Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / Transforms / Scalar / MemCpyOptimizer.cpp
blobbd4c2d6d8e041d39400bf16b3f5f8480ff636a57
1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "memcpyopt"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/GlobalVariable.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/GetElementPtrTypeIterator.h"
29 #include "llvm/Support/IRBuilder.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/Target/TargetLibraryInfo.h"
33 #include <list>
34 using namespace llvm;
36 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
37 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
38 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
39 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
41 static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
42 bool &VariableIdxFound, const TargetData &TD){
43 // Skip over the first indices.
44 gep_type_iterator GTI = gep_type_begin(GEP);
45 for (unsigned i = 1; i != Idx; ++i, ++GTI)
46 /*skip along*/;
48 // Compute the offset implied by the rest of the indices.
49 int64_t Offset = 0;
50 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
51 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
52 if (OpC == 0)
53 return VariableIdxFound = true;
54 if (OpC->isZero()) continue; // No offset.
56 // Handle struct indices, which add their field offset to the pointer.
57 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
58 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
59 continue;
62 // Otherwise, we have a sequential type like an array or vector. Multiply
63 // the index by the ElementSize.
64 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
65 Offset += Size*OpC->getSExtValue();
68 return Offset;
71 /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
72 /// constant offset, and return that constant offset. For example, Ptr1 might
73 /// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
74 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
75 const TargetData &TD) {
76 Ptr1 = Ptr1->stripPointerCasts();
77 Ptr2 = Ptr2->stripPointerCasts();
78 GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
79 GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
81 bool VariableIdxFound = false;
83 // If one pointer is a GEP and the other isn't, then see if the GEP is a
84 // constant offset from the base, as in "P" and "gep P, 1".
85 if (GEP1 && GEP2 == 0 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
86 Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD);
87 return !VariableIdxFound;
90 if (GEP2 && GEP1 == 0 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
91 Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD);
92 return !VariableIdxFound;
95 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
96 // base. After that base, they may have some number of common (and
97 // potentially variable) indices. After that they handle some constant
98 // offset, which determines their offset from each other. At this point, we
99 // handle no other case.
100 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
101 return false;
103 // Skip any common indices and track the GEP types.
104 unsigned Idx = 1;
105 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
106 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
107 break;
109 int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
110 int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
111 if (VariableIdxFound) return false;
113 Offset = Offset2-Offset1;
114 return true;
118 /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
119 /// This allows us to analyze stores like:
120 /// store 0 -> P+1
121 /// store 0 -> P+0
122 /// store 0 -> P+3
123 /// store 0 -> P+2
124 /// which sometimes happens with stores to arrays of structs etc. When we see
125 /// the first store, we make a range [1, 2). The second store extends the range
126 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
127 /// two ranges into [0, 3) which is memset'able.
128 namespace {
129 struct MemsetRange {
130 // Start/End - A semi range that describes the span that this range covers.
131 // The range is closed at the start and open at the end: [Start, End).
132 int64_t Start, End;
134 /// StartPtr - The getelementptr instruction that points to the start of the
135 /// range.
136 Value *StartPtr;
138 /// Alignment - The known alignment of the first store.
139 unsigned Alignment;
141 /// TheStores - The actual stores that make up this range.
142 SmallVector<Instruction*, 16> TheStores;
144 bool isProfitableToUseMemset(const TargetData &TD) const;
147 } // end anon namespace
149 bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
150 // If we found more than 8 stores to merge or 64 bytes, use memset.
151 if (TheStores.size() >= 8 || End-Start >= 64) return true;
153 // If there is nothing to merge, don't do anything.
154 if (TheStores.size() < 2) return false;
156 // If any of the stores are a memset, then it is always good to extend the
157 // memset.
158 for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
159 if (!isa<StoreInst>(TheStores[i]))
160 return true;
162 // Assume that the code generator is capable of merging pairs of stores
163 // together if it wants to.
164 if (TheStores.size() == 2) return false;
166 // If we have fewer than 8 stores, it can still be worthwhile to do this.
167 // For example, merging 4 i8 stores into an i32 store is useful almost always.
168 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
169 // memset will be split into 2 32-bit stores anyway) and doing so can
170 // pessimize the llvm optimizer.
172 // Since we don't have perfect knowledge here, make some assumptions: assume
173 // the maximum GPR width is the same size as the pointer size and assume that
174 // this width can be stored. If so, check to see whether we will end up
175 // actually reducing the number of stores used.
176 unsigned Bytes = unsigned(End-Start);
177 unsigned NumPointerStores = Bytes/TD.getPointerSize();
179 // Assume the remaining bytes if any are done a byte at a time.
180 unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
182 // If we will reduce the # stores (according to this heuristic), do the
183 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
184 // etc.
185 return TheStores.size() > NumPointerStores+NumByteStores;
189 namespace {
190 class MemsetRanges {
191 /// Ranges - A sorted list of the memset ranges. We use std::list here
192 /// because each element is relatively large and expensive to copy.
193 std::list<MemsetRange> Ranges;
194 typedef std::list<MemsetRange>::iterator range_iterator;
195 const TargetData &TD;
196 public:
197 MemsetRanges(const TargetData &td) : TD(td) {}
199 typedef std::list<MemsetRange>::const_iterator const_iterator;
200 const_iterator begin() const { return Ranges.begin(); }
201 const_iterator end() const { return Ranges.end(); }
202 bool empty() const { return Ranges.empty(); }
204 void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
205 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
206 addStore(OffsetFromFirst, SI);
207 else
208 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
211 void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
212 int64_t StoreSize = TD.getTypeStoreSize(SI->getOperand(0)->getType());
214 addRange(OffsetFromFirst, StoreSize,
215 SI->getPointerOperand(), SI->getAlignment(), SI);
218 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
219 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
220 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
223 void addRange(int64_t Start, int64_t Size, Value *Ptr,
224 unsigned Alignment, Instruction *Inst);
228 } // end anon namespace
231 /// addRange - Add a new store to the MemsetRanges data structure. This adds a
232 /// new range for the specified store at the specified offset, merging into
233 /// existing ranges as appropriate.
235 /// Do a linear search of the ranges to see if this can be joined and/or to
236 /// find the insertion point in the list. We keep the ranges sorted for
237 /// simplicity here. This is a linear search of a linked list, which is ugly,
238 /// however the number of ranges is limited, so this won't get crazy slow.
239 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
240 unsigned Alignment, Instruction *Inst) {
241 int64_t End = Start+Size;
242 range_iterator I = Ranges.begin(), E = Ranges.end();
244 while (I != E && Start > I->End)
245 ++I;
247 // We now know that I == E, in which case we didn't find anything to merge
248 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
249 // to insert a new range. Handle this now.
250 if (I == E || End < I->Start) {
251 MemsetRange &R = *Ranges.insert(I, MemsetRange());
252 R.Start = Start;
253 R.End = End;
254 R.StartPtr = Ptr;
255 R.Alignment = Alignment;
256 R.TheStores.push_back(Inst);
257 return;
260 // This store overlaps with I, add it.
261 I->TheStores.push_back(Inst);
263 // At this point, we may have an interval that completely contains our store.
264 // If so, just add it to the interval and return.
265 if (I->Start <= Start && I->End >= End)
266 return;
268 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
269 // but is not entirely contained within the range.
271 // See if the range extends the start of the range. In this case, it couldn't
272 // possibly cause it to join the prior range, because otherwise we would have
273 // stopped on *it*.
274 if (Start < I->Start) {
275 I->Start = Start;
276 I->StartPtr = Ptr;
277 I->Alignment = Alignment;
280 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
281 // is in or right at the end of I), and that End >= I->Start. Extend I out to
282 // End.
283 if (End > I->End) {
284 I->End = End;
285 range_iterator NextI = I;
286 while (++NextI != E && End >= NextI->Start) {
287 // Merge the range in.
288 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
289 if (NextI->End > I->End)
290 I->End = NextI->End;
291 Ranges.erase(NextI);
292 NextI = I;
297 //===----------------------------------------------------------------------===//
298 // MemCpyOpt Pass
299 //===----------------------------------------------------------------------===//
301 namespace {
302 class MemCpyOpt : public FunctionPass {
303 MemoryDependenceAnalysis *MD;
304 TargetLibraryInfo *TLI;
305 const TargetData *TD;
306 public:
307 static char ID; // Pass identification, replacement for typeid
308 MemCpyOpt() : FunctionPass(ID) {
309 initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
310 MD = 0;
311 TLI = 0;
312 TD = 0;
315 bool runOnFunction(Function &F);
317 private:
318 // This transformation requires dominator postdominator info
319 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
320 AU.setPreservesCFG();
321 AU.addRequired<DominatorTree>();
322 AU.addRequired<MemoryDependenceAnalysis>();
323 AU.addRequired<AliasAnalysis>();
324 AU.addRequired<TargetLibraryInfo>();
325 AU.addPreserved<AliasAnalysis>();
326 AU.addPreserved<MemoryDependenceAnalysis>();
329 // Helper fuctions
330 bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
331 bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
332 bool processMemCpy(MemCpyInst *M);
333 bool processMemMove(MemMoveInst *M);
334 bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
335 uint64_t cpyLen, CallInst *C);
336 bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
337 uint64_t MSize);
338 bool processByValArgument(CallSite CS, unsigned ArgNo);
339 Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
340 Value *ByteVal);
342 bool iterateOnFunction(Function &F);
345 char MemCpyOpt::ID = 0;
348 // createMemCpyOptPass - The public interface to this file...
349 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
351 INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
352 false, false)
353 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
354 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
355 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
356 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
357 INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
358 false, false)
360 /// tryMergingIntoMemset - When scanning forward over instructions, we look for
361 /// some other patterns to fold away. In particular, this looks for stores to
362 /// neighboring locations of memory. If it sees enough consecutive ones, it
363 /// attempts to merge them together into a memcpy/memset.
364 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
365 Value *StartPtr, Value *ByteVal) {
366 if (TD == 0) return 0;
368 // Okay, so we now have a single store that can be splatable. Scan to find
369 // all subsequent stores of the same value to offset from the same pointer.
370 // Join these together into ranges, so we can decide whether contiguous blocks
371 // are stored.
372 MemsetRanges Ranges(*TD);
374 BasicBlock::iterator BI = StartInst;
375 for (++BI; !isa<TerminatorInst>(BI); ++BI) {
376 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
377 // If the instruction is readnone, ignore it, otherwise bail out. We
378 // don't even allow readonly here because we don't want something like:
379 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
380 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
381 break;
382 continue;
385 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
386 // If this is a store, see if we can merge it in.
387 if (NextStore->isVolatile()) break;
389 // Check to see if this stored value is of the same byte-splattable value.
390 if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
391 break;
393 // Check to see if this store is to a constant offset from the start ptr.
394 int64_t Offset;
395 if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
396 Offset, *TD))
397 break;
399 Ranges.addStore(Offset, NextStore);
400 } else {
401 MemSetInst *MSI = cast<MemSetInst>(BI);
403 if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
404 !isa<ConstantInt>(MSI->getLength()))
405 break;
407 // Check to see if this store is to a constant offset from the start ptr.
408 int64_t Offset;
409 if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *TD))
410 break;
412 Ranges.addMemSet(Offset, MSI);
416 // If we have no ranges, then we just had a single store with nothing that
417 // could be merged in. This is a very common case of course.
418 if (Ranges.empty())
419 return 0;
421 // If we had at least one store that could be merged in, add the starting
422 // store as well. We try to avoid this unless there is at least something
423 // interesting as a small compile-time optimization.
424 Ranges.addInst(0, StartInst);
426 // If we create any memsets, we put it right before the first instruction that
427 // isn't part of the memset block. This ensure that the memset is dominated
428 // by any addressing instruction needed by the start of the block.
429 IRBuilder<> Builder(BI);
431 // Now that we have full information about ranges, loop over the ranges and
432 // emit memset's for anything big enough to be worthwhile.
433 Instruction *AMemSet = 0;
434 for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
435 I != E; ++I) {
436 const MemsetRange &Range = *I;
438 if (Range.TheStores.size() == 1) continue;
440 // If it is profitable to lower this range to memset, do so now.
441 if (!Range.isProfitableToUseMemset(*TD))
442 continue;
444 // Otherwise, we do want to transform this! Create a new memset.
445 // Get the starting pointer of the block.
446 StartPtr = Range.StartPtr;
448 // Determine alignment
449 unsigned Alignment = Range.Alignment;
450 if (Alignment == 0) {
451 const Type *EltType =
452 cast<PointerType>(StartPtr->getType())->getElementType();
453 Alignment = TD->getABITypeAlignment(EltType);
456 AMemSet =
457 Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
459 DEBUG(dbgs() << "Replace stores:\n";
460 for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
461 dbgs() << *Range.TheStores[i] << '\n';
462 dbgs() << "With: " << *AMemSet << '\n');
464 if (!Range.TheStores.empty())
465 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
467 // Zap all the stores.
468 for (SmallVector<Instruction*, 16>::const_iterator
469 SI = Range.TheStores.begin(),
470 SE = Range.TheStores.end(); SI != SE; ++SI) {
471 MD->removeInstruction(*SI);
472 (*SI)->eraseFromParent();
474 ++NumMemSetInfer;
477 return AMemSet;
481 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
482 if (SI->isVolatile()) return false;
484 if (TD == 0) return false;
486 // Detect cases where we're performing call slot forwarding, but
487 // happen to be using a load-store pair to implement it, rather than
488 // a memcpy.
489 if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
490 if (!LI->isVolatile() && LI->hasOneUse() &&
491 LI->getParent() == SI->getParent()) {
492 MemDepResult ldep = MD->getDependency(LI);
493 CallInst *C = 0;
494 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
495 C = dyn_cast<CallInst>(ldep.getInst());
497 if (C) {
498 // Check that nothing touches the dest of the "copy" between
499 // the call and the store.
500 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
501 AliasAnalysis::Location StoreLoc = AA.getLocation(SI);
502 for (BasicBlock::iterator I = --BasicBlock::iterator(SI),
503 E = C; I != E; --I) {
504 if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) {
505 C = 0;
506 break;
511 if (C) {
512 bool changed = performCallSlotOptzn(LI,
513 SI->getPointerOperand()->stripPointerCasts(),
514 LI->getPointerOperand()->stripPointerCasts(),
515 TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
516 if (changed) {
517 MD->removeInstruction(SI);
518 SI->eraseFromParent();
519 MD->removeInstruction(LI);
520 LI->eraseFromParent();
521 ++NumMemCpyInstr;
522 return true;
528 // There are two cases that are interesting for this code to handle: memcpy
529 // and memset. Right now we only handle memset.
531 // Ensure that the value being stored is something that can be memset'able a
532 // byte at a time like "0" or "-1" or any width, as well as things like
533 // 0xA0A0A0A0 and 0.0.
534 if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
535 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
536 ByteVal)) {
537 BBI = I; // Don't invalidate iterator.
538 return true;
541 return false;
544 bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
545 // See if there is another memset or store neighboring this memset which
546 // allows us to widen out the memset to do a single larger store.
547 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
548 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
549 MSI->getValue())) {
550 BBI = I; // Don't invalidate iterator.
551 return true;
553 return false;
557 /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
558 /// and checks for the possibility of a call slot optimization by having
559 /// the call write its result directly into the destination of the memcpy.
560 bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
561 Value *cpyDest, Value *cpySrc,
562 uint64_t cpyLen, CallInst *C) {
563 // The general transformation to keep in mind is
565 // call @func(..., src, ...)
566 // memcpy(dest, src, ...)
568 // ->
570 // memcpy(dest, src, ...)
571 // call @func(..., dest, ...)
573 // Since moving the memcpy is technically awkward, we additionally check that
574 // src only holds uninitialized values at the moment of the call, meaning that
575 // the memcpy can be discarded rather than moved.
577 // Deliberately get the source and destination with bitcasts stripped away,
578 // because we'll need to do type comparisons based on the underlying type.
579 CallSite CS(C);
581 // Require that src be an alloca. This simplifies the reasoning considerably.
582 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
583 if (!srcAlloca)
584 return false;
586 // Check that all of src is copied to dest.
587 if (TD == 0) return false;
589 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
590 if (!srcArraySize)
591 return false;
593 uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
594 srcArraySize->getZExtValue();
596 if (cpyLen < srcSize)
597 return false;
599 // Check that accessing the first srcSize bytes of dest will not cause a
600 // trap. Otherwise the transform is invalid since it might cause a trap
601 // to occur earlier than it otherwise would.
602 if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
603 // The destination is an alloca. Check it is larger than srcSize.
604 ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
605 if (!destArraySize)
606 return false;
608 uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
609 destArraySize->getZExtValue();
611 if (destSize < srcSize)
612 return false;
613 } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
614 // If the destination is an sret parameter then only accesses that are
615 // outside of the returned struct type can trap.
616 if (!A->hasStructRetAttr())
617 return false;
619 const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
620 uint64_t destSize = TD->getTypeAllocSize(StructTy);
622 if (destSize < srcSize)
623 return false;
624 } else {
625 return false;
628 // Check that src is not accessed except via the call and the memcpy. This
629 // guarantees that it holds only undefined values when passed in (so the final
630 // memcpy can be dropped), that it is not read or written between the call and
631 // the memcpy, and that writing beyond the end of it is undefined.
632 SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
633 srcAlloca->use_end());
634 while (!srcUseList.empty()) {
635 User *UI = srcUseList.pop_back_val();
637 if (isa<BitCastInst>(UI)) {
638 for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
639 I != E; ++I)
640 srcUseList.push_back(*I);
641 } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
642 if (G->hasAllZeroIndices())
643 for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
644 I != E; ++I)
645 srcUseList.push_back(*I);
646 else
647 return false;
648 } else if (UI != C && UI != cpy) {
649 return false;
653 // Since we're changing the parameter to the callsite, we need to make sure
654 // that what would be the new parameter dominates the callsite.
655 DominatorTree &DT = getAnalysis<DominatorTree>();
656 if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
657 if (!DT.dominates(cpyDestInst, C))
658 return false;
660 // In addition to knowing that the call does not access src in some
661 // unexpected manner, for example via a global, which we deduce from
662 // the use analysis, we also need to know that it does not sneakily
663 // access dest. We rely on AA to figure this out for us.
664 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
665 if (AA.getModRefInfo(C, cpyDest, srcSize) != AliasAnalysis::NoModRef)
666 return false;
668 // All the checks have passed, so do the transformation.
669 bool changedArgument = false;
670 for (unsigned i = 0; i < CS.arg_size(); ++i)
671 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
672 if (cpySrc->getType() != cpyDest->getType())
673 cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
674 cpyDest->getName(), C);
675 changedArgument = true;
676 if (CS.getArgument(i)->getType() == cpyDest->getType())
677 CS.setArgument(i, cpyDest);
678 else
679 CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
680 CS.getArgument(i)->getType(), cpyDest->getName(), C));
683 if (!changedArgument)
684 return false;
686 // Drop any cached information about the call, because we may have changed
687 // its dependence information by changing its parameter.
688 MD->removeInstruction(C);
690 // Remove the memcpy.
691 MD->removeInstruction(cpy);
692 ++NumMemCpyInstr;
694 return true;
697 /// processMemCpyMemCpyDependence - We've found that the (upward scanning)
698 /// memory dependence of memcpy 'M' is the memcpy 'MDep'. Try to simplify M to
699 /// copy from MDep's input if we can. MSize is the size of M's copy.
700 ///
701 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
702 uint64_t MSize) {
703 // We can only transforms memcpy's where the dest of one is the source of the
704 // other.
705 if (M->getSource() != MDep->getDest() || MDep->isVolatile())
706 return false;
708 // If dep instruction is reading from our current input, then it is a noop
709 // transfer and substituting the input won't change this instruction. Just
710 // ignore the input and let someone else zap MDep. This handles cases like:
711 // memcpy(a <- a)
712 // memcpy(b <- a)
713 if (M->getSource() == MDep->getSource())
714 return false;
716 // Second, the length of the memcpy's must be the same, or the preceding one
717 // must be larger than the following one.
718 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
719 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
720 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
721 return false;
723 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
725 // Verify that the copied-from memory doesn't change in between the two
726 // transfers. For example, in:
727 // memcpy(a <- b)
728 // *b = 42;
729 // memcpy(c <- a)
730 // It would be invalid to transform the second memcpy into memcpy(c <- b).
732 // TODO: If the code between M and MDep is transparent to the destination "c",
733 // then we could still perform the xform by moving M up to the first memcpy.
735 // NOTE: This is conservative, it will stop on any read from the source loc,
736 // not just the defining memcpy.
737 MemDepResult SourceDep =
738 MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
739 false, M, M->getParent());
740 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
741 return false;
743 // If the dest of the second might alias the source of the first, then the
744 // source and dest might overlap. We still want to eliminate the intermediate
745 // value, but we have to generate a memmove instead of memcpy.
746 bool UseMemMove = false;
747 if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
748 UseMemMove = true;
750 // If all checks passed, then we can transform M.
752 // Make sure to use the lesser of the alignment of the source and the dest
753 // since we're changing where we're reading from, but don't want to increase
754 // the alignment past what can be read from or written to.
755 // TODO: Is this worth it if we're creating a less aligned memcpy? For
756 // example we could be moving from movaps -> movq on x86.
757 unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
759 IRBuilder<> Builder(M);
760 if (UseMemMove)
761 Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
762 Align, M->isVolatile());
763 else
764 Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
765 Align, M->isVolatile());
767 // Remove the instruction we're replacing.
768 MD->removeInstruction(M);
769 M->eraseFromParent();
770 ++NumMemCpyInstr;
771 return true;
775 /// processMemCpy - perform simplification of memcpy's. If we have memcpy A
776 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
777 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
778 /// circumstances). This allows later passes to remove the first memcpy
779 /// altogether.
780 bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
781 // We can only optimize statically-sized memcpy's that are non-volatile.
782 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
783 if (CopySize == 0 || M->isVolatile()) return false;
785 // If the source and destination of the memcpy are the same, then zap it.
786 if (M->getSource() == M->getDest()) {
787 MD->removeInstruction(M);
788 M->eraseFromParent();
789 return false;
792 // If copying from a constant, try to turn the memcpy into a memset.
793 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
794 if (GV->isConstant() && GV->hasDefinitiveInitializer())
795 if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
796 IRBuilder<> Builder(M);
797 Builder.CreateMemSet(M->getRawDest(), ByteVal, CopySize,
798 M->getAlignment(), false);
799 MD->removeInstruction(M);
800 M->eraseFromParent();
801 ++NumCpyToSet;
802 return true;
805 // The are two possible optimizations we can do for memcpy:
806 // a) memcpy-memcpy xform which exposes redundance for DSE.
807 // b) call-memcpy xform for return slot optimization.
808 MemDepResult DepInfo = MD->getDependency(M);
809 if (!DepInfo.isClobber())
810 return false;
812 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()))
813 return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
815 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
816 if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
817 CopySize->getZExtValue(), C)) {
818 MD->removeInstruction(M);
819 M->eraseFromParent();
820 return true;
824 return false;
827 /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
828 /// are guaranteed not to alias.
829 bool MemCpyOpt::processMemMove(MemMoveInst *M) {
830 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
832 if (!TLI->has(LibFunc::memmove))
833 return false;
835 // See if the pointers alias.
836 if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
837 return false;
839 DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
841 // If not, then we know we can transform this.
842 Module *Mod = M->getParent()->getParent()->getParent();
843 const Type *ArgTys[3] = { M->getRawDest()->getType(),
844 M->getRawSource()->getType(),
845 M->getLength()->getType() };
846 M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
847 ArgTys, 3));
849 // MemDep may have over conservative information about this instruction, just
850 // conservatively flush it from the cache.
851 MD->removeInstruction(M);
853 ++NumMoveToCpy;
854 return true;
857 /// processByValArgument - This is called on every byval argument in call sites.
858 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
859 if (TD == 0) return false;
861 // Find out what feeds this byval argument.
862 Value *ByValArg = CS.getArgument(ArgNo);
863 const Type *ByValTy =cast<PointerType>(ByValArg->getType())->getElementType();
864 uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
865 MemDepResult DepInfo =
866 MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
867 true, CS.getInstruction(),
868 CS.getInstruction()->getParent());
869 if (!DepInfo.isClobber())
870 return false;
872 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
873 // a memcpy, see if we can byval from the source of the memcpy instead of the
874 // result.
875 MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
876 if (MDep == 0 || MDep->isVolatile() ||
877 ByValArg->stripPointerCasts() != MDep->getDest())
878 return false;
880 // The length of the memcpy must be larger or equal to the size of the byval.
881 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
882 if (C1 == 0 || C1->getValue().getZExtValue() < ByValSize)
883 return false;
885 // Get the alignment of the byval. If the call doesn't specify the alignment,
886 // then it is some target specific value that we can't know.
887 unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
888 if (ByValAlign == 0) return false;
890 // If it is greater than the memcpy, then we check to see if we can force the
891 // source of the memcpy to the alignment we need. If we fail, we bail out.
892 if (MDep->getAlignment() < ByValAlign &&
893 getOrEnforceKnownAlignment(MDep->getSource(),ByValAlign, TD) < ByValAlign)
894 return false;
896 // Verify that the copied-from memory doesn't change in between the memcpy and
897 // the byval call.
898 // memcpy(a <- b)
899 // *b = 42;
900 // foo(*a)
901 // It would be invalid to transform the second memcpy into foo(*b).
903 // NOTE: This is conservative, it will stop on any read from the source loc,
904 // not just the defining memcpy.
905 MemDepResult SourceDep =
906 MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
907 false, CS.getInstruction(), MDep->getParent());
908 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
909 return false;
911 Value *TmpCast = MDep->getSource();
912 if (MDep->getSource()->getType() != ByValArg->getType())
913 TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
914 "tmpcast", CS.getInstruction());
916 DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
917 << " " << *MDep << "\n"
918 << " " << *CS.getInstruction() << "\n");
920 // Otherwise we're good! Update the byval argument.
921 CS.setArgument(ArgNo, TmpCast);
922 ++NumMemCpyInstr;
923 return true;
926 /// iterateOnFunction - Executes one iteration of MemCpyOpt.
927 bool MemCpyOpt::iterateOnFunction(Function &F) {
928 bool MadeChange = false;
930 // Walk all instruction in the function.
931 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
932 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
933 // Avoid invalidating the iterator.
934 Instruction *I = BI++;
936 bool RepeatInstruction = false;
938 if (StoreInst *SI = dyn_cast<StoreInst>(I))
939 MadeChange |= processStore(SI, BI);
940 else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
941 RepeatInstruction = processMemSet(M, BI);
942 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
943 RepeatInstruction = processMemCpy(M);
944 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
945 RepeatInstruction = processMemMove(M);
946 else if (CallSite CS = (Value*)I) {
947 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
948 if (CS.paramHasAttr(i+1, Attribute::ByVal))
949 MadeChange |= processByValArgument(CS, i);
952 // Reprocess the instruction if desired.
953 if (RepeatInstruction) {
954 if (BI != BB->begin()) --BI;
955 MadeChange = true;
960 return MadeChange;
963 // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
964 // function.
966 bool MemCpyOpt::runOnFunction(Function &F) {
967 bool MadeChange = false;
968 MD = &getAnalysis<MemoryDependenceAnalysis>();
969 TD = getAnalysisIfAvailable<TargetData>();
970 TLI = &getAnalysis<TargetLibraryInfo>();
972 // If we don't have at least memset and memcpy, there is little point of doing
973 // anything here. These are required by a freestanding implementation, so if
974 // even they are disabled, there is no point in trying hard.
975 if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
976 return false;
978 while (1) {
979 if (!iterateOnFunction(F))
980 break;
981 MadeChange = true;
984 MD = 0;
985 return MadeChange;