1 //===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a simple pass that applies a variety of small
11 // optimizations for calls to specific well-known function calls (e.g. runtime
12 // library functions). Any optimization that takes the very simple form
13 // "replace call to library function with simpler code that provides the same
14 // result" belongs in this file.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "simplify-libcalls"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Transforms/Utils/BuildLibCalls.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Module.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Support/IRBuilder.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Target/TargetLibraryInfo.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/StringMap.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Config/config.h" // FIXME: Shouldn't depend on host!
38 STATISTIC(NumSimplified
, "Number of library calls simplified");
39 STATISTIC(NumAnnotated
, "Number of attributes added to library functions");
41 //===----------------------------------------------------------------------===//
42 // Optimizer Base Class
43 //===----------------------------------------------------------------------===//
45 /// This class is the abstract base class for the set of optimizations that
46 /// corresponds to one library call.
48 class LibCallOptimization
{
52 const TargetLibraryInfo
*TLI
;
55 LibCallOptimization() { }
56 virtual ~LibCallOptimization() {}
58 /// CallOptimizer - This pure virtual method is implemented by base classes to
59 /// do various optimizations. If this returns null then no transformation was
60 /// performed. If it returns CI, then it transformed the call and CI is to be
61 /// deleted. If it returns something else, replace CI with the new value and
63 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
)
66 Value
*OptimizeCall(CallInst
*CI
, const TargetData
*TD
,
67 const TargetLibraryInfo
*TLI
, IRBuilder
<> &B
) {
68 Caller
= CI
->getParent()->getParent();
71 if (CI
->getCalledFunction())
72 Context
= &CI
->getCalledFunction()->getContext();
74 // We never change the calling convention.
75 if (CI
->getCallingConv() != llvm::CallingConv::C
)
78 return CallOptimizer(CI
->getCalledFunction(), CI
, B
);
81 } // End anonymous namespace.
84 //===----------------------------------------------------------------------===//
86 //===----------------------------------------------------------------------===//
88 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
89 /// value is equal or not-equal to zero.
90 static bool IsOnlyUsedInZeroEqualityComparison(Value
*V
) {
91 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end();
93 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(*UI
))
95 if (Constant
*C
= dyn_cast
<Constant
>(IC
->getOperand(1)))
98 // Unknown instruction.
104 static bool CallHasFloatingPointArgument(const CallInst
*CI
) {
105 for (CallInst::const_op_iterator it
= CI
->op_begin(), e
= CI
->op_end();
107 if ((*it
)->getType()->isFloatingPointTy())
113 /// IsOnlyUsedInEqualityComparison - Return true if it is only used in equality
114 /// comparisons with With.
115 static bool IsOnlyUsedInEqualityComparison(Value
*V
, Value
*With
) {
116 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end();
118 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(*UI
))
119 if (IC
->isEquality() && IC
->getOperand(1) == With
)
121 // Unknown instruction.
127 //===----------------------------------------------------------------------===//
128 // String and Memory LibCall Optimizations
129 //===----------------------------------------------------------------------===//
131 //===---------------------------------------===//
132 // 'strcat' Optimizations
134 struct StrCatOpt
: public LibCallOptimization
{
135 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
136 // Verify the "strcat" function prototype.
137 const FunctionType
*FT
= Callee
->getFunctionType();
138 if (FT
->getNumParams() != 2 ||
139 FT
->getReturnType() != B
.getInt8PtrTy() ||
140 FT
->getParamType(0) != FT
->getReturnType() ||
141 FT
->getParamType(1) != FT
->getReturnType())
144 // Extract some information from the instruction
145 Value
*Dst
= CI
->getArgOperand(0);
146 Value
*Src
= CI
->getArgOperand(1);
148 // See if we can get the length of the input string.
149 uint64_t Len
= GetStringLength(Src
);
150 if (Len
== 0) return 0;
151 --Len
; // Unbias length.
153 // Handle the simple, do-nothing case: strcat(x, "") -> x
157 // These optimizations require TargetData.
160 EmitStrLenMemCpy(Src
, Dst
, Len
, B
);
164 void EmitStrLenMemCpy(Value
*Src
, Value
*Dst
, uint64_t Len
, IRBuilder
<> &B
) {
165 // We need to find the end of the destination string. That's where the
166 // memory is to be moved to. We just generate a call to strlen.
167 Value
*DstLen
= EmitStrLen(Dst
, B
, TD
);
169 // Now that we have the destination's length, we must index into the
170 // destination's pointer to get the actual memcpy destination (end of
171 // the string .. we're concatenating).
172 Value
*CpyDst
= B
.CreateGEP(Dst
, DstLen
, "endptr");
174 // We have enough information to now generate the memcpy call to do the
175 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
176 B
.CreateMemCpy(CpyDst
, Src
,
177 ConstantInt::get(TD
->getIntPtrType(*Context
), Len
+ 1), 1);
181 //===---------------------------------------===//
182 // 'strncat' Optimizations
184 struct StrNCatOpt
: public StrCatOpt
{
185 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
186 // Verify the "strncat" function prototype.
187 const FunctionType
*FT
= Callee
->getFunctionType();
188 if (FT
->getNumParams() != 3 ||
189 FT
->getReturnType() != B
.getInt8PtrTy() ||
190 FT
->getParamType(0) != FT
->getReturnType() ||
191 FT
->getParamType(1) != FT
->getReturnType() ||
192 !FT
->getParamType(2)->isIntegerTy())
195 // Extract some information from the instruction
196 Value
*Dst
= CI
->getArgOperand(0);
197 Value
*Src
= CI
->getArgOperand(1);
200 // We don't do anything if length is not constant
201 if (ConstantInt
*LengthArg
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(2)))
202 Len
= LengthArg
->getZExtValue();
206 // See if we can get the length of the input string.
207 uint64_t SrcLen
= GetStringLength(Src
);
208 if (SrcLen
== 0) return 0;
209 --SrcLen
; // Unbias length.
211 // Handle the simple, do-nothing cases:
212 // strncat(x, "", c) -> x
213 // strncat(x, c, 0) -> x
214 if (SrcLen
== 0 || Len
== 0) return Dst
;
216 // These optimizations require TargetData.
219 // We don't optimize this case
220 if (Len
< SrcLen
) return 0;
222 // strncat(x, s, c) -> strcat(x, s)
223 // s is constant so the strcat can be optimized further
224 EmitStrLenMemCpy(Src
, Dst
, SrcLen
, B
);
229 //===---------------------------------------===//
230 // 'strchr' Optimizations
232 struct StrChrOpt
: public LibCallOptimization
{
233 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
234 // Verify the "strchr" function prototype.
235 const FunctionType
*FT
= Callee
->getFunctionType();
236 if (FT
->getNumParams() != 2 ||
237 FT
->getReturnType() != B
.getInt8PtrTy() ||
238 FT
->getParamType(0) != FT
->getReturnType() ||
239 !FT
->getParamType(1)->isIntegerTy(32))
242 Value
*SrcStr
= CI
->getArgOperand(0);
244 // If the second operand is non-constant, see if we can compute the length
245 // of the input string and turn this into memchr.
246 ConstantInt
*CharC
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
248 // These optimizations require TargetData.
251 uint64_t Len
= GetStringLength(SrcStr
);
252 if (Len
== 0 || !FT
->getParamType(1)->isIntegerTy(32))// memchr needs i32.
255 return EmitMemChr(SrcStr
, CI
->getArgOperand(1), // include nul.
256 ConstantInt::get(TD
->getIntPtrType(*Context
), Len
),
260 // Otherwise, the character is a constant, see if the first argument is
261 // a string literal. If so, we can constant fold.
263 if (!GetConstantStringInfo(SrcStr
, Str
))
266 // strchr can find the nul character.
269 // Compute the offset.
270 size_t I
= Str
.find(CharC
->getSExtValue());
271 if (I
== std::string::npos
) // Didn't find the char. strchr returns null.
272 return Constant::getNullValue(CI
->getType());
274 // strchr(s+n,c) -> gep(s+n+i,c)
275 return B
.CreateGEP(SrcStr
, B
.getInt64(I
), "strchr");
279 //===---------------------------------------===//
280 // 'strrchr' Optimizations
282 struct StrRChrOpt
: public LibCallOptimization
{
283 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
284 // Verify the "strrchr" function prototype.
285 const FunctionType
*FT
= Callee
->getFunctionType();
286 if (FT
->getNumParams() != 2 ||
287 FT
->getReturnType() != B
.getInt8PtrTy() ||
288 FT
->getParamType(0) != FT
->getReturnType() ||
289 !FT
->getParamType(1)->isIntegerTy(32))
292 Value
*SrcStr
= CI
->getArgOperand(0);
293 ConstantInt
*CharC
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
295 // Cannot fold anything if we're not looking for a constant.
300 if (!GetConstantStringInfo(SrcStr
, Str
)) {
301 // strrchr(s, 0) -> strchr(s, 0)
302 if (TD
&& CharC
->isZero())
303 return EmitStrChr(SrcStr
, '\0', B
, TD
);
307 // strrchr can find the nul character.
310 // Compute the offset.
311 size_t I
= Str
.rfind(CharC
->getSExtValue());
312 if (I
== std::string::npos
) // Didn't find the char. Return null.
313 return Constant::getNullValue(CI
->getType());
315 // strrchr(s+n,c) -> gep(s+n+i,c)
316 return B
.CreateGEP(SrcStr
, B
.getInt64(I
), "strrchr");
320 //===---------------------------------------===//
321 // 'strcmp' Optimizations
323 struct StrCmpOpt
: public LibCallOptimization
{
324 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
325 // Verify the "strcmp" function prototype.
326 const FunctionType
*FT
= Callee
->getFunctionType();
327 if (FT
->getNumParams() != 2 ||
328 !FT
->getReturnType()->isIntegerTy(32) ||
329 FT
->getParamType(0) != FT
->getParamType(1) ||
330 FT
->getParamType(0) != B
.getInt8PtrTy())
333 Value
*Str1P
= CI
->getArgOperand(0), *Str2P
= CI
->getArgOperand(1);
334 if (Str1P
== Str2P
) // strcmp(x,x) -> 0
335 return ConstantInt::get(CI
->getType(), 0);
337 std::string Str1
, Str2
;
338 bool HasStr1
= GetConstantStringInfo(Str1P
, Str1
);
339 bool HasStr2
= GetConstantStringInfo(Str2P
, Str2
);
341 if (HasStr1
&& Str1
.empty()) // strcmp("", x) -> *x
342 return B
.CreateZExt(B
.CreateLoad(Str2P
, "strcmpload"), CI
->getType());
344 if (HasStr2
&& Str2
.empty()) // strcmp(x,"") -> *x
345 return B
.CreateZExt(B
.CreateLoad(Str1P
, "strcmpload"), CI
->getType());
347 // strcmp(x, y) -> cnst (if both x and y are constant strings)
348 if (HasStr1
&& HasStr2
)
349 return ConstantInt::get(CI
->getType(),
350 strcmp(Str1
.c_str(),Str2
.c_str()));
352 // strcmp(P, "x") -> memcmp(P, "x", 2)
353 uint64_t Len1
= GetStringLength(Str1P
);
354 uint64_t Len2
= GetStringLength(Str2P
);
356 // These optimizations require TargetData.
359 return EmitMemCmp(Str1P
, Str2P
,
360 ConstantInt::get(TD
->getIntPtrType(*Context
),
361 std::min(Len1
, Len2
)), B
, TD
);
368 //===---------------------------------------===//
369 // 'strncmp' Optimizations
371 struct StrNCmpOpt
: public LibCallOptimization
{
372 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
373 // Verify the "strncmp" function prototype.
374 const FunctionType
*FT
= Callee
->getFunctionType();
375 if (FT
->getNumParams() != 3 ||
376 !FT
->getReturnType()->isIntegerTy(32) ||
377 FT
->getParamType(0) != FT
->getParamType(1) ||
378 FT
->getParamType(0) != B
.getInt8PtrTy() ||
379 !FT
->getParamType(2)->isIntegerTy())
382 Value
*Str1P
= CI
->getArgOperand(0), *Str2P
= CI
->getArgOperand(1);
383 if (Str1P
== Str2P
) // strncmp(x,x,n) -> 0
384 return ConstantInt::get(CI
->getType(), 0);
386 // Get the length argument if it is constant.
388 if (ConstantInt
*LengthArg
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(2)))
389 Length
= LengthArg
->getZExtValue();
393 if (Length
== 0) // strncmp(x,y,0) -> 0
394 return ConstantInt::get(CI
->getType(), 0);
396 if (TD
&& Length
== 1) // strncmp(x,y,1) -> memcmp(x,y,1)
397 return EmitMemCmp(Str1P
, Str2P
, CI
->getArgOperand(2), B
, TD
);
399 std::string Str1
, Str2
;
400 bool HasStr1
= GetConstantStringInfo(Str1P
, Str1
);
401 bool HasStr2
= GetConstantStringInfo(Str2P
, Str2
);
403 if (HasStr1
&& Str1
.empty()) // strncmp("", x, n) -> *x
404 return B
.CreateZExt(B
.CreateLoad(Str2P
, "strcmpload"), CI
->getType());
406 if (HasStr2
&& Str2
.empty()) // strncmp(x, "", n) -> *x
407 return B
.CreateZExt(B
.CreateLoad(Str1P
, "strcmpload"), CI
->getType());
409 // strncmp(x, y) -> cnst (if both x and y are constant strings)
410 if (HasStr1
&& HasStr2
)
411 return ConstantInt::get(CI
->getType(),
412 strncmp(Str1
.c_str(), Str2
.c_str(), Length
));
418 //===---------------------------------------===//
419 // 'strcpy' Optimizations
421 struct StrCpyOpt
: public LibCallOptimization
{
422 bool OptChkCall
; // True if it's optimizing a __strcpy_chk libcall.
424 StrCpyOpt(bool c
) : OptChkCall(c
) {}
426 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
427 // Verify the "strcpy" function prototype.
428 unsigned NumParams
= OptChkCall
? 3 : 2;
429 const FunctionType
*FT
= Callee
->getFunctionType();
430 if (FT
->getNumParams() != NumParams
||
431 FT
->getReturnType() != FT
->getParamType(0) ||
432 FT
->getParamType(0) != FT
->getParamType(1) ||
433 FT
->getParamType(0) != B
.getInt8PtrTy())
436 Value
*Dst
= CI
->getArgOperand(0), *Src
= CI
->getArgOperand(1);
437 if (Dst
== Src
) // strcpy(x,x) -> x
440 // These optimizations require TargetData.
443 // See if we can get the length of the input string.
444 uint64_t Len
= GetStringLength(Src
);
445 if (Len
== 0) return 0;
447 // We have enough information to now generate the memcpy call to do the
448 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
450 EmitMemCpyChk(Dst
, Src
,
451 ConstantInt::get(TD
->getIntPtrType(*Context
), Len
),
452 CI
->getArgOperand(2), B
, TD
);
454 B
.CreateMemCpy(Dst
, Src
,
455 ConstantInt::get(TD
->getIntPtrType(*Context
), Len
), 1);
460 //===---------------------------------------===//
461 // 'strncpy' Optimizations
463 struct StrNCpyOpt
: public LibCallOptimization
{
464 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
465 const FunctionType
*FT
= Callee
->getFunctionType();
466 if (FT
->getNumParams() != 3 || FT
->getReturnType() != FT
->getParamType(0) ||
467 FT
->getParamType(0) != FT
->getParamType(1) ||
468 FT
->getParamType(0) != B
.getInt8PtrTy() ||
469 !FT
->getParamType(2)->isIntegerTy())
472 Value
*Dst
= CI
->getArgOperand(0);
473 Value
*Src
= CI
->getArgOperand(1);
474 Value
*LenOp
= CI
->getArgOperand(2);
476 // See if we can get the length of the input string.
477 uint64_t SrcLen
= GetStringLength(Src
);
478 if (SrcLen
== 0) return 0;
482 // strncpy(x, "", y) -> memset(x, '\0', y, 1)
483 B
.CreateMemSet(Dst
, B
.getInt8('\0'), LenOp
, 1);
488 if (ConstantInt
*LengthArg
= dyn_cast
<ConstantInt
>(LenOp
))
489 Len
= LengthArg
->getZExtValue();
493 if (Len
== 0) return Dst
; // strncpy(x, y, 0) -> x
495 // These optimizations require TargetData.
498 // Let strncpy handle the zero padding
499 if (Len
> SrcLen
+1) return 0;
501 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
502 B
.CreateMemCpy(Dst
, Src
,
503 ConstantInt::get(TD
->getIntPtrType(*Context
), Len
), 1);
509 //===---------------------------------------===//
510 // 'strlen' Optimizations
512 struct StrLenOpt
: public LibCallOptimization
{
513 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
514 const FunctionType
*FT
= Callee
->getFunctionType();
515 if (FT
->getNumParams() != 1 ||
516 FT
->getParamType(0) != B
.getInt8PtrTy() ||
517 !FT
->getReturnType()->isIntegerTy())
520 Value
*Src
= CI
->getArgOperand(0);
522 // Constant folding: strlen("xyz") -> 3
523 if (uint64_t Len
= GetStringLength(Src
))
524 return ConstantInt::get(CI
->getType(), Len
-1);
526 // strlen(x) != 0 --> *x != 0
527 // strlen(x) == 0 --> *x == 0
528 if (IsOnlyUsedInZeroEqualityComparison(CI
))
529 return B
.CreateZExt(B
.CreateLoad(Src
, "strlenfirst"), CI
->getType());
535 //===---------------------------------------===//
536 // 'strpbrk' Optimizations
538 struct StrPBrkOpt
: public LibCallOptimization
{
539 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
540 const FunctionType
*FT
= Callee
->getFunctionType();
541 if (FT
->getNumParams() != 2 ||
542 FT
->getParamType(0) != B
.getInt8PtrTy() ||
543 FT
->getParamType(1) != FT
->getParamType(0) ||
544 FT
->getReturnType() != FT
->getParamType(0))
548 bool HasS1
= GetConstantStringInfo(CI
->getArgOperand(0), S1
);
549 bool HasS2
= GetConstantStringInfo(CI
->getArgOperand(1), S2
);
551 // strpbrk(s, "") -> NULL
552 // strpbrk("", s) -> NULL
553 if ((HasS1
&& S1
.empty()) || (HasS2
&& S2
.empty()))
554 return Constant::getNullValue(CI
->getType());
557 if (HasS1
&& HasS2
) {
558 size_t I
= S1
.find_first_of(S2
);
559 if (I
== std::string::npos
) // No match.
560 return Constant::getNullValue(CI
->getType());
562 return B
.CreateGEP(CI
->getArgOperand(0), B
.getInt64(I
), "strpbrk");
565 // strpbrk(s, "a") -> strchr(s, 'a')
566 if (TD
&& HasS2
&& S2
.size() == 1)
567 return EmitStrChr(CI
->getArgOperand(0), S2
[0], B
, TD
);
573 //===---------------------------------------===//
574 // 'strto*' Optimizations. This handles strtol, strtod, strtof, strtoul, etc.
576 struct StrToOpt
: public LibCallOptimization
{
577 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
578 const FunctionType
*FT
= Callee
->getFunctionType();
579 if ((FT
->getNumParams() != 2 && FT
->getNumParams() != 3) ||
580 !FT
->getParamType(0)->isPointerTy() ||
581 !FT
->getParamType(1)->isPointerTy())
584 Value
*EndPtr
= CI
->getArgOperand(1);
585 if (isa
<ConstantPointerNull
>(EndPtr
)) {
586 // With a null EndPtr, this function won't capture the main argument.
587 // It would be readonly too, except that it still may write to errno.
588 CI
->addAttribute(1, Attribute::NoCapture
);
595 //===---------------------------------------===//
596 // 'strspn' Optimizations
598 struct StrSpnOpt
: public LibCallOptimization
{
599 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
600 const FunctionType
*FT
= Callee
->getFunctionType();
601 if (FT
->getNumParams() != 2 ||
602 FT
->getParamType(0) != B
.getInt8PtrTy() ||
603 FT
->getParamType(1) != FT
->getParamType(0) ||
604 !FT
->getReturnType()->isIntegerTy())
608 bool HasS1
= GetConstantStringInfo(CI
->getArgOperand(0), S1
);
609 bool HasS2
= GetConstantStringInfo(CI
->getArgOperand(1), S2
);
611 // strspn(s, "") -> 0
612 // strspn("", s) -> 0
613 if ((HasS1
&& S1
.empty()) || (HasS2
&& S2
.empty()))
614 return Constant::getNullValue(CI
->getType());
618 return ConstantInt::get(CI
->getType(), strspn(S1
.c_str(), S2
.c_str()));
624 //===---------------------------------------===//
625 // 'strcspn' Optimizations
627 struct StrCSpnOpt
: public LibCallOptimization
{
628 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
629 const FunctionType
*FT
= Callee
->getFunctionType();
630 if (FT
->getNumParams() != 2 ||
631 FT
->getParamType(0) != B
.getInt8PtrTy() ||
632 FT
->getParamType(1) != FT
->getParamType(0) ||
633 !FT
->getReturnType()->isIntegerTy())
637 bool HasS1
= GetConstantStringInfo(CI
->getArgOperand(0), S1
);
638 bool HasS2
= GetConstantStringInfo(CI
->getArgOperand(1), S2
);
640 // strcspn("", s) -> 0
641 if (HasS1
&& S1
.empty())
642 return Constant::getNullValue(CI
->getType());
646 return ConstantInt::get(CI
->getType(), strcspn(S1
.c_str(), S2
.c_str()));
648 // strcspn(s, "") -> strlen(s)
649 if (TD
&& HasS2
&& S2
.empty())
650 return EmitStrLen(CI
->getArgOperand(0), B
, TD
);
656 //===---------------------------------------===//
657 // 'strstr' Optimizations
659 struct StrStrOpt
: public LibCallOptimization
{
660 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
661 const FunctionType
*FT
= Callee
->getFunctionType();
662 if (FT
->getNumParams() != 2 ||
663 !FT
->getParamType(0)->isPointerTy() ||
664 !FT
->getParamType(1)->isPointerTy() ||
665 !FT
->getReturnType()->isPointerTy())
668 // fold strstr(x, x) -> x.
669 if (CI
->getArgOperand(0) == CI
->getArgOperand(1))
670 return B
.CreateBitCast(CI
->getArgOperand(0), CI
->getType());
672 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
673 if (TD
&& IsOnlyUsedInEqualityComparison(CI
, CI
->getArgOperand(0))) {
674 Value
*StrLen
= EmitStrLen(CI
->getArgOperand(1), B
, TD
);
675 Value
*StrNCmp
= EmitStrNCmp(CI
->getArgOperand(0), CI
->getArgOperand(1),
677 for (Value::use_iterator UI
= CI
->use_begin(), UE
= CI
->use_end();
679 ICmpInst
*Old
= cast
<ICmpInst
>(*UI
++);
680 Value
*Cmp
= B
.CreateICmp(Old
->getPredicate(), StrNCmp
,
681 ConstantInt::getNullValue(StrNCmp
->getType()),
683 Old
->replaceAllUsesWith(Cmp
);
684 Old
->eraseFromParent();
689 // See if either input string is a constant string.
690 std::string SearchStr
, ToFindStr
;
691 bool HasStr1
= GetConstantStringInfo(CI
->getArgOperand(0), SearchStr
);
692 bool HasStr2
= GetConstantStringInfo(CI
->getArgOperand(1), ToFindStr
);
694 // fold strstr(x, "") -> x.
695 if (HasStr2
&& ToFindStr
.empty())
696 return B
.CreateBitCast(CI
->getArgOperand(0), CI
->getType());
698 // If both strings are known, constant fold it.
699 if (HasStr1
&& HasStr2
) {
700 std::string::size_type Offset
= SearchStr
.find(ToFindStr
);
702 if (Offset
== std::string::npos
) // strstr("foo", "bar") -> null
703 return Constant::getNullValue(CI
->getType());
705 // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
706 Value
*Result
= CastToCStr(CI
->getArgOperand(0), B
);
707 Result
= B
.CreateConstInBoundsGEP1_64(Result
, Offset
, "strstr");
708 return B
.CreateBitCast(Result
, CI
->getType());
711 // fold strstr(x, "y") -> strchr(x, 'y').
712 if (HasStr2
&& ToFindStr
.size() == 1)
713 return B
.CreateBitCast(EmitStrChr(CI
->getArgOperand(0),
714 ToFindStr
[0], B
, TD
), CI
->getType());
720 //===---------------------------------------===//
721 // 'memcmp' Optimizations
723 struct MemCmpOpt
: public LibCallOptimization
{
724 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
725 const FunctionType
*FT
= Callee
->getFunctionType();
726 if (FT
->getNumParams() != 3 || !FT
->getParamType(0)->isPointerTy() ||
727 !FT
->getParamType(1)->isPointerTy() ||
728 !FT
->getReturnType()->isIntegerTy(32))
731 Value
*LHS
= CI
->getArgOperand(0), *RHS
= CI
->getArgOperand(1);
733 if (LHS
== RHS
) // memcmp(s,s,x) -> 0
734 return Constant::getNullValue(CI
->getType());
736 // Make sure we have a constant length.
737 ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(2));
739 uint64_t Len
= LenC
->getZExtValue();
741 if (Len
== 0) // memcmp(s1,s2,0) -> 0
742 return Constant::getNullValue(CI
->getType());
744 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
746 Value
*LHSV
= B
.CreateZExt(B
.CreateLoad(CastToCStr(LHS
, B
), "lhsc"),
747 CI
->getType(), "lhsv");
748 Value
*RHSV
= B
.CreateZExt(B
.CreateLoad(CastToCStr(RHS
, B
), "rhsc"),
749 CI
->getType(), "rhsv");
750 return B
.CreateSub(LHSV
, RHSV
, "chardiff");
753 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
754 std::string LHSStr
, RHSStr
;
755 if (GetConstantStringInfo(LHS
, LHSStr
) &&
756 GetConstantStringInfo(RHS
, RHSStr
)) {
757 // Make sure we're not reading out-of-bounds memory.
758 if (Len
> LHSStr
.length() || Len
> RHSStr
.length())
760 uint64_t Ret
= memcmp(LHSStr
.data(), RHSStr
.data(), Len
);
761 return ConstantInt::get(CI
->getType(), Ret
);
768 //===---------------------------------------===//
769 // 'memcpy' Optimizations
771 struct MemCpyOpt
: public LibCallOptimization
{
772 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
773 // These optimizations require TargetData.
776 const FunctionType
*FT
= Callee
->getFunctionType();
777 if (FT
->getNumParams() != 3 || FT
->getReturnType() != FT
->getParamType(0) ||
778 !FT
->getParamType(0)->isPointerTy() ||
779 !FT
->getParamType(1)->isPointerTy() ||
780 FT
->getParamType(2) != TD
->getIntPtrType(*Context
))
783 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
784 B
.CreateMemCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
785 CI
->getArgOperand(2), 1);
786 return CI
->getArgOperand(0);
790 //===---------------------------------------===//
791 // 'memmove' Optimizations
793 struct MemMoveOpt
: public LibCallOptimization
{
794 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
795 // These optimizations require TargetData.
798 const FunctionType
*FT
= Callee
->getFunctionType();
799 if (FT
->getNumParams() != 3 || FT
->getReturnType() != FT
->getParamType(0) ||
800 !FT
->getParamType(0)->isPointerTy() ||
801 !FT
->getParamType(1)->isPointerTy() ||
802 FT
->getParamType(2) != TD
->getIntPtrType(*Context
))
805 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
806 B
.CreateMemMove(CI
->getArgOperand(0), CI
->getArgOperand(1),
807 CI
->getArgOperand(2), 1);
808 return CI
->getArgOperand(0);
812 //===---------------------------------------===//
813 // 'memset' Optimizations
815 struct MemSetOpt
: public LibCallOptimization
{
816 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
817 // These optimizations require TargetData.
820 const FunctionType
*FT
= Callee
->getFunctionType();
821 if (FT
->getNumParams() != 3 || FT
->getReturnType() != FT
->getParamType(0) ||
822 !FT
->getParamType(0)->isPointerTy() ||
823 !FT
->getParamType(1)->isIntegerTy() ||
824 FT
->getParamType(2) != TD
->getIntPtrType(*Context
))
827 // memset(p, v, n) -> llvm.memset(p, v, n, 1)
828 Value
*Val
= B
.CreateIntCast(CI
->getArgOperand(1), B
.getInt8Ty(), false);
829 B
.CreateMemSet(CI
->getArgOperand(0), Val
, CI
->getArgOperand(2), 1);
830 return CI
->getArgOperand(0);
834 //===----------------------------------------------------------------------===//
835 // Math Library Optimizations
836 //===----------------------------------------------------------------------===//
838 //===---------------------------------------===//
839 // 'pow*' Optimizations
841 struct PowOpt
: public LibCallOptimization
{
842 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
843 const FunctionType
*FT
= Callee
->getFunctionType();
844 // Just make sure this has 2 arguments of the same FP type, which match the
846 if (FT
->getNumParams() != 2 || FT
->getReturnType() != FT
->getParamType(0) ||
847 FT
->getParamType(0) != FT
->getParamType(1) ||
848 !FT
->getParamType(0)->isFloatingPointTy())
851 Value
*Op1
= CI
->getArgOperand(0), *Op2
= CI
->getArgOperand(1);
852 if (ConstantFP
*Op1C
= dyn_cast
<ConstantFP
>(Op1
)) {
853 if (Op1C
->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
855 if (Op1C
->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
856 return EmitUnaryFloatFnCall(Op2
, "exp2", B
, Callee
->getAttributes());
859 ConstantFP
*Op2C
= dyn_cast
<ConstantFP
>(Op2
);
860 if (Op2C
== 0) return 0;
862 if (Op2C
->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
863 return ConstantFP::get(CI
->getType(), 1.0);
865 if (Op2C
->isExactlyValue(0.5)) {
866 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
867 // This is faster than calling pow, and still handles negative zero
868 // and negative infinite correctly.
869 // TODO: In fast-math mode, this could be just sqrt(x).
870 // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
871 Value
*Inf
= ConstantFP::getInfinity(CI
->getType());
872 Value
*NegInf
= ConstantFP::getInfinity(CI
->getType(), true);
873 Value
*Sqrt
= EmitUnaryFloatFnCall(Op1
, "sqrt", B
,
874 Callee
->getAttributes());
875 Value
*FAbs
= EmitUnaryFloatFnCall(Sqrt
, "fabs", B
,
876 Callee
->getAttributes());
877 Value
*FCmp
= B
.CreateFCmpOEQ(Op1
, NegInf
, "tmp");
878 Value
*Sel
= B
.CreateSelect(FCmp
, Inf
, FAbs
, "tmp");
882 if (Op2C
->isExactlyValue(1.0)) // pow(x, 1.0) -> x
884 if (Op2C
->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
885 return B
.CreateFMul(Op1
, Op1
, "pow2");
886 if (Op2C
->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
887 return B
.CreateFDiv(ConstantFP::get(CI
->getType(), 1.0),
893 //===---------------------------------------===//
894 // 'exp2' Optimizations
896 struct Exp2Opt
: public LibCallOptimization
{
897 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
898 const FunctionType
*FT
= Callee
->getFunctionType();
899 // Just make sure this has 1 argument of FP type, which matches the
901 if (FT
->getNumParams() != 1 || FT
->getReturnType() != FT
->getParamType(0) ||
902 !FT
->getParamType(0)->isFloatingPointTy())
905 Value
*Op
= CI
->getArgOperand(0);
906 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
907 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
909 if (SIToFPInst
*OpC
= dyn_cast
<SIToFPInst
>(Op
)) {
910 if (OpC
->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
911 LdExpArg
= B
.CreateSExt(OpC
->getOperand(0), B
.getInt32Ty(), "tmp");
912 } else if (UIToFPInst
*OpC
= dyn_cast
<UIToFPInst
>(Op
)) {
913 if (OpC
->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
914 LdExpArg
= B
.CreateZExt(OpC
->getOperand(0), B
.getInt32Ty(), "tmp");
919 if (Op
->getType()->isFloatTy())
921 else if (Op
->getType()->isDoubleTy())
926 Constant
*One
= ConstantFP::get(*Context
, APFloat(1.0f
));
927 if (!Op
->getType()->isFloatTy())
928 One
= ConstantExpr::getFPExtend(One
, Op
->getType());
930 Module
*M
= Caller
->getParent();
931 Value
*Callee
= M
->getOrInsertFunction(Name
, Op
->getType(),
933 B
.getInt32Ty(), NULL
);
934 CallInst
*CI
= B
.CreateCall2(Callee
, One
, LdExpArg
);
935 if (const Function
*F
= dyn_cast
<Function
>(Callee
->stripPointerCasts()))
936 CI
->setCallingConv(F
->getCallingConv());
944 //===---------------------------------------===//
945 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
947 struct UnaryDoubleFPOpt
: public LibCallOptimization
{
948 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
949 const FunctionType
*FT
= Callee
->getFunctionType();
950 if (FT
->getNumParams() != 1 || !FT
->getReturnType()->isDoubleTy() ||
951 !FT
->getParamType(0)->isDoubleTy())
954 // If this is something like 'floor((double)floatval)', convert to floorf.
955 FPExtInst
*Cast
= dyn_cast
<FPExtInst
>(CI
->getArgOperand(0));
956 if (Cast
== 0 || !Cast
->getOperand(0)->getType()->isFloatTy())
959 // floor((double)floatval) -> (double)floorf(floatval)
960 Value
*V
= Cast
->getOperand(0);
961 V
= EmitUnaryFloatFnCall(V
, Callee
->getName().data(), B
,
962 Callee
->getAttributes());
963 return B
.CreateFPExt(V
, B
.getDoubleTy());
967 //===----------------------------------------------------------------------===//
968 // Integer Optimizations
969 //===----------------------------------------------------------------------===//
971 //===---------------------------------------===//
972 // 'ffs*' Optimizations
974 struct FFSOpt
: public LibCallOptimization
{
975 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
976 const FunctionType
*FT
= Callee
->getFunctionType();
977 // Just make sure this has 2 arguments of the same FP type, which match the
979 if (FT
->getNumParams() != 1 ||
980 !FT
->getReturnType()->isIntegerTy(32) ||
981 !FT
->getParamType(0)->isIntegerTy())
984 Value
*Op
= CI
->getArgOperand(0);
987 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op
)) {
988 if (CI
->getValue() == 0) // ffs(0) -> 0.
989 return Constant::getNullValue(CI
->getType());
990 // ffs(c) -> cttz(c)+1
991 return B
.getInt32(CI
->getValue().countTrailingZeros() + 1);
994 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
995 const Type
*ArgType
= Op
->getType();
996 Value
*F
= Intrinsic::getDeclaration(Callee
->getParent(),
997 Intrinsic::cttz
, &ArgType
, 1);
998 Value
*V
= B
.CreateCall(F
, Op
, "cttz");
999 V
= B
.CreateAdd(V
, ConstantInt::get(V
->getType(), 1), "tmp");
1000 V
= B
.CreateIntCast(V
, B
.getInt32Ty(), false, "tmp");
1002 Value
*Cond
= B
.CreateICmpNE(Op
, Constant::getNullValue(ArgType
), "tmp");
1003 return B
.CreateSelect(Cond
, V
, B
.getInt32(0));
1007 //===---------------------------------------===//
1008 // 'isdigit' Optimizations
1010 struct IsDigitOpt
: public LibCallOptimization
{
1011 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1012 const FunctionType
*FT
= Callee
->getFunctionType();
1013 // We require integer(i32)
1014 if (FT
->getNumParams() != 1 || !FT
->getReturnType()->isIntegerTy() ||
1015 !FT
->getParamType(0)->isIntegerTy(32))
1018 // isdigit(c) -> (c-'0') <u 10
1019 Value
*Op
= CI
->getArgOperand(0);
1020 Op
= B
.CreateSub(Op
, B
.getInt32('0'), "isdigittmp");
1021 Op
= B
.CreateICmpULT(Op
, B
.getInt32(10), "isdigit");
1022 return B
.CreateZExt(Op
, CI
->getType());
1026 //===---------------------------------------===//
1027 // 'isascii' Optimizations
1029 struct IsAsciiOpt
: public LibCallOptimization
{
1030 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1031 const FunctionType
*FT
= Callee
->getFunctionType();
1032 // We require integer(i32)
1033 if (FT
->getNumParams() != 1 || !FT
->getReturnType()->isIntegerTy() ||
1034 !FT
->getParamType(0)->isIntegerTy(32))
1037 // isascii(c) -> c <u 128
1038 Value
*Op
= CI
->getArgOperand(0);
1039 Op
= B
.CreateICmpULT(Op
, B
.getInt32(128), "isascii");
1040 return B
.CreateZExt(Op
, CI
->getType());
1044 //===---------------------------------------===//
1045 // 'abs', 'labs', 'llabs' Optimizations
1047 struct AbsOpt
: public LibCallOptimization
{
1048 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1049 const FunctionType
*FT
= Callee
->getFunctionType();
1050 // We require integer(integer) where the types agree.
1051 if (FT
->getNumParams() != 1 || !FT
->getReturnType()->isIntegerTy() ||
1052 FT
->getParamType(0) != FT
->getReturnType())
1055 // abs(x) -> x >s -1 ? x : -x
1056 Value
*Op
= CI
->getArgOperand(0);
1057 Value
*Pos
= B
.CreateICmpSGT(Op
, Constant::getAllOnesValue(Op
->getType()),
1059 Value
*Neg
= B
.CreateNeg(Op
, "neg");
1060 return B
.CreateSelect(Pos
, Op
, Neg
);
1065 //===---------------------------------------===//
1066 // 'toascii' Optimizations
1068 struct ToAsciiOpt
: public LibCallOptimization
{
1069 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1070 const FunctionType
*FT
= Callee
->getFunctionType();
1071 // We require i32(i32)
1072 if (FT
->getNumParams() != 1 || FT
->getReturnType() != FT
->getParamType(0) ||
1073 !FT
->getParamType(0)->isIntegerTy(32))
1076 // isascii(c) -> c & 0x7f
1077 return B
.CreateAnd(CI
->getArgOperand(0),
1078 ConstantInt::get(CI
->getType(),0x7F));
1082 //===----------------------------------------------------------------------===//
1083 // Formatting and IO Optimizations
1084 //===----------------------------------------------------------------------===//
1086 //===---------------------------------------===//
1087 // 'printf' Optimizations
1089 struct PrintFOpt
: public LibCallOptimization
{
1090 Value
*OptimizeFixedFormatString(Function
*Callee
, CallInst
*CI
,
1092 // Check for a fixed format string.
1093 std::string FormatStr
;
1094 if (!GetConstantStringInfo(CI
->getArgOperand(0), FormatStr
))
1097 // Empty format string -> noop.
1098 if (FormatStr
.empty()) // Tolerate printf's declared void.
1099 return CI
->use_empty() ? (Value
*)CI
:
1100 ConstantInt::get(CI
->getType(), 0);
1102 // Do not do any of the following transformations if the printf return value
1103 // is used, in general the printf return value is not compatible with either
1104 // putchar() or puts().
1105 if (!CI
->use_empty())
1108 // printf("x") -> putchar('x'), even for '%'.
1109 if (FormatStr
.size() == 1) {
1110 Value
*Res
= EmitPutChar(B
.getInt32(FormatStr
[0]), B
, TD
);
1111 if (CI
->use_empty()) return CI
;
1112 return B
.CreateIntCast(Res
, CI
->getType(), true);
1115 // printf("foo\n") --> puts("foo")
1116 if (FormatStr
[FormatStr
.size()-1] == '\n' &&
1117 FormatStr
.find('%') == std::string::npos
) { // no format characters.
1118 // Create a string literal with no \n on it. We expect the constant merge
1119 // pass to be run after this pass, to merge duplicate strings.
1120 FormatStr
.erase(FormatStr
.end()-1);
1121 Constant
*C
= ConstantArray::get(*Context
, FormatStr
, true);
1122 C
= new GlobalVariable(*Callee
->getParent(), C
->getType(), true,
1123 GlobalVariable::InternalLinkage
, C
, "str");
1125 return CI
->use_empty() ? (Value
*)CI
:
1126 ConstantInt::get(CI
->getType(), FormatStr
.size()+1);
1129 // Optimize specific format strings.
1130 // printf("%c", chr) --> putchar(chr)
1131 if (FormatStr
== "%c" && CI
->getNumArgOperands() > 1 &&
1132 CI
->getArgOperand(1)->getType()->isIntegerTy()) {
1133 Value
*Res
= EmitPutChar(CI
->getArgOperand(1), B
, TD
);
1135 if (CI
->use_empty()) return CI
;
1136 return B
.CreateIntCast(Res
, CI
->getType(), true);
1139 // printf("%s\n", str) --> puts(str)
1140 if (FormatStr
== "%s\n" && CI
->getNumArgOperands() > 1 &&
1141 CI
->getArgOperand(1)->getType()->isPointerTy()) {
1142 EmitPutS(CI
->getArgOperand(1), B
, TD
);
1148 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1149 // Require one fixed pointer argument and an integer/void result.
1150 const FunctionType
*FT
= Callee
->getFunctionType();
1151 if (FT
->getNumParams() < 1 || !FT
->getParamType(0)->isPointerTy() ||
1152 !(FT
->getReturnType()->isIntegerTy() ||
1153 FT
->getReturnType()->isVoidTy()))
1156 if (Value
*V
= OptimizeFixedFormatString(Callee
, CI
, B
)) {
1160 // printf(format, ...) -> iprintf(format, ...) if no floating point
1162 if (TLI
->has(LibFunc::iprintf
) && !CallHasFloatingPointArgument(CI
)) {
1163 Module
*M
= B
.GetInsertBlock()->getParent()->getParent();
1164 Constant
*IPrintFFn
=
1165 M
->getOrInsertFunction("iprintf", FT
, Callee
->getAttributes());
1166 CallInst
*New
= cast
<CallInst
>(CI
->clone());
1167 New
->setCalledFunction(IPrintFFn
);
1175 //===---------------------------------------===//
1176 // 'sprintf' Optimizations
1178 struct SPrintFOpt
: public LibCallOptimization
{
1179 Value
*OptimizeFixedFormatString(Function
*Callee
, CallInst
*CI
,
1181 // Check for a fixed format string.
1182 std::string FormatStr
;
1183 if (!GetConstantStringInfo(CI
->getArgOperand(1), FormatStr
))
1186 // If we just have a format string (nothing else crazy) transform it.
1187 if (CI
->getNumArgOperands() == 2) {
1188 // Make sure there's no % in the constant array. We could try to handle
1189 // %% -> % in the future if we cared.
1190 for (unsigned i
= 0, e
= FormatStr
.size(); i
!= e
; ++i
)
1191 if (FormatStr
[i
] == '%')
1192 return 0; // we found a format specifier, bail out.
1194 // These optimizations require TargetData.
1197 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1198 B
.CreateMemCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
1199 ConstantInt::get(TD
->getIntPtrType(*Context
), // Copy the
1200 FormatStr
.size() + 1), 1); // nul byte.
1201 return ConstantInt::get(CI
->getType(), FormatStr
.size());
1204 // The remaining optimizations require the format string to be "%s" or "%c"
1205 // and have an extra operand.
1206 if (FormatStr
.size() != 2 || FormatStr
[0] != '%' ||
1207 CI
->getNumArgOperands() < 3)
1210 // Decode the second character of the format string.
1211 if (FormatStr
[1] == 'c') {
1212 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1213 if (!CI
->getArgOperand(2)->getType()->isIntegerTy()) return 0;
1214 Value
*V
= B
.CreateTrunc(CI
->getArgOperand(2), B
.getInt8Ty(), "char");
1215 Value
*Ptr
= CastToCStr(CI
->getArgOperand(0), B
);
1216 B
.CreateStore(V
, Ptr
);
1217 Ptr
= B
.CreateGEP(Ptr
, B
.getInt32(1), "nul");
1218 B
.CreateStore(B
.getInt8(0), Ptr
);
1220 return ConstantInt::get(CI
->getType(), 1);
1223 if (FormatStr
[1] == 's') {
1224 // These optimizations require TargetData.
1227 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1228 if (!CI
->getArgOperand(2)->getType()->isPointerTy()) return 0;
1230 Value
*Len
= EmitStrLen(CI
->getArgOperand(2), B
, TD
);
1231 Value
*IncLen
= B
.CreateAdd(Len
,
1232 ConstantInt::get(Len
->getType(), 1),
1234 B
.CreateMemCpy(CI
->getArgOperand(0), CI
->getArgOperand(2), IncLen
, 1);
1236 // The sprintf result is the unincremented number of bytes in the string.
1237 return B
.CreateIntCast(Len
, CI
->getType(), false);
1242 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1243 // Require two fixed pointer arguments and an integer result.
1244 const FunctionType
*FT
= Callee
->getFunctionType();
1245 if (FT
->getNumParams() != 2 || !FT
->getParamType(0)->isPointerTy() ||
1246 !FT
->getParamType(1)->isPointerTy() ||
1247 !FT
->getReturnType()->isIntegerTy())
1250 if (Value
*V
= OptimizeFixedFormatString(Callee
, CI
, B
)) {
1254 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1256 if (TLI
->has(LibFunc::siprintf
) && !CallHasFloatingPointArgument(CI
)) {
1257 Module
*M
= B
.GetInsertBlock()->getParent()->getParent();
1258 Constant
*SIPrintFFn
=
1259 M
->getOrInsertFunction("siprintf", FT
, Callee
->getAttributes());
1260 CallInst
*New
= cast
<CallInst
>(CI
->clone());
1261 New
->setCalledFunction(SIPrintFFn
);
1269 //===---------------------------------------===//
1270 // 'fwrite' Optimizations
1272 struct FWriteOpt
: public LibCallOptimization
{
1273 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1274 // Require a pointer, an integer, an integer, a pointer, returning integer.
1275 const FunctionType
*FT
= Callee
->getFunctionType();
1276 if (FT
->getNumParams() != 4 || !FT
->getParamType(0)->isPointerTy() ||
1277 !FT
->getParamType(1)->isIntegerTy() ||
1278 !FT
->getParamType(2)->isIntegerTy() ||
1279 !FT
->getParamType(3)->isPointerTy() ||
1280 !FT
->getReturnType()->isIntegerTy())
1283 // Get the element size and count.
1284 ConstantInt
*SizeC
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
1285 ConstantInt
*CountC
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(2));
1286 if (!SizeC
|| !CountC
) return 0;
1287 uint64_t Bytes
= SizeC
->getZExtValue()*CountC
->getZExtValue();
1289 // If this is writing zero records, remove the call (it's a noop).
1291 return ConstantInt::get(CI
->getType(), 0);
1293 // If this is writing one byte, turn it into fputc.
1294 if (Bytes
== 1) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1295 Value
*Char
= B
.CreateLoad(CastToCStr(CI
->getArgOperand(0), B
), "char");
1296 EmitFPutC(Char
, CI
->getArgOperand(3), B
, TD
);
1297 return ConstantInt::get(CI
->getType(), 1);
1304 //===---------------------------------------===//
1305 // 'fputs' Optimizations
1307 struct FPutsOpt
: public LibCallOptimization
{
1308 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1309 // These optimizations require TargetData.
1312 // Require two pointers. Also, we can't optimize if return value is used.
1313 const FunctionType
*FT
= Callee
->getFunctionType();
1314 if (FT
->getNumParams() != 2 || !FT
->getParamType(0)->isPointerTy() ||
1315 !FT
->getParamType(1)->isPointerTy() ||
1319 // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1320 uint64_t Len
= GetStringLength(CI
->getArgOperand(0));
1322 EmitFWrite(CI
->getArgOperand(0),
1323 ConstantInt::get(TD
->getIntPtrType(*Context
), Len
-1),
1324 CI
->getArgOperand(1), B
, TD
);
1325 return CI
; // Known to have no uses (see above).
1329 //===---------------------------------------===//
1330 // 'fprintf' Optimizations
1332 struct FPrintFOpt
: public LibCallOptimization
{
1333 Value
*OptimizeFixedFormatString(Function
*Callee
, CallInst
*CI
,
1335 // All the optimizations depend on the format string.
1336 std::string FormatStr
;
1337 if (!GetConstantStringInfo(CI
->getArgOperand(1), FormatStr
))
1340 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1341 if (CI
->getNumArgOperands() == 2) {
1342 for (unsigned i
= 0, e
= FormatStr
.size(); i
!= e
; ++i
)
1343 if (FormatStr
[i
] == '%') // Could handle %% -> % if we cared.
1344 return 0; // We found a format specifier.
1346 // These optimizations require TargetData.
1349 EmitFWrite(CI
->getArgOperand(1),
1350 ConstantInt::get(TD
->getIntPtrType(*Context
),
1352 CI
->getArgOperand(0), B
, TD
);
1353 return ConstantInt::get(CI
->getType(), FormatStr
.size());
1356 // The remaining optimizations require the format string to be "%s" or "%c"
1357 // and have an extra operand.
1358 if (FormatStr
.size() != 2 || FormatStr
[0] != '%' ||
1359 CI
->getNumArgOperands() < 3)
1362 // Decode the second character of the format string.
1363 if (FormatStr
[1] == 'c') {
1364 // fprintf(F, "%c", chr) --> fputc(chr, F)
1365 if (!CI
->getArgOperand(2)->getType()->isIntegerTy()) return 0;
1366 EmitFPutC(CI
->getArgOperand(2), CI
->getArgOperand(0), B
, TD
);
1367 return ConstantInt::get(CI
->getType(), 1);
1370 if (FormatStr
[1] == 's') {
1371 // fprintf(F, "%s", str) --> fputs(str, F)
1372 if (!CI
->getArgOperand(2)->getType()->isPointerTy() || !CI
->use_empty())
1374 EmitFPutS(CI
->getArgOperand(2), CI
->getArgOperand(0), B
, TD
);
1380 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1381 // Require two fixed paramters as pointers and integer result.
1382 const FunctionType
*FT
= Callee
->getFunctionType();
1383 if (FT
->getNumParams() != 2 || !FT
->getParamType(0)->isPointerTy() ||
1384 !FT
->getParamType(1)->isPointerTy() ||
1385 !FT
->getReturnType()->isIntegerTy())
1388 if (Value
*V
= OptimizeFixedFormatString(Callee
, CI
, B
)) {
1392 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1393 // floating point arguments.
1394 if (TLI
->has(LibFunc::fiprintf
) && !CallHasFloatingPointArgument(CI
)) {
1395 Module
*M
= B
.GetInsertBlock()->getParent()->getParent();
1396 Constant
*FIPrintFFn
=
1397 M
->getOrInsertFunction("fiprintf", FT
, Callee
->getAttributes());
1398 CallInst
*New
= cast
<CallInst
>(CI
->clone());
1399 New
->setCalledFunction(FIPrintFFn
);
1407 //===---------------------------------------===//
1408 // 'puts' Optimizations
1410 struct PutsOpt
: public LibCallOptimization
{
1411 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1412 // Require one fixed pointer argument and an integer/void result.
1413 const FunctionType
*FT
= Callee
->getFunctionType();
1414 if (FT
->getNumParams() < 1 || !FT
->getParamType(0)->isPointerTy() ||
1415 !(FT
->getReturnType()->isIntegerTy() ||
1416 FT
->getReturnType()->isVoidTy()))
1419 // Check for a constant string.
1421 if (!GetConstantStringInfo(CI
->getArgOperand(0), Str
))
1424 if (Str
.empty() && CI
->use_empty()) {
1425 // puts("") -> putchar('\n')
1426 Value
*Res
= EmitPutChar(B
.getInt32('\n'), B
, TD
);
1427 if (CI
->use_empty()) return CI
;
1428 return B
.CreateIntCast(Res
, CI
->getType(), true);
1435 } // end anonymous namespace.
1437 //===----------------------------------------------------------------------===//
1438 // SimplifyLibCalls Pass Implementation
1439 //===----------------------------------------------------------------------===//
1442 /// This pass optimizes well known library functions from libc and libm.
1444 class SimplifyLibCalls
: public FunctionPass
{
1445 TargetLibraryInfo
*TLI
;
1447 StringMap
<LibCallOptimization
*> Optimizations
;
1448 // String and Memory LibCall Optimizations
1449 StrCatOpt StrCat
; StrNCatOpt StrNCat
; StrChrOpt StrChr
; StrRChrOpt StrRChr
;
1450 StrCmpOpt StrCmp
; StrNCmpOpt StrNCmp
; StrCpyOpt StrCpy
; StrCpyOpt StrCpyChk
;
1451 StrNCpyOpt StrNCpy
; StrLenOpt StrLen
; StrPBrkOpt StrPBrk
;
1452 StrToOpt StrTo
; StrSpnOpt StrSpn
; StrCSpnOpt StrCSpn
; StrStrOpt StrStr
;
1453 MemCmpOpt MemCmp
; MemCpyOpt MemCpy
; MemMoveOpt MemMove
; MemSetOpt MemSet
;
1454 // Math Library Optimizations
1455 PowOpt Pow
; Exp2Opt Exp2
; UnaryDoubleFPOpt UnaryDoubleFP
;
1456 // Integer Optimizations
1457 FFSOpt FFS
; AbsOpt Abs
; IsDigitOpt IsDigit
; IsAsciiOpt IsAscii
;
1459 // Formatting and IO Optimizations
1460 SPrintFOpt SPrintF
; PrintFOpt PrintF
;
1461 FWriteOpt FWrite
; FPutsOpt FPuts
; FPrintFOpt FPrintF
;
1464 bool Modified
; // This is only used by doInitialization.
1466 static char ID
; // Pass identification
1467 SimplifyLibCalls() : FunctionPass(ID
), StrCpy(false), StrCpyChk(true) {
1468 initializeSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
1470 void InitOptimizations();
1471 bool runOnFunction(Function
&F
);
1473 void setDoesNotAccessMemory(Function
&F
);
1474 void setOnlyReadsMemory(Function
&F
);
1475 void setDoesNotThrow(Function
&F
);
1476 void setDoesNotCapture(Function
&F
, unsigned n
);
1477 void setDoesNotAlias(Function
&F
, unsigned n
);
1478 bool doInitialization(Module
&M
);
1480 void inferPrototypeAttributes(Function
&F
);
1481 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
1482 AU
.addRequired
<TargetLibraryInfo
>();
1485 } // end anonymous namespace.
1487 char SimplifyLibCalls::ID
= 0;
1489 INITIALIZE_PASS_BEGIN(SimplifyLibCalls
, "simplify-libcalls",
1490 "Simplify well-known library calls", false, false)
1491 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo
)
1492 INITIALIZE_PASS_END(SimplifyLibCalls
, "simplify-libcalls",
1493 "Simplify well-known library calls", false, false)
1495 // Public interface to the Simplify LibCalls pass.
1496 FunctionPass
*llvm::createSimplifyLibCallsPass() {
1497 return new SimplifyLibCalls();
1500 /// Optimizations - Populate the Optimizations map with all the optimizations
1502 void SimplifyLibCalls::InitOptimizations() {
1503 // String and Memory LibCall Optimizations
1504 Optimizations
["strcat"] = &StrCat
;
1505 Optimizations
["strncat"] = &StrNCat
;
1506 Optimizations
["strchr"] = &StrChr
;
1507 Optimizations
["strrchr"] = &StrRChr
;
1508 Optimizations
["strcmp"] = &StrCmp
;
1509 Optimizations
["strncmp"] = &StrNCmp
;
1510 Optimizations
["strcpy"] = &StrCpy
;
1511 Optimizations
["strncpy"] = &StrNCpy
;
1512 Optimizations
["strlen"] = &StrLen
;
1513 Optimizations
["strpbrk"] = &StrPBrk
;
1514 Optimizations
["strtol"] = &StrTo
;
1515 Optimizations
["strtod"] = &StrTo
;
1516 Optimizations
["strtof"] = &StrTo
;
1517 Optimizations
["strtoul"] = &StrTo
;
1518 Optimizations
["strtoll"] = &StrTo
;
1519 Optimizations
["strtold"] = &StrTo
;
1520 Optimizations
["strtoull"] = &StrTo
;
1521 Optimizations
["strspn"] = &StrSpn
;
1522 Optimizations
["strcspn"] = &StrCSpn
;
1523 Optimizations
["strstr"] = &StrStr
;
1524 Optimizations
["memcmp"] = &MemCmp
;
1525 if (TLI
->has(LibFunc::memcpy
)) Optimizations
["memcpy"] = &MemCpy
;
1526 Optimizations
["memmove"] = &MemMove
;
1527 if (TLI
->has(LibFunc::memset
)) Optimizations
["memset"] = &MemSet
;
1529 // _chk variants of String and Memory LibCall Optimizations.
1530 Optimizations
["__strcpy_chk"] = &StrCpyChk
;
1532 // Math Library Optimizations
1533 Optimizations
["powf"] = &Pow
;
1534 Optimizations
["pow"] = &Pow
;
1535 Optimizations
["powl"] = &Pow
;
1536 Optimizations
["llvm.pow.f32"] = &Pow
;
1537 Optimizations
["llvm.pow.f64"] = &Pow
;
1538 Optimizations
["llvm.pow.f80"] = &Pow
;
1539 Optimizations
["llvm.pow.f128"] = &Pow
;
1540 Optimizations
["llvm.pow.ppcf128"] = &Pow
;
1541 Optimizations
["exp2l"] = &Exp2
;
1542 Optimizations
["exp2"] = &Exp2
;
1543 Optimizations
["exp2f"] = &Exp2
;
1544 Optimizations
["llvm.exp2.ppcf128"] = &Exp2
;
1545 Optimizations
["llvm.exp2.f128"] = &Exp2
;
1546 Optimizations
["llvm.exp2.f80"] = &Exp2
;
1547 Optimizations
["llvm.exp2.f64"] = &Exp2
;
1548 Optimizations
["llvm.exp2.f32"] = &Exp2
;
1551 Optimizations
["floor"] = &UnaryDoubleFP
;
1554 Optimizations
["ceil"] = &UnaryDoubleFP
;
1557 Optimizations
["round"] = &UnaryDoubleFP
;
1560 Optimizations
["rint"] = &UnaryDoubleFP
;
1562 #ifdef HAVE_NEARBYINTF
1563 Optimizations
["nearbyint"] = &UnaryDoubleFP
;
1566 // Integer Optimizations
1567 Optimizations
["ffs"] = &FFS
;
1568 Optimizations
["ffsl"] = &FFS
;
1569 Optimizations
["ffsll"] = &FFS
;
1570 Optimizations
["abs"] = &Abs
;
1571 Optimizations
["labs"] = &Abs
;
1572 Optimizations
["llabs"] = &Abs
;
1573 Optimizations
["isdigit"] = &IsDigit
;
1574 Optimizations
["isascii"] = &IsAscii
;
1575 Optimizations
["toascii"] = &ToAscii
;
1577 // Formatting and IO Optimizations
1578 Optimizations
["sprintf"] = &SPrintF
;
1579 Optimizations
["printf"] = &PrintF
;
1580 Optimizations
["fwrite"] = &FWrite
;
1581 Optimizations
["fputs"] = &FPuts
;
1582 Optimizations
["fprintf"] = &FPrintF
;
1583 Optimizations
["puts"] = &Puts
;
1587 /// runOnFunction - Top level algorithm.
1589 bool SimplifyLibCalls::runOnFunction(Function
&F
) {
1590 TLI
= &getAnalysis
<TargetLibraryInfo
>();
1592 if (Optimizations
.empty())
1593 InitOptimizations();
1595 const TargetData
*TD
= getAnalysisIfAvailable
<TargetData
>();
1597 IRBuilder
<> Builder(F
.getContext());
1599 bool Changed
= false;
1600 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
1601 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ) {
1602 // Ignore non-calls.
1603 CallInst
*CI
= dyn_cast
<CallInst
>(I
++);
1606 // Ignore indirect calls and calls to non-external functions.
1607 Function
*Callee
= CI
->getCalledFunction();
1608 if (Callee
== 0 || !Callee
->isDeclaration() ||
1609 !(Callee
->hasExternalLinkage() || Callee
->hasDLLImportLinkage()))
1612 // Ignore unknown calls.
1613 LibCallOptimization
*LCO
= Optimizations
.lookup(Callee
->getName());
1616 // Set the builder to the instruction after the call.
1617 Builder
.SetInsertPoint(BB
, I
);
1619 // Use debug location of CI for all new instructions.
1620 Builder
.SetCurrentDebugLocation(CI
->getDebugLoc());
1622 // Try to optimize this call.
1623 Value
*Result
= LCO
->OptimizeCall(CI
, TD
, TLI
, Builder
);
1624 if (Result
== 0) continue;
1626 DEBUG(dbgs() << "SimplifyLibCalls simplified: " << *CI
;
1627 dbgs() << " into: " << *Result
<< "\n");
1629 // Something changed!
1633 // Inspect the instruction after the call (which was potentially just
1637 if (CI
!= Result
&& !CI
->use_empty()) {
1638 CI
->replaceAllUsesWith(Result
);
1639 if (!Result
->hasName())
1640 Result
->takeName(CI
);
1642 CI
->eraseFromParent();
1648 // Utility methods for doInitialization.
1650 void SimplifyLibCalls::setDoesNotAccessMemory(Function
&F
) {
1651 if (!F
.doesNotAccessMemory()) {
1652 F
.setDoesNotAccessMemory();
1657 void SimplifyLibCalls::setOnlyReadsMemory(Function
&F
) {
1658 if (!F
.onlyReadsMemory()) {
1659 F
.setOnlyReadsMemory();
1664 void SimplifyLibCalls::setDoesNotThrow(Function
&F
) {
1665 if (!F
.doesNotThrow()) {
1666 F
.setDoesNotThrow();
1671 void SimplifyLibCalls::setDoesNotCapture(Function
&F
, unsigned n
) {
1672 if (!F
.doesNotCapture(n
)) {
1673 F
.setDoesNotCapture(n
);
1678 void SimplifyLibCalls::setDoesNotAlias(Function
&F
, unsigned n
) {
1679 if (!F
.doesNotAlias(n
)) {
1680 F
.setDoesNotAlias(n
);
1687 void SimplifyLibCalls::inferPrototypeAttributes(Function
&F
) {
1688 const FunctionType
*FTy
= F
.getFunctionType();
1690 StringRef Name
= F
.getName();
1693 if (Name
== "strlen") {
1694 if (FTy
->getNumParams() != 1 || !FTy
->getParamType(0)->isPointerTy())
1696 setOnlyReadsMemory(F
);
1698 setDoesNotCapture(F
, 1);
1699 } else if (Name
== "strchr" ||
1700 Name
== "strrchr") {
1701 if (FTy
->getNumParams() != 2 ||
1702 !FTy
->getParamType(0)->isPointerTy() ||
1703 !FTy
->getParamType(1)->isIntegerTy())
1705 setOnlyReadsMemory(F
);
1707 } else if (Name
== "strcpy" ||
1713 Name
== "strtoul" ||
1714 Name
== "strtoll" ||
1715 Name
== "strtold" ||
1716 Name
== "strncat" ||
1717 Name
== "strncpy" ||
1718 Name
== "strtoull") {
1719 if (FTy
->getNumParams() < 2 ||
1720 !FTy
->getParamType(1)->isPointerTy())
1723 setDoesNotCapture(F
, 2);
1724 } else if (Name
== "strxfrm") {
1725 if (FTy
->getNumParams() != 3 ||
1726 !FTy
->getParamType(0)->isPointerTy() ||
1727 !FTy
->getParamType(1)->isPointerTy())
1730 setDoesNotCapture(F
, 1);
1731 setDoesNotCapture(F
, 2);
1732 } else if (Name
== "strcmp" ||
1734 Name
== "strncmp" ||
1735 Name
== "strcspn" ||
1736 Name
== "strcoll" ||
1737 Name
== "strcasecmp" ||
1738 Name
== "strncasecmp") {
1739 if (FTy
->getNumParams() < 2 ||
1740 !FTy
->getParamType(0)->isPointerTy() ||
1741 !FTy
->getParamType(1)->isPointerTy())
1743 setOnlyReadsMemory(F
);
1745 setDoesNotCapture(F
, 1);
1746 setDoesNotCapture(F
, 2);
1747 } else if (Name
== "strstr" ||
1748 Name
== "strpbrk") {
1749 if (FTy
->getNumParams() != 2 || !FTy
->getParamType(1)->isPointerTy())
1751 setOnlyReadsMemory(F
);
1753 setDoesNotCapture(F
, 2);
1754 } else if (Name
== "strtok" ||
1755 Name
== "strtok_r") {
1756 if (FTy
->getNumParams() < 2 || !FTy
->getParamType(1)->isPointerTy())
1759 setDoesNotCapture(F
, 2);
1760 } else if (Name
== "scanf" ||
1762 Name
== "setvbuf") {
1763 if (FTy
->getNumParams() < 1 || !FTy
->getParamType(0)->isPointerTy())
1766 setDoesNotCapture(F
, 1);
1767 } else if (Name
== "strdup" ||
1768 Name
== "strndup") {
1769 if (FTy
->getNumParams() < 1 || !FTy
->getReturnType()->isPointerTy() ||
1770 !FTy
->getParamType(0)->isPointerTy())
1773 setDoesNotAlias(F
, 0);
1774 setDoesNotCapture(F
, 1);
1775 } else if (Name
== "stat" ||
1777 Name
== "sprintf" ||
1778 Name
== "statvfs") {
1779 if (FTy
->getNumParams() < 2 ||
1780 !FTy
->getParamType(0)->isPointerTy() ||
1781 !FTy
->getParamType(1)->isPointerTy())
1784 setDoesNotCapture(F
, 1);
1785 setDoesNotCapture(F
, 2);
1786 } else if (Name
== "snprintf") {
1787 if (FTy
->getNumParams() != 3 ||
1788 !FTy
->getParamType(0)->isPointerTy() ||
1789 !FTy
->getParamType(2)->isPointerTy())
1792 setDoesNotCapture(F
, 1);
1793 setDoesNotCapture(F
, 3);
1794 } else if (Name
== "setitimer") {
1795 if (FTy
->getNumParams() != 3 ||
1796 !FTy
->getParamType(1)->isPointerTy() ||
1797 !FTy
->getParamType(2)->isPointerTy())
1800 setDoesNotCapture(F
, 2);
1801 setDoesNotCapture(F
, 3);
1802 } else if (Name
== "system") {
1803 if (FTy
->getNumParams() != 1 ||
1804 !FTy
->getParamType(0)->isPointerTy())
1806 // May throw; "system" is a valid pthread cancellation point.
1807 setDoesNotCapture(F
, 1);
1811 if (Name
== "malloc") {
1812 if (FTy
->getNumParams() != 1 ||
1813 !FTy
->getReturnType()->isPointerTy())
1816 setDoesNotAlias(F
, 0);
1817 } else if (Name
== "memcmp") {
1818 if (FTy
->getNumParams() != 3 ||
1819 !FTy
->getParamType(0)->isPointerTy() ||
1820 !FTy
->getParamType(1)->isPointerTy())
1822 setOnlyReadsMemory(F
);
1824 setDoesNotCapture(F
, 1);
1825 setDoesNotCapture(F
, 2);
1826 } else if (Name
== "memchr" ||
1827 Name
== "memrchr") {
1828 if (FTy
->getNumParams() != 3)
1830 setOnlyReadsMemory(F
);
1832 } else if (Name
== "modf" ||
1836 Name
== "memccpy" ||
1837 Name
== "memmove") {
1838 if (FTy
->getNumParams() < 2 ||
1839 !FTy
->getParamType(1)->isPointerTy())
1842 setDoesNotCapture(F
, 2);
1843 } else if (Name
== "memalign") {
1844 if (!FTy
->getReturnType()->isPointerTy())
1846 setDoesNotAlias(F
, 0);
1847 } else if (Name
== "mkdir" ||
1849 if (FTy
->getNumParams() == 0 ||
1850 !FTy
->getParamType(0)->isPointerTy())
1853 setDoesNotCapture(F
, 1);
1857 if (Name
== "realloc") {
1858 if (FTy
->getNumParams() != 2 ||
1859 !FTy
->getParamType(0)->isPointerTy() ||
1860 !FTy
->getReturnType()->isPointerTy())
1863 setDoesNotAlias(F
, 0);
1864 setDoesNotCapture(F
, 1);
1865 } else if (Name
== "read") {
1866 if (FTy
->getNumParams() != 3 ||
1867 !FTy
->getParamType(1)->isPointerTy())
1869 // May throw; "read" is a valid pthread cancellation point.
1870 setDoesNotCapture(F
, 2);
1871 } else if (Name
== "rmdir" ||
1874 Name
== "realpath") {
1875 if (FTy
->getNumParams() < 1 ||
1876 !FTy
->getParamType(0)->isPointerTy())
1879 setDoesNotCapture(F
, 1);
1880 } else if (Name
== "rename" ||
1881 Name
== "readlink") {
1882 if (FTy
->getNumParams() < 2 ||
1883 !FTy
->getParamType(0)->isPointerTy() ||
1884 !FTy
->getParamType(1)->isPointerTy())
1887 setDoesNotCapture(F
, 1);
1888 setDoesNotCapture(F
, 2);
1892 if (Name
== "write") {
1893 if (FTy
->getNumParams() != 3 || !FTy
->getParamType(1)->isPointerTy())
1895 // May throw; "write" is a valid pthread cancellation point.
1896 setDoesNotCapture(F
, 2);
1900 if (Name
== "bcopy") {
1901 if (FTy
->getNumParams() != 3 ||
1902 !FTy
->getParamType(0)->isPointerTy() ||
1903 !FTy
->getParamType(1)->isPointerTy())
1906 setDoesNotCapture(F
, 1);
1907 setDoesNotCapture(F
, 2);
1908 } else if (Name
== "bcmp") {
1909 if (FTy
->getNumParams() != 3 ||
1910 !FTy
->getParamType(0)->isPointerTy() ||
1911 !FTy
->getParamType(1)->isPointerTy())
1914 setOnlyReadsMemory(F
);
1915 setDoesNotCapture(F
, 1);
1916 setDoesNotCapture(F
, 2);
1917 } else if (Name
== "bzero") {
1918 if (FTy
->getNumParams() != 2 || !FTy
->getParamType(0)->isPointerTy())
1921 setDoesNotCapture(F
, 1);
1925 if (Name
== "calloc") {
1926 if (FTy
->getNumParams() != 2 ||
1927 !FTy
->getReturnType()->isPointerTy())
1930 setDoesNotAlias(F
, 0);
1931 } else if (Name
== "chmod" ||
1933 Name
== "ctermid" ||
1934 Name
== "clearerr" ||
1935 Name
== "closedir") {
1936 if (FTy
->getNumParams() == 0 || !FTy
->getParamType(0)->isPointerTy())
1939 setDoesNotCapture(F
, 1);
1943 if (Name
== "atoi" ||
1947 if (FTy
->getNumParams() != 1 || !FTy
->getParamType(0)->isPointerTy())
1950 setOnlyReadsMemory(F
);
1951 setDoesNotCapture(F
, 1);
1952 } else if (Name
== "access") {
1953 if (FTy
->getNumParams() != 2 || !FTy
->getParamType(0)->isPointerTy())
1956 setDoesNotCapture(F
, 1);
1960 if (Name
== "fopen") {
1961 if (FTy
->getNumParams() != 2 ||
1962 !FTy
->getReturnType()->isPointerTy() ||
1963 !FTy
->getParamType(0)->isPointerTy() ||
1964 !FTy
->getParamType(1)->isPointerTy())
1967 setDoesNotAlias(F
, 0);
1968 setDoesNotCapture(F
, 1);
1969 setDoesNotCapture(F
, 2);
1970 } else if (Name
== "fdopen") {
1971 if (FTy
->getNumParams() != 2 ||
1972 !FTy
->getReturnType()->isPointerTy() ||
1973 !FTy
->getParamType(1)->isPointerTy())
1976 setDoesNotAlias(F
, 0);
1977 setDoesNotCapture(F
, 2);
1978 } else if (Name
== "feof" ||
1988 Name
== "fsetpos" ||
1989 Name
== "flockfile" ||
1990 Name
== "funlockfile" ||
1991 Name
== "ftrylockfile") {
1992 if (FTy
->getNumParams() == 0 || !FTy
->getParamType(0)->isPointerTy())
1995 setDoesNotCapture(F
, 1);
1996 } else if (Name
== "ferror") {
1997 if (FTy
->getNumParams() != 1 || !FTy
->getParamType(0)->isPointerTy())
2000 setDoesNotCapture(F
, 1);
2001 setOnlyReadsMemory(F
);
2002 } else if (Name
== "fputc" ||
2007 Name
== "fstatvfs") {
2008 if (FTy
->getNumParams() != 2 || !FTy
->getParamType(1)->isPointerTy())
2011 setDoesNotCapture(F
, 2);
2012 } else if (Name
== "fgets") {
2013 if (FTy
->getNumParams() != 3 ||
2014 !FTy
->getParamType(0)->isPointerTy() ||
2015 !FTy
->getParamType(2)->isPointerTy())
2018 setDoesNotCapture(F
, 3);
2019 } else if (Name
== "fread" ||
2021 if (FTy
->getNumParams() != 4 ||
2022 !FTy
->getParamType(0)->isPointerTy() ||
2023 !FTy
->getParamType(3)->isPointerTy())
2026 setDoesNotCapture(F
, 1);
2027 setDoesNotCapture(F
, 4);
2028 } else if (Name
== "fputs" ||
2030 Name
== "fprintf" ||
2031 Name
== "fgetpos") {
2032 if (FTy
->getNumParams() < 2 ||
2033 !FTy
->getParamType(0)->isPointerTy() ||
2034 !FTy
->getParamType(1)->isPointerTy())
2037 setDoesNotCapture(F
, 1);
2038 setDoesNotCapture(F
, 2);
2042 if (Name
== "getc" ||
2043 Name
== "getlogin_r" ||
2044 Name
== "getc_unlocked") {
2045 if (FTy
->getNumParams() == 0 || !FTy
->getParamType(0)->isPointerTy())
2048 setDoesNotCapture(F
, 1);
2049 } else if (Name
== "getenv") {
2050 if (FTy
->getNumParams() != 1 || !FTy
->getParamType(0)->isPointerTy())
2053 setOnlyReadsMemory(F
);
2054 setDoesNotCapture(F
, 1);
2055 } else if (Name
== "gets" ||
2056 Name
== "getchar") {
2058 } else if (Name
== "getitimer") {
2059 if (FTy
->getNumParams() != 2 || !FTy
->getParamType(1)->isPointerTy())
2062 setDoesNotCapture(F
, 2);
2063 } else if (Name
== "getpwnam") {
2064 if (FTy
->getNumParams() != 1 || !FTy
->getParamType(0)->isPointerTy())
2067 setDoesNotCapture(F
, 1);
2071 if (Name
== "ungetc") {
2072 if (FTy
->getNumParams() != 2 || !FTy
->getParamType(1)->isPointerTy())
2075 setDoesNotCapture(F
, 2);
2076 } else if (Name
== "uname" ||
2078 Name
== "unsetenv") {
2079 if (FTy
->getNumParams() != 1 || !FTy
->getParamType(0)->isPointerTy())
2082 setDoesNotCapture(F
, 1);
2083 } else if (Name
== "utime" ||
2085 if (FTy
->getNumParams() != 2 ||
2086 !FTy
->getParamType(0)->isPointerTy() ||
2087 !FTy
->getParamType(1)->isPointerTy())
2090 setDoesNotCapture(F
, 1);
2091 setDoesNotCapture(F
, 2);
2095 if (Name
== "putc") {
2096 if (FTy
->getNumParams() != 2 || !FTy
->getParamType(1)->isPointerTy())
2099 setDoesNotCapture(F
, 2);
2100 } else if (Name
== "puts" ||
2103 if (FTy
->getNumParams() != 1 || !FTy
->getParamType(0)->isPointerTy())
2106 setDoesNotCapture(F
, 1);
2107 } else if (Name
== "pread" ||
2109 if (FTy
->getNumParams() != 4 || !FTy
->getParamType(1)->isPointerTy())
2111 // May throw; these are valid pthread cancellation points.
2112 setDoesNotCapture(F
, 2);
2113 } else if (Name
== "putchar") {
2115 } else if (Name
== "popen") {
2116 if (FTy
->getNumParams() != 2 ||
2117 !FTy
->getReturnType()->isPointerTy() ||
2118 !FTy
->getParamType(0)->isPointerTy() ||
2119 !FTy
->getParamType(1)->isPointerTy())
2122 setDoesNotAlias(F
, 0);
2123 setDoesNotCapture(F
, 1);
2124 setDoesNotCapture(F
, 2);
2125 } else if (Name
== "pclose") {
2126 if (FTy
->getNumParams() != 1 || !FTy
->getParamType(0)->isPointerTy())
2129 setDoesNotCapture(F
, 1);
2133 if (Name
== "vscanf") {
2134 if (FTy
->getNumParams() != 2 || !FTy
->getParamType(1)->isPointerTy())
2137 setDoesNotCapture(F
, 1);
2138 } else if (Name
== "vsscanf" ||
2139 Name
== "vfscanf") {
2140 if (FTy
->getNumParams() != 3 ||
2141 !FTy
->getParamType(1)->isPointerTy() ||
2142 !FTy
->getParamType(2)->isPointerTy())
2145 setDoesNotCapture(F
, 1);
2146 setDoesNotCapture(F
, 2);
2147 } else if (Name
== "valloc") {
2148 if (!FTy
->getReturnType()->isPointerTy())
2151 setDoesNotAlias(F
, 0);
2152 } else if (Name
== "vprintf") {
2153 if (FTy
->getNumParams() != 2 || !FTy
->getParamType(0)->isPointerTy())
2156 setDoesNotCapture(F
, 1);
2157 } else if (Name
== "vfprintf" ||
2158 Name
== "vsprintf") {
2159 if (FTy
->getNumParams() != 3 ||
2160 !FTy
->getParamType(0)->isPointerTy() ||
2161 !FTy
->getParamType(1)->isPointerTy())
2164 setDoesNotCapture(F
, 1);
2165 setDoesNotCapture(F
, 2);
2166 } else if (Name
== "vsnprintf") {
2167 if (FTy
->getNumParams() != 4 ||
2168 !FTy
->getParamType(0)->isPointerTy() ||
2169 !FTy
->getParamType(2)->isPointerTy())
2172 setDoesNotCapture(F
, 1);
2173 setDoesNotCapture(F
, 3);
2177 if (Name
== "open") {
2178 if (FTy
->getNumParams() < 2 || !FTy
->getParamType(0)->isPointerTy())
2180 // May throw; "open" is a valid pthread cancellation point.
2181 setDoesNotCapture(F
, 1);
2182 } else if (Name
== "opendir") {
2183 if (FTy
->getNumParams() != 1 ||
2184 !FTy
->getReturnType()->isPointerTy() ||
2185 !FTy
->getParamType(0)->isPointerTy())
2188 setDoesNotAlias(F
, 0);
2189 setDoesNotCapture(F
, 1);
2193 if (Name
== "tmpfile") {
2194 if (!FTy
->getReturnType()->isPointerTy())
2197 setDoesNotAlias(F
, 0);
2198 } else if (Name
== "times") {
2199 if (FTy
->getNumParams() != 1 || !FTy
->getParamType(0)->isPointerTy())
2202 setDoesNotCapture(F
, 1);
2206 if (Name
== "htonl" ||
2209 setDoesNotAccessMemory(F
);
2213 if (Name
== "ntohl" ||
2216 setDoesNotAccessMemory(F
);
2220 if (Name
== "lstat") {
2221 if (FTy
->getNumParams() != 2 ||
2222 !FTy
->getParamType(0)->isPointerTy() ||
2223 !FTy
->getParamType(1)->isPointerTy())
2226 setDoesNotCapture(F
, 1);
2227 setDoesNotCapture(F
, 2);
2228 } else if (Name
== "lchown") {
2229 if (FTy
->getNumParams() != 3 || !FTy
->getParamType(0)->isPointerTy())
2232 setDoesNotCapture(F
, 1);
2236 if (Name
== "qsort") {
2237 if (FTy
->getNumParams() != 4 || !FTy
->getParamType(3)->isPointerTy())
2239 // May throw; places call through function pointer.
2240 setDoesNotCapture(F
, 4);
2244 if (Name
== "__strdup" ||
2245 Name
== "__strndup") {
2246 if (FTy
->getNumParams() < 1 ||
2247 !FTy
->getReturnType()->isPointerTy() ||
2248 !FTy
->getParamType(0)->isPointerTy())
2251 setDoesNotAlias(F
, 0);
2252 setDoesNotCapture(F
, 1);
2253 } else if (Name
== "__strtok_r") {
2254 if (FTy
->getNumParams() != 3 ||
2255 !FTy
->getParamType(1)->isPointerTy())
2258 setDoesNotCapture(F
, 2);
2259 } else if (Name
== "_IO_getc") {
2260 if (FTy
->getNumParams() != 1 || !FTy
->getParamType(0)->isPointerTy())
2263 setDoesNotCapture(F
, 1);
2264 } else if (Name
== "_IO_putc") {
2265 if (FTy
->getNumParams() != 2 || !FTy
->getParamType(1)->isPointerTy())
2268 setDoesNotCapture(F
, 2);
2272 if (Name
== "\1__isoc99_scanf") {
2273 if (FTy
->getNumParams() < 1 ||
2274 !FTy
->getParamType(0)->isPointerTy())
2277 setDoesNotCapture(F
, 1);
2278 } else if (Name
== "\1stat64" ||
2279 Name
== "\1lstat64" ||
2280 Name
== "\1statvfs64" ||
2281 Name
== "\1__isoc99_sscanf") {
2282 if (FTy
->getNumParams() < 1 ||
2283 !FTy
->getParamType(0)->isPointerTy() ||
2284 !FTy
->getParamType(1)->isPointerTy())
2287 setDoesNotCapture(F
, 1);
2288 setDoesNotCapture(F
, 2);
2289 } else if (Name
== "\1fopen64") {
2290 if (FTy
->getNumParams() != 2 ||
2291 !FTy
->getReturnType()->isPointerTy() ||
2292 !FTy
->getParamType(0)->isPointerTy() ||
2293 !FTy
->getParamType(1)->isPointerTy())
2296 setDoesNotAlias(F
, 0);
2297 setDoesNotCapture(F
, 1);
2298 setDoesNotCapture(F
, 2);
2299 } else if (Name
== "\1fseeko64" ||
2300 Name
== "\1ftello64") {
2301 if (FTy
->getNumParams() == 0 || !FTy
->getParamType(0)->isPointerTy())
2304 setDoesNotCapture(F
, 1);
2305 } else if (Name
== "\1tmpfile64") {
2306 if (!FTy
->getReturnType()->isPointerTy())
2309 setDoesNotAlias(F
, 0);
2310 } else if (Name
== "\1fstat64" ||
2311 Name
== "\1fstatvfs64") {
2312 if (FTy
->getNumParams() != 2 || !FTy
->getParamType(1)->isPointerTy())
2315 setDoesNotCapture(F
, 2);
2316 } else if (Name
== "\1open64") {
2317 if (FTy
->getNumParams() < 2 || !FTy
->getParamType(0)->isPointerTy())
2319 // May throw; "open" is a valid pthread cancellation point.
2320 setDoesNotCapture(F
, 1);
2326 /// doInitialization - Add attributes to well-known functions.
2328 bool SimplifyLibCalls::doInitialization(Module
&M
) {
2330 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
) {
2332 if (F
.isDeclaration() && F
.hasName())
2333 inferPrototypeAttributes(F
);
2339 // Additional cases that we need to add to this file:
2342 // * cbrt(expN(X)) -> expN(x/3)
2343 // * cbrt(sqrt(x)) -> pow(x,1/6)
2344 // * cbrt(sqrt(x)) -> pow(x,1/9)
2347 // * cos(-x) -> cos(x)
2350 // * exp(log(x)) -> x
2353 // * log(exp(x)) -> x
2354 // * log(x**y) -> y*log(x)
2355 // * log(exp(y)) -> y*log(e)
2356 // * log(exp2(y)) -> y*log(2)
2357 // * log(exp10(y)) -> y*log(10)
2358 // * log(sqrt(x)) -> 0.5*log(x)
2359 // * log(pow(x,y)) -> y*log(x)
2361 // lround, lroundf, lroundl:
2362 // * lround(cnst) -> cnst'
2365 // * pow(exp(x),y) -> exp(x*y)
2366 // * pow(sqrt(x),y) -> pow(x,y*0.5)
2367 // * pow(pow(x,y),z)-> pow(x,y*z)
2369 // round, roundf, roundl:
2370 // * round(cnst) -> cnst'
2373 // * signbit(cnst) -> cnst'
2374 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2376 // sqrt, sqrtf, sqrtl:
2377 // * sqrt(expN(x)) -> expN(x*0.5)
2378 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2379 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2382 // * stpcpy(str, "literal") ->
2383 // llvm.memcpy(str,"literal",strlen("literal")+1,1)
2386 // * tan(atan(x)) -> x
2388 // trunc, truncf, truncl:
2389 // * trunc(cnst) -> cnst'