1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation. This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible). Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17 // often interact, especially for C++ programs. As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "scalarrepl"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Module.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Analysis/DebugInfo.h"
34 #include "llvm/Analysis/DIBuilder.h"
35 #include "llvm/Analysis/Dominators.h"
36 #include "llvm/Analysis/Loads.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/GetElementPtrTypeIterator.h"
46 #include "llvm/Support/IRBuilder.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/ADT/SetVector.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/Statistic.h"
54 STATISTIC(NumReplaced
, "Number of allocas broken up");
55 STATISTIC(NumPromoted
, "Number of allocas promoted");
56 STATISTIC(NumAdjusted
, "Number of scalar allocas adjusted to allow promotion");
57 STATISTIC(NumConverted
, "Number of aggregates converted to scalar");
58 STATISTIC(NumGlobals
, "Number of allocas copied from constant global");
61 struct SROA
: public FunctionPass
{
62 SROA(int T
, bool hasDT
, char &ID
)
63 : FunctionPass(ID
), HasDomTree(hasDT
) {
70 bool runOnFunction(Function
&F
);
72 bool performScalarRepl(Function
&F
);
73 bool performPromotion(Function
&F
);
79 /// DeadInsts - Keep track of instructions we have made dead, so that
80 /// we can remove them after we are done working.
81 SmallVector
<Value
*, 32> DeadInsts
;
83 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
84 /// information about the uses. All these fields are initialized to false
85 /// and set to true when something is learned.
87 /// The alloca to promote.
90 /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
91 /// looping and avoid redundant work.
92 SmallPtrSet
<PHINode
*, 8> CheckedPHIs
;
94 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
97 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
100 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
101 bool isMemCpyDst
: 1;
103 /// hasSubelementAccess - This is true if a subelement of the alloca is
104 /// ever accessed, or false if the alloca is only accessed with mem
105 /// intrinsics or load/store that only access the entire alloca at once.
106 bool hasSubelementAccess
: 1;
108 /// hasALoadOrStore - This is true if there are any loads or stores to it.
109 /// The alloca may just be accessed with memcpy, for example, which would
111 bool hasALoadOrStore
: 1;
113 explicit AllocaInfo(AllocaInst
*ai
)
114 : AI(ai
), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
115 hasSubelementAccess(false), hasALoadOrStore(false) {}
118 unsigned SRThreshold
;
120 void MarkUnsafe(AllocaInfo
&I
, Instruction
*User
) {
122 DEBUG(dbgs() << " Transformation preventing inst: " << *User
<< '\n');
125 bool isSafeAllocaToScalarRepl(AllocaInst
*AI
);
127 void isSafeForScalarRepl(Instruction
*I
, uint64_t Offset
, AllocaInfo
&Info
);
128 void isSafePHISelectUseForScalarRepl(Instruction
*User
, uint64_t Offset
,
130 void isSafeGEP(GetElementPtrInst
*GEPI
, uint64_t &Offset
, AllocaInfo
&Info
);
131 void isSafeMemAccess(uint64_t Offset
, uint64_t MemSize
,
132 const Type
*MemOpType
, bool isStore
, AllocaInfo
&Info
,
133 Instruction
*TheAccess
, bool AllowWholeAccess
);
134 bool TypeHasComponent(const Type
*T
, uint64_t Offset
, uint64_t Size
);
135 uint64_t FindElementAndOffset(const Type
*&T
, uint64_t &Offset
,
138 void DoScalarReplacement(AllocaInst
*AI
,
139 std::vector
<AllocaInst
*> &WorkList
);
140 void DeleteDeadInstructions();
142 void RewriteForScalarRepl(Instruction
*I
, AllocaInst
*AI
, uint64_t Offset
,
143 SmallVector
<AllocaInst
*, 32> &NewElts
);
144 void RewriteBitCast(BitCastInst
*BC
, AllocaInst
*AI
, uint64_t Offset
,
145 SmallVector
<AllocaInst
*, 32> &NewElts
);
146 void RewriteGEP(GetElementPtrInst
*GEPI
, AllocaInst
*AI
, uint64_t Offset
,
147 SmallVector
<AllocaInst
*, 32> &NewElts
);
148 void RewriteMemIntrinUserOfAlloca(MemIntrinsic
*MI
, Instruction
*Inst
,
150 SmallVector
<AllocaInst
*, 32> &NewElts
);
151 void RewriteStoreUserOfWholeAlloca(StoreInst
*SI
, AllocaInst
*AI
,
152 SmallVector
<AllocaInst
*, 32> &NewElts
);
153 void RewriteLoadUserOfWholeAlloca(LoadInst
*LI
, AllocaInst
*AI
,
154 SmallVector
<AllocaInst
*, 32> &NewElts
);
156 static MemTransferInst
*isOnlyCopiedFromConstantGlobal(
157 AllocaInst
*AI
, SmallVector
<Instruction
*, 4> &ToDelete
);
160 // SROA_DT - SROA that uses DominatorTree.
161 struct SROA_DT
: public SROA
{
164 SROA_DT(int T
= -1) : SROA(T
, true, ID
) {
165 initializeSROA_DTPass(*PassRegistry::getPassRegistry());
168 // getAnalysisUsage - This pass does not require any passes, but we know it
169 // will not alter the CFG, so say so.
170 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
171 AU
.addRequired
<DominatorTree
>();
172 AU
.setPreservesCFG();
176 // SROA_SSAUp - SROA that uses SSAUpdater.
177 struct SROA_SSAUp
: public SROA
{
180 SROA_SSAUp(int T
= -1) : SROA(T
, false, ID
) {
181 initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
184 // getAnalysisUsage - This pass does not require any passes, but we know it
185 // will not alter the CFG, so say so.
186 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
187 AU
.setPreservesCFG();
193 char SROA_DT::ID
= 0;
194 char SROA_SSAUp::ID
= 0;
196 INITIALIZE_PASS_BEGIN(SROA_DT
, "scalarrepl",
197 "Scalar Replacement of Aggregates (DT)", false, false)
198 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
199 INITIALIZE_PASS_END(SROA_DT
, "scalarrepl",
200 "Scalar Replacement of Aggregates (DT)", false, false)
202 INITIALIZE_PASS_BEGIN(SROA_SSAUp
, "scalarrepl-ssa",
203 "Scalar Replacement of Aggregates (SSAUp)", false, false)
204 INITIALIZE_PASS_END(SROA_SSAUp
, "scalarrepl-ssa",
205 "Scalar Replacement of Aggregates (SSAUp)", false, false)
207 // Public interface to the ScalarReplAggregates pass
208 FunctionPass
*llvm::createScalarReplAggregatesPass(int Threshold
,
211 return new SROA_DT(Threshold
);
212 return new SROA_SSAUp(Threshold
);
216 //===----------------------------------------------------------------------===//
217 // Convert To Scalar Optimization.
218 //===----------------------------------------------------------------------===//
221 /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
222 /// optimization, which scans the uses of an alloca and determines if it can
223 /// rewrite it in terms of a single new alloca that can be mem2reg'd.
224 class ConvertToScalarInfo
{
225 /// AllocaSize - The size of the alloca being considered in bytes.
227 const TargetData
&TD
;
229 /// IsNotTrivial - This is set to true if there is some access to the object
230 /// which means that mem2reg can't promote it.
233 /// ScalarKind - Tracks the kind of alloca being considered for promotion,
234 /// computed based on the uses of the alloca rather than the LLVM type system.
238 // Accesses via GEPs that are consistent with element access of a vector
239 // type. This will not be converted into a vector unless there is a later
240 // access using an actual vector type.
243 // Accesses via vector operations and GEPs that are consistent with the
244 // layout of a vector type.
247 // An integer bag-of-bits with bitwise operations for insertion and
248 // extraction. Any combination of types can be converted into this kind
253 /// VectorTy - This tracks the type that we should promote the vector to if
254 /// it is possible to turn it into a vector. This starts out null, and if it
255 /// isn't possible to turn into a vector type, it gets set to VoidTy.
256 const VectorType
*VectorTy
;
258 /// HadNonMemTransferAccess - True if there is at least one access to the
259 /// alloca that is not a MemTransferInst. We don't want to turn structs into
260 /// large integers unless there is some potential for optimization.
261 bool HadNonMemTransferAccess
;
264 explicit ConvertToScalarInfo(unsigned Size
, const TargetData
&td
)
265 : AllocaSize(Size
), TD(td
), IsNotTrivial(false), ScalarKind(Unknown
),
266 VectorTy(0), HadNonMemTransferAccess(false) { }
268 AllocaInst
*TryConvert(AllocaInst
*AI
);
271 bool CanConvertToScalar(Value
*V
, uint64_t Offset
);
272 void MergeInTypeForLoadOrStore(const Type
*In
, uint64_t Offset
);
273 bool MergeInVectorType(const VectorType
*VInTy
, uint64_t Offset
);
274 void ConvertUsesToScalar(Value
*Ptr
, AllocaInst
*NewAI
, uint64_t Offset
);
276 Value
*ConvertScalar_ExtractValue(Value
*NV
, const Type
*ToType
,
277 uint64_t Offset
, IRBuilder
<> &Builder
);
278 Value
*ConvertScalar_InsertValue(Value
*StoredVal
, Value
*ExistingVal
,
279 uint64_t Offset
, IRBuilder
<> &Builder
);
281 } // end anonymous namespace.
284 /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
285 /// rewrite it to be a new alloca which is mem2reg'able. This returns the new
286 /// alloca if possible or null if not.
287 AllocaInst
*ConvertToScalarInfo::TryConvert(AllocaInst
*AI
) {
288 // If we can't convert this scalar, or if mem2reg can trivially do it, bail
290 if (!CanConvertToScalar(AI
, 0) || !IsNotTrivial
)
293 // If an alloca has only memset / memcpy uses, it may still have an Unknown
294 // ScalarKind. Treat it as an Integer below.
295 if (ScalarKind
== Unknown
)
296 ScalarKind
= Integer
;
298 // FIXME: It should be possible to promote the vector type up to the alloca's
300 if (ScalarKind
== Vector
&& VectorTy
->getBitWidth() != AllocaSize
* 8)
301 ScalarKind
= Integer
;
303 // If we were able to find a vector type that can handle this with
304 // insert/extract elements, and if there was at least one use that had
305 // a vector type, promote this to a vector. We don't want to promote
306 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
307 // we just get a lot of insert/extracts. If at least one vector is
308 // involved, then we probably really do have a union of vector/array.
310 if (ScalarKind
== Vector
) {
311 assert(VectorTy
&& "Missing type for vector scalar.");
312 DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI
<< "\n TYPE = "
313 << *VectorTy
<< '\n');
314 NewTy
= VectorTy
; // Use the vector type.
316 unsigned BitWidth
= AllocaSize
* 8;
317 if ((ScalarKind
== ImplicitVector
|| ScalarKind
== Integer
) &&
318 !HadNonMemTransferAccess
&& !TD
.fitsInLegalInteger(BitWidth
))
321 DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI
<< "\n");
322 // Create and insert the integer alloca.
323 NewTy
= IntegerType::get(AI
->getContext(), BitWidth
);
325 AllocaInst
*NewAI
= new AllocaInst(NewTy
, 0, "", AI
->getParent()->begin());
326 ConvertUsesToScalar(AI
, NewAI
, 0);
330 /// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
331 /// (VectorTy) so far at the offset specified by Offset (which is specified in
334 /// There are three cases we handle here:
335 /// 1) A union of vector types of the same size and potentially its elements.
336 /// Here we turn element accesses into insert/extract element operations.
337 /// This promotes a <4 x float> with a store of float to the third element
338 /// into a <4 x float> that uses insert element.
339 /// 2) A union of vector types with power-of-2 size differences, e.g. a float,
340 /// <2 x float> and <4 x float>. Here we turn element accesses into insert
341 /// and extract element operations, and <2 x float> accesses into a cast to
342 /// <2 x double>, an extract, and a cast back to <2 x float>.
343 /// 3) A fully general blob of memory, which we turn into some (potentially
344 /// large) integer type with extract and insert operations where the loads
345 /// and stores would mutate the memory. We mark this by setting VectorTy
347 void ConvertToScalarInfo::MergeInTypeForLoadOrStore(const Type
*In
,
349 // If we already decided to turn this into a blob of integer memory, there is
350 // nothing to be done.
351 if (ScalarKind
== Integer
)
354 // If this could be contributing to a vector, analyze it.
356 // If the In type is a vector that is the same size as the alloca, see if it
357 // matches the existing VecTy.
358 if (const VectorType
*VInTy
= dyn_cast
<VectorType
>(In
)) {
359 if (MergeInVectorType(VInTy
, Offset
))
361 } else if (In
->isFloatTy() || In
->isDoubleTy() ||
362 (In
->isIntegerTy() && In
->getPrimitiveSizeInBits() >= 8 &&
363 isPowerOf2_32(In
->getPrimitiveSizeInBits()))) {
364 // Full width accesses can be ignored, because they can always be turned
366 unsigned EltSize
= In
->getPrimitiveSizeInBits()/8;
367 if (EltSize
== AllocaSize
)
370 // If we're accessing something that could be an element of a vector, see
371 // if the implied vector agrees with what we already have and if Offset is
372 // compatible with it.
373 if (Offset
% EltSize
== 0 && AllocaSize
% EltSize
== 0 &&
374 (!VectorTy
|| Offset
* 8 < VectorTy
->getPrimitiveSizeInBits())) {
376 ScalarKind
= ImplicitVector
;
377 VectorTy
= VectorType::get(In
, AllocaSize
/EltSize
);
381 unsigned CurrentEltSize
= VectorTy
->getElementType()
382 ->getPrimitiveSizeInBits()/8;
383 if (EltSize
== CurrentEltSize
)
386 if (In
->isIntegerTy() && isPowerOf2_32(AllocaSize
/ EltSize
))
391 // Otherwise, we have a case that we can't handle with an optimized vector
392 // form. We can still turn this into a large integer.
393 ScalarKind
= Integer
;
396 /// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
397 /// returning true if the type was successfully merged and false otherwise.
398 bool ConvertToScalarInfo::MergeInVectorType(const VectorType
*VInTy
,
400 // TODO: Support nonzero offsets?
404 // Only allow vectors that are a power-of-2 away from the size of the alloca.
405 if (!isPowerOf2_64(AllocaSize
/ (VInTy
->getBitWidth() / 8)))
408 // If this the first vector we see, remember the type so that we know the
416 unsigned BitWidth
= VectorTy
->getBitWidth();
417 unsigned InBitWidth
= VInTy
->getBitWidth();
419 // Vectors of the same size can be converted using a simple bitcast.
420 if (InBitWidth
== BitWidth
&& AllocaSize
== (InBitWidth
/ 8)) {
425 const Type
*ElementTy
= VectorTy
->getElementType();
426 const Type
*InElementTy
= VInTy
->getElementType();
428 // Do not allow mixed integer and floating-point accesses from vectors of
430 if (ElementTy
->isFloatingPointTy() != InElementTy
->isFloatingPointTy())
433 if (ElementTy
->isFloatingPointTy()) {
434 // Only allow floating-point vectors of different sizes if they have the
435 // same element type.
436 // TODO: This could be loosened a bit, but would anything benefit?
437 if (ElementTy
!= InElementTy
)
440 // There are no arbitrary-precision floating-point types, which limits the
441 // number of legal vector types with larger element types that we can form
442 // to bitcast and extract a subvector.
443 // TODO: We could support some more cases with mixed fp128 and double here.
444 if (!(BitWidth
== 64 || BitWidth
== 128) ||
445 !(InBitWidth
== 64 || InBitWidth
== 128))
448 assert(ElementTy
->isIntegerTy() && "Vector elements must be either integer "
449 "or floating-point.");
450 unsigned BitWidth
= ElementTy
->getPrimitiveSizeInBits();
451 unsigned InBitWidth
= InElementTy
->getPrimitiveSizeInBits();
453 // Do not allow integer types smaller than a byte or types whose widths are
454 // not a multiple of a byte.
455 if (BitWidth
< 8 || InBitWidth
< 8 ||
456 BitWidth
% 8 != 0 || InBitWidth
% 8 != 0)
460 // Pick the largest of the two vector types.
462 if (InBitWidth
> BitWidth
)
468 /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
469 /// its accesses to a single vector type, return true and set VecTy to
470 /// the new type. If we could convert the alloca into a single promotable
471 /// integer, return true but set VecTy to VoidTy. Further, if the use is not a
472 /// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
473 /// is the current offset from the base of the alloca being analyzed.
475 /// If we see at least one access to the value that is as a vector type, set the
477 bool ConvertToScalarInfo::CanConvertToScalar(Value
*V
, uint64_t Offset
) {
478 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!=E
; ++UI
) {
479 Instruction
*User
= cast
<Instruction
>(*UI
);
481 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
482 // Don't break volatile loads.
483 if (LI
->isVolatile())
485 // Don't touch MMX operations.
486 if (LI
->getType()->isX86_MMXTy())
488 HadNonMemTransferAccess
= true;
489 MergeInTypeForLoadOrStore(LI
->getType(), Offset
);
493 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
494 // Storing the pointer, not into the value?
495 if (SI
->getOperand(0) == V
|| SI
->isVolatile()) return false;
496 // Don't touch MMX operations.
497 if (SI
->getOperand(0)->getType()->isX86_MMXTy())
499 HadNonMemTransferAccess
= true;
500 MergeInTypeForLoadOrStore(SI
->getOperand(0)->getType(), Offset
);
504 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(User
)) {
505 IsNotTrivial
= true; // Can't be mem2reg'd.
506 if (!CanConvertToScalar(BCI
, Offset
))
511 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(User
)) {
512 // If this is a GEP with a variable indices, we can't handle it.
513 if (!GEP
->hasAllConstantIndices())
516 // Compute the offset that this GEP adds to the pointer.
517 SmallVector
<Value
*, 8> Indices(GEP
->op_begin()+1, GEP
->op_end());
518 uint64_t GEPOffset
= TD
.getIndexedOffset(GEP
->getPointerOperandType(),
519 &Indices
[0], Indices
.size());
520 // See if all uses can be converted.
521 if (!CanConvertToScalar(GEP
, Offset
+GEPOffset
))
523 IsNotTrivial
= true; // Can't be mem2reg'd.
524 HadNonMemTransferAccess
= true;
528 // If this is a constant sized memset of a constant value (e.g. 0) we can
530 if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(User
)) {
531 // Store of constant value.
532 if (!isa
<ConstantInt
>(MSI
->getValue()))
535 // Store of constant size.
536 ConstantInt
*Len
= dyn_cast
<ConstantInt
>(MSI
->getLength());
540 // If the size differs from the alloca, we can only convert the alloca to
541 // an integer bag-of-bits.
542 // FIXME: This should handle all of the cases that are currently accepted
543 // as vector element insertions.
544 if (Len
->getZExtValue() != AllocaSize
|| Offset
!= 0)
545 ScalarKind
= Integer
;
547 IsNotTrivial
= true; // Can't be mem2reg'd.
548 HadNonMemTransferAccess
= true;
552 // If this is a memcpy or memmove into or out of the whole allocation, we
553 // can handle it like a load or store of the scalar type.
554 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(User
)) {
555 ConstantInt
*Len
= dyn_cast
<ConstantInt
>(MTI
->getLength());
556 if (Len
== 0 || Len
->getZExtValue() != AllocaSize
|| Offset
!= 0)
559 IsNotTrivial
= true; // Can't be mem2reg'd.
563 // Otherwise, we cannot handle this!
570 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
571 /// directly. This happens when we are converting an "integer union" to a
572 /// single integer scalar, or when we are converting a "vector union" to a
573 /// vector with insert/extractelement instructions.
575 /// Offset is an offset from the original alloca, in bits that need to be
576 /// shifted to the right. By the end of this, there should be no uses of Ptr.
577 void ConvertToScalarInfo::ConvertUsesToScalar(Value
*Ptr
, AllocaInst
*NewAI
,
579 while (!Ptr
->use_empty()) {
580 Instruction
*User
= cast
<Instruction
>(Ptr
->use_back());
582 if (BitCastInst
*CI
= dyn_cast
<BitCastInst
>(User
)) {
583 ConvertUsesToScalar(CI
, NewAI
, Offset
);
584 CI
->eraseFromParent();
588 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(User
)) {
589 // Compute the offset that this GEP adds to the pointer.
590 SmallVector
<Value
*, 8> Indices(GEP
->op_begin()+1, GEP
->op_end());
591 uint64_t GEPOffset
= TD
.getIndexedOffset(GEP
->getPointerOperandType(),
592 &Indices
[0], Indices
.size());
593 ConvertUsesToScalar(GEP
, NewAI
, Offset
+GEPOffset
*8);
594 GEP
->eraseFromParent();
598 IRBuilder
<> Builder(User
);
600 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
601 // The load is a bit extract from NewAI shifted right by Offset bits.
602 Value
*LoadedVal
= Builder
.CreateLoad(NewAI
, "tmp");
604 = ConvertScalar_ExtractValue(LoadedVal
, LI
->getType(), Offset
, Builder
);
605 LI
->replaceAllUsesWith(NewLoadVal
);
606 LI
->eraseFromParent();
610 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
611 assert(SI
->getOperand(0) != Ptr
&& "Consistency error!");
612 Instruction
*Old
= Builder
.CreateLoad(NewAI
, NewAI
->getName()+".in");
613 Value
*New
= ConvertScalar_InsertValue(SI
->getOperand(0), Old
, Offset
,
615 Builder
.CreateStore(New
, NewAI
);
616 SI
->eraseFromParent();
618 // If the load we just inserted is now dead, then the inserted store
619 // overwrote the entire thing.
620 if (Old
->use_empty())
621 Old
->eraseFromParent();
625 // If this is a constant sized memset of a constant value (e.g. 0) we can
626 // transform it into a store of the expanded constant value.
627 if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(User
)) {
628 assert(MSI
->getRawDest() == Ptr
&& "Consistency error!");
629 unsigned NumBytes
= cast
<ConstantInt
>(MSI
->getLength())->getZExtValue();
631 unsigned Val
= cast
<ConstantInt
>(MSI
->getValue())->getZExtValue();
633 // Compute the value replicated the right number of times.
634 APInt
APVal(NumBytes
*8, Val
);
636 // Splat the value if non-zero.
638 for (unsigned i
= 1; i
!= NumBytes
; ++i
)
641 Instruction
*Old
= Builder
.CreateLoad(NewAI
, NewAI
->getName()+".in");
642 Value
*New
= ConvertScalar_InsertValue(
643 ConstantInt::get(User
->getContext(), APVal
),
644 Old
, Offset
, Builder
);
645 Builder
.CreateStore(New
, NewAI
);
647 // If the load we just inserted is now dead, then the memset overwrote
649 if (Old
->use_empty())
650 Old
->eraseFromParent();
652 MSI
->eraseFromParent();
656 // If this is a memcpy or memmove into or out of the whole allocation, we
657 // can handle it like a load or store of the scalar type.
658 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(User
)) {
659 assert(Offset
== 0 && "must be store to start of alloca");
661 // If the source and destination are both to the same alloca, then this is
662 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
664 AllocaInst
*OrigAI
= cast
<AllocaInst
>(GetUnderlyingObject(Ptr
, &TD
, 0));
666 if (GetUnderlyingObject(MTI
->getSource(), &TD
, 0) != OrigAI
) {
667 // Dest must be OrigAI, change this to be a load from the original
668 // pointer (bitcasted), then a store to our new alloca.
669 assert(MTI
->getRawDest() == Ptr
&& "Neither use is of pointer?");
670 Value
*SrcPtr
= MTI
->getSource();
671 const PointerType
* SPTy
= cast
<PointerType
>(SrcPtr
->getType());
672 const PointerType
* AIPTy
= cast
<PointerType
>(NewAI
->getType());
673 if (SPTy
->getAddressSpace() != AIPTy
->getAddressSpace()) {
674 AIPTy
= PointerType::get(AIPTy
->getElementType(),
675 SPTy
->getAddressSpace());
677 SrcPtr
= Builder
.CreateBitCast(SrcPtr
, AIPTy
);
679 LoadInst
*SrcVal
= Builder
.CreateLoad(SrcPtr
, "srcval");
680 SrcVal
->setAlignment(MTI
->getAlignment());
681 Builder
.CreateStore(SrcVal
, NewAI
);
682 } else if (GetUnderlyingObject(MTI
->getDest(), &TD
, 0) != OrigAI
) {
683 // Src must be OrigAI, change this to be a load from NewAI then a store
684 // through the original dest pointer (bitcasted).
685 assert(MTI
->getRawSource() == Ptr
&& "Neither use is of pointer?");
686 LoadInst
*SrcVal
= Builder
.CreateLoad(NewAI
, "srcval");
688 const PointerType
* DPTy
= cast
<PointerType
>(MTI
->getDest()->getType());
689 const PointerType
* AIPTy
= cast
<PointerType
>(NewAI
->getType());
690 if (DPTy
->getAddressSpace() != AIPTy
->getAddressSpace()) {
691 AIPTy
= PointerType::get(AIPTy
->getElementType(),
692 DPTy
->getAddressSpace());
694 Value
*DstPtr
= Builder
.CreateBitCast(MTI
->getDest(), AIPTy
);
696 StoreInst
*NewStore
= Builder
.CreateStore(SrcVal
, DstPtr
);
697 NewStore
->setAlignment(MTI
->getAlignment());
699 // Noop transfer. Src == Dst
702 MTI
->eraseFromParent();
706 llvm_unreachable("Unsupported operation!");
710 /// getScaledElementType - Gets a scaled element type for a partial vector
711 /// access of an alloca. The input types must be integer or floating-point
712 /// scalar or vector types, and the resulting type is an integer, float or
714 static const Type
*getScaledElementType(const Type
*Ty1
, const Type
*Ty2
,
715 unsigned NewBitWidth
) {
716 bool IsFP1
= Ty1
->isFloatingPointTy() ||
717 (Ty1
->isVectorTy() &&
718 cast
<VectorType
>(Ty1
)->getElementType()->isFloatingPointTy());
719 bool IsFP2
= Ty2
->isFloatingPointTy() ||
720 (Ty2
->isVectorTy() &&
721 cast
<VectorType
>(Ty2
)->getElementType()->isFloatingPointTy());
723 LLVMContext
&Context
= Ty1
->getContext();
725 // Prefer floating-point types over integer types, as integer types may have
726 // been created by earlier scalar replacement.
727 if (IsFP1
|| IsFP2
) {
728 if (NewBitWidth
== 32)
729 return Type::getFloatTy(Context
);
730 if (NewBitWidth
== 64)
731 return Type::getDoubleTy(Context
);
734 return Type::getIntNTy(Context
, NewBitWidth
);
737 /// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
738 /// to another vector of the same element type which has the same allocation
739 /// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
740 static Value
*CreateShuffleVectorCast(Value
*FromVal
, const Type
*ToType
,
741 IRBuilder
<> &Builder
) {
742 const Type
*FromType
= FromVal
->getType();
743 const VectorType
*FromVTy
= cast
<VectorType
>(FromType
);
744 const VectorType
*ToVTy
= cast
<VectorType
>(ToType
);
745 assert((ToVTy
->getElementType() == FromVTy
->getElementType()) &&
746 "Vectors must have the same element type");
747 Value
*UnV
= UndefValue::get(FromType
);
748 unsigned numEltsFrom
= FromVTy
->getNumElements();
749 unsigned numEltsTo
= ToVTy
->getNumElements();
751 SmallVector
<Constant
*, 3> Args
;
752 const Type
* Int32Ty
= Builder
.getInt32Ty();
753 unsigned minNumElts
= std::min(numEltsFrom
, numEltsTo
);
755 for (i
=0; i
!= minNumElts
; ++i
)
756 Args
.push_back(ConstantInt::get(Int32Ty
, i
));
759 Constant
* UnC
= UndefValue::get(Int32Ty
);
760 for (; i
!= numEltsTo
; ++i
)
763 Constant
*Mask
= ConstantVector::get(Args
);
764 return Builder
.CreateShuffleVector(FromVal
, UnV
, Mask
, "tmpV");
767 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
768 /// or vector value FromVal, extracting the bits from the offset specified by
769 /// Offset. This returns the value, which is of type ToType.
771 /// This happens when we are converting an "integer union" to a single
772 /// integer scalar, or when we are converting a "vector union" to a vector with
773 /// insert/extractelement instructions.
775 /// Offset is an offset from the original alloca, in bits that need to be
776 /// shifted to the right.
777 Value
*ConvertToScalarInfo::
778 ConvertScalar_ExtractValue(Value
*FromVal
, const Type
*ToType
,
779 uint64_t Offset
, IRBuilder
<> &Builder
) {
780 // If the load is of the whole new alloca, no conversion is needed.
781 const Type
*FromType
= FromVal
->getType();
782 if (FromType
== ToType
&& Offset
== 0)
785 // If the result alloca is a vector type, this is either an element
786 // access or a bitcast to another vector type of the same size.
787 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(FromType
)) {
788 unsigned FromTypeSize
= TD
.getTypeAllocSize(FromType
);
789 unsigned ToTypeSize
= TD
.getTypeAllocSize(ToType
);
790 if (FromTypeSize
== ToTypeSize
) {
791 // If the two types have the same primitive size, use a bit cast.
792 // Otherwise, it is two vectors with the same element type that has
793 // the same allocation size but different number of elements so use
795 if (FromType
->getPrimitiveSizeInBits() ==
796 ToType
->getPrimitiveSizeInBits())
797 return Builder
.CreateBitCast(FromVal
, ToType
, "tmp");
799 return CreateShuffleVectorCast(FromVal
, ToType
, Builder
);
802 if (isPowerOf2_64(FromTypeSize
/ ToTypeSize
)) {
803 assert(!(ToType
->isVectorTy() && Offset
!= 0) && "Can't extract a value "
804 "of a smaller vector type at a nonzero offset.");
806 const Type
*CastElementTy
= getScaledElementType(FromType
, ToType
,
808 unsigned NumCastVectorElements
= FromTypeSize
/ ToTypeSize
;
810 LLVMContext
&Context
= FromVal
->getContext();
811 const Type
*CastTy
= VectorType::get(CastElementTy
,
812 NumCastVectorElements
);
813 Value
*Cast
= Builder
.CreateBitCast(FromVal
, CastTy
, "tmp");
815 unsigned EltSize
= TD
.getTypeAllocSizeInBits(CastElementTy
);
816 unsigned Elt
= Offset
/EltSize
;
817 assert(EltSize
*Elt
== Offset
&& "Invalid modulus in validity checking");
818 Value
*Extract
= Builder
.CreateExtractElement(Cast
, ConstantInt::get(
819 Type::getInt32Ty(Context
), Elt
), "tmp");
820 return Builder
.CreateBitCast(Extract
, ToType
, "tmp");
823 // Otherwise it must be an element access.
826 unsigned EltSize
= TD
.getTypeAllocSizeInBits(VTy
->getElementType());
827 Elt
= Offset
/EltSize
;
828 assert(EltSize
*Elt
== Offset
&& "Invalid modulus in validity checking");
830 // Return the element extracted out of it.
831 Value
*V
= Builder
.CreateExtractElement(FromVal
, ConstantInt::get(
832 Type::getInt32Ty(FromVal
->getContext()), Elt
), "tmp");
833 if (V
->getType() != ToType
)
834 V
= Builder
.CreateBitCast(V
, ToType
, "tmp");
838 // If ToType is a first class aggregate, extract out each of the pieces and
839 // use insertvalue's to form the FCA.
840 if (const StructType
*ST
= dyn_cast
<StructType
>(ToType
)) {
841 const StructLayout
&Layout
= *TD
.getStructLayout(ST
);
842 Value
*Res
= UndefValue::get(ST
);
843 for (unsigned i
= 0, e
= ST
->getNumElements(); i
!= e
; ++i
) {
844 Value
*Elt
= ConvertScalar_ExtractValue(FromVal
, ST
->getElementType(i
),
845 Offset
+Layout
.getElementOffsetInBits(i
),
847 Res
= Builder
.CreateInsertValue(Res
, Elt
, i
, "tmp");
852 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(ToType
)) {
853 uint64_t EltSize
= TD
.getTypeAllocSizeInBits(AT
->getElementType());
854 Value
*Res
= UndefValue::get(AT
);
855 for (unsigned i
= 0, e
= AT
->getNumElements(); i
!= e
; ++i
) {
856 Value
*Elt
= ConvertScalar_ExtractValue(FromVal
, AT
->getElementType(),
857 Offset
+i
*EltSize
, Builder
);
858 Res
= Builder
.CreateInsertValue(Res
, Elt
, i
, "tmp");
863 // Otherwise, this must be a union that was converted to an integer value.
864 const IntegerType
*NTy
= cast
<IntegerType
>(FromVal
->getType());
866 // If this is a big-endian system and the load is narrower than the
867 // full alloca type, we need to do a shift to get the right bits.
869 if (TD
.isBigEndian()) {
870 // On big-endian machines, the lowest bit is stored at the bit offset
871 // from the pointer given by getTypeStoreSizeInBits. This matters for
872 // integers with a bitwidth that is not a multiple of 8.
873 ShAmt
= TD
.getTypeStoreSizeInBits(NTy
) -
874 TD
.getTypeStoreSizeInBits(ToType
) - Offset
;
879 // Note: we support negative bitwidths (with shl) which are not defined.
880 // We do this to support (f.e.) loads off the end of a structure where
881 // only some bits are used.
882 if (ShAmt
> 0 && (unsigned)ShAmt
< NTy
->getBitWidth())
883 FromVal
= Builder
.CreateLShr(FromVal
,
884 ConstantInt::get(FromVal
->getType(),
886 else if (ShAmt
< 0 && (unsigned)-ShAmt
< NTy
->getBitWidth())
887 FromVal
= Builder
.CreateShl(FromVal
,
888 ConstantInt::get(FromVal
->getType(),
891 // Finally, unconditionally truncate the integer to the right width.
892 unsigned LIBitWidth
= TD
.getTypeSizeInBits(ToType
);
893 if (LIBitWidth
< NTy
->getBitWidth())
895 Builder
.CreateTrunc(FromVal
, IntegerType::get(FromVal
->getContext(),
897 else if (LIBitWidth
> NTy
->getBitWidth())
899 Builder
.CreateZExt(FromVal
, IntegerType::get(FromVal
->getContext(),
902 // If the result is an integer, this is a trunc or bitcast.
903 if (ToType
->isIntegerTy()) {
905 } else if (ToType
->isFloatingPointTy() || ToType
->isVectorTy()) {
906 // Just do a bitcast, we know the sizes match up.
907 FromVal
= Builder
.CreateBitCast(FromVal
, ToType
, "tmp");
909 // Otherwise must be a pointer.
910 FromVal
= Builder
.CreateIntToPtr(FromVal
, ToType
, "tmp");
912 assert(FromVal
->getType() == ToType
&& "Didn't convert right?");
916 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
917 /// or vector value "Old" at the offset specified by Offset.
919 /// This happens when we are converting an "integer union" to a
920 /// single integer scalar, or when we are converting a "vector union" to a
921 /// vector with insert/extractelement instructions.
923 /// Offset is an offset from the original alloca, in bits that need to be
924 /// shifted to the right.
925 Value
*ConvertToScalarInfo::
926 ConvertScalar_InsertValue(Value
*SV
, Value
*Old
,
927 uint64_t Offset
, IRBuilder
<> &Builder
) {
928 // Convert the stored type to the actual type, shift it left to insert
929 // then 'or' into place.
930 const Type
*AllocaType
= Old
->getType();
931 LLVMContext
&Context
= Old
->getContext();
933 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(AllocaType
)) {
934 uint64_t VecSize
= TD
.getTypeAllocSizeInBits(VTy
);
935 uint64_t ValSize
= TD
.getTypeAllocSizeInBits(SV
->getType());
937 // Changing the whole vector with memset or with an access of a different
939 if (ValSize
== VecSize
) {
940 // If the two types have the same primitive size, use a bit cast.
941 // Otherwise, it is two vectors with the same element type that has
942 // the same allocation size but different number of elements so use
944 if (VTy
->getPrimitiveSizeInBits() ==
945 SV
->getType()->getPrimitiveSizeInBits())
946 return Builder
.CreateBitCast(SV
, AllocaType
, "tmp");
948 return CreateShuffleVectorCast(SV
, VTy
, Builder
);
951 if (isPowerOf2_64(VecSize
/ ValSize
)) {
952 assert(!(SV
->getType()->isVectorTy() && Offset
!= 0) && "Can't insert a "
953 "value of a smaller vector type at a nonzero offset.");
955 const Type
*CastElementTy
= getScaledElementType(VTy
, SV
->getType(),
957 unsigned NumCastVectorElements
= VecSize
/ ValSize
;
959 LLVMContext
&Context
= SV
->getContext();
960 const Type
*OldCastTy
= VectorType::get(CastElementTy
,
961 NumCastVectorElements
);
962 Value
*OldCast
= Builder
.CreateBitCast(Old
, OldCastTy
, "tmp");
964 Value
*SVCast
= Builder
.CreateBitCast(SV
, CastElementTy
, "tmp");
966 unsigned EltSize
= TD
.getTypeAllocSizeInBits(CastElementTy
);
967 unsigned Elt
= Offset
/EltSize
;
968 assert(EltSize
*Elt
== Offset
&& "Invalid modulus in validity checking");
970 Builder
.CreateInsertElement(OldCast
, SVCast
, ConstantInt::get(
971 Type::getInt32Ty(Context
), Elt
), "tmp");
972 return Builder
.CreateBitCast(Insert
, AllocaType
, "tmp");
975 // Must be an element insertion.
976 assert(SV
->getType() == VTy
->getElementType());
977 uint64_t EltSize
= TD
.getTypeAllocSizeInBits(VTy
->getElementType());
978 unsigned Elt
= Offset
/EltSize
;
979 return Builder
.CreateInsertElement(Old
, SV
,
980 ConstantInt::get(Type::getInt32Ty(SV
->getContext()), Elt
),
984 // If SV is a first-class aggregate value, insert each value recursively.
985 if (const StructType
*ST
= dyn_cast
<StructType
>(SV
->getType())) {
986 const StructLayout
&Layout
= *TD
.getStructLayout(ST
);
987 for (unsigned i
= 0, e
= ST
->getNumElements(); i
!= e
; ++i
) {
988 Value
*Elt
= Builder
.CreateExtractValue(SV
, i
, "tmp");
989 Old
= ConvertScalar_InsertValue(Elt
, Old
,
990 Offset
+Layout
.getElementOffsetInBits(i
),
996 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(SV
->getType())) {
997 uint64_t EltSize
= TD
.getTypeAllocSizeInBits(AT
->getElementType());
998 for (unsigned i
= 0, e
= AT
->getNumElements(); i
!= e
; ++i
) {
999 Value
*Elt
= Builder
.CreateExtractValue(SV
, i
, "tmp");
1000 Old
= ConvertScalar_InsertValue(Elt
, Old
, Offset
+i
*EltSize
, Builder
);
1005 // If SV is a float, convert it to the appropriate integer type.
1006 // If it is a pointer, do the same.
1007 unsigned SrcWidth
= TD
.getTypeSizeInBits(SV
->getType());
1008 unsigned DestWidth
= TD
.getTypeSizeInBits(AllocaType
);
1009 unsigned SrcStoreWidth
= TD
.getTypeStoreSizeInBits(SV
->getType());
1010 unsigned DestStoreWidth
= TD
.getTypeStoreSizeInBits(AllocaType
);
1011 if (SV
->getType()->isFloatingPointTy() || SV
->getType()->isVectorTy())
1012 SV
= Builder
.CreateBitCast(SV
,
1013 IntegerType::get(SV
->getContext(),SrcWidth
), "tmp");
1014 else if (SV
->getType()->isPointerTy())
1015 SV
= Builder
.CreatePtrToInt(SV
, TD
.getIntPtrType(SV
->getContext()), "tmp");
1017 // Zero extend or truncate the value if needed.
1018 if (SV
->getType() != AllocaType
) {
1019 if (SV
->getType()->getPrimitiveSizeInBits() <
1020 AllocaType
->getPrimitiveSizeInBits())
1021 SV
= Builder
.CreateZExt(SV
, AllocaType
, "tmp");
1023 // Truncation may be needed if storing more than the alloca can hold
1024 // (undefined behavior).
1025 SV
= Builder
.CreateTrunc(SV
, AllocaType
, "tmp");
1026 SrcWidth
= DestWidth
;
1027 SrcStoreWidth
= DestStoreWidth
;
1031 // If this is a big-endian system and the store is narrower than the
1032 // full alloca type, we need to do a shift to get the right bits.
1034 if (TD
.isBigEndian()) {
1035 // On big-endian machines, the lowest bit is stored at the bit offset
1036 // from the pointer given by getTypeStoreSizeInBits. This matters for
1037 // integers with a bitwidth that is not a multiple of 8.
1038 ShAmt
= DestStoreWidth
- SrcStoreWidth
- Offset
;
1043 // Note: we support negative bitwidths (with shr) which are not defined.
1044 // We do this to support (f.e.) stores off the end of a structure where
1045 // only some bits in the structure are set.
1046 APInt
Mask(APInt::getLowBitsSet(DestWidth
, SrcWidth
));
1047 if (ShAmt
> 0 && (unsigned)ShAmt
< DestWidth
) {
1048 SV
= Builder
.CreateShl(SV
, ConstantInt::get(SV
->getType(),
1051 } else if (ShAmt
< 0 && (unsigned)-ShAmt
< DestWidth
) {
1052 SV
= Builder
.CreateLShr(SV
, ConstantInt::get(SV
->getType(),
1054 Mask
= Mask
.lshr(-ShAmt
);
1057 // Mask out the bits we are about to insert from the old value, and or
1059 if (SrcWidth
!= DestWidth
) {
1060 assert(DestWidth
> SrcWidth
);
1061 Old
= Builder
.CreateAnd(Old
, ConstantInt::get(Context
, ~Mask
), "mask");
1062 SV
= Builder
.CreateOr(Old
, SV
, "ins");
1068 //===----------------------------------------------------------------------===//
1070 //===----------------------------------------------------------------------===//
1073 bool SROA::runOnFunction(Function
&F
) {
1074 TD
= getAnalysisIfAvailable
<TargetData
>();
1076 bool Changed
= performPromotion(F
);
1078 // FIXME: ScalarRepl currently depends on TargetData more than it
1079 // theoretically needs to. It should be refactored in order to support
1080 // target-independent IR. Until this is done, just skip the actual
1081 // scalar-replacement portion of this pass.
1082 if (!TD
) return Changed
;
1085 bool LocalChange
= performScalarRepl(F
);
1086 if (!LocalChange
) break; // No need to repromote if no scalarrepl
1088 LocalChange
= performPromotion(F
);
1089 if (!LocalChange
) break; // No need to re-scalarrepl if no promotion
1096 class AllocaPromoter
: public LoadAndStorePromoter
{
1099 SmallVector
<DbgDeclareInst
*, 4> DDIs
;
1100 SmallVector
<DbgValueInst
*, 4> DVIs
;
1102 AllocaPromoter(const SmallVectorImpl
<Instruction
*> &Insts
, SSAUpdater
&S
,
1104 : LoadAndStorePromoter(Insts
, S
), AI(0), DIB(DB
) {}
1106 void run(AllocaInst
*AI
, const SmallVectorImpl
<Instruction
*> &Insts
) {
1107 // Remember which alloca we're promoting (for isInstInList).
1109 if (MDNode
*DebugNode
= MDNode::getIfExists(AI
->getContext(), AI
))
1110 for (Value::use_iterator UI
= DebugNode
->use_begin(),
1111 E
= DebugNode
->use_end(); UI
!= E
; ++UI
)
1112 if (DbgDeclareInst
*DDI
= dyn_cast
<DbgDeclareInst
>(*UI
))
1113 DDIs
.push_back(DDI
);
1114 else if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(*UI
))
1115 DVIs
.push_back(DVI
);
1117 LoadAndStorePromoter::run(Insts
);
1118 AI
->eraseFromParent();
1119 for (SmallVector
<DbgDeclareInst
*, 4>::iterator I
= DDIs
.begin(),
1120 E
= DDIs
.end(); I
!= E
; ++I
) {
1121 DbgDeclareInst
*DDI
= *I
;
1122 DDI
->eraseFromParent();
1124 for (SmallVector
<DbgValueInst
*, 4>::iterator I
= DVIs
.begin(),
1125 E
= DVIs
.end(); I
!= E
; ++I
) {
1126 DbgValueInst
*DVI
= *I
;
1127 DVI
->eraseFromParent();
1131 virtual bool isInstInList(Instruction
*I
,
1132 const SmallVectorImpl
<Instruction
*> &Insts
) const {
1133 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
1134 return LI
->getOperand(0) == AI
;
1135 return cast
<StoreInst
>(I
)->getPointerOperand() == AI
;
1138 virtual void updateDebugInfo(Instruction
*Inst
) const {
1139 for (SmallVector
<DbgDeclareInst
*, 4>::const_iterator I
= DDIs
.begin(),
1140 E
= DDIs
.end(); I
!= E
; ++I
) {
1141 DbgDeclareInst
*DDI
= *I
;
1142 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
))
1143 ConvertDebugDeclareToDebugValue(DDI
, SI
, *DIB
);
1144 else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
))
1145 ConvertDebugDeclareToDebugValue(DDI
, LI
, *DIB
);
1147 for (SmallVector
<DbgValueInst
*, 4>::const_iterator I
= DVIs
.begin(),
1148 E
= DVIs
.end(); I
!= E
; ++I
) {
1149 DbgValueInst
*DVI
= *I
;
1150 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
1151 Instruction
*DbgVal
= NULL
;
1152 // If an argument is zero extended then use argument directly. The ZExt
1153 // may be zapped by an optimization pass in future.
1154 Argument
*ExtendedArg
= NULL
;
1155 if (ZExtInst
*ZExt
= dyn_cast
<ZExtInst
>(SI
->getOperand(0)))
1156 ExtendedArg
= dyn_cast
<Argument
>(ZExt
->getOperand(0));
1157 if (SExtInst
*SExt
= dyn_cast
<SExtInst
>(SI
->getOperand(0)))
1158 ExtendedArg
= dyn_cast
<Argument
>(SExt
->getOperand(0));
1160 DbgVal
= DIB
->insertDbgValueIntrinsic(ExtendedArg
, 0,
1161 DIVariable(DVI
->getVariable()),
1164 DbgVal
= DIB
->insertDbgValueIntrinsic(SI
->getOperand(0), 0,
1165 DIVariable(DVI
->getVariable()),
1167 DbgVal
->setDebugLoc(DVI
->getDebugLoc());
1168 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
)) {
1169 Instruction
*DbgVal
=
1170 DIB
->insertDbgValueIntrinsic(LI
->getOperand(0), 0,
1171 DIVariable(DVI
->getVariable()), LI
);
1172 DbgVal
->setDebugLoc(DVI
->getDebugLoc());
1177 } // end anon namespace
1179 /// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1180 /// subsequently loaded can be rewritten to load both input pointers and then
1181 /// select between the result, allowing the load of the alloca to be promoted.
1183 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1184 /// %V = load i32* %P2
1186 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1187 /// %V2 = load i32* %Other
1188 /// %V = select i1 %cond, i32 %V1, i32 %V2
1190 /// We can do this to a select if its only uses are loads and if the operand to
1191 /// the select can be loaded unconditionally.
1192 static bool isSafeSelectToSpeculate(SelectInst
*SI
, const TargetData
*TD
) {
1193 bool TDerefable
= SI
->getTrueValue()->isDereferenceablePointer();
1194 bool FDerefable
= SI
->getFalseValue()->isDereferenceablePointer();
1196 for (Value::use_iterator UI
= SI
->use_begin(), UE
= SI
->use_end();
1198 LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
);
1199 if (LI
== 0 || LI
->isVolatile()) return false;
1201 // Both operands to the select need to be dereferencable, either absolutely
1202 // (e.g. allocas) or at this point because we can see other accesses to it.
1203 if (!TDerefable
&& !isSafeToLoadUnconditionally(SI
->getTrueValue(), LI
,
1204 LI
->getAlignment(), TD
))
1206 if (!FDerefable
&& !isSafeToLoadUnconditionally(SI
->getFalseValue(), LI
,
1207 LI
->getAlignment(), TD
))
1214 /// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1215 /// subsequently loaded can be rewritten to load both input pointers in the pred
1216 /// blocks and then PHI the results, allowing the load of the alloca to be
1219 /// %P2 = phi [i32* %Alloca, i32* %Other]
1220 /// %V = load i32* %P2
1222 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1224 /// %V2 = load i32* %Other
1226 /// %V = phi [i32 %V1, i32 %V2]
1228 /// We can do this to a select if its only uses are loads and if the operand to
1229 /// the select can be loaded unconditionally.
1230 static bool isSafePHIToSpeculate(PHINode
*PN
, const TargetData
*TD
) {
1231 // For now, we can only do this promotion if the load is in the same block as
1232 // the PHI, and if there are no stores between the phi and load.
1233 // TODO: Allow recursive phi users.
1234 // TODO: Allow stores.
1235 BasicBlock
*BB
= PN
->getParent();
1236 unsigned MaxAlign
= 0;
1237 for (Value::use_iterator UI
= PN
->use_begin(), UE
= PN
->use_end();
1239 LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
);
1240 if (LI
== 0 || LI
->isVolatile()) return false;
1242 // For now we only allow loads in the same block as the PHI. This is a
1243 // common case that happens when instcombine merges two loads through a PHI.
1244 if (LI
->getParent() != BB
) return false;
1246 // Ensure that there are no instructions between the PHI and the load that
1248 for (BasicBlock::iterator BBI
= PN
; &*BBI
!= LI
; ++BBI
)
1249 if (BBI
->mayWriteToMemory())
1252 MaxAlign
= std::max(MaxAlign
, LI
->getAlignment());
1255 // Okay, we know that we have one or more loads in the same block as the PHI.
1256 // We can transform this if it is safe to push the loads into the predecessor
1257 // blocks. The only thing to watch out for is that we can't put a possibly
1258 // trapping load in the predecessor if it is a critical edge.
1259 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1260 BasicBlock
*Pred
= PN
->getIncomingBlock(i
);
1262 // If the predecessor has a single successor, then the edge isn't critical.
1263 if (Pred
->getTerminator()->getNumSuccessors() == 1)
1266 Value
*InVal
= PN
->getIncomingValue(i
);
1268 // If the InVal is an invoke in the pred, we can't put a load on the edge.
1269 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(InVal
))
1270 if (II
->getParent() == Pred
)
1273 // If this pointer is always safe to load, or if we can prove that there is
1274 // already a load in the block, then we can move the load to the pred block.
1275 if (InVal
->isDereferenceablePointer() ||
1276 isSafeToLoadUnconditionally(InVal
, Pred
->getTerminator(), MaxAlign
, TD
))
1286 /// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1287 /// direct (non-volatile) loads and stores to it. If the alloca is close but
1288 /// not quite there, this will transform the code to allow promotion. As such,
1289 /// it is a non-pure predicate.
1290 static bool tryToMakeAllocaBePromotable(AllocaInst
*AI
, const TargetData
*TD
) {
1291 SetVector
<Instruction
*, SmallVector
<Instruction
*, 4>,
1292 SmallPtrSet
<Instruction
*, 4> > InstsToRewrite
;
1294 for (Value::use_iterator UI
= AI
->use_begin(), UE
= AI
->use_end();
1297 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
1298 if (LI
->isVolatile())
1303 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
1304 if (SI
->getOperand(0) == AI
|| SI
->isVolatile())
1305 return false; // Don't allow a store OF the AI, only INTO the AI.
1309 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(U
)) {
1310 // If the condition being selected on is a constant, fold the select, yes
1311 // this does (rarely) happen early on.
1312 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(SI
->getCondition())) {
1313 Value
*Result
= SI
->getOperand(1+CI
->isZero());
1314 SI
->replaceAllUsesWith(Result
);
1315 SI
->eraseFromParent();
1317 // This is very rare and we just scrambled the use list of AI, start
1319 return tryToMakeAllocaBePromotable(AI
, TD
);
1322 // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1323 // loads, then we can transform this by rewriting the select.
1324 if (!isSafeSelectToSpeculate(SI
, TD
))
1327 InstsToRewrite
.insert(SI
);
1331 if (PHINode
*PN
= dyn_cast
<PHINode
>(U
)) {
1332 if (PN
->use_empty()) { // Dead PHIs can be stripped.
1333 InstsToRewrite
.insert(PN
);
1337 // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1338 // in the pred blocks, then we can transform this by rewriting the PHI.
1339 if (!isSafePHIToSpeculate(PN
, TD
))
1342 InstsToRewrite
.insert(PN
);
1349 // If there are no instructions to rewrite, then all uses are load/stores and
1351 if (InstsToRewrite
.empty())
1354 // If we have instructions that need to be rewritten for this to be promotable
1355 // take care of it now.
1356 for (unsigned i
= 0, e
= InstsToRewrite
.size(); i
!= e
; ++i
) {
1357 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(InstsToRewrite
[i
])) {
1358 // Selects in InstsToRewrite only have load uses. Rewrite each as two
1359 // loads with a new select.
1360 while (!SI
->use_empty()) {
1361 LoadInst
*LI
= cast
<LoadInst
>(SI
->use_back());
1363 IRBuilder
<> Builder(LI
);
1364 LoadInst
*TrueLoad
=
1365 Builder
.CreateLoad(SI
->getTrueValue(), LI
->getName()+".t");
1366 LoadInst
*FalseLoad
=
1367 Builder
.CreateLoad(SI
->getFalseValue(), LI
->getName()+".f");
1369 // Transfer alignment and TBAA info if present.
1370 TrueLoad
->setAlignment(LI
->getAlignment());
1371 FalseLoad
->setAlignment(LI
->getAlignment());
1372 if (MDNode
*Tag
= LI
->getMetadata(LLVMContext::MD_tbaa
)) {
1373 TrueLoad
->setMetadata(LLVMContext::MD_tbaa
, Tag
);
1374 FalseLoad
->setMetadata(LLVMContext::MD_tbaa
, Tag
);
1377 Value
*V
= Builder
.CreateSelect(SI
->getCondition(), TrueLoad
, FalseLoad
);
1379 LI
->replaceAllUsesWith(V
);
1380 LI
->eraseFromParent();
1383 // Now that all the loads are gone, the select is gone too.
1384 SI
->eraseFromParent();
1388 // Otherwise, we have a PHI node which allows us to push the loads into the
1390 PHINode
*PN
= cast
<PHINode
>(InstsToRewrite
[i
]);
1391 if (PN
->use_empty()) {
1392 PN
->eraseFromParent();
1396 const Type
*LoadTy
= cast
<PointerType
>(PN
->getType())->getElementType();
1397 PHINode
*NewPN
= PHINode::Create(LoadTy
, PN
->getNumIncomingValues(),
1398 PN
->getName()+".ld", PN
);
1400 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1401 // matter which one we get and if any differ, it doesn't matter.
1402 LoadInst
*SomeLoad
= cast
<LoadInst
>(PN
->use_back());
1403 MDNode
*TBAATag
= SomeLoad
->getMetadata(LLVMContext::MD_tbaa
);
1404 unsigned Align
= SomeLoad
->getAlignment();
1406 // Rewrite all loads of the PN to use the new PHI.
1407 while (!PN
->use_empty()) {
1408 LoadInst
*LI
= cast
<LoadInst
>(PN
->use_back());
1409 LI
->replaceAllUsesWith(NewPN
);
1410 LI
->eraseFromParent();
1413 // Inject loads into all of the pred blocks. Keep track of which blocks we
1414 // insert them into in case we have multiple edges from the same block.
1415 DenseMap
<BasicBlock
*, LoadInst
*> InsertedLoads
;
1417 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1418 BasicBlock
*Pred
= PN
->getIncomingBlock(i
);
1419 LoadInst
*&Load
= InsertedLoads
[Pred
];
1421 Load
= new LoadInst(PN
->getIncomingValue(i
),
1422 PN
->getName() + "." + Pred
->getName(),
1423 Pred
->getTerminator());
1424 Load
->setAlignment(Align
);
1425 if (TBAATag
) Load
->setMetadata(LLVMContext::MD_tbaa
, TBAATag
);
1428 NewPN
->addIncoming(Load
, Pred
);
1431 PN
->eraseFromParent();
1438 bool SROA::performPromotion(Function
&F
) {
1439 std::vector
<AllocaInst
*> Allocas
;
1440 DominatorTree
*DT
= 0;
1442 DT
= &getAnalysis
<DominatorTree
>();
1444 BasicBlock
&BB
= F
.getEntryBlock(); // Get the entry node for the function
1445 DIBuilder
DIB(*F
.getParent());
1446 bool Changed
= false;
1447 SmallVector
<Instruction
*, 64> Insts
;
1451 // Find allocas that are safe to promote, by looking at all instructions in
1453 for (BasicBlock::iterator I
= BB
.begin(), E
= --BB
.end(); I
!= E
; ++I
)
1454 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
)) // Is it an alloca?
1455 if (tryToMakeAllocaBePromotable(AI
, TD
))
1456 Allocas
.push_back(AI
);
1458 if (Allocas
.empty()) break;
1461 PromoteMemToReg(Allocas
, *DT
);
1464 for (unsigned i
= 0, e
= Allocas
.size(); i
!= e
; ++i
) {
1465 AllocaInst
*AI
= Allocas
[i
];
1467 // Build list of instructions to promote.
1468 for (Value::use_iterator UI
= AI
->use_begin(), E
= AI
->use_end();
1470 Insts
.push_back(cast
<Instruction
>(*UI
));
1471 AllocaPromoter(Insts
, SSA
, &DIB
).run(AI
, Insts
);
1475 NumPromoted
+= Allocas
.size();
1483 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1484 /// SROA. It must be a struct or array type with a small number of elements.
1485 static bool ShouldAttemptScalarRepl(AllocaInst
*AI
) {
1486 const Type
*T
= AI
->getAllocatedType();
1487 // Do not promote any struct into more than 32 separate vars.
1488 if (const StructType
*ST
= dyn_cast
<StructType
>(T
))
1489 return ST
->getNumElements() <= 32;
1490 // Arrays are much less likely to be safe for SROA; only consider
1491 // them if they are very small.
1492 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(T
))
1493 return AT
->getNumElements() <= 8;
1498 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
1499 // which runs on all of the alloca instructions in the function, removing them
1500 // if they are only used by getelementptr instructions.
1502 bool SROA::performScalarRepl(Function
&F
) {
1503 std::vector
<AllocaInst
*> WorkList
;
1505 // Scan the entry basic block, adding allocas to the worklist.
1506 BasicBlock
&BB
= F
.getEntryBlock();
1507 for (BasicBlock::iterator I
= BB
.begin(), E
= BB
.end(); I
!= E
; ++I
)
1508 if (AllocaInst
*A
= dyn_cast
<AllocaInst
>(I
))
1509 WorkList
.push_back(A
);
1511 // Process the worklist
1512 bool Changed
= false;
1513 while (!WorkList
.empty()) {
1514 AllocaInst
*AI
= WorkList
.back();
1515 WorkList
.pop_back();
1517 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
1518 // with unused elements.
1519 if (AI
->use_empty()) {
1520 AI
->eraseFromParent();
1525 // If this alloca is impossible for us to promote, reject it early.
1526 if (AI
->isArrayAllocation() || !AI
->getAllocatedType()->isSized())
1529 // Check to see if this allocation is only modified by a memcpy/memmove from
1530 // a constant global. If this is the case, we can change all users to use
1531 // the constant global instead. This is commonly produced by the CFE by
1532 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1533 // is only subsequently read.
1534 SmallVector
<Instruction
*, 4> ToDelete
;
1535 if (MemTransferInst
*Copy
= isOnlyCopiedFromConstantGlobal(AI
, ToDelete
)) {
1536 DEBUG(dbgs() << "Found alloca equal to global: " << *AI
<< '\n');
1537 DEBUG(dbgs() << " memcpy = " << *Copy
<< '\n');
1538 for (unsigned i
= 0, e
= ToDelete
.size(); i
!= e
; ++i
)
1539 ToDelete
[i
]->eraseFromParent();
1540 Constant
*TheSrc
= cast
<Constant
>(Copy
->getSource());
1541 AI
->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc
, AI
->getType()));
1542 Copy
->eraseFromParent(); // Don't mutate the global.
1543 AI
->eraseFromParent();
1549 // Check to see if we can perform the core SROA transformation. We cannot
1550 // transform the allocation instruction if it is an array allocation
1551 // (allocations OF arrays are ok though), and an allocation of a scalar
1552 // value cannot be decomposed at all.
1553 uint64_t AllocaSize
= TD
->getTypeAllocSize(AI
->getAllocatedType());
1555 // Do not promote [0 x %struct].
1556 if (AllocaSize
== 0) continue;
1558 // Do not promote any struct whose size is too big.
1559 if (AllocaSize
> SRThreshold
) continue;
1561 // If the alloca looks like a good candidate for scalar replacement, and if
1562 // all its users can be transformed, then split up the aggregate into its
1563 // separate elements.
1564 if (ShouldAttemptScalarRepl(AI
) && isSafeAllocaToScalarRepl(AI
)) {
1565 DoScalarReplacement(AI
, WorkList
);
1570 // If we can turn this aggregate value (potentially with casts) into a
1571 // simple scalar value that can be mem2reg'd into a register value.
1572 // IsNotTrivial tracks whether this is something that mem2reg could have
1573 // promoted itself. If so, we don't want to transform it needlessly. Note
1574 // that we can't just check based on the type: the alloca may be of an i32
1575 // but that has pointer arithmetic to set byte 3 of it or something.
1576 if (AllocaInst
*NewAI
=
1577 ConvertToScalarInfo((unsigned)AllocaSize
, *TD
).TryConvert(AI
)) {
1578 NewAI
->takeName(AI
);
1579 AI
->eraseFromParent();
1585 // Otherwise, couldn't process this alloca.
1591 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1592 /// predicate, do SROA now.
1593 void SROA::DoScalarReplacement(AllocaInst
*AI
,
1594 std::vector
<AllocaInst
*> &WorkList
) {
1595 DEBUG(dbgs() << "Found inst to SROA: " << *AI
<< '\n');
1596 SmallVector
<AllocaInst
*, 32> ElementAllocas
;
1597 if (const StructType
*ST
= dyn_cast
<StructType
>(AI
->getAllocatedType())) {
1598 ElementAllocas
.reserve(ST
->getNumContainedTypes());
1599 for (unsigned i
= 0, e
= ST
->getNumContainedTypes(); i
!= e
; ++i
) {
1600 AllocaInst
*NA
= new AllocaInst(ST
->getContainedType(i
), 0,
1602 AI
->getName() + "." + Twine(i
), AI
);
1603 ElementAllocas
.push_back(NA
);
1604 WorkList
.push_back(NA
); // Add to worklist for recursive processing
1607 const ArrayType
*AT
= cast
<ArrayType
>(AI
->getAllocatedType());
1608 ElementAllocas
.reserve(AT
->getNumElements());
1609 const Type
*ElTy
= AT
->getElementType();
1610 for (unsigned i
= 0, e
= AT
->getNumElements(); i
!= e
; ++i
) {
1611 AllocaInst
*NA
= new AllocaInst(ElTy
, 0, AI
->getAlignment(),
1612 AI
->getName() + "." + Twine(i
), AI
);
1613 ElementAllocas
.push_back(NA
);
1614 WorkList
.push_back(NA
); // Add to worklist for recursive processing
1618 // Now that we have created the new alloca instructions, rewrite all the
1619 // uses of the old alloca.
1620 RewriteForScalarRepl(AI
, AI
, 0, ElementAllocas
);
1622 // Now erase any instructions that were made dead while rewriting the alloca.
1623 DeleteDeadInstructions();
1624 AI
->eraseFromParent();
1629 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1630 /// recursively including all their operands that become trivially dead.
1631 void SROA::DeleteDeadInstructions() {
1632 while (!DeadInsts
.empty()) {
1633 Instruction
*I
= cast
<Instruction
>(DeadInsts
.pop_back_val());
1635 for (User::op_iterator OI
= I
->op_begin(), E
= I
->op_end(); OI
!= E
; ++OI
)
1636 if (Instruction
*U
= dyn_cast
<Instruction
>(*OI
)) {
1637 // Zero out the operand and see if it becomes trivially dead.
1638 // (But, don't add allocas to the dead instruction list -- they are
1639 // already on the worklist and will be deleted separately.)
1641 if (isInstructionTriviallyDead(U
) && !isa
<AllocaInst
>(U
))
1642 DeadInsts
.push_back(U
);
1645 I
->eraseFromParent();
1649 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1650 /// performing scalar replacement of alloca AI. The results are flagged in
1651 /// the Info parameter. Offset indicates the position within AI that is
1652 /// referenced by this instruction.
1653 void SROA::isSafeForScalarRepl(Instruction
*I
, uint64_t Offset
,
1655 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!=E
; ++UI
) {
1656 Instruction
*User
= cast
<Instruction
>(*UI
);
1658 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(User
)) {
1659 isSafeForScalarRepl(BC
, Offset
, Info
);
1660 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(User
)) {
1661 uint64_t GEPOffset
= Offset
;
1662 isSafeGEP(GEPI
, GEPOffset
, Info
);
1664 isSafeForScalarRepl(GEPI
, GEPOffset
, Info
);
1665 } else if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(User
)) {
1666 ConstantInt
*Length
= dyn_cast
<ConstantInt
>(MI
->getLength());
1668 return MarkUnsafe(Info
, User
);
1669 isSafeMemAccess(Offset
, Length
->getZExtValue(), 0,
1670 UI
.getOperandNo() == 0, Info
, MI
,
1671 true /*AllowWholeAccess*/);
1672 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
1673 if (LI
->isVolatile())
1674 return MarkUnsafe(Info
, User
);
1675 const Type
*LIType
= LI
->getType();
1676 isSafeMemAccess(Offset
, TD
->getTypeAllocSize(LIType
),
1677 LIType
, false, Info
, LI
, true /*AllowWholeAccess*/);
1678 Info
.hasALoadOrStore
= true;
1680 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
1681 // Store is ok if storing INTO the pointer, not storing the pointer
1682 if (SI
->isVolatile() || SI
->getOperand(0) == I
)
1683 return MarkUnsafe(Info
, User
);
1685 const Type
*SIType
= SI
->getOperand(0)->getType();
1686 isSafeMemAccess(Offset
, TD
->getTypeAllocSize(SIType
),
1687 SIType
, true, Info
, SI
, true /*AllowWholeAccess*/);
1688 Info
.hasALoadOrStore
= true;
1689 } else if (isa
<PHINode
>(User
) || isa
<SelectInst
>(User
)) {
1690 isSafePHISelectUseForScalarRepl(User
, Offset
, Info
);
1692 return MarkUnsafe(Info
, User
);
1694 if (Info
.isUnsafe
) return;
1699 /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1700 /// derived from the alloca, we can often still split the alloca into elements.
1701 /// This is useful if we have a large alloca where one element is phi'd
1702 /// together somewhere: we can SRoA and promote all the other elements even if
1703 /// we end up not being able to promote this one.
1705 /// All we require is that the uses of the PHI do not index into other parts of
1706 /// the alloca. The most important use case for this is single load and stores
1707 /// that are PHI'd together, which can happen due to code sinking.
1708 void SROA::isSafePHISelectUseForScalarRepl(Instruction
*I
, uint64_t Offset
,
1710 // If we've already checked this PHI, don't do it again.
1711 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
1712 if (!Info
.CheckedPHIs
.insert(PN
))
1715 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!=E
; ++UI
) {
1716 Instruction
*User
= cast
<Instruction
>(*UI
);
1718 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(User
)) {
1719 isSafePHISelectUseForScalarRepl(BC
, Offset
, Info
);
1720 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(User
)) {
1721 // Only allow "bitcast" GEPs for simplicity. We could generalize this,
1722 // but would have to prove that we're staying inside of an element being
1724 if (!GEPI
->hasAllZeroIndices())
1725 return MarkUnsafe(Info
, User
);
1726 isSafePHISelectUseForScalarRepl(GEPI
, Offset
, Info
);
1727 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
1728 if (LI
->isVolatile())
1729 return MarkUnsafe(Info
, User
);
1730 const Type
*LIType
= LI
->getType();
1731 isSafeMemAccess(Offset
, TD
->getTypeAllocSize(LIType
),
1732 LIType
, false, Info
, LI
, false /*AllowWholeAccess*/);
1733 Info
.hasALoadOrStore
= true;
1735 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
1736 // Store is ok if storing INTO the pointer, not storing the pointer
1737 if (SI
->isVolatile() || SI
->getOperand(0) == I
)
1738 return MarkUnsafe(Info
, User
);
1740 const Type
*SIType
= SI
->getOperand(0)->getType();
1741 isSafeMemAccess(Offset
, TD
->getTypeAllocSize(SIType
),
1742 SIType
, true, Info
, SI
, false /*AllowWholeAccess*/);
1743 Info
.hasALoadOrStore
= true;
1744 } else if (isa
<PHINode
>(User
) || isa
<SelectInst
>(User
)) {
1745 isSafePHISelectUseForScalarRepl(User
, Offset
, Info
);
1747 return MarkUnsafe(Info
, User
);
1749 if (Info
.isUnsafe
) return;
1753 /// isSafeGEP - Check if a GEP instruction can be handled for scalar
1754 /// replacement. It is safe when all the indices are constant, in-bounds
1755 /// references, and when the resulting offset corresponds to an element within
1756 /// the alloca type. The results are flagged in the Info parameter. Upon
1757 /// return, Offset is adjusted as specified by the GEP indices.
1758 void SROA::isSafeGEP(GetElementPtrInst
*GEPI
,
1759 uint64_t &Offset
, AllocaInfo
&Info
) {
1760 gep_type_iterator GEPIt
= gep_type_begin(GEPI
), E
= gep_type_end(GEPI
);
1764 // Walk through the GEP type indices, checking the types that this indexes
1766 for (; GEPIt
!= E
; ++GEPIt
) {
1767 // Ignore struct elements, no extra checking needed for these.
1768 if ((*GEPIt
)->isStructTy())
1771 ConstantInt
*IdxVal
= dyn_cast
<ConstantInt
>(GEPIt
.getOperand());
1773 return MarkUnsafe(Info
, GEPI
);
1776 // Compute the offset due to this GEP and check if the alloca has a
1777 // component element at that offset.
1778 SmallVector
<Value
*, 8> Indices(GEPI
->op_begin() + 1, GEPI
->op_end());
1779 Offset
+= TD
->getIndexedOffset(GEPI
->getPointerOperandType(),
1780 &Indices
[0], Indices
.size());
1781 if (!TypeHasComponent(Info
.AI
->getAllocatedType(), Offset
, 0))
1782 MarkUnsafe(Info
, GEPI
);
1785 /// isHomogeneousAggregate - Check if type T is a struct or array containing
1786 /// elements of the same type (which is always true for arrays). If so,
1787 /// return true with NumElts and EltTy set to the number of elements and the
1788 /// element type, respectively.
1789 static bool isHomogeneousAggregate(const Type
*T
, unsigned &NumElts
,
1790 const Type
*&EltTy
) {
1791 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(T
)) {
1792 NumElts
= AT
->getNumElements();
1793 EltTy
= (NumElts
== 0 ? 0 : AT
->getElementType());
1796 if (const StructType
*ST
= dyn_cast
<StructType
>(T
)) {
1797 NumElts
= ST
->getNumContainedTypes();
1798 EltTy
= (NumElts
== 0 ? 0 : ST
->getContainedType(0));
1799 for (unsigned n
= 1; n
< NumElts
; ++n
) {
1800 if (ST
->getContainedType(n
) != EltTy
)
1808 /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1809 /// "homogeneous" aggregates with the same element type and number of elements.
1810 static bool isCompatibleAggregate(const Type
*T1
, const Type
*T2
) {
1814 unsigned NumElts1
, NumElts2
;
1815 const Type
*EltTy1
, *EltTy2
;
1816 if (isHomogeneousAggregate(T1
, NumElts1
, EltTy1
) &&
1817 isHomogeneousAggregate(T2
, NumElts2
, EltTy2
) &&
1818 NumElts1
== NumElts2
&&
1825 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1826 /// alloca or has an offset and size that corresponds to a component element
1827 /// within it. The offset checked here may have been formed from a GEP with a
1828 /// pointer bitcasted to a different type.
1830 /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1831 /// unit. If false, it only allows accesses known to be in a single element.
1832 void SROA::isSafeMemAccess(uint64_t Offset
, uint64_t MemSize
,
1833 const Type
*MemOpType
, bool isStore
,
1834 AllocaInfo
&Info
, Instruction
*TheAccess
,
1835 bool AllowWholeAccess
) {
1836 // Check if this is a load/store of the entire alloca.
1837 if (Offset
== 0 && AllowWholeAccess
&&
1838 MemSize
== TD
->getTypeAllocSize(Info
.AI
->getAllocatedType())) {
1839 // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1840 // loads/stores (which are essentially the same as the MemIntrinsics with
1841 // regard to copying padding between elements). But, if an alloca is
1842 // flagged as both a source and destination of such operations, we'll need
1843 // to check later for padding between elements.
1844 if (!MemOpType
|| MemOpType
->isIntegerTy()) {
1846 Info
.isMemCpyDst
= true;
1848 Info
.isMemCpySrc
= true;
1851 // This is also safe for references using a type that is compatible with
1852 // the type of the alloca, so that loads/stores can be rewritten using
1853 // insertvalue/extractvalue.
1854 if (isCompatibleAggregate(MemOpType
, Info
.AI
->getAllocatedType())) {
1855 Info
.hasSubelementAccess
= true;
1859 // Check if the offset/size correspond to a component within the alloca type.
1860 const Type
*T
= Info
.AI
->getAllocatedType();
1861 if (TypeHasComponent(T
, Offset
, MemSize
)) {
1862 Info
.hasSubelementAccess
= true;
1866 return MarkUnsafe(Info
, TheAccess
);
1869 /// TypeHasComponent - Return true if T has a component type with the
1870 /// specified offset and size. If Size is zero, do not check the size.
1871 bool SROA::TypeHasComponent(const Type
*T
, uint64_t Offset
, uint64_t Size
) {
1874 if (const StructType
*ST
= dyn_cast
<StructType
>(T
)) {
1875 const StructLayout
*Layout
= TD
->getStructLayout(ST
);
1876 unsigned EltIdx
= Layout
->getElementContainingOffset(Offset
);
1877 EltTy
= ST
->getContainedType(EltIdx
);
1878 EltSize
= TD
->getTypeAllocSize(EltTy
);
1879 Offset
-= Layout
->getElementOffset(EltIdx
);
1880 } else if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(T
)) {
1881 EltTy
= AT
->getElementType();
1882 EltSize
= TD
->getTypeAllocSize(EltTy
);
1883 if (Offset
>= AT
->getNumElements() * EltSize
)
1889 if (Offset
== 0 && (Size
== 0 || EltSize
== Size
))
1891 // Check if the component spans multiple elements.
1892 if (Offset
+ Size
> EltSize
)
1894 return TypeHasComponent(EltTy
, Offset
, Size
);
1897 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1898 /// the instruction I, which references it, to use the separate elements.
1899 /// Offset indicates the position within AI that is referenced by this
1901 void SROA::RewriteForScalarRepl(Instruction
*I
, AllocaInst
*AI
, uint64_t Offset
,
1902 SmallVector
<AllocaInst
*, 32> &NewElts
) {
1903 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!=E
;) {
1904 Use
&TheUse
= UI
.getUse();
1905 Instruction
*User
= cast
<Instruction
>(*UI
++);
1907 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(User
)) {
1908 RewriteBitCast(BC
, AI
, Offset
, NewElts
);
1912 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(User
)) {
1913 RewriteGEP(GEPI
, AI
, Offset
, NewElts
);
1917 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(User
)) {
1918 ConstantInt
*Length
= dyn_cast
<ConstantInt
>(MI
->getLength());
1919 uint64_t MemSize
= Length
->getZExtValue();
1921 MemSize
== TD
->getTypeAllocSize(AI
->getAllocatedType()))
1922 RewriteMemIntrinUserOfAlloca(MI
, I
, AI
, NewElts
);
1923 // Otherwise the intrinsic can only touch a single element and the
1924 // address operand will be updated, so nothing else needs to be done.
1928 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
1929 const Type
*LIType
= LI
->getType();
1931 if (isCompatibleAggregate(LIType
, AI
->getAllocatedType())) {
1933 // %res = load { i32, i32 }* %alloc
1935 // %load.0 = load i32* %alloc.0
1936 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1937 // %load.1 = load i32* %alloc.1
1938 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1939 // (Also works for arrays instead of structs)
1940 Value
*Insert
= UndefValue::get(LIType
);
1941 IRBuilder
<> Builder(LI
);
1942 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
1943 Value
*Load
= Builder
.CreateLoad(NewElts
[i
], "load");
1944 Insert
= Builder
.CreateInsertValue(Insert
, Load
, i
, "insert");
1946 LI
->replaceAllUsesWith(Insert
);
1947 DeadInsts
.push_back(LI
);
1948 } else if (LIType
->isIntegerTy() &&
1949 TD
->getTypeAllocSize(LIType
) ==
1950 TD
->getTypeAllocSize(AI
->getAllocatedType())) {
1951 // If this is a load of the entire alloca to an integer, rewrite it.
1952 RewriteLoadUserOfWholeAlloca(LI
, AI
, NewElts
);
1957 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
1958 Value
*Val
= SI
->getOperand(0);
1959 const Type
*SIType
= Val
->getType();
1960 if (isCompatibleAggregate(SIType
, AI
->getAllocatedType())) {
1962 // store { i32, i32 } %val, { i32, i32 }* %alloc
1964 // %val.0 = extractvalue { i32, i32 } %val, 0
1965 // store i32 %val.0, i32* %alloc.0
1966 // %val.1 = extractvalue { i32, i32 } %val, 1
1967 // store i32 %val.1, i32* %alloc.1
1968 // (Also works for arrays instead of structs)
1969 IRBuilder
<> Builder(SI
);
1970 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
1971 Value
*Extract
= Builder
.CreateExtractValue(Val
, i
, Val
->getName());
1972 Builder
.CreateStore(Extract
, NewElts
[i
]);
1974 DeadInsts
.push_back(SI
);
1975 } else if (SIType
->isIntegerTy() &&
1976 TD
->getTypeAllocSize(SIType
) ==
1977 TD
->getTypeAllocSize(AI
->getAllocatedType())) {
1978 // If this is a store of the entire alloca from an integer, rewrite it.
1979 RewriteStoreUserOfWholeAlloca(SI
, AI
, NewElts
);
1984 if (isa
<SelectInst
>(User
) || isa
<PHINode
>(User
)) {
1985 // If we have a PHI user of the alloca itself (as opposed to a GEP or
1986 // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to
1988 if (!isa
<AllocaInst
>(I
)) continue;
1990 assert(Offset
== 0 && NewElts
[0] &&
1991 "Direct alloca use should have a zero offset");
1993 // If we have a use of the alloca, we know the derived uses will be
1994 // utilizing just the first element of the scalarized result. Insert a
1995 // bitcast of the first alloca before the user as required.
1996 AllocaInst
*NewAI
= NewElts
[0];
1997 BitCastInst
*BCI
= new BitCastInst(NewAI
, AI
->getType(), "", NewAI
);
1998 NewAI
->moveBefore(BCI
);
2005 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
2006 /// and recursively continue updating all of its uses.
2007 void SROA::RewriteBitCast(BitCastInst
*BC
, AllocaInst
*AI
, uint64_t Offset
,
2008 SmallVector
<AllocaInst
*, 32> &NewElts
) {
2009 RewriteForScalarRepl(BC
, AI
, Offset
, NewElts
);
2010 if (BC
->getOperand(0) != AI
)
2013 // The bitcast references the original alloca. Replace its uses with
2014 // references to the first new element alloca.
2015 Instruction
*Val
= NewElts
[0];
2016 if (Val
->getType() != BC
->getDestTy()) {
2017 Val
= new BitCastInst(Val
, BC
->getDestTy(), "", BC
);
2020 BC
->replaceAllUsesWith(Val
);
2021 DeadInsts
.push_back(BC
);
2024 /// FindElementAndOffset - Return the index of the element containing Offset
2025 /// within the specified type, which must be either a struct or an array.
2026 /// Sets T to the type of the element and Offset to the offset within that
2027 /// element. IdxTy is set to the type of the index result to be used in a
2028 /// GEP instruction.
2029 uint64_t SROA::FindElementAndOffset(const Type
*&T
, uint64_t &Offset
,
2030 const Type
*&IdxTy
) {
2032 if (const StructType
*ST
= dyn_cast
<StructType
>(T
)) {
2033 const StructLayout
*Layout
= TD
->getStructLayout(ST
);
2034 Idx
= Layout
->getElementContainingOffset(Offset
);
2035 T
= ST
->getContainedType(Idx
);
2036 Offset
-= Layout
->getElementOffset(Idx
);
2037 IdxTy
= Type::getInt32Ty(T
->getContext());
2040 const ArrayType
*AT
= cast
<ArrayType
>(T
);
2041 T
= AT
->getElementType();
2042 uint64_t EltSize
= TD
->getTypeAllocSize(T
);
2043 Idx
= Offset
/ EltSize
;
2044 Offset
-= Idx
* EltSize
;
2045 IdxTy
= Type::getInt64Ty(T
->getContext());
2049 /// RewriteGEP - Check if this GEP instruction moves the pointer across
2050 /// elements of the alloca that are being split apart, and if so, rewrite
2051 /// the GEP to be relative to the new element.
2052 void SROA::RewriteGEP(GetElementPtrInst
*GEPI
, AllocaInst
*AI
, uint64_t Offset
,
2053 SmallVector
<AllocaInst
*, 32> &NewElts
) {
2054 uint64_t OldOffset
= Offset
;
2055 SmallVector
<Value
*, 8> Indices(GEPI
->op_begin() + 1, GEPI
->op_end());
2056 Offset
+= TD
->getIndexedOffset(GEPI
->getPointerOperandType(),
2057 &Indices
[0], Indices
.size());
2059 RewriteForScalarRepl(GEPI
, AI
, Offset
, NewElts
);
2061 const Type
*T
= AI
->getAllocatedType();
2063 uint64_t OldIdx
= FindElementAndOffset(T
, OldOffset
, IdxTy
);
2064 if (GEPI
->getOperand(0) == AI
)
2065 OldIdx
= ~0ULL; // Force the GEP to be rewritten.
2067 T
= AI
->getAllocatedType();
2068 uint64_t EltOffset
= Offset
;
2069 uint64_t Idx
= FindElementAndOffset(T
, EltOffset
, IdxTy
);
2071 // If this GEP does not move the pointer across elements of the alloca
2072 // being split, then it does not needs to be rewritten.
2076 const Type
*i32Ty
= Type::getInt32Ty(AI
->getContext());
2077 SmallVector
<Value
*, 8> NewArgs
;
2078 NewArgs
.push_back(Constant::getNullValue(i32Ty
));
2079 while (EltOffset
!= 0) {
2080 uint64_t EltIdx
= FindElementAndOffset(T
, EltOffset
, IdxTy
);
2081 NewArgs
.push_back(ConstantInt::get(IdxTy
, EltIdx
));
2083 Instruction
*Val
= NewElts
[Idx
];
2084 if (NewArgs
.size() > 1) {
2085 Val
= GetElementPtrInst::CreateInBounds(Val
, NewArgs
.begin(),
2086 NewArgs
.end(), "", GEPI
);
2087 Val
->takeName(GEPI
);
2089 if (Val
->getType() != GEPI
->getType())
2090 Val
= new BitCastInst(Val
, GEPI
->getType(), Val
->getName(), GEPI
);
2091 GEPI
->replaceAllUsesWith(Val
);
2092 DeadInsts
.push_back(GEPI
);
2095 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2096 /// Rewrite it to copy or set the elements of the scalarized memory.
2097 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic
*MI
, Instruction
*Inst
,
2099 SmallVector
<AllocaInst
*, 32> &NewElts
) {
2100 // If this is a memcpy/memmove, construct the other pointer as the
2101 // appropriate type. The "Other" pointer is the pointer that goes to memory
2102 // that doesn't have anything to do with the alloca that we are promoting. For
2103 // memset, this Value* stays null.
2104 Value
*OtherPtr
= 0;
2105 unsigned MemAlignment
= MI
->getAlignment();
2106 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(MI
)) { // memmove/memcopy
2107 if (Inst
== MTI
->getRawDest())
2108 OtherPtr
= MTI
->getRawSource();
2110 assert(Inst
== MTI
->getRawSource());
2111 OtherPtr
= MTI
->getRawDest();
2115 // If there is an other pointer, we want to convert it to the same pointer
2116 // type as AI has, so we can GEP through it safely.
2118 unsigned AddrSpace
=
2119 cast
<PointerType
>(OtherPtr
->getType())->getAddressSpace();
2121 // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
2122 // optimization, but it's also required to detect the corner case where
2123 // both pointer operands are referencing the same memory, and where
2124 // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
2125 // function is only called for mem intrinsics that access the whole
2126 // aggregate, so non-zero GEPs are not an issue here.)
2127 OtherPtr
= OtherPtr
->stripPointerCasts();
2129 // Copying the alloca to itself is a no-op: just delete it.
2130 if (OtherPtr
== AI
|| OtherPtr
== NewElts
[0]) {
2131 // This code will run twice for a no-op memcpy -- once for each operand.
2132 // Put only one reference to MI on the DeadInsts list.
2133 for (SmallVector
<Value
*, 32>::const_iterator I
= DeadInsts
.begin(),
2134 E
= DeadInsts
.end(); I
!= E
; ++I
)
2135 if (*I
== MI
) return;
2136 DeadInsts
.push_back(MI
);
2140 // If the pointer is not the right type, insert a bitcast to the right
2143 PointerType::get(AI
->getType()->getElementType(), AddrSpace
);
2145 if (OtherPtr
->getType() != NewTy
)
2146 OtherPtr
= new BitCastInst(OtherPtr
, NewTy
, OtherPtr
->getName(), MI
);
2149 // Process each element of the aggregate.
2150 bool SROADest
= MI
->getRawDest() == Inst
;
2152 Constant
*Zero
= Constant::getNullValue(Type::getInt32Ty(MI
->getContext()));
2154 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
2155 // If this is a memcpy/memmove, emit a GEP of the other element address.
2156 Value
*OtherElt
= 0;
2157 unsigned OtherEltAlign
= MemAlignment
;
2160 Value
*Idx
[2] = { Zero
,
2161 ConstantInt::get(Type::getInt32Ty(MI
->getContext()), i
) };
2162 OtherElt
= GetElementPtrInst::CreateInBounds(OtherPtr
, Idx
, Idx
+ 2,
2163 OtherPtr
->getName()+"."+Twine(i
),
2166 const PointerType
*OtherPtrTy
= cast
<PointerType
>(OtherPtr
->getType());
2167 const Type
*OtherTy
= OtherPtrTy
->getElementType();
2168 if (const StructType
*ST
= dyn_cast
<StructType
>(OtherTy
)) {
2169 EltOffset
= TD
->getStructLayout(ST
)->getElementOffset(i
);
2171 const Type
*EltTy
= cast
<SequentialType
>(OtherTy
)->getElementType();
2172 EltOffset
= TD
->getTypeAllocSize(EltTy
)*i
;
2175 // The alignment of the other pointer is the guaranteed alignment of the
2176 // element, which is affected by both the known alignment of the whole
2177 // mem intrinsic and the alignment of the element. If the alignment of
2178 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2179 // known alignment is just 4 bytes.
2180 OtherEltAlign
= (unsigned)MinAlign(OtherEltAlign
, EltOffset
);
2183 Value
*EltPtr
= NewElts
[i
];
2184 const Type
*EltTy
= cast
<PointerType
>(EltPtr
->getType())->getElementType();
2186 // If we got down to a scalar, insert a load or store as appropriate.
2187 if (EltTy
->isSingleValueType()) {
2188 if (isa
<MemTransferInst
>(MI
)) {
2190 // From Other to Alloca.
2191 Value
*Elt
= new LoadInst(OtherElt
, "tmp", false, OtherEltAlign
, MI
);
2192 new StoreInst(Elt
, EltPtr
, MI
);
2194 // From Alloca to Other.
2195 Value
*Elt
= new LoadInst(EltPtr
, "tmp", MI
);
2196 new StoreInst(Elt
, OtherElt
, false, OtherEltAlign
, MI
);
2200 assert(isa
<MemSetInst
>(MI
));
2202 // If the stored element is zero (common case), just store a null
2205 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(MI
->getArgOperand(1))) {
2207 StoreVal
= Constant::getNullValue(EltTy
); // 0.0, null, 0, <0,0>
2209 // If EltTy is a vector type, get the element type.
2210 const Type
*ValTy
= EltTy
->getScalarType();
2212 // Construct an integer with the right value.
2213 unsigned EltSize
= TD
->getTypeSizeInBits(ValTy
);
2214 APInt
OneVal(EltSize
, CI
->getZExtValue());
2215 APInt
TotalVal(OneVal
);
2217 for (unsigned i
= 0; 8*i
< EltSize
; ++i
) {
2218 TotalVal
= TotalVal
.shl(8);
2222 // Convert the integer value to the appropriate type.
2223 StoreVal
= ConstantInt::get(CI
->getContext(), TotalVal
);
2224 if (ValTy
->isPointerTy())
2225 StoreVal
= ConstantExpr::getIntToPtr(StoreVal
, ValTy
);
2226 else if (ValTy
->isFloatingPointTy())
2227 StoreVal
= ConstantExpr::getBitCast(StoreVal
, ValTy
);
2228 assert(StoreVal
->getType() == ValTy
&& "Type mismatch!");
2230 // If the requested value was a vector constant, create it.
2231 if (EltTy
!= ValTy
) {
2232 unsigned NumElts
= cast
<VectorType
>(ValTy
)->getNumElements();
2233 SmallVector
<Constant
*, 16> Elts(NumElts
, StoreVal
);
2234 StoreVal
= ConstantVector::get(Elts
);
2237 new StoreInst(StoreVal
, EltPtr
, MI
);
2240 // Otherwise, if we're storing a byte variable, use a memset call for
2244 unsigned EltSize
= TD
->getTypeAllocSize(EltTy
);
2246 IRBuilder
<> Builder(MI
);
2248 // Finally, insert the meminst for this element.
2249 if (isa
<MemSetInst
>(MI
)) {
2250 Builder
.CreateMemSet(EltPtr
, MI
->getArgOperand(1), EltSize
,
2253 assert(isa
<MemTransferInst
>(MI
));
2254 Value
*Dst
= SROADest
? EltPtr
: OtherElt
; // Dest ptr
2255 Value
*Src
= SROADest
? OtherElt
: EltPtr
; // Src ptr
2257 if (isa
<MemCpyInst
>(MI
))
2258 Builder
.CreateMemCpy(Dst
, Src
, EltSize
, OtherEltAlign
,MI
->isVolatile());
2260 Builder
.CreateMemMove(Dst
, Src
, EltSize
,OtherEltAlign
,MI
->isVolatile());
2263 DeadInsts
.push_back(MI
);
2266 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2267 /// overwrites the entire allocation. Extract out the pieces of the stored
2268 /// integer and store them individually.
2269 void SROA::RewriteStoreUserOfWholeAlloca(StoreInst
*SI
, AllocaInst
*AI
,
2270 SmallVector
<AllocaInst
*, 32> &NewElts
){
2271 // Extract each element out of the integer according to its structure offset
2272 // and store the element value to the individual alloca.
2273 Value
*SrcVal
= SI
->getOperand(0);
2274 const Type
*AllocaEltTy
= AI
->getAllocatedType();
2275 uint64_t AllocaSizeBits
= TD
->getTypeAllocSizeInBits(AllocaEltTy
);
2277 IRBuilder
<> Builder(SI
);
2279 // Handle tail padding by extending the operand
2280 if (TD
->getTypeSizeInBits(SrcVal
->getType()) != AllocaSizeBits
)
2281 SrcVal
= Builder
.CreateZExt(SrcVal
,
2282 IntegerType::get(SI
->getContext(), AllocaSizeBits
));
2284 DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI
<< '\n' << *SI
2287 // There are two forms here: AI could be an array or struct. Both cases
2288 // have different ways to compute the element offset.
2289 if (const StructType
*EltSTy
= dyn_cast
<StructType
>(AllocaEltTy
)) {
2290 const StructLayout
*Layout
= TD
->getStructLayout(EltSTy
);
2292 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
2293 // Get the number of bits to shift SrcVal to get the value.
2294 const Type
*FieldTy
= EltSTy
->getElementType(i
);
2295 uint64_t Shift
= Layout
->getElementOffsetInBits(i
);
2297 if (TD
->isBigEndian())
2298 Shift
= AllocaSizeBits
-Shift
-TD
->getTypeAllocSizeInBits(FieldTy
);
2300 Value
*EltVal
= SrcVal
;
2302 Value
*ShiftVal
= ConstantInt::get(EltVal
->getType(), Shift
);
2303 EltVal
= Builder
.CreateLShr(EltVal
, ShiftVal
, "sroa.store.elt");
2306 // Truncate down to an integer of the right size.
2307 uint64_t FieldSizeBits
= TD
->getTypeSizeInBits(FieldTy
);
2309 // Ignore zero sized fields like {}, they obviously contain no data.
2310 if (FieldSizeBits
== 0) continue;
2312 if (FieldSizeBits
!= AllocaSizeBits
)
2313 EltVal
= Builder
.CreateTrunc(EltVal
,
2314 IntegerType::get(SI
->getContext(), FieldSizeBits
));
2315 Value
*DestField
= NewElts
[i
];
2316 if (EltVal
->getType() == FieldTy
) {
2317 // Storing to an integer field of this size, just do it.
2318 } else if (FieldTy
->isFloatingPointTy() || FieldTy
->isVectorTy()) {
2319 // Bitcast to the right element type (for fp/vector values).
2320 EltVal
= Builder
.CreateBitCast(EltVal
, FieldTy
);
2322 // Otherwise, bitcast the dest pointer (for aggregates).
2323 DestField
= Builder
.CreateBitCast(DestField
,
2324 PointerType::getUnqual(EltVal
->getType()));
2326 new StoreInst(EltVal
, DestField
, SI
);
2330 const ArrayType
*ATy
= cast
<ArrayType
>(AllocaEltTy
);
2331 const Type
*ArrayEltTy
= ATy
->getElementType();
2332 uint64_t ElementOffset
= TD
->getTypeAllocSizeInBits(ArrayEltTy
);
2333 uint64_t ElementSizeBits
= TD
->getTypeSizeInBits(ArrayEltTy
);
2337 if (TD
->isBigEndian())
2338 Shift
= AllocaSizeBits
-ElementOffset
;
2342 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
2343 // Ignore zero sized fields like {}, they obviously contain no data.
2344 if (ElementSizeBits
== 0) continue;
2346 Value
*EltVal
= SrcVal
;
2348 Value
*ShiftVal
= ConstantInt::get(EltVal
->getType(), Shift
);
2349 EltVal
= Builder
.CreateLShr(EltVal
, ShiftVal
, "sroa.store.elt");
2352 // Truncate down to an integer of the right size.
2353 if (ElementSizeBits
!= AllocaSizeBits
)
2354 EltVal
= Builder
.CreateTrunc(EltVal
,
2355 IntegerType::get(SI
->getContext(),
2357 Value
*DestField
= NewElts
[i
];
2358 if (EltVal
->getType() == ArrayEltTy
) {
2359 // Storing to an integer field of this size, just do it.
2360 } else if (ArrayEltTy
->isFloatingPointTy() ||
2361 ArrayEltTy
->isVectorTy()) {
2362 // Bitcast to the right element type (for fp/vector values).
2363 EltVal
= Builder
.CreateBitCast(EltVal
, ArrayEltTy
);
2365 // Otherwise, bitcast the dest pointer (for aggregates).
2366 DestField
= Builder
.CreateBitCast(DestField
,
2367 PointerType::getUnqual(EltVal
->getType()));
2369 new StoreInst(EltVal
, DestField
, SI
);
2371 if (TD
->isBigEndian())
2372 Shift
-= ElementOffset
;
2374 Shift
+= ElementOffset
;
2378 DeadInsts
.push_back(SI
);
2381 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2382 /// an integer. Load the individual pieces to form the aggregate value.
2383 void SROA::RewriteLoadUserOfWholeAlloca(LoadInst
*LI
, AllocaInst
*AI
,
2384 SmallVector
<AllocaInst
*, 32> &NewElts
) {
2385 // Extract each element out of the NewElts according to its structure offset
2386 // and form the result value.
2387 const Type
*AllocaEltTy
= AI
->getAllocatedType();
2388 uint64_t AllocaSizeBits
= TD
->getTypeAllocSizeInBits(AllocaEltTy
);
2390 DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI
<< '\n' << *LI
2393 // There are two forms here: AI could be an array or struct. Both cases
2394 // have different ways to compute the element offset.
2395 const StructLayout
*Layout
= 0;
2396 uint64_t ArrayEltBitOffset
= 0;
2397 if (const StructType
*EltSTy
= dyn_cast
<StructType
>(AllocaEltTy
)) {
2398 Layout
= TD
->getStructLayout(EltSTy
);
2400 const Type
*ArrayEltTy
= cast
<ArrayType
>(AllocaEltTy
)->getElementType();
2401 ArrayEltBitOffset
= TD
->getTypeAllocSizeInBits(ArrayEltTy
);
2405 Constant::getNullValue(IntegerType::get(LI
->getContext(), AllocaSizeBits
));
2407 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
2408 // Load the value from the alloca. If the NewElt is an aggregate, cast
2409 // the pointer to an integer of the same size before doing the load.
2410 Value
*SrcField
= NewElts
[i
];
2411 const Type
*FieldTy
=
2412 cast
<PointerType
>(SrcField
->getType())->getElementType();
2413 uint64_t FieldSizeBits
= TD
->getTypeSizeInBits(FieldTy
);
2415 // Ignore zero sized fields like {}, they obviously contain no data.
2416 if (FieldSizeBits
== 0) continue;
2418 const IntegerType
*FieldIntTy
= IntegerType::get(LI
->getContext(),
2420 if (!FieldTy
->isIntegerTy() && !FieldTy
->isFloatingPointTy() &&
2421 !FieldTy
->isVectorTy())
2422 SrcField
= new BitCastInst(SrcField
,
2423 PointerType::getUnqual(FieldIntTy
),
2425 SrcField
= new LoadInst(SrcField
, "sroa.load.elt", LI
);
2427 // If SrcField is a fp or vector of the right size but that isn't an
2428 // integer type, bitcast to an integer so we can shift it.
2429 if (SrcField
->getType() != FieldIntTy
)
2430 SrcField
= new BitCastInst(SrcField
, FieldIntTy
, "", LI
);
2432 // Zero extend the field to be the same size as the final alloca so that
2433 // we can shift and insert it.
2434 if (SrcField
->getType() != ResultVal
->getType())
2435 SrcField
= new ZExtInst(SrcField
, ResultVal
->getType(), "", LI
);
2437 // Determine the number of bits to shift SrcField.
2439 if (Layout
) // Struct case.
2440 Shift
= Layout
->getElementOffsetInBits(i
);
2442 Shift
= i
*ArrayEltBitOffset
;
2444 if (TD
->isBigEndian())
2445 Shift
= AllocaSizeBits
-Shift
-FieldIntTy
->getBitWidth();
2448 Value
*ShiftVal
= ConstantInt::get(SrcField
->getType(), Shift
);
2449 SrcField
= BinaryOperator::CreateShl(SrcField
, ShiftVal
, "", LI
);
2452 // Don't create an 'or x, 0' on the first iteration.
2453 if (!isa
<Constant
>(ResultVal
) ||
2454 !cast
<Constant
>(ResultVal
)->isNullValue())
2455 ResultVal
= BinaryOperator::CreateOr(SrcField
, ResultVal
, "", LI
);
2457 ResultVal
= SrcField
;
2460 // Handle tail padding by truncating the result
2461 if (TD
->getTypeSizeInBits(LI
->getType()) != AllocaSizeBits
)
2462 ResultVal
= new TruncInst(ResultVal
, LI
->getType(), "", LI
);
2464 LI
->replaceAllUsesWith(ResultVal
);
2465 DeadInsts
.push_back(LI
);
2468 /// HasPadding - Return true if the specified type has any structure or
2469 /// alignment padding in between the elements that would be split apart
2470 /// by SROA; return false otherwise.
2471 static bool HasPadding(const Type
*Ty
, const TargetData
&TD
) {
2472 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
2473 Ty
= ATy
->getElementType();
2474 return TD
.getTypeSizeInBits(Ty
) != TD
.getTypeAllocSizeInBits(Ty
);
2477 // SROA currently handles only Arrays and Structs.
2478 const StructType
*STy
= cast
<StructType
>(Ty
);
2479 const StructLayout
*SL
= TD
.getStructLayout(STy
);
2480 unsigned PrevFieldBitOffset
= 0;
2481 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
2482 unsigned FieldBitOffset
= SL
->getElementOffsetInBits(i
);
2484 // Check to see if there is any padding between this element and the
2487 unsigned PrevFieldEnd
=
2488 PrevFieldBitOffset
+TD
.getTypeSizeInBits(STy
->getElementType(i
-1));
2489 if (PrevFieldEnd
< FieldBitOffset
)
2492 PrevFieldBitOffset
= FieldBitOffset
;
2494 // Check for tail padding.
2495 if (unsigned EltCount
= STy
->getNumElements()) {
2496 unsigned PrevFieldEnd
= PrevFieldBitOffset
+
2497 TD
.getTypeSizeInBits(STy
->getElementType(EltCount
-1));
2498 if (PrevFieldEnd
< SL
->getSizeInBits())
2504 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2505 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
2506 /// or 1 if safe after canonicalization has been performed.
2507 bool SROA::isSafeAllocaToScalarRepl(AllocaInst
*AI
) {
2508 // Loop over the use list of the alloca. We can only transform it if all of
2509 // the users are safe to transform.
2510 AllocaInfo
Info(AI
);
2512 isSafeForScalarRepl(AI
, 0, Info
);
2513 if (Info
.isUnsafe
) {
2514 DEBUG(dbgs() << "Cannot transform: " << *AI
<< '\n');
2518 // Okay, we know all the users are promotable. If the aggregate is a memcpy
2519 // source and destination, we have to be careful. In particular, the memcpy
2520 // could be moving around elements that live in structure padding of the LLVM
2521 // types, but may actually be used. In these cases, we refuse to promote the
2523 if (Info
.isMemCpySrc
&& Info
.isMemCpyDst
&&
2524 HasPadding(AI
->getAllocatedType(), *TD
))
2527 // If the alloca never has an access to just *part* of it, but is accessed
2528 // via loads and stores, then we should use ConvertToScalarInfo to promote
2529 // the alloca instead of promoting each piece at a time and inserting fission
2531 if (!Info
.hasSubelementAccess
&& Info
.hasALoadOrStore
) {
2532 // If the struct/array just has one element, use basic SRoA.
2533 if (const StructType
*ST
= dyn_cast
<StructType
>(AI
->getAllocatedType())) {
2534 if (ST
->getNumElements() > 1) return false;
2536 if (cast
<ArrayType
>(AI
->getAllocatedType())->getNumElements() > 1)
2546 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2547 /// some part of a constant global variable. This intentionally only accepts
2548 /// constant expressions because we don't can't rewrite arbitrary instructions.
2549 static bool PointsToConstantGlobal(Value
*V
) {
2550 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
2551 return GV
->isConstant();
2552 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
2553 if (CE
->getOpcode() == Instruction::BitCast
||
2554 CE
->getOpcode() == Instruction::GetElementPtr
)
2555 return PointsToConstantGlobal(CE
->getOperand(0));
2559 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2560 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
2561 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
2562 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
2563 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
2564 /// the alloca, and if the source pointer is a pointer to a constant global, we
2565 /// can optimize this.
2567 isOnlyCopiedFromConstantGlobal(Value
*V
, MemTransferInst
*&TheCopy
,
2569 SmallVector
<Instruction
*, 4> &LifetimeMarkers
) {
2570 // We track lifetime intrinsics as we encounter them. If we decide to go
2571 // ahead and replace the value with the global, this lets the caller quickly
2572 // eliminate the markers.
2574 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!=E
; ++UI
) {
2575 User
*U
= cast
<Instruction
>(*UI
);
2577 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
2578 // Ignore non-volatile loads, they are always ok.
2579 if (LI
->isVolatile()) return false;
2583 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(U
)) {
2584 // If uses of the bitcast are ok, we are ok.
2585 if (!isOnlyCopiedFromConstantGlobal(BCI
, TheCopy
, isOffset
,
2590 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(U
)) {
2591 // If the GEP has all zero indices, it doesn't offset the pointer. If it
2592 // doesn't, it does.
2593 if (!isOnlyCopiedFromConstantGlobal(GEP
, TheCopy
,
2594 isOffset
|| !GEP
->hasAllZeroIndices(),
2600 if (CallSite CS
= U
) {
2601 // If this is the function being called then we treat it like a load and
2603 if (CS
.isCallee(UI
))
2606 // If this is a readonly/readnone call site, then we know it is just a
2607 // load (but one that potentially returns the value itself), so we can
2608 // ignore it if we know that the value isn't captured.
2609 unsigned ArgNo
= CS
.getArgumentNo(UI
);
2610 if (CS
.onlyReadsMemory() &&
2611 (CS
.getInstruction()->use_empty() ||
2612 CS
.paramHasAttr(ArgNo
+1, Attribute::NoCapture
)))
2615 // If this is being passed as a byval argument, the caller is making a
2616 // copy, so it is only a read of the alloca.
2617 if (CS
.paramHasAttr(ArgNo
+1, Attribute::ByVal
))
2621 // Lifetime intrinsics can be handled by the caller.
2622 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(U
)) {
2623 if (II
->getIntrinsicID() == Intrinsic::lifetime_start
||
2624 II
->getIntrinsicID() == Intrinsic::lifetime_end
) {
2625 assert(II
->use_empty() && "Lifetime markers have no result to use!");
2626 LifetimeMarkers
.push_back(II
);
2631 // If this is isn't our memcpy/memmove, reject it as something we can't
2633 MemTransferInst
*MI
= dyn_cast
<MemTransferInst
>(U
);
2637 // If the transfer is using the alloca as a source of the transfer, then
2638 // ignore it since it is a load (unless the transfer is volatile).
2639 if (UI
.getOperandNo() == 1) {
2640 if (MI
->isVolatile()) return false;
2644 // If we already have seen a copy, reject the second one.
2645 if (TheCopy
) return false;
2647 // If the pointer has been offset from the start of the alloca, we can't
2648 // safely handle this.
2649 if (isOffset
) return false;
2651 // If the memintrinsic isn't using the alloca as the dest, reject it.
2652 if (UI
.getOperandNo() != 0) return false;
2654 // If the source of the memcpy/move is not a constant global, reject it.
2655 if (!PointsToConstantGlobal(MI
->getSource()))
2658 // Otherwise, the transform is safe. Remember the copy instruction.
2664 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2665 /// modified by a copy from a constant global. If we can prove this, we can
2666 /// replace any uses of the alloca with uses of the global directly.
2668 SROA::isOnlyCopiedFromConstantGlobal(AllocaInst
*AI
,
2669 SmallVector
<Instruction
*, 4> &ToDelete
) {
2670 MemTransferInst
*TheCopy
= 0;
2671 if (::isOnlyCopiedFromConstantGlobal(AI
, TheCopy
, false, ToDelete
))