - Generate formulae for each use.
2822 LSRInstance::GenerateAllReuseFormulae() {
2823 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2824 // queries are more precise.
2825 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
2826 LSRUse
&LU
= Uses
[LUIdx
];
2827 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
2828 GenerateReassociations(LU
, LUIdx
, LU
.Formulae
[i
]);
2829 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
2830 GenerateCombinations(LU
, LUIdx
, LU
.Formulae
[i
]);
2832 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
2833 LSRUse
&LU
= Uses
[LUIdx
];
2834 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
2835 GenerateSymbolicOffsets(LU
, LUIdx
, LU
.Formulae
[i
]);
2836 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
2837 GenerateConstantOffsets(LU
, LUIdx
, LU
.Formulae
[i
]);
2838 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
2839 GenerateICmpZeroScales(LU
, LUIdx
, LU
.Formulae
[i
]);
2840 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
2841 GenerateScales(LU
, LUIdx
, LU
.Formulae
[i
]);
2843 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
2844 LSRUse
&LU
= Uses
[LUIdx
];
2845 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
2846 GenerateTruncates(LU
, LUIdx
, LU
.Formulae
[i
]);
2849 GenerateCrossUseConstantOffsets();
2851 DEBUG(dbgs() << "\n"
2852 "After generating reuse formulae:\n";
2853 print_uses(dbgs()));
2856 /// If there are multiple formulae with the same set of registers used
2857 /// by other uses, pick the best one and delete the others.
2858 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2859 DenseSet
<const SCEV
*> VisitedRegs
;
2860 SmallPtrSet
<const SCEV
*, 16> Regs
;
2862 bool ChangedFormulae
= false;
2865 // Collect the best formula for each unique set of shared registers. This
2866 // is reset for each use.
2867 typedef DenseMap
<SmallVector
<const SCEV
*, 2>, size_t, UniquifierDenseMapInfo
>
2869 BestFormulaeTy BestFormulae
;
2871 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
2872 LSRUse
&LU
= Uses
[LUIdx
];
2873 DEBUG(dbgs() << "Filtering for use "; LU
.print(dbgs()); dbgs() << '\n');
2876 for (size_t FIdx
= 0, NumForms
= LU
.Formulae
.size();
2877 FIdx
!= NumForms
; ++FIdx
) {
2878 Formula
&F
= LU
.Formulae
[FIdx
];
2880 SmallVector
<const SCEV
*, 2> Key
;
2881 for (SmallVectorImpl
<const SCEV
*>::const_iterator J
= F
.BaseRegs
.begin(),
2882 JE
= F
.BaseRegs
.end(); J
!= JE
; ++J
) {
2883 const SCEV
*Reg
= *J
;
2884 if (RegUses
.isRegUsedByUsesOtherThan(Reg
, LUIdx
))
2888 RegUses
.isRegUsedByUsesOtherThan(F
.ScaledReg
, LUIdx
))
2889 Key
.push_back(F
.ScaledReg
);
2890 // Unstable sort by host order ok, because this is only used for
2892 std::sort(Key
.begin(), Key
.end());
2894 std::pair
<BestFormulaeTy::const_iterator
, bool> P
=
2895 BestFormulae
.insert(std::make_pair(Key
, FIdx
));
2897 Formula
&Best
= LU
.Formulae
[P
.first
->second
];
2900 CostF
.RateFormula(F
, Regs
, VisitedRegs
, L
, LU
.Offsets
, SE
, DT
);
2903 CostBest
.RateFormula(Best
, Regs
, VisitedRegs
, L
, LU
.Offsets
, SE
, DT
);
2905 if (CostF
< CostBest
)
2907 DEBUG(dbgs() << " Filtering out formula "; F
.print(dbgs());
2909 " in favor of formula "; Best
.print(dbgs());
2912 ChangedFormulae
= true;
2914 LU
.DeleteFormula(F
);
2922 // Now that we've filtered out some formulae, recompute the Regs set.
2924 LU
.RecomputeRegs(LUIdx
, RegUses
);
2926 // Reset this to prepare for the next use.
2927 BestFormulae
.clear();
2930 DEBUG(if (ChangedFormulae
) {
2932 "After filtering out undesirable candidates:\n";
2937 // This is a rough guess that seems to work fairly well.
2938 static const size_t ComplexityLimit
= UINT16_MAX
;
2940 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2941 /// solutions the solver might have to consider. It almost never considers
2942 /// this many solutions because it prune the search space, but the pruning
2943 /// isn't always sufficient.
2944 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2946 for (SmallVectorImpl
<LSRUse
>::const_iterator I
= Uses
.begin(),
2947 E
= Uses
.end(); I
!= E
; ++I
) {
2948 size_t FSize
= I
->Formulae
.size();
2949 if (FSize
>= ComplexityLimit
) {
2950 Power
= ComplexityLimit
;
2954 if (Power
>= ComplexityLimit
)
2960 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
2961 /// of the registers of another formula, it won't help reduce register
2962 /// pressure (though it may not necessarily hurt register pressure); remove
2963 /// it to simplify the system.
2964 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
2965 if (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
2966 DEBUG(dbgs() << "The search space is too complex.\n");
2968 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2969 "which use a superset of registers used by other "
2972 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
2973 LSRUse
&LU
= Uses
[LUIdx
];
2975 for (size_t i
= 0, e
= LU
.Formulae
.size(); i
!= e
; ++i
) {
2976 Formula
&F
= LU
.Formulae
[i
];
2977 // Look for a formula with a constant or GV in a register. If the use
2978 // also has a formula with that same value in an immediate field,
2979 // delete the one that uses a register.
2980 for (SmallVectorImpl
<const SCEV
*>::const_iterator
2981 I
= F
.BaseRegs
.begin(), E
= F
.BaseRegs
.end(); I
!= E
; ++I
) {
2982 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(*I
)) {
2984 NewF
.AM
.BaseOffs
+= C
->getValue()->getSExtValue();
2985 NewF
.BaseRegs
.erase(NewF
.BaseRegs
.begin() +
2986 (I
- F
.BaseRegs
.begin()));
2987 if (LU
.HasFormulaWithSameRegs(NewF
)) {
2988 DEBUG(dbgs() << " Deleting "; F
.print(dbgs()); dbgs() << '\n');
2989 LU
.DeleteFormula(F
);
2995 } else if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(*I
)) {
2996 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(U
->getValue()))
2999 NewF
.AM
.BaseGV
= GV
;
3000 NewF
.BaseRegs
.erase(NewF
.BaseRegs
.begin() +
3001 (I
- F
.BaseRegs
.begin()));
3002 if (LU
.HasFormulaWithSameRegs(NewF
)) {
3003 DEBUG(dbgs() << " Deleting "; F
.print(dbgs());
3005 LU
.DeleteFormula(F
);
3016 LU
.RecomputeRegs(LUIdx
, RegUses
);
3019 DEBUG(dbgs() << "After pre-selection:\n";
3020 print_uses(dbgs()));
3024 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
3025 /// for expressions like A, A+1, A+2, etc., allocate a single register for
3027 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
3028 if (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
3029 DEBUG(dbgs() << "The search space is too complex.\n");
3031 DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
3032 "separated by a constant offset will use the same "
3035 // This is especially useful for unrolled loops.
3037 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
3038 LSRUse
&LU
= Uses
[LUIdx
];
3039 for (SmallVectorImpl
<Formula
>::const_iterator I
= LU
.Formulae
.begin(),
3040 E
= LU
.Formulae
.end(); I
!= E
; ++I
) {
3041 const Formula
&F
= *I
;
3042 if (F
.AM
.BaseOffs
!= 0 && F
.AM
.Scale
== 0) {
3043 if (LSRUse
*LUThatHas
= FindUseWithSimilarFormula(F
, LU
)) {
3044 if (reconcileNewOffset(*LUThatHas
, F
.AM
.BaseOffs
,
3045 /*HasBaseReg=*/false,
3046 LU
.Kind
, LU
.AccessTy
)) {
3047 DEBUG(dbgs() << " Deleting use "; LU
.print(dbgs());
3050 LUThatHas
->AllFixupsOutsideLoop
&= LU
.AllFixupsOutsideLoop
;
3052 // Update the relocs to reference the new use.
3053 for (SmallVectorImpl
<LSRFixup
>::iterator I
= Fixups
.begin(),
3054 E
= Fixups
.end(); I
!= E
; ++I
) {
3055 LSRFixup
&Fixup
= *I
;
3056 if (Fixup
.LUIdx
== LUIdx
) {
3057 Fixup
.LUIdx
= LUThatHas
- &Uses
.front();
3058 Fixup
.Offset
+= F
.AM
.BaseOffs
;
3059 // Add the new offset to LUThatHas' offset list.
3060 if (LUThatHas
->Offsets
.back() != Fixup
.Offset
) {
3061 LUThatHas
->Offsets
.push_back(Fixup
.Offset
);
3062 if (Fixup
.Offset
> LUThatHas
->MaxOffset
)
3063 LUThatHas
->MaxOffset
= Fixup
.Offset
;
3064 if (Fixup
.Offset
< LUThatHas
->MinOffset
)
3065 LUThatHas
->MinOffset
= Fixup
.Offset
;
3067 DEBUG(dbgs() << "New fixup has offset "
3068 << Fixup
.Offset
<< '\n');
3070 if (Fixup
.LUIdx
== NumUses
-1)
3071 Fixup
.LUIdx
= LUIdx
;
3074 // Delete formulae from the new use which are no longer legal.
3076 for (size_t i
= 0, e
= LUThatHas
->Formulae
.size(); i
!= e
; ++i
) {
3077 Formula
&F
= LUThatHas
->Formulae
[i
];
3078 if (!isLegalUse(F
.AM
,
3079 LUThatHas
->MinOffset
, LUThatHas
->MaxOffset
,
3080 LUThatHas
->Kind
, LUThatHas
->AccessTy
, TLI
)) {
3081 DEBUG(dbgs() << " Deleting "; F
.print(dbgs());
3083 LUThatHas
->DeleteFormula(F
);
3090 LUThatHas
->RecomputeRegs(LUThatHas
- &Uses
.front(), RegUses
);
3092 // Delete the old use.
3093 DeleteUse(LU
, LUIdx
);
3103 DEBUG(dbgs() << "After pre-selection:\n";
3104 print_uses(dbgs()));
3108 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
3109 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3110 /// we've done more filtering, as it may be able to find more formulae to
3112 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3113 if (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
3114 DEBUG(dbgs() << "The search space is too complex.\n");
3116 DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3117 "undesirable dedicated registers.\n");
3119 FilterOutUndesirableDedicatedRegisters();
3121 DEBUG(dbgs() << "After pre-selection:\n";
3122 print_uses(dbgs()));
3126 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3127 /// to be profitable, and then in any use which has any reference to that
3128 /// register, delete all formulae which do not reference that register.
3129 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
3130 // With all other options exhausted, loop until the system is simple
3131 // enough to handle.
3132 SmallPtrSet
<const SCEV
*, 4> Taken
;
3133 while (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
3134 // Ok, we have too many of formulae on our hands to conveniently handle.
3135 // Use a rough heuristic to thin out the list.
3136 DEBUG(dbgs() << "The search space is too complex.\n");
3138 // Pick the register which is used by the most LSRUses, which is likely
3139 // to be a good reuse register candidate.
3140 const SCEV
*Best
= 0;
3141 unsigned BestNum
= 0;
3142 for (RegUseTracker::const_iterator I
= RegUses
.begin(), E
= RegUses
.end();
3144 const SCEV
*Reg
= *I
;
3145 if (Taken
.count(Reg
))
3150 unsigned Count
= RegUses
.getUsedByIndices(Reg
).count();
3151 if (Count
> BestNum
) {
3158 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3159 << " will yield profitable reuse.\n");
3162 // In any use with formulae which references this register, delete formulae
3163 // which don't reference it.
3164 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
3165 LSRUse
&LU
= Uses
[LUIdx
];
3166 if (!LU
.Regs
.count(Best
)) continue;
3169 for (size_t i
= 0, e
= LU
.Formulae
.size(); i
!= e
; ++i
) {
3170 Formula
&F
= LU
.Formulae
[i
];
3171 if (!F
.referencesReg(Best
)) {
3172 DEBUG(dbgs() << " Deleting "; F
.print(dbgs()); dbgs() << '\n');
3173 LU
.DeleteFormula(F
);
3177 assert(e
!= 0 && "Use has no formulae left! Is Regs inconsistent?");
3183 LU
.RecomputeRegs(LUIdx
, RegUses
);
3186 DEBUG(dbgs() << "After pre-selection:\n";
3187 print_uses(dbgs()));
3191 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
3192 /// formulae to choose from, use some rough heuristics to prune down the number
3193 /// of formulae. This keeps the main solver from taking an extraordinary amount
3194 /// of time in some worst-case scenarios.
3195 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
3196 NarrowSearchSpaceByDetectingSupersets();
3197 NarrowSearchSpaceByCollapsingUnrolledCode();
3198 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
3199 NarrowSearchSpaceByPickingWinnerRegs();
3202 /// SolveRecurse - This is the recursive solver.
3203 void LSRInstance::SolveRecurse(SmallVectorImpl
<const Formula
*> &Solution
,
3205 SmallVectorImpl
<const Formula
*> &Workspace
,
3206 const Cost
&CurCost
,
3207 const SmallPtrSet
<const SCEV
*, 16> &CurRegs
,
3208 DenseSet
<const SCEV
*> &VisitedRegs
) const {
3211 // - use more aggressive filtering
3212 // - sort the formula so that the most profitable solutions are found first
3213 // - sort the uses too
3215 // - don't compute a cost, and then compare. compare while computing a cost
3217 // - track register sets with SmallBitVector
3219 const LSRUse
&LU
= Uses
[Workspace
.size()];
3221 // If this use references any register that's already a part of the
3222 // in-progress solution, consider it a requirement that a formula must
3223 // reference that register in order to be considered. This prunes out
3224 // unprofitable searching.
3225 SmallSetVector
<const SCEV
*, 4> ReqRegs
;
3226 for (SmallPtrSet
<const SCEV
*, 16>::const_iterator I
= CurRegs
.begin(),
3227 E
= CurRegs
.end(); I
!= E
; ++I
)
3228 if (LU
.Regs
.count(*I
))
3231 bool AnySatisfiedReqRegs
= false;
3232 SmallPtrSet
<const SCEV
*, 16> NewRegs
;
3235 for (SmallVectorImpl
<Formula
>::const_iterator I
= LU
.Formulae
.begin(),
3236 E
= LU
.Formulae
.end(); I
!= E
; ++I
) {
3237 const Formula
&F
= *I
;
3239 // Ignore formulae which do not use any of the required registers.
3240 for (SmallSetVector
<const SCEV
*, 4>::const_iterator J
= ReqRegs
.begin(),
3241 JE
= ReqRegs
.end(); J
!= JE
; ++J
) {
3242 const SCEV
*Reg
= *J
;
3243 if ((!F
.ScaledReg
|| F
.ScaledReg
!= Reg
) &&
3244 std::find(F
.BaseRegs
.begin(), F
.BaseRegs
.end(), Reg
) ==
3248 AnySatisfiedReqRegs
= true;
3250 // Evaluate the cost of the current formula. If it's already worse than
3251 // the current best, prune the search at that point.
3254 NewCost
.RateFormula(F
, NewRegs
, VisitedRegs
, L
, LU
.Offsets
, SE
, DT
);
3255 if (NewCost
< SolutionCost
) {
3256 Workspace
.push_back(&F
);
3257 if (Workspace
.size() != Uses
.size()) {
3258 SolveRecurse(Solution
, SolutionCost
, Workspace
, NewCost
,
3259 NewRegs
, VisitedRegs
);
3260 if (F
.getNumRegs() == 1 && Workspace
.size() == 1)
3261 VisitedRegs
.insert(F
.ScaledReg
? F
.ScaledReg
: F
.BaseRegs
[0]);
3263 DEBUG(dbgs() << "New best at "; NewCost
.print(dbgs());
3264 dbgs() << ". Regs:";
3265 for (SmallPtrSet
<const SCEV
*, 16>::const_iterator
3266 I
= NewRegs
.begin(), E
= NewRegs
.end(); I
!= E
; ++I
)
3267 dbgs() << ' ' << **I
;
3270 SolutionCost
= NewCost
;
3271 Solution
= Workspace
;
3273 Workspace
.pop_back();
3278 // If none of the formulae had all of the required registers, relax the
3279 // constraint so that we don't exclude all formulae.
3280 if (!AnySatisfiedReqRegs
) {
3281 assert(!ReqRegs
.empty() && "Solver failed even without required registers");
3287 /// Solve - Choose one formula from each use. Return the results in the given
3288 /// Solution vector.
3289 void LSRInstance::Solve(SmallVectorImpl
<const Formula
*> &Solution
) const {
3290 SmallVector
<const Formula
*, 8> Workspace
;
3292 SolutionCost
.Loose();
3294 SmallPtrSet
<const SCEV
*, 16> CurRegs
;
3295 DenseSet
<const SCEV
*> VisitedRegs
;
3296 Workspace
.reserve(Uses
.size());
3298 // SolveRecurse does all the work.
3299 SolveRecurse(Solution
, SolutionCost
, Workspace
, CurCost
,
3300 CurRegs
, VisitedRegs
);
3302 // Ok, we've now made all our decisions.
3303 DEBUG(dbgs() << "\n"
3304 "The chosen solution requires "; SolutionCost
.print(dbgs());
3306 for (size_t i
= 0, e
= Uses
.size(); i
!= e
; ++i
) {
3308 Uses
[i
].print(dbgs());
3311 Solution
[i
]->print(dbgs());
3315 assert(Solution
.size() == Uses
.size() && "Malformed solution!");
3318 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3319 /// the dominator tree far as we can go while still being dominated by the
3320 /// input positions. This helps canonicalize the insert position, which
3321 /// encourages sharing.
3322 BasicBlock::iterator
3323 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP
,
3324 const SmallVectorImpl
<Instruction
*> &Inputs
)
3327 const Loop
*IPLoop
= LI
.getLoopFor(IP
->getParent());
3328 unsigned IPLoopDepth
= IPLoop
? IPLoop
->getLoopDepth() : 0;
3331 for (DomTreeNode
*Rung
= DT
.getNode(IP
->getParent()); ; ) {
3332 if (!Rung
) return IP
;
3333 Rung
= Rung
->getIDom();
3334 if (!Rung
) return IP
;
3335 IDom
= Rung
->getBlock();
3337 // Don't climb into a loop though.
3338 const Loop
*IDomLoop
= LI
.getLoopFor(IDom
);
3339 unsigned IDomDepth
= IDomLoop
? IDomLoop
->getLoopDepth() : 0;
3340 if (IDomDepth
<= IPLoopDepth
&&
3341 (IDomDepth
!= IPLoopDepth
|| IDomLoop
== IPLoop
))
3345 bool AllDominate
= true;
3346 Instruction
*BetterPos
= 0;
3347 Instruction
*Tentative
= IDom
->getTerminator();
3348 for (SmallVectorImpl
<Instruction
*>::const_iterator I
= Inputs
.begin(),
3349 E
= Inputs
.end(); I
!= E
; ++I
) {
3350 Instruction
*Inst
= *I
;
3351 if (Inst
== Tentative
|| !DT
.dominates(Inst
, Tentative
)) {
3352 AllDominate
= false;
3355 // Attempt to find an insert position in the middle of the block,
3356 // instead of at the end, so that it can be used for other expansions.
3357 if (IDom
== Inst
->getParent() &&
3358 (!BetterPos
|| DT
.dominates(BetterPos
, Inst
)))
3359 BetterPos
= llvm::next(BasicBlock::iterator(Inst
));
3372 /// AdjustInsertPositionForExpand - Determine an input position which will be
3373 /// dominated by the operands and which will dominate the result.
3374 BasicBlock::iterator
3375 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP
,
3377 const LSRUse
&LU
) const {
3378 // Collect some instructions which must be dominated by the
3379 // expanding replacement. These must be dominated by any operands that
3380 // will be required in the expansion.
3381 SmallVector
<Instruction
*, 4> Inputs
;
3382 if (Instruction
*I
= dyn_cast
<Instruction
>(LF
.OperandValToReplace
))
3383 Inputs
.push_back(I
);
3384 if (LU
.Kind
== LSRUse::ICmpZero
)
3385 if (Instruction
*I
=
3386 dyn_cast
<Instruction
>(cast
<ICmpInst
>(LF
.UserInst
)->getOperand(1)))
3387 Inputs
.push_back(I
);
3388 if (LF
.PostIncLoops
.count(L
)) {
3389 if (LF
.isUseFullyOutsideLoop(L
))
3390 Inputs
.push_back(L
->getLoopLatch()->getTerminator());
3392 Inputs
.push_back(IVIncInsertPos
);
3394 // The expansion must also be dominated by the increment positions of any
3395 // loops it for which it is using post-inc mode.
3396 for (PostIncLoopSet::const_iterator I
= LF
.PostIncLoops
.begin(),
3397 E
= LF
.PostIncLoops
.end(); I
!= E
; ++I
) {
3398 const Loop
*PIL
= *I
;
3399 if (PIL
== L
) continue;
3401 // Be dominated by the loop exit.
3402 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
3403 PIL
->getExitingBlocks(ExitingBlocks
);
3404 if (!ExitingBlocks
.empty()) {
3405 BasicBlock
*BB
= ExitingBlocks
[0];
3406 for (unsigned i
= 1, e
= ExitingBlocks
.size(); i
!= e
; ++i
)
3407 BB
= DT
.findNearestCommonDominator(BB
, ExitingBlocks
[i
]);
3408 Inputs
.push_back(BB
->getTerminator());
3412 // Then, climb up the immediate dominator tree as far as we can go while
3413 // still being dominated by the input positions.
3414 IP
= HoistInsertPosition(IP
, Inputs
);
3416 // Don't insert instructions before PHI nodes.
3417 while (isa
<PHINode
>(IP
)) ++IP
;
3419 // Ignore debug intrinsics.
3420 while (isa
<DbgInfoIntrinsic
>(IP
)) ++IP
;
3425 /// Expand - Emit instructions for the leading candidate expression for this
3426 /// LSRUse (this is called "expanding").
3427 Value
*LSRInstance::Expand(const LSRFixup
&LF
,
3429 BasicBlock::iterator IP
,
3430 SCEVExpander
&Rewriter
,
3431 SmallVectorImpl
<WeakVH
> &DeadInsts
) const {
3432 const LSRUse
&LU
= Uses
[LF
.LUIdx
];
3434 // Determine an input position which will be dominated by the operands and
3435 // which will dominate the result.
3436 IP
= AdjustInsertPositionForExpand(IP
, LF
, LU
);
3438 // Inform the Rewriter if we have a post-increment use, so that it can
3439 // perform an advantageous expansion.
3440 Rewriter
.setPostInc(LF
.PostIncLoops
);
3442 // This is the type that the user actually needs.
3443 const Type
*OpTy
= LF
.OperandValToReplace
->getType();
3444 // This will be the type that we'll initially expand to.
3445 const Type
*Ty
= F
.getType();
3447 // No type known; just expand directly to the ultimate type.
3449 else if (SE
.getEffectiveSCEVType(Ty
) == SE
.getEffectiveSCEVType(OpTy
))
3450 // Expand directly to the ultimate type if it's the right size.
3452 // This is the type to do integer arithmetic in.
3453 const Type
*IntTy
= SE
.getEffectiveSCEVType(Ty
);
3455 // Build up a list of operands to add together to form the full base.
3456 SmallVector
<const SCEV
*, 8> Ops
;
3458 // Expand the BaseRegs portion.
3459 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= F
.BaseRegs
.begin(),
3460 E
= F
.BaseRegs
.end(); I
!= E
; ++I
) {
3461 const SCEV
*Reg
= *I
;
3462 assert(!Reg
->isZero() && "Zero allocated in a base register!");
3464 // If we're expanding for a post-inc user, make the post-inc adjustment.
3465 PostIncLoopSet
&Loops
= const_cast<PostIncLoopSet
&>(LF
.PostIncLoops
);
3466 Reg
= TransformForPostIncUse(Denormalize
, Reg
,
3467 LF
.UserInst
, LF
.OperandValToReplace
,
3470 Ops
.push_back(SE
.getUnknown(Rewriter
.expandCodeFor(Reg
, 0, IP
)));
3473 // Flush the operand list to suppress SCEVExpander hoisting.
3475 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), Ty
, IP
);
3477 Ops
.push_back(SE
.getUnknown(FullV
));
3480 // Expand the ScaledReg portion.
3481 Value
*ICmpScaledV
= 0;
3482 if (F
.AM
.Scale
!= 0) {
3483 const SCEV
*ScaledS
= F
.ScaledReg
;
3485 // If we're expanding for a post-inc user, make the post-inc adjustment.
3486 PostIncLoopSet
&Loops
= const_cast<PostIncLoopSet
&>(LF
.PostIncLoops
);
3487 ScaledS
= TransformForPostIncUse(Denormalize
, ScaledS
,
3488 LF
.UserInst
, LF
.OperandValToReplace
,
3491 if (LU
.Kind
== LSRUse::ICmpZero
) {
3492 // An interesting way of "folding" with an icmp is to use a negated
3493 // scale, which we'll implement by inserting it into the other operand
3495 assert(F
.AM
.Scale
== -1 &&
3496 "The only scale supported by ICmpZero uses is -1!");
3497 ICmpScaledV
= Rewriter
.expandCodeFor(ScaledS
, 0, IP
);
3499 // Otherwise just expand the scaled register and an explicit scale,
3500 // which is expected to be matched as part of the address.
3501 ScaledS
= SE
.getUnknown(Rewriter
.expandCodeFor(ScaledS
, 0, IP
));
3502 ScaledS
= SE
.getMulExpr(ScaledS
,
3503 SE
.getConstant(ScaledS
->getType(), F
.AM
.Scale
));
3504 Ops
.push_back(ScaledS
);
3506 // Flush the operand list to suppress SCEVExpander hoisting.
3507 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), Ty
, IP
);
3509 Ops
.push_back(SE
.getUnknown(FullV
));
3513 // Expand the GV portion.
3515 Ops
.push_back(SE
.getUnknown(F
.AM
.BaseGV
));
3517 // Flush the operand list to suppress SCEVExpander hoisting.
3518 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), Ty
, IP
);
3520 Ops
.push_back(SE
.getUnknown(FullV
));
3523 // Expand the immediate portion.
3524 int64_t Offset
= (uint64_t)F
.AM
.BaseOffs
+ LF
.Offset
;
3526 if (LU
.Kind
== LSRUse::ICmpZero
) {
3527 // The other interesting way of "folding" with an ICmpZero is to use a
3528 // negated immediate.
3530 ICmpScaledV
= ConstantInt::get(IntTy
, -Offset
);
3532 Ops
.push_back(SE
.getUnknown(ICmpScaledV
));
3533 ICmpScaledV
= ConstantInt::get(IntTy
, Offset
);
3536 // Just add the immediate values. These again are expected to be matched
3537 // as part of the address.
3538 Ops
.push_back(SE
.getUnknown(ConstantInt::getSigned(IntTy
, Offset
)));
3542 // Expand the unfolded offset portion.
3543 int64_t UnfoldedOffset
= F
.UnfoldedOffset
;
3544 if (UnfoldedOffset
!= 0) {
3545 // Just add the immediate values.
3546 Ops
.push_back(SE
.getUnknown(ConstantInt::getSigned(IntTy
,
3550 // Emit instructions summing all the operands.
3551 const SCEV
*FullS
= Ops
.empty() ?
3552 SE
.getConstant(IntTy
, 0) :
3554 Value
*FullV
= Rewriter
.expandCodeFor(FullS
, Ty
, IP
);
3556 // We're done expanding now, so reset the rewriter.
3557 Rewriter
.clearPostInc();
3559 // An ICmpZero Formula represents an ICmp which we're handling as a
3560 // comparison against zero. Now that we've expanded an expression for that
3561 // form, update the ICmp's other operand.
3562 if (LU
.Kind
== LSRUse::ICmpZero
) {
3563 ICmpInst
*CI
= cast
<ICmpInst
>(LF
.UserInst
);
3564 DeadInsts
.push_back(CI
->getOperand(1));
3565 assert(!F
.AM
.BaseGV
&& "ICmp does not support folding a global value and "
3566 "a scale at the same time!");
3567 if (F
.AM
.Scale
== -1) {
3568 if (ICmpScaledV
->getType() != OpTy
) {
3570 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV
, false,
3572 ICmpScaledV
, OpTy
, "tmp", CI
);
3575 CI
->setOperand(1, ICmpScaledV
);
3577 assert(F
.AM
.Scale
== 0 &&
3578 "ICmp does not support folding a global value and "
3579 "a scale at the same time!");
3580 Constant
*C
= ConstantInt::getSigned(SE
.getEffectiveSCEVType(OpTy
),
3582 if (C
->getType() != OpTy
)
3583 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
3587 CI
->setOperand(1, C
);
3594 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3595 /// of their operands effectively happens in their predecessor blocks, so the
3596 /// expression may need to be expanded in multiple places.
3597 void LSRInstance::RewriteForPHI(PHINode
*PN
,
3600 SCEVExpander
&Rewriter
,
3601 SmallVectorImpl
<WeakVH
> &DeadInsts
,
3603 DenseMap
<BasicBlock
*, Value
*> Inserted
;
3604 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
3605 if (PN
->getIncomingValue(i
) == LF
.OperandValToReplace
) {
3606 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
3608 // If this is a critical edge, split the edge so that we do not insert
3609 // the code on all predecessor/successor paths. We do this unless this
3610 // is the canonical backedge for this loop, which complicates post-inc
3612 if (e
!= 1 && BB
->getTerminator()->getNumSuccessors() > 1 &&
3613 !isa
<IndirectBrInst
>(BB
->getTerminator())) {
3614 Loop
*PNLoop
= LI
.getLoopFor(PN
->getParent());
3615 if (!PNLoop
|| PN
->getParent() != PNLoop
->getHeader()) {
3616 // Split the critical edge.
3617 BasicBlock
*NewBB
= SplitCriticalEdge(BB
, PN
->getParent(), P
);
3619 // If PN is outside of the loop and BB is in the loop, we want to
3620 // move the block to be immediately before the PHI block, not
3621 // immediately after BB.
3622 if (L
->contains(BB
) && !L
->contains(PN
))
3623 NewBB
->moveBefore(PN
->getParent());
3625 // Splitting the edge can reduce the number of PHI entries we have.
3626 e
= PN
->getNumIncomingValues();
3628 i
= PN
->getBasicBlockIndex(BB
);
3632 std::pair
<DenseMap
<BasicBlock
*, Value
*>::iterator
, bool> Pair
=
3633 Inserted
.insert(std::make_pair(BB
, static_cast<Value
*>(0)));
3635 PN
->setIncomingValue(i
, Pair
.first
->second
);
3637 Value
*FullV
= Expand(LF
, F
, BB
->getTerminator(), Rewriter
, DeadInsts
);
3639 // If this is reuse-by-noop-cast, insert the noop cast.
3640 const Type
*OpTy
= LF
.OperandValToReplace
->getType();
3641 if (FullV
->getType() != OpTy
)
3643 CastInst::Create(CastInst::getCastOpcode(FullV
, false,
3645 FullV
, LF
.OperandValToReplace
->getType(),
3646 "tmp", BB
->getTerminator());
3648 PN
->setIncomingValue(i
, FullV
);
3649 Pair
.first
->second
= FullV
;
3654 /// Rewrite - Emit instructions for the leading candidate expression for this
3655 /// LSRUse (this is called "expanding"), and update the UserInst to reference
3656 /// the newly expanded value.
3657 void LSRInstance::Rewrite(const LSRFixup
&LF
,
3659 SCEVExpander
&Rewriter
,
3660 SmallVectorImpl
<WeakVH
> &DeadInsts
,
3662 // First, find an insertion point that dominates UserInst. For PHI nodes,
3663 // find the nearest block which dominates all the relevant uses.
3664 if (PHINode
*PN
= dyn_cast
<PHINode
>(LF
.UserInst
)) {
3665 RewriteForPHI(PN
, LF
, F
, Rewriter
, DeadInsts
, P
);
3667 Value
*FullV
= Expand(LF
, F
, LF
.UserInst
, Rewriter
, DeadInsts
);
3669 // If this is reuse-by-noop-cast, insert the noop cast.
3670 const Type
*OpTy
= LF
.OperandValToReplace
->getType();
3671 if (FullV
->getType() != OpTy
) {
3673 CastInst::Create(CastInst::getCastOpcode(FullV
, false, OpTy
, false),
3674 FullV
, OpTy
, "tmp", LF
.UserInst
);
3678 // Update the user. ICmpZero is handled specially here (for now) because
3679 // Expand may have updated one of the operands of the icmp already, and
3680 // its new value may happen to be equal to LF.OperandValToReplace, in
3681 // which case doing replaceUsesOfWith leads to replacing both operands
3682 // with the same value. TODO: Reorganize this.
3683 if (Uses
[LF
.LUIdx
].Kind
== LSRUse::ICmpZero
)
3684 LF
.UserInst
->setOperand(0, FullV
);
3686 LF
.UserInst
->replaceUsesOfWith(LF
.OperandValToReplace
, FullV
);
3689 DeadInsts
.push_back(LF
.OperandValToReplace
);
3692 /// ImplementSolution - Rewrite all the fixup locations with new values,
3693 /// following the chosen solution.
3695 LSRInstance::ImplementSolution(const SmallVectorImpl
<const Formula
*> &Solution
,
3697 // Keep track of instructions we may have made dead, so that
3698 // we can remove them after we are done working.
3699 SmallVector
<WeakVH
, 16> DeadInsts
;
3701 SCEVExpander
Rewriter(SE
, "lsr");
3702 Rewriter
.disableCanonicalMode();
3703 Rewriter
.setIVIncInsertPos(L
, IVIncInsertPos
);
3705 // Expand the new value definitions and update the users.
3706 for (SmallVectorImpl
<LSRFixup
>::const_iterator I
= Fixups
.begin(),
3707 E
= Fixups
.end(); I
!= E
; ++I
) {
3708 const LSRFixup
&Fixup
= *I
;
3710 Rewrite(Fixup
, *Solution
[Fixup
.LUIdx
], Rewriter
, DeadInsts
, P
);
3715 // Clean up after ourselves. This must be done before deleting any
3719 Changed
|= DeleteTriviallyDeadInstructions(DeadInsts
);
3722 LSRInstance::LSRInstance(const TargetLowering
*tli
, Loop
*l
, Pass
*P
)
3723 : IU(P
->getAnalysis
<IVUsers
>()),
3724 SE(P
->getAnalysis
<ScalarEvolution
>()),
3725 DT(P
->getAnalysis
<DominatorTree
>()),
3726 LI(P
->getAnalysis
<LoopInfo
>()),
3727 TLI(tli
), L(l
), Changed(false), IVIncInsertPos(0) {
3729 // If LoopSimplify form is not available, stay out of trouble.
3730 if (!L
->isLoopSimplifyForm()) return;
3732 // If there's no interesting work to be done, bail early.
3733 if (IU
.empty()) return;
3735 DEBUG(dbgs() << "\nLSR on loop ";
3736 WriteAsOperand(dbgs(), L
->getHeader(), /*PrintType=*/false);
3739 // First, perform some low-level loop optimizations.
3741 OptimizeLoopTermCond();
3743 // Start collecting data and preparing for the solver.
3744 CollectInterestingTypesAndFactors();
3745 CollectFixupsAndInitialFormulae();
3746 CollectLoopInvariantFixupsAndFormulae();
3748 DEBUG(dbgs() << "LSR found " << Uses
.size() << " uses:\n";
3749 print_uses(dbgs()));
3751 // Now use the reuse data to generate a bunch of interesting ways
3752 // to formulate the values needed for the uses.
3753 GenerateAllReuseFormulae();
3755 FilterOutUndesirableDedicatedRegisters();
3756 NarrowSearchSpaceUsingHeuristics();
3758 SmallVector
<const Formula
*, 8> Solution
;
3761 // Release memory that is no longer needed.
3767 // Formulae should be legal.
3768 for (SmallVectorImpl
<LSRUse
>::const_iterator I
= Uses
.begin(),
3769 E
= Uses
.end(); I
!= E
; ++I
) {
3770 const LSRUse
&LU
= *I
;
3771 for (SmallVectorImpl
<Formula
>::const_iterator J
= LU
.Formulae
.begin(),
3772 JE
= LU
.Formulae
.end(); J
!= JE
; ++J
)
3773 assert(isLegalUse(J
->AM
, LU
.MinOffset
, LU
.MaxOffset
,
3774 LU
.Kind
, LU
.AccessTy
, TLI
) &&
3775 "Illegal formula generated!");
3779 // Now that we've decided what we want, make it so.
3780 ImplementSolution(Solution
, P
);
3783 void LSRInstance::print_factors_and_types(raw_ostream
&OS
) const {
3784 if (Factors
.empty() && Types
.empty()) return;
3786 OS
<< "LSR has identified the following interesting factors and types: ";
3789 for (SmallSetVector
<int64_t, 8>::const_iterator
3790 I
= Factors
.begin(), E
= Factors
.end(); I
!= E
; ++I
) {
3791 if (!First
) OS
<< ", ";
3796 for (SmallSetVector
<const Type
*, 4>::const_iterator
3797 I
= Types
.begin(), E
= Types
.end(); I
!= E
; ++I
) {
3798 if (!First
) OS
<< ", ";
3800 OS
<< '(' << **I
<< ')';
3805 void LSRInstance::print_fixups(raw_ostream
&OS
) const {
3806 OS
<< "LSR is examining the following fixup sites:\n";
3807 for (SmallVectorImpl
<LSRFixup
>::const_iterator I
= Fixups
.begin(),
3808 E
= Fixups
.end(); I
!= E
; ++I
) {
3815 void LSRInstance::print_uses(raw_ostream
&OS
) const {
3816 OS
<< "LSR is examining the following uses:\n";
3817 for (SmallVectorImpl
<LSRUse
>::const_iterator I
= Uses
.begin(),
3818 E
= Uses
.end(); I
!= E
; ++I
) {
3819 const LSRUse
&LU
= *I
;
3823 for (SmallVectorImpl
<Formula
>::const_iterator J
= LU
.Formulae
.begin(),
3824 JE
= LU
.Formulae
.end(); J
!= JE
; ++J
) {
3832 void LSRInstance::print(raw_ostream
&OS
) const {
3833 print_factors_and_types(OS
);
3838 void LSRInstance::dump() const {
3839 print(errs()); errs() << '\n';
3844 class LoopStrengthReduce
: public LoopPass
{
3845 /// TLI - Keep a pointer of a TargetLowering to consult for determining
3846 /// transformation profitability.
3847 const TargetLowering
*const TLI
;
3850 static char ID
; // Pass ID, replacement for typeid
3851 explicit LoopStrengthReduce(const TargetLowering
*tli
= 0);
3854 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
3855 void getAnalysisUsage(AnalysisUsage
&AU
) const;
3860 char LoopStrengthReduce::ID
= 0;
3861 INITIALIZE_PASS_BEGIN(LoopStrengthReduce
, "loop-reduce",
3862 "Loop Strength Reduction", false, false)
3863 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
3864 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution
)
3865 INITIALIZE_PASS_DEPENDENCY(IVUsers
)
3866 INITIALIZE_PASS_DEPENDENCY(LoopInfo
)
3867 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
3868 INITIALIZE_PASS_END(LoopStrengthReduce
, "loop-reduce",
3869 "Loop Strength Reduction", false, false)
3872 Pass
*llvm::createLoopStrengthReducePass(const TargetLowering
*TLI
) {
3873 return new LoopStrengthReduce(TLI
);
3876 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering
*tli
)
3877 : LoopPass(ID
), TLI(tli
) {
3878 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
3881 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage
&AU
) const {
3882 // We split critical edges, so we change the CFG. However, we do update
3883 // many analyses if they are around.
3884 AU
.addPreservedID(LoopSimplifyID
);
3886 AU
.addRequired
<LoopInfo
>();
3887 AU
.addPreserved
<LoopInfo
>();
3888 AU
.addRequiredID(LoopSimplifyID
);
3889 AU
.addRequired
<DominatorTree
>();
3890 AU
.addPreserved
<DominatorTree
>();
3891 AU
.addRequired
<ScalarEvolution
>();
3892 AU
.addPreserved
<ScalarEvolution
>();
3893 // Requiring LoopSimplify a second time here prevents IVUsers from running
3894 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
3895 AU
.addRequiredID(LoopSimplifyID
);
3896 AU
.addRequired
<IVUsers
>();
3897 AU
.addPreserved
<IVUsers
>();
3900 bool LoopStrengthReduce::runOnLoop(Loop
*L
, LPPassManager
& /*LPM*/) {
3901 bool Changed
= false;
3903 // Run the main LSR transformation.
3904 Changed
|= LSRInstance(TLI
, L
, this).getChanged();
3906 // At this point, it is worth checking to see if any recurrence PHIs are also
3907 // dead, so that we can remove them as well.
3908 Changed
|= DeleteDeadPHIs(L
->getHeader());