1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
13 // For example: 4 + (x + 5) -> x + (4 + 5)
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
21 //===----------------------------------------------------------------------===//
23 #define DEBUG_TYPE "reassociate"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include "llvm/Constants.h"
27 #include "llvm/DerivedTypes.h"
28 #include "llvm/Function.h"
29 #include "llvm/Instructions.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Assembly/Writer.h"
33 #include "llvm/Support/CFG.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ValueHandle.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/ADT/PostOrderIterator.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/DenseMap.h"
43 STATISTIC(NumLinear
, "Number of insts linearized");
44 STATISTIC(NumChanged
, "Number of insts reassociated");
45 STATISTIC(NumAnnihil
, "Number of expr tree annihilated");
46 STATISTIC(NumFactor
, "Number of multiplies factored");
52 ValueEntry(unsigned R
, Value
*O
) : Rank(R
), Op(O
) {}
54 inline bool operator<(const ValueEntry
&LHS
, const ValueEntry
&RHS
) {
55 return LHS
.Rank
> RHS
.Rank
; // Sort so that highest rank goes to start.
60 /// PrintOps - Print out the expression identified in the Ops list.
62 static void PrintOps(Instruction
*I
, const SmallVectorImpl
<ValueEntry
> &Ops
) {
63 Module
*M
= I
->getParent()->getParent()->getParent();
64 dbgs() << Instruction::getOpcodeName(I
->getOpcode()) << " "
65 << *Ops
[0].Op
->getType() << '\t';
66 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
68 WriteAsOperand(dbgs(), Ops
[i
].Op
, false, M
);
69 dbgs() << ", #" << Ops
[i
].Rank
<< "] ";
75 class Reassociate
: public FunctionPass
{
76 DenseMap
<BasicBlock
*, unsigned> RankMap
;
77 DenseMap
<AssertingVH
<>, unsigned> ValueRankMap
;
78 SmallVector
<WeakVH
, 8> RedoInsts
;
79 SmallVector
<WeakVH
, 8> DeadInsts
;
82 static char ID
; // Pass identification, replacement for typeid
83 Reassociate() : FunctionPass(ID
) {
84 initializeReassociatePass(*PassRegistry::getPassRegistry());
87 bool runOnFunction(Function
&F
);
89 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
93 void BuildRankMap(Function
&F
);
94 unsigned getRank(Value
*V
);
95 Value
*ReassociateExpression(BinaryOperator
*I
);
96 void RewriteExprTree(BinaryOperator
*I
, SmallVectorImpl
<ValueEntry
> &Ops
,
98 Value
*OptimizeExpression(BinaryOperator
*I
,
99 SmallVectorImpl
<ValueEntry
> &Ops
);
100 Value
*OptimizeAdd(Instruction
*I
, SmallVectorImpl
<ValueEntry
> &Ops
);
101 void LinearizeExprTree(BinaryOperator
*I
, SmallVectorImpl
<ValueEntry
> &Ops
);
102 void LinearizeExpr(BinaryOperator
*I
);
103 Value
*RemoveFactorFromExpression(Value
*V
, Value
*Factor
);
104 void ReassociateInst(BasicBlock::iterator
&BBI
);
106 void RemoveDeadBinaryOp(Value
*V
);
110 char Reassociate::ID
= 0;
111 INITIALIZE_PASS(Reassociate
, "reassociate",
112 "Reassociate expressions", false, false)
114 // Public interface to the Reassociate pass
115 FunctionPass
*llvm::createReassociatePass() { return new Reassociate(); }
117 void Reassociate::RemoveDeadBinaryOp(Value
*V
) {
118 Instruction
*Op
= dyn_cast
<Instruction
>(V
);
119 if (!Op
|| !isa
<BinaryOperator
>(Op
))
122 Value
*LHS
= Op
->getOperand(0), *RHS
= Op
->getOperand(1);
124 ValueRankMap
.erase(Op
);
125 DeadInsts
.push_back(Op
);
126 RemoveDeadBinaryOp(LHS
);
127 RemoveDeadBinaryOp(RHS
);
131 static bool isUnmovableInstruction(Instruction
*I
) {
132 if (I
->getOpcode() == Instruction::PHI
||
133 I
->getOpcode() == Instruction::Alloca
||
134 I
->getOpcode() == Instruction::Load
||
135 I
->getOpcode() == Instruction::Invoke
||
136 (I
->getOpcode() == Instruction::Call
&&
137 !isa
<DbgInfoIntrinsic
>(I
)) ||
138 I
->getOpcode() == Instruction::UDiv
||
139 I
->getOpcode() == Instruction::SDiv
||
140 I
->getOpcode() == Instruction::FDiv
||
141 I
->getOpcode() == Instruction::URem
||
142 I
->getOpcode() == Instruction::SRem
||
143 I
->getOpcode() == Instruction::FRem
)
148 void Reassociate::BuildRankMap(Function
&F
) {
151 // Assign distinct ranks to function arguments
152 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end(); I
!= E
; ++I
)
153 ValueRankMap
[&*I
] = ++i
;
155 ReversePostOrderTraversal
<Function
*> RPOT(&F
);
156 for (ReversePostOrderTraversal
<Function
*>::rpo_iterator I
= RPOT
.begin(),
157 E
= RPOT
.end(); I
!= E
; ++I
) {
159 unsigned BBRank
= RankMap
[BB
] = ++i
<< 16;
161 // Walk the basic block, adding precomputed ranks for any instructions that
162 // we cannot move. This ensures that the ranks for these instructions are
163 // all different in the block.
164 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
165 if (isUnmovableInstruction(I
))
166 ValueRankMap
[&*I
] = ++BBRank
;
170 unsigned Reassociate::getRank(Value
*V
) {
171 Instruction
*I
= dyn_cast
<Instruction
>(V
);
173 if (isa
<Argument
>(V
)) return ValueRankMap
[V
]; // Function argument.
174 return 0; // Otherwise it's a global or constant, rank 0.
177 if (unsigned Rank
= ValueRankMap
[I
])
178 return Rank
; // Rank already known?
180 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
181 // we can reassociate expressions for code motion! Since we do not recurse
182 // for PHI nodes, we cannot have infinite recursion here, because there
183 // cannot be loops in the value graph that do not go through PHI nodes.
184 unsigned Rank
= 0, MaxRank
= RankMap
[I
->getParent()];
185 for (unsigned i
= 0, e
= I
->getNumOperands();
186 i
!= e
&& Rank
!= MaxRank
; ++i
)
187 Rank
= std::max(Rank
, getRank(I
->getOperand(i
)));
189 // If this is a not or neg instruction, do not count it for rank. This
190 // assures us that X and ~X will have the same rank.
191 if (!I
->getType()->isIntegerTy() ||
192 (!BinaryOperator::isNot(I
) && !BinaryOperator::isNeg(I
)))
195 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
198 return ValueRankMap
[I
] = Rank
;
201 /// isReassociableOp - Return true if V is an instruction of the specified
202 /// opcode and if it only has one use.
203 static BinaryOperator
*isReassociableOp(Value
*V
, unsigned Opcode
) {
204 if ((V
->hasOneUse() || V
->use_empty()) && isa
<Instruction
>(V
) &&
205 cast
<Instruction
>(V
)->getOpcode() == Opcode
)
206 return cast
<BinaryOperator
>(V
);
210 /// LowerNegateToMultiply - Replace 0-X with X*-1.
212 static Instruction
*LowerNegateToMultiply(Instruction
*Neg
,
213 DenseMap
<AssertingVH
<>, unsigned> &ValueRankMap
) {
214 Constant
*Cst
= Constant::getAllOnesValue(Neg
->getType());
216 Instruction
*Res
= BinaryOperator::CreateMul(Neg
->getOperand(1), Cst
, "",Neg
);
217 ValueRankMap
.erase(Neg
);
219 Neg
->replaceAllUsesWith(Res
);
220 Res
->setDebugLoc(Neg
->getDebugLoc());
221 Neg
->eraseFromParent();
225 // Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
226 // Note that if D is also part of the expression tree that we recurse to
227 // linearize it as well. Besides that case, this does not recurse into A,B, or
229 void Reassociate::LinearizeExpr(BinaryOperator
*I
) {
230 BinaryOperator
*LHS
= cast
<BinaryOperator
>(I
->getOperand(0));
231 BinaryOperator
*RHS
= cast
<BinaryOperator
>(I
->getOperand(1));
232 assert(isReassociableOp(LHS
, I
->getOpcode()) &&
233 isReassociableOp(RHS
, I
->getOpcode()) &&
234 "Not an expression that needs linearization?");
236 DEBUG(dbgs() << "Linear" << *LHS
<< '\n' << *RHS
<< '\n' << *I
<< '\n');
238 // Move the RHS instruction to live immediately before I, avoiding breaking
239 // dominator properties.
242 // Move operands around to do the linearization.
243 I
->setOperand(1, RHS
->getOperand(0));
244 RHS
->setOperand(0, LHS
);
245 I
->setOperand(0, RHS
);
247 // Conservatively clear all the optional flags, which may not hold
248 // after the reassociation.
249 I
->clearSubclassOptionalData();
250 LHS
->clearSubclassOptionalData();
251 RHS
->clearSubclassOptionalData();
255 DEBUG(dbgs() << "Linearized: " << *I
<< '\n');
257 // If D is part of this expression tree, tail recurse.
258 if (isReassociableOp(I
->getOperand(1), I
->getOpcode()))
263 /// LinearizeExprTree - Given an associative binary expression tree, traverse
264 /// all of the uses putting it into canonical form. This forces a left-linear
265 /// form of the expression (((a+b)+c)+d), and collects information about the
266 /// rank of the non-tree operands.
268 /// NOTE: These intentionally destroys the expression tree operands (turning
269 /// them into undef values) to reduce #uses of the values. This means that the
270 /// caller MUST use something like RewriteExprTree to put the values back in.
272 void Reassociate::LinearizeExprTree(BinaryOperator
*I
,
273 SmallVectorImpl
<ValueEntry
> &Ops
) {
274 Value
*LHS
= I
->getOperand(0), *RHS
= I
->getOperand(1);
275 unsigned Opcode
= I
->getOpcode();
277 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
278 BinaryOperator
*LHSBO
= isReassociableOp(LHS
, Opcode
);
279 BinaryOperator
*RHSBO
= isReassociableOp(RHS
, Opcode
);
281 // If this is a multiply expression tree and it contains internal negations,
282 // transform them into multiplies by -1 so they can be reassociated.
283 if (I
->getOpcode() == Instruction::Mul
) {
284 if (!LHSBO
&& LHS
->hasOneUse() && BinaryOperator::isNeg(LHS
)) {
285 LHS
= LowerNegateToMultiply(cast
<Instruction
>(LHS
), ValueRankMap
);
286 LHSBO
= isReassociableOp(LHS
, Opcode
);
288 if (!RHSBO
&& RHS
->hasOneUse() && BinaryOperator::isNeg(RHS
)) {
289 RHS
= LowerNegateToMultiply(cast
<Instruction
>(RHS
), ValueRankMap
);
290 RHSBO
= isReassociableOp(RHS
, Opcode
);
296 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
297 // such, just remember these operands and their rank.
298 Ops
.push_back(ValueEntry(getRank(LHS
), LHS
));
299 Ops
.push_back(ValueEntry(getRank(RHS
), RHS
));
301 // Clear the leaves out.
302 I
->setOperand(0, UndefValue::get(I
->getType()));
303 I
->setOperand(1, UndefValue::get(I
->getType()));
307 // Turn X+(Y+Z) -> (Y+Z)+X
308 std::swap(LHSBO
, RHSBO
);
310 bool Success
= !I
->swapOperands();
311 assert(Success
&& "swapOperands failed");
315 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the RHS is not
316 // part of the expression tree.
318 LHS
= LHSBO
= cast
<BinaryOperator
>(I
->getOperand(0));
319 RHS
= I
->getOperand(1);
323 // Okay, now we know that the LHS is a nested expression and that the RHS is
324 // not. Perform reassociation.
325 assert(!isReassociableOp(RHS
, Opcode
) && "LinearizeExpr failed!");
327 // Move LHS right before I to make sure that the tree expression dominates all
329 LHSBO
->moveBefore(I
);
331 // Linearize the expression tree on the LHS.
332 LinearizeExprTree(LHSBO
, Ops
);
334 // Remember the RHS operand and its rank.
335 Ops
.push_back(ValueEntry(getRank(RHS
), RHS
));
337 // Clear the RHS leaf out.
338 I
->setOperand(1, UndefValue::get(I
->getType()));
341 // RewriteExprTree - Now that the operands for this expression tree are
342 // linearized and optimized, emit them in-order. This function is written to be
344 void Reassociate::RewriteExprTree(BinaryOperator
*I
,
345 SmallVectorImpl
<ValueEntry
> &Ops
,
347 if (i
+2 == Ops
.size()) {
348 if (I
->getOperand(0) != Ops
[i
].Op
||
349 I
->getOperand(1) != Ops
[i
+1].Op
) {
350 Value
*OldLHS
= I
->getOperand(0);
351 DEBUG(dbgs() << "RA: " << *I
<< '\n');
352 I
->setOperand(0, Ops
[i
].Op
);
353 I
->setOperand(1, Ops
[i
+1].Op
);
355 // Clear all the optional flags, which may not hold after the
356 // reassociation if the expression involved more than just this operation.
358 I
->clearSubclassOptionalData();
360 DEBUG(dbgs() << "TO: " << *I
<< '\n');
364 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
365 // delete the extra, now dead, nodes.
366 RemoveDeadBinaryOp(OldLHS
);
370 assert(i
+2 < Ops
.size() && "Ops index out of range!");
372 if (I
->getOperand(1) != Ops
[i
].Op
) {
373 DEBUG(dbgs() << "RA: " << *I
<< '\n');
374 I
->setOperand(1, Ops
[i
].Op
);
376 // Conservatively clear all the optional flags, which may not hold
377 // after the reassociation.
378 I
->clearSubclassOptionalData();
380 DEBUG(dbgs() << "TO: " << *I
<< '\n');
385 BinaryOperator
*LHS
= cast
<BinaryOperator
>(I
->getOperand(0));
386 assert(LHS
->getOpcode() == I
->getOpcode() &&
387 "Improper expression tree!");
389 // Compactify the tree instructions together with each other to guarantee
390 // that the expression tree is dominated by all of Ops.
392 RewriteExprTree(LHS
, Ops
, i
+1);
397 // NegateValue - Insert instructions before the instruction pointed to by BI,
398 // that computes the negative version of the value specified. The negative
399 // version of the value is returned, and BI is left pointing at the instruction
400 // that should be processed next by the reassociation pass.
402 static Value
*NegateValue(Value
*V
, Instruction
*BI
) {
403 if (Constant
*C
= dyn_cast
<Constant
>(V
))
404 return ConstantExpr::getNeg(C
);
406 // We are trying to expose opportunity for reassociation. One of the things
407 // that we want to do to achieve this is to push a negation as deep into an
408 // expression chain as possible, to expose the add instructions. In practice,
409 // this means that we turn this:
410 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
411 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
412 // the constants. We assume that instcombine will clean up the mess later if
413 // we introduce tons of unnecessary negation instructions.
415 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
416 if (I
->getOpcode() == Instruction::Add
&& I
->hasOneUse()) {
417 // Push the negates through the add.
418 I
->setOperand(0, NegateValue(I
->getOperand(0), BI
));
419 I
->setOperand(1, NegateValue(I
->getOperand(1), BI
));
421 // We must move the add instruction here, because the neg instructions do
422 // not dominate the old add instruction in general. By moving it, we are
423 // assured that the neg instructions we just inserted dominate the
424 // instruction we are about to insert after them.
427 I
->setName(I
->getName()+".neg");
431 // Okay, we need to materialize a negated version of V with an instruction.
432 // Scan the use lists of V to see if we have one already.
433 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
;++UI
){
435 if (!BinaryOperator::isNeg(U
)) continue;
437 // We found one! Now we have to make sure that the definition dominates
438 // this use. We do this by moving it to the entry block (if it is a
439 // non-instruction value) or right after the definition. These negates will
440 // be zapped by reassociate later, so we don't need much finesse here.
441 BinaryOperator
*TheNeg
= cast
<BinaryOperator
>(U
);
443 // Verify that the negate is in this function, V might be a constant expr.
444 if (TheNeg
->getParent()->getParent() != BI
->getParent()->getParent())
447 BasicBlock::iterator InsertPt
;
448 if (Instruction
*InstInput
= dyn_cast
<Instruction
>(V
)) {
449 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(InstInput
)) {
450 InsertPt
= II
->getNormalDest()->begin();
452 InsertPt
= InstInput
;
455 while (isa
<PHINode
>(InsertPt
)) ++InsertPt
;
457 InsertPt
= TheNeg
->getParent()->getParent()->getEntryBlock().begin();
459 TheNeg
->moveBefore(InsertPt
);
463 // Insert a 'neg' instruction that subtracts the value from zero to get the
465 return BinaryOperator::CreateNeg(V
, V
->getName() + ".neg", BI
);
468 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
469 /// X-Y into (X + -Y).
470 static bool ShouldBreakUpSubtract(Instruction
*Sub
) {
471 // If this is a negation, we can't split it up!
472 if (BinaryOperator::isNeg(Sub
))
475 // Don't bother to break this up unless either the LHS is an associable add or
476 // subtract or if this is only used by one.
477 if (isReassociableOp(Sub
->getOperand(0), Instruction::Add
) ||
478 isReassociableOp(Sub
->getOperand(0), Instruction::Sub
))
480 if (isReassociableOp(Sub
->getOperand(1), Instruction::Add
) ||
481 isReassociableOp(Sub
->getOperand(1), Instruction::Sub
))
483 if (Sub
->hasOneUse() &&
484 (isReassociableOp(Sub
->use_back(), Instruction::Add
) ||
485 isReassociableOp(Sub
->use_back(), Instruction::Sub
)))
491 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
492 /// only used by an add, transform this into (X+(0-Y)) to promote better
494 static Instruction
*BreakUpSubtract(Instruction
*Sub
,
495 DenseMap
<AssertingVH
<>, unsigned> &ValueRankMap
) {
496 // Convert a subtract into an add and a neg instruction. This allows sub
497 // instructions to be commuted with other add instructions.
499 // Calculate the negative value of Operand 1 of the sub instruction,
500 // and set it as the RHS of the add instruction we just made.
502 Value
*NegVal
= NegateValue(Sub
->getOperand(1), Sub
);
504 BinaryOperator::CreateAdd(Sub
->getOperand(0), NegVal
, "", Sub
);
507 // Everyone now refers to the add instruction.
508 ValueRankMap
.erase(Sub
);
509 Sub
->replaceAllUsesWith(New
);
510 New
->setDebugLoc(Sub
->getDebugLoc());
511 Sub
->eraseFromParent();
513 DEBUG(dbgs() << "Negated: " << *New
<< '\n');
517 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
518 /// by one, change this into a multiply by a constant to assist with further
520 static Instruction
*ConvertShiftToMul(Instruction
*Shl
,
521 DenseMap
<AssertingVH
<>, unsigned> &ValueRankMap
) {
522 // If an operand of this shift is a reassociable multiply, or if the shift
523 // is used by a reassociable multiply or add, turn into a multiply.
524 if (isReassociableOp(Shl
->getOperand(0), Instruction::Mul
) ||
526 (isReassociableOp(Shl
->use_back(), Instruction::Mul
) ||
527 isReassociableOp(Shl
->use_back(), Instruction::Add
)))) {
528 Constant
*MulCst
= ConstantInt::get(Shl
->getType(), 1);
529 MulCst
= ConstantExpr::getShl(MulCst
, cast
<Constant
>(Shl
->getOperand(1)));
532 BinaryOperator::CreateMul(Shl
->getOperand(0), MulCst
, "", Shl
);
533 ValueRankMap
.erase(Shl
);
535 Shl
->replaceAllUsesWith(Mul
);
536 Mul
->setDebugLoc(Shl
->getDebugLoc());
537 Shl
->eraseFromParent();
543 // Scan backwards and forwards among values with the same rank as element i to
544 // see if X exists. If X does not exist, return i. This is useful when
545 // scanning for 'x' when we see '-x' because they both get the same rank.
546 static unsigned FindInOperandList(SmallVectorImpl
<ValueEntry
> &Ops
, unsigned i
,
548 unsigned XRank
= Ops
[i
].Rank
;
549 unsigned e
= Ops
.size();
550 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
].Rank
== XRank
; ++j
)
554 for (unsigned j
= i
-1; j
!= ~0U && Ops
[j
].Rank
== XRank
; --j
)
560 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
561 /// and returning the result. Insert the tree before I.
562 static Value
*EmitAddTreeOfValues(Instruction
*I
, SmallVectorImpl
<Value
*> &Ops
){
563 if (Ops
.size() == 1) return Ops
.back();
565 Value
*V1
= Ops
.back();
567 Value
*V2
= EmitAddTreeOfValues(I
, Ops
);
568 return BinaryOperator::CreateAdd(V2
, V1
, "tmp", I
);
571 /// RemoveFactorFromExpression - If V is an expression tree that is a
572 /// multiplication sequence, and if this sequence contains a multiply by Factor,
573 /// remove Factor from the tree and return the new tree.
574 Value
*Reassociate::RemoveFactorFromExpression(Value
*V
, Value
*Factor
) {
575 BinaryOperator
*BO
= isReassociableOp(V
, Instruction::Mul
);
578 SmallVector
<ValueEntry
, 8> Factors
;
579 LinearizeExprTree(BO
, Factors
);
581 bool FoundFactor
= false;
582 bool NeedsNegate
= false;
583 for (unsigned i
= 0, e
= Factors
.size(); i
!= e
; ++i
) {
584 if (Factors
[i
].Op
== Factor
) {
586 Factors
.erase(Factors
.begin()+i
);
590 // If this is a negative version of this factor, remove it.
591 if (ConstantInt
*FC1
= dyn_cast
<ConstantInt
>(Factor
))
592 if (ConstantInt
*FC2
= dyn_cast
<ConstantInt
>(Factors
[i
].Op
))
593 if (FC1
->getValue() == -FC2
->getValue()) {
594 FoundFactor
= NeedsNegate
= true;
595 Factors
.erase(Factors
.begin()+i
);
601 // Make sure to restore the operands to the expression tree.
602 RewriteExprTree(BO
, Factors
);
606 BasicBlock::iterator InsertPt
= BO
; ++InsertPt
;
608 // If this was just a single multiply, remove the multiply and return the only
609 // remaining operand.
610 if (Factors
.size() == 1) {
611 ValueRankMap
.erase(BO
);
612 DeadInsts
.push_back(BO
);
615 RewriteExprTree(BO
, Factors
);
620 V
= BinaryOperator::CreateNeg(V
, "neg", InsertPt
);
625 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
626 /// add its operands as factors, otherwise add V to the list of factors.
628 /// Ops is the top-level list of add operands we're trying to factor.
629 static void FindSingleUseMultiplyFactors(Value
*V
,
630 SmallVectorImpl
<Value
*> &Factors
,
631 const SmallVectorImpl
<ValueEntry
> &Ops
,
634 if (!(V
->hasOneUse() || V
->use_empty()) || // More than one use.
635 !(BO
= dyn_cast
<BinaryOperator
>(V
)) ||
636 BO
->getOpcode() != Instruction::Mul
) {
637 Factors
.push_back(V
);
641 // If this value has a single use because it is another input to the add
642 // tree we're reassociating and we dropped its use, it actually has two
643 // uses and we can't factor it.
645 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
646 if (Ops
[i
].Op
== V
) {
647 Factors
.push_back(V
);
653 // Otherwise, add the LHS and RHS to the list of factors.
654 FindSingleUseMultiplyFactors(BO
->getOperand(1), Factors
, Ops
, false);
655 FindSingleUseMultiplyFactors(BO
->getOperand(0), Factors
, Ops
, false);
658 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
659 /// instruction. This optimizes based on identities. If it can be reduced to
660 /// a single Value, it is returned, otherwise the Ops list is mutated as
662 static Value
*OptimizeAndOrXor(unsigned Opcode
,
663 SmallVectorImpl
<ValueEntry
> &Ops
) {
664 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
665 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
666 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
667 // First, check for X and ~X in the operand list.
668 assert(i
< Ops
.size());
669 if (BinaryOperator::isNot(Ops
[i
].Op
)) { // Cannot occur for ^.
670 Value
*X
= BinaryOperator::getNotArgument(Ops
[i
].Op
);
671 unsigned FoundX
= FindInOperandList(Ops
, i
, X
);
673 if (Opcode
== Instruction::And
) // ...&X&~X = 0
674 return Constant::getNullValue(X
->getType());
676 if (Opcode
== Instruction::Or
) // ...|X|~X = -1
677 return Constant::getAllOnesValue(X
->getType());
681 // Next, check for duplicate pairs of values, which we assume are next to
682 // each other, due to our sorting criteria.
683 assert(i
< Ops
.size());
684 if (i
+1 != Ops
.size() && Ops
[i
+1].Op
== Ops
[i
].Op
) {
685 if (Opcode
== Instruction::And
|| Opcode
== Instruction::Or
) {
686 // Drop duplicate values for And and Or.
687 Ops
.erase(Ops
.begin()+i
);
693 // Drop pairs of values for Xor.
694 assert(Opcode
== Instruction::Xor
);
696 return Constant::getNullValue(Ops
[0].Op
->getType());
699 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+2);
707 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
708 /// optimizes based on identities. If it can be reduced to a single Value, it
709 /// is returned, otherwise the Ops list is mutated as necessary.
710 Value
*Reassociate::OptimizeAdd(Instruction
*I
,
711 SmallVectorImpl
<ValueEntry
> &Ops
) {
712 // Scan the operand lists looking for X and -X pairs. If we find any, we
713 // can simplify the expression. X+-X == 0. While we're at it, scan for any
714 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
716 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
718 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
719 Value
*TheOp
= Ops
[i
].Op
;
720 // Check to see if we've seen this operand before. If so, we factor all
721 // instances of the operand together. Due to our sorting criteria, we know
722 // that these need to be next to each other in the vector.
723 if (i
+1 != Ops
.size() && Ops
[i
+1].Op
== TheOp
) {
724 // Rescan the list, remove all instances of this operand from the expr.
725 unsigned NumFound
= 0;
727 Ops
.erase(Ops
.begin()+i
);
729 } while (i
!= Ops
.size() && Ops
[i
].Op
== TheOp
);
731 DEBUG(errs() << "\nFACTORING [" << NumFound
<< "]: " << *TheOp
<< '\n');
734 // Insert a new multiply.
735 Value
*Mul
= ConstantInt::get(cast
<IntegerType
>(I
->getType()), NumFound
);
736 Mul
= BinaryOperator::CreateMul(TheOp
, Mul
, "factor", I
);
738 // Now that we have inserted a multiply, optimize it. This allows us to
739 // handle cases that require multiple factoring steps, such as this:
740 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
741 RedoInsts
.push_back(Mul
);
743 // If every add operand was a duplicate, return the multiply.
747 // Otherwise, we had some input that didn't have the dupe, such as
748 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
749 // things being added by this operation.
750 Ops
.insert(Ops
.begin(), ValueEntry(getRank(Mul
), Mul
));
757 // Check for X and -X in the operand list.
758 if (!BinaryOperator::isNeg(TheOp
))
761 Value
*X
= BinaryOperator::getNegArgument(TheOp
);
762 unsigned FoundX
= FindInOperandList(Ops
, i
, X
);
766 // Remove X and -X from the operand list.
768 return Constant::getNullValue(X
->getType());
770 Ops
.erase(Ops
.begin()+i
);
774 --i
; // Need to back up an extra one.
775 Ops
.erase(Ops
.begin()+FoundX
);
777 --i
; // Revisit element.
778 e
-= 2; // Removed two elements.
781 // Scan the operand list, checking to see if there are any common factors
782 // between operands. Consider something like A*A+A*B*C+D. We would like to
783 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
784 // To efficiently find this, we count the number of times a factor occurs
785 // for any ADD operands that are MULs.
786 DenseMap
<Value
*, unsigned> FactorOccurrences
;
788 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
789 // where they are actually the same multiply.
791 Value
*MaxOccVal
= 0;
792 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
793 BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(Ops
[i
].Op
);
794 if (BOp
== 0 || BOp
->getOpcode() != Instruction::Mul
|| !BOp
->use_empty())
797 // Compute all of the factors of this added value.
798 SmallVector
<Value
*, 8> Factors
;
799 FindSingleUseMultiplyFactors(BOp
, Factors
, Ops
, true);
800 assert(Factors
.size() > 1 && "Bad linearize!");
802 // Add one to FactorOccurrences for each unique factor in this op.
803 SmallPtrSet
<Value
*, 8> Duplicates
;
804 for (unsigned i
= 0, e
= Factors
.size(); i
!= e
; ++i
) {
805 Value
*Factor
= Factors
[i
];
806 if (!Duplicates
.insert(Factor
)) continue;
808 unsigned Occ
= ++FactorOccurrences
[Factor
];
809 if (Occ
> MaxOcc
) { MaxOcc
= Occ
; MaxOccVal
= Factor
; }
811 // If Factor is a negative constant, add the negated value as a factor
812 // because we can percolate the negate out. Watch for minint, which
813 // cannot be positivified.
814 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Factor
))
815 if (CI
->getValue().isNegative() && !CI
->getValue().isMinSignedValue()) {
816 Factor
= ConstantInt::get(CI
->getContext(), -CI
->getValue());
817 assert(!Duplicates
.count(Factor
) &&
818 "Shouldn't have two constant factors, missed a canonicalize");
820 unsigned Occ
= ++FactorOccurrences
[Factor
];
821 if (Occ
> MaxOcc
) { MaxOcc
= Occ
; MaxOccVal
= Factor
; }
826 // If any factor occurred more than one time, we can pull it out.
828 DEBUG(errs() << "\nFACTORING [" << MaxOcc
<< "]: " << *MaxOccVal
<< '\n');
831 // Create a new instruction that uses the MaxOccVal twice. If we don't do
832 // this, we could otherwise run into situations where removing a factor
833 // from an expression will drop a use of maxocc, and this can cause
834 // RemoveFactorFromExpression on successive values to behave differently.
835 Instruction
*DummyInst
= BinaryOperator::CreateAdd(MaxOccVal
, MaxOccVal
);
836 SmallVector
<Value
*, 4> NewMulOps
;
837 for (unsigned i
= 0; i
!= Ops
.size(); ++i
) {
838 // Only try to remove factors from expressions we're allowed to.
839 BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(Ops
[i
].Op
);
840 if (BOp
== 0 || BOp
->getOpcode() != Instruction::Mul
|| !BOp
->use_empty())
843 if (Value
*V
= RemoveFactorFromExpression(Ops
[i
].Op
, MaxOccVal
)) {
844 // The factorized operand may occur several times. Convert them all in
846 for (unsigned j
= Ops
.size(); j
!= i
;) {
848 if (Ops
[j
].Op
== Ops
[i
].Op
) {
849 NewMulOps
.push_back(V
);
850 Ops
.erase(Ops
.begin()+j
);
857 // No need for extra uses anymore.
860 unsigned NumAddedValues
= NewMulOps
.size();
861 Value
*V
= EmitAddTreeOfValues(I
, NewMulOps
);
863 // Now that we have inserted the add tree, optimize it. This allows us to
864 // handle cases that require multiple factoring steps, such as this:
865 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
866 assert(NumAddedValues
> 1 && "Each occurrence should contribute a value");
867 (void)NumAddedValues
;
868 V
= ReassociateExpression(cast
<BinaryOperator
>(V
));
870 // Create the multiply.
871 Value
*V2
= BinaryOperator::CreateMul(V
, MaxOccVal
, "tmp", I
);
873 // Rerun associate on the multiply in case the inner expression turned into
874 // a multiply. We want to make sure that we keep things in canonical form.
875 V2
= ReassociateExpression(cast
<BinaryOperator
>(V2
));
877 // If every add operand included the factor (e.g. "A*B + A*C"), then the
878 // entire result expression is just the multiply "A*(B+C)".
882 // Otherwise, we had some input that didn't have the factor, such as
883 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
884 // things being added by this operation.
885 Ops
.insert(Ops
.begin(), ValueEntry(getRank(V2
), V2
));
891 Value
*Reassociate::OptimizeExpression(BinaryOperator
*I
,
892 SmallVectorImpl
<ValueEntry
> &Ops
) {
893 // Now that we have the linearized expression tree, try to optimize it.
894 // Start by folding any constants that we found.
895 bool IterateOptimization
= false;
896 if (Ops
.size() == 1) return Ops
[0].Op
;
898 unsigned Opcode
= I
->getOpcode();
900 if (Constant
*V1
= dyn_cast
<Constant
>(Ops
[Ops
.size()-2].Op
))
901 if (Constant
*V2
= dyn_cast
<Constant
>(Ops
.back().Op
)) {
903 Ops
.back().Op
= ConstantExpr::get(Opcode
, V1
, V2
);
904 return OptimizeExpression(I
, Ops
);
907 // Check for destructive annihilation due to a constant being used.
908 if (ConstantInt
*CstVal
= dyn_cast
<ConstantInt
>(Ops
.back().Op
))
911 case Instruction::And
:
912 if (CstVal
->isZero()) // X & 0 -> 0
914 if (CstVal
->isAllOnesValue()) // X & -1 -> X
917 case Instruction::Mul
:
918 if (CstVal
->isZero()) { // X * 0 -> 0
923 if (cast
<ConstantInt
>(CstVal
)->isOne())
924 Ops
.pop_back(); // X * 1 -> X
926 case Instruction::Or
:
927 if (CstVal
->isAllOnesValue()) // X | -1 -> -1
930 case Instruction::Add
:
931 case Instruction::Xor
:
932 if (CstVal
->isZero()) // X [|^+] 0 -> X
936 if (Ops
.size() == 1) return Ops
[0].Op
;
938 // Handle destructive annihilation due to identities between elements in the
939 // argument list here.
942 case Instruction::And
:
943 case Instruction::Or
:
944 case Instruction::Xor
: {
945 unsigned NumOps
= Ops
.size();
946 if (Value
*Result
= OptimizeAndOrXor(Opcode
, Ops
))
948 IterateOptimization
|= Ops
.size() != NumOps
;
952 case Instruction::Add
: {
953 unsigned NumOps
= Ops
.size();
954 if (Value
*Result
= OptimizeAdd(I
, Ops
))
956 IterateOptimization
|= Ops
.size() != NumOps
;
960 //case Instruction::Mul:
963 if (IterateOptimization
)
964 return OptimizeExpression(I
, Ops
);
969 /// ReassociateInst - Inspect and reassociate the instruction at the
970 /// given position, post-incrementing the position.
971 void Reassociate::ReassociateInst(BasicBlock::iterator
&BBI
) {
972 Instruction
*BI
= BBI
++;
973 if (BI
->getOpcode() == Instruction::Shl
&&
974 isa
<ConstantInt
>(BI
->getOperand(1)))
975 if (Instruction
*NI
= ConvertShiftToMul(BI
, ValueRankMap
)) {
980 // Reject cases where it is pointless to do this.
981 if (!isa
<BinaryOperator
>(BI
) || BI
->getType()->isFloatingPointTy() ||
982 BI
->getType()->isVectorTy())
983 return; // Floating point ops are not associative.
985 // Do not reassociate boolean (i1) expressions. We want to preserve the
986 // original order of evaluation for short-circuited comparisons that
987 // SimplifyCFG has folded to AND/OR expressions. If the expression
988 // is not further optimized, it is likely to be transformed back to a
989 // short-circuited form for code gen, and the source order may have been
990 // optimized for the most likely conditions.
991 if (BI
->getType()->isIntegerTy(1))
994 // If this is a subtract instruction which is not already in negate form,
995 // see if we can convert it to X+-Y.
996 if (BI
->getOpcode() == Instruction::Sub
) {
997 if (ShouldBreakUpSubtract(BI
)) {
998 BI
= BreakUpSubtract(BI
, ValueRankMap
);
999 // Reset the BBI iterator in case BreakUpSubtract changed the
1000 // instruction it points to.
1004 } else if (BinaryOperator::isNeg(BI
)) {
1005 // Otherwise, this is a negation. See if the operand is a multiply tree
1006 // and if this is not an inner node of a multiply tree.
1007 if (isReassociableOp(BI
->getOperand(1), Instruction::Mul
) &&
1008 (!BI
->hasOneUse() ||
1009 !isReassociableOp(BI
->use_back(), Instruction::Mul
))) {
1010 BI
= LowerNegateToMultiply(BI
, ValueRankMap
);
1016 // If this instruction is a commutative binary operator, process it.
1017 if (!BI
->isAssociative()) return;
1018 BinaryOperator
*I
= cast
<BinaryOperator
>(BI
);
1020 // If this is an interior node of a reassociable tree, ignore it until we
1021 // get to the root of the tree, to avoid N^2 analysis.
1022 if (I
->hasOneUse() && isReassociableOp(I
->use_back(), I
->getOpcode()))
1025 // If this is an add tree that is used by a sub instruction, ignore it
1026 // until we process the subtract.
1027 if (I
->hasOneUse() && I
->getOpcode() == Instruction::Add
&&
1028 cast
<Instruction
>(I
->use_back())->getOpcode() == Instruction::Sub
)
1031 ReassociateExpression(I
);
1034 Value
*Reassociate::ReassociateExpression(BinaryOperator
*I
) {
1036 // First, walk the expression tree, linearizing the tree, collecting the
1037 // operand information.
1038 SmallVector
<ValueEntry
, 8> Ops
;
1039 LinearizeExprTree(I
, Ops
);
1041 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I
, Ops
); dbgs() << '\n');
1043 // Now that we have linearized the tree to a list and have gathered all of
1044 // the operands and their ranks, sort the operands by their rank. Use a
1045 // stable_sort so that values with equal ranks will have their relative
1046 // positions maintained (and so the compiler is deterministic). Note that
1047 // this sorts so that the highest ranking values end up at the beginning of
1049 std::stable_sort(Ops
.begin(), Ops
.end());
1051 // OptimizeExpression - Now that we have the expression tree in a convenient
1052 // sorted form, optimize it globally if possible.
1053 if (Value
*V
= OptimizeExpression(I
, Ops
)) {
1054 // This expression tree simplified to something that isn't a tree,
1056 DEBUG(dbgs() << "Reassoc to scalar: " << *V
<< '\n');
1057 I
->replaceAllUsesWith(V
);
1058 if (Instruction
*VI
= dyn_cast
<Instruction
>(V
))
1059 VI
->setDebugLoc(I
->getDebugLoc());
1060 RemoveDeadBinaryOp(I
);
1065 // We want to sink immediates as deeply as possible except in the case where
1066 // this is a multiply tree used only by an add, and the immediate is a -1.
1067 // In this case we reassociate to put the negation on the outside so that we
1068 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1069 if (I
->getOpcode() == Instruction::Mul
&& I
->hasOneUse() &&
1070 cast
<Instruction
>(I
->use_back())->getOpcode() == Instruction::Add
&&
1071 isa
<ConstantInt
>(Ops
.back().Op
) &&
1072 cast
<ConstantInt
>(Ops
.back().Op
)->isAllOnesValue()) {
1073 ValueEntry Tmp
= Ops
.pop_back_val();
1074 Ops
.insert(Ops
.begin(), Tmp
);
1077 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I
, Ops
); dbgs() << '\n');
1079 if (Ops
.size() == 1) {
1080 // This expression tree simplified to something that isn't a tree,
1082 I
->replaceAllUsesWith(Ops
[0].Op
);
1083 if (Instruction
*OI
= dyn_cast
<Instruction
>(Ops
[0].Op
))
1084 OI
->setDebugLoc(I
->getDebugLoc());
1085 RemoveDeadBinaryOp(I
);
1089 // Now that we ordered and optimized the expressions, splat them back into
1090 // the expression tree, removing any unneeded nodes.
1091 RewriteExprTree(I
, Ops
);
1096 bool Reassociate::runOnFunction(Function
&F
) {
1097 // Recalculate the rank map for F
1101 for (Function::iterator FI
= F
.begin(), FE
= F
.end(); FI
!= FE
; ++FI
)
1102 for (BasicBlock::iterator BBI
= FI
->begin(); BBI
!= FI
->end(); )
1103 ReassociateInst(BBI
);
1105 // Now that we're done, revisit any instructions which are likely to
1106 // have secondary reassociation opportunities.
1107 while (!RedoInsts
.empty())
1108 if (Value
*V
= RedoInsts
.pop_back_val()) {
1109 BasicBlock::iterator BBI
= cast
<Instruction
>(V
);
1110 ReassociateInst(BBI
);
1113 // Now that we're done, delete any instructions which are no longer used.
1114 while (!DeadInsts
.empty())
1115 if (Value
*V
= DeadInsts
.pop_back_val())
1116 RecursivelyDeleteTriviallyDeadInstructions(V
);
1118 // We are done with the rank map.
1120 ValueRankMap
.clear();