1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop. This pass also implements the following extensions to the basic
15 // 1. Trivial instructions between the call and return do not prevent the
16 // transformation from taking place, though currently the analysis cannot
17 // support moving any really useful instructions (only dead ones).
18 // 2. This pass transforms functions that are prevented from being tail
19 // recursive by an associative and commutative expression to use an
20 // accumulator variable, thus compiling the typical naive factorial or
21 // 'fib' implementation into efficient code.
22 // 3. TRE is performed if the function returns void, if the return
23 // returns the result returned by the call, or if the function returns a
24 // run-time constant on all exits from the function. It is possible, though
25 // unlikely, that the return returns something else (like constant 0), and
26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
27 // the function return the exact same value.
28 // 4. If it can prove that callees do not access their caller stack frame,
29 // they are marked as eligible for tail call elimination (by the code
32 // There are several improvements that could be made:
34 // 1. If the function has any alloca instructions, these instructions will be
35 // moved out of the entry block of the function, causing them to be
36 // evaluated each time through the tail recursion. Safely keeping allocas
37 // in the entry block requires analysis to proves that the tail-called
38 // function does not read or write the stack object.
39 // 2. Tail recursion is only performed if the call immediately precedes the
40 // return instruction. It's possible that there could be a jump between
41 // the call and the return.
42 // 3. There can be intervening operations between the call and the return that
43 // prevent the TRE from occurring. For example, there could be GEP's and
44 // stores to memory that will not be read or written by the call. This
45 // requires some substantial analysis (such as with DSA) to prove safe to
46 // move ahead of the call, but doing so could allow many more TREs to be
47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 // 4. The algorithm we use to detect if callees access their caller stack
49 // frames is very primitive.
51 //===----------------------------------------------------------------------===//
53 #define DEBUG_TYPE "tailcallelim"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Local.h"
57 #include "llvm/Constants.h"
58 #include "llvm/DerivedTypes.h"
59 #include "llvm/Function.h"
60 #include "llvm/Instructions.h"
61 #include "llvm/IntrinsicInst.h"
62 #include "llvm/Module.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Analysis/CaptureTracking.h"
65 #include "llvm/Analysis/InlineCost.h"
66 #include "llvm/Analysis/InstructionSimplify.h"
67 #include "llvm/Analysis/Loads.h"
68 #include "llvm/Support/CallSite.h"
69 #include "llvm/Support/CFG.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/ADT/Statistic.h"
73 #include "llvm/ADT/STLExtras.h"
76 STATISTIC(NumEliminated
, "Number of tail calls removed");
77 STATISTIC(NumRetDuped
, "Number of return duplicated");
78 STATISTIC(NumAccumAdded
, "Number of accumulators introduced");
81 struct TailCallElim
: public FunctionPass
{
82 static char ID
; // Pass identification, replacement for typeid
83 TailCallElim() : FunctionPass(ID
) {
84 initializeTailCallElimPass(*PassRegistry::getPassRegistry());
87 virtual bool runOnFunction(Function
&F
);
90 CallInst
*FindTRECandidate(Instruction
*I
,
91 bool CannotTailCallElimCallsMarkedTail
);
92 bool EliminateRecursiveTailCall(CallInst
*CI
, ReturnInst
*Ret
,
93 BasicBlock
*&OldEntry
,
94 bool &TailCallsAreMarkedTail
,
95 SmallVector
<PHINode
*, 8> &ArgumentPHIs
,
96 bool CannotTailCallElimCallsMarkedTail
);
97 bool FoldReturnAndProcessPred(BasicBlock
*BB
,
98 ReturnInst
*Ret
, BasicBlock
*&OldEntry
,
99 bool &TailCallsAreMarkedTail
,
100 SmallVector
<PHINode
*, 8> &ArgumentPHIs
,
101 bool CannotTailCallElimCallsMarkedTail
);
102 bool ProcessReturningBlock(ReturnInst
*RI
, BasicBlock
*&OldEntry
,
103 bool &TailCallsAreMarkedTail
,
104 SmallVector
<PHINode
*, 8> &ArgumentPHIs
,
105 bool CannotTailCallElimCallsMarkedTail
);
106 bool CanMoveAboveCall(Instruction
*I
, CallInst
*CI
);
107 Value
*CanTransformAccumulatorRecursion(Instruction
*I
, CallInst
*CI
);
111 char TailCallElim::ID
= 0;
112 INITIALIZE_PASS(TailCallElim
, "tailcallelim",
113 "Tail Call Elimination", false, false)
115 // Public interface to the TailCallElimination pass
116 FunctionPass
*llvm::createTailCallEliminationPass() {
117 return new TailCallElim();
120 /// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
121 /// callees of this function. We only do very simple analysis right now, this
122 /// could be expanded in the future to use mod/ref information for particular
123 /// call sites if desired.
124 static bool AllocaMightEscapeToCalls(AllocaInst
*AI
) {
125 // FIXME: do simple 'address taken' analysis.
129 /// CheckForEscapingAllocas - Scan the specified basic block for alloca
130 /// instructions. If it contains any that might be accessed by calls, return
132 static bool CheckForEscapingAllocas(BasicBlock
*BB
,
133 bool &CannotTCETailMarkedCall
) {
135 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
136 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
)) {
137 RetVal
|= AllocaMightEscapeToCalls(AI
);
139 // If this alloca is in the body of the function, or if it is a variable
140 // sized allocation, we cannot tail call eliminate calls marked 'tail'
141 // with this mechanism.
142 if (BB
!= &BB
->getParent()->getEntryBlock() ||
143 !isa
<ConstantInt
>(AI
->getArraySize()))
144 CannotTCETailMarkedCall
= true;
149 bool TailCallElim::runOnFunction(Function
&F
) {
150 // If this function is a varargs function, we won't be able to PHI the args
151 // right, so don't even try to convert it...
152 if (F
.getFunctionType()->isVarArg()) return false;
154 BasicBlock
*OldEntry
= 0;
155 bool TailCallsAreMarkedTail
= false;
156 SmallVector
<PHINode
*, 8> ArgumentPHIs
;
157 bool MadeChange
= false;
158 bool FunctionContainsEscapingAllocas
= false;
160 // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
161 // marked with the 'tail' attribute, because doing so would cause the stack
162 // size to increase (real TCE would deallocate variable sized allocas, TCE
164 bool CannotTCETailMarkedCall
= false;
166 // Loop over the function, looking for any returning blocks, and keeping track
167 // of whether this function has any non-trivially used allocas.
168 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
169 if (FunctionContainsEscapingAllocas
&& CannotTCETailMarkedCall
)
172 FunctionContainsEscapingAllocas
|=
173 CheckForEscapingAllocas(BB
, CannotTCETailMarkedCall
);
176 /// FIXME: The code generator produces really bad code when an 'escaping
177 /// alloca' is changed from being a static alloca to being a dynamic alloca.
178 /// Until this is resolved, disable this transformation if that would ever
179 /// happen. This bug is PR962.
180 if (FunctionContainsEscapingAllocas
)
183 // Second pass, change any tail calls to loops.
184 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
185 if (ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
186 bool Change
= ProcessReturningBlock(Ret
, OldEntry
, TailCallsAreMarkedTail
,
187 ArgumentPHIs
,CannotTCETailMarkedCall
);
188 if (!Change
&& BB
->getFirstNonPHIOrDbg() == Ret
)
189 Change
= FoldReturnAndProcessPred(BB
, Ret
, OldEntry
,
190 TailCallsAreMarkedTail
, ArgumentPHIs
,
191 CannotTCETailMarkedCall
);
192 MadeChange
|= Change
;
196 // If we eliminated any tail recursions, it's possible that we inserted some
197 // silly PHI nodes which just merge an initial value (the incoming operand)
198 // with themselves. Check to see if we did and clean up our mess if so. This
199 // occurs when a function passes an argument straight through to its tail
201 if (!ArgumentPHIs
.empty()) {
202 for (unsigned i
= 0, e
= ArgumentPHIs
.size(); i
!= e
; ++i
) {
203 PHINode
*PN
= ArgumentPHIs
[i
];
205 // If the PHI Node is a dynamic constant, replace it with the value it is.
206 if (Value
*PNV
= SimplifyInstruction(PN
)) {
207 PN
->replaceAllUsesWith(PNV
);
208 PN
->eraseFromParent();
213 // Finally, if this function contains no non-escaping allocas, or calls
214 // setjmp, mark all calls in the function as eligible for tail calls
215 //(there is no stack memory for them to access).
216 if (!FunctionContainsEscapingAllocas
&& !F
.callsFunctionThatReturnsTwice())
217 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
218 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
219 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
228 /// CanMoveAboveCall - Return true if it is safe to move the specified
229 /// instruction from after the call to before the call, assuming that all
230 /// instructions between the call and this instruction are movable.
232 bool TailCallElim::CanMoveAboveCall(Instruction
*I
, CallInst
*CI
) {
233 // FIXME: We can move load/store/call/free instructions above the call if the
234 // call does not mod/ref the memory location being processed.
235 if (I
->mayHaveSideEffects()) // This also handles volatile loads.
238 if (LoadInst
*L
= dyn_cast
<LoadInst
>(I
)) {
239 // Loads may always be moved above calls without side effects.
240 if (CI
->mayHaveSideEffects()) {
241 // Non-volatile loads may be moved above a call with side effects if it
242 // does not write to memory and the load provably won't trap.
243 // FIXME: Writes to memory only matter if they may alias the pointer
244 // being loaded from.
245 if (CI
->mayWriteToMemory() ||
246 !isSafeToLoadUnconditionally(L
->getPointerOperand(), L
,
252 // Otherwise, if this is a side-effect free instruction, check to make sure
253 // that it does not use the return value of the call. If it doesn't use the
254 // return value of the call, it must only use things that are defined before
255 // the call, or movable instructions between the call and the instruction
257 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
258 if (I
->getOperand(i
) == CI
)
263 // isDynamicConstant - Return true if the specified value is the same when the
264 // return would exit as it was when the initial iteration of the recursive
265 // function was executed.
267 // We currently handle static constants and arguments that are not modified as
268 // part of the recursion.
270 static bool isDynamicConstant(Value
*V
, CallInst
*CI
, ReturnInst
*RI
) {
271 if (isa
<Constant
>(V
)) return true; // Static constants are always dyn consts
273 // Check to see if this is an immutable argument, if so, the value
274 // will be available to initialize the accumulator.
275 if (Argument
*Arg
= dyn_cast
<Argument
>(V
)) {
276 // Figure out which argument number this is...
278 Function
*F
= CI
->getParent()->getParent();
279 for (Function::arg_iterator AI
= F
->arg_begin(); &*AI
!= Arg
; ++AI
)
282 // If we are passing this argument into call as the corresponding
283 // argument operand, then the argument is dynamically constant.
284 // Otherwise, we cannot transform this function safely.
285 if (CI
->getArgOperand(ArgNo
) == Arg
)
289 // Switch cases are always constant integers. If the value is being switched
290 // on and the return is only reachable from one of its cases, it's
291 // effectively constant.
292 if (BasicBlock
*UniquePred
= RI
->getParent()->getUniquePredecessor())
293 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(UniquePred
->getTerminator()))
294 if (SI
->getCondition() == V
)
295 return SI
->getDefaultDest() != RI
->getParent();
297 // Not a constant or immutable argument, we can't safely transform.
301 // getCommonReturnValue - Check to see if the function containing the specified
302 // tail call consistently returns the same runtime-constant value at all exit
303 // points except for IgnoreRI. If so, return the returned value.
305 static Value
*getCommonReturnValue(ReturnInst
*IgnoreRI
, CallInst
*CI
) {
306 Function
*F
= CI
->getParent()->getParent();
307 Value
*ReturnedValue
= 0;
309 for (Function::iterator BBI
= F
->begin(), E
= F
->end(); BBI
!= E
; ++BBI
) {
310 ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BBI
->getTerminator());
311 if (RI
== 0 || RI
== IgnoreRI
) continue;
313 // We can only perform this transformation if the value returned is
314 // evaluatable at the start of the initial invocation of the function,
315 // instead of at the end of the evaluation.
317 Value
*RetOp
= RI
->getOperand(0);
318 if (!isDynamicConstant(RetOp
, CI
, RI
))
321 if (ReturnedValue
&& RetOp
!= ReturnedValue
)
322 return 0; // Cannot transform if differing values are returned.
323 ReturnedValue
= RetOp
;
325 return ReturnedValue
;
328 /// CanTransformAccumulatorRecursion - If the specified instruction can be
329 /// transformed using accumulator recursion elimination, return the constant
330 /// which is the start of the accumulator value. Otherwise return null.
332 Value
*TailCallElim::CanTransformAccumulatorRecursion(Instruction
*I
,
334 if (!I
->isAssociative() || !I
->isCommutative()) return 0;
335 assert(I
->getNumOperands() == 2 &&
336 "Associative/commutative operations should have 2 args!");
338 // Exactly one operand should be the result of the call instruction.
339 if ((I
->getOperand(0) == CI
&& I
->getOperand(1) == CI
) ||
340 (I
->getOperand(0) != CI
&& I
->getOperand(1) != CI
))
343 // The only user of this instruction we allow is a single return instruction.
344 if (!I
->hasOneUse() || !isa
<ReturnInst
>(I
->use_back()))
347 // Ok, now we have to check all of the other return instructions in this
348 // function. If they return non-constants or differing values, then we cannot
349 // transform the function safely.
350 return getCommonReturnValue(cast
<ReturnInst
>(I
->use_back()), CI
);
353 static Instruction
*FirstNonDbg(BasicBlock::iterator I
) {
354 while (isa
<DbgInfoIntrinsic
>(I
))
360 TailCallElim::FindTRECandidate(Instruction
*TI
,
361 bool CannotTailCallElimCallsMarkedTail
) {
362 BasicBlock
*BB
= TI
->getParent();
363 Function
*F
= BB
->getParent();
365 if (&BB
->front() == TI
) // Make sure there is something before the terminator.
368 // Scan backwards from the return, checking to see if there is a tail call in
369 // this block. If so, set CI to it.
371 BasicBlock::iterator BBI
= TI
;
373 CI
= dyn_cast
<CallInst
>(BBI
);
374 if (CI
&& CI
->getCalledFunction() == F
)
377 if (BBI
== BB
->begin())
378 return 0; // Didn't find a potential tail call.
382 // If this call is marked as a tail call, and if there are dynamic allocas in
383 // the function, we cannot perform this optimization.
384 if (CI
->isTailCall() && CannotTailCallElimCallsMarkedTail
)
387 // As a special case, detect code like this:
388 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
389 // and disable this xform in this case, because the code generator will
390 // lower the call to fabs into inline code.
391 if (BB
== &F
->getEntryBlock() &&
392 FirstNonDbg(BB
->front()) == CI
&&
393 FirstNonDbg(llvm::next(BB
->begin())) == TI
&&
395 // A single-block function with just a call and a return. Check that
396 // the arguments match.
397 CallSite::arg_iterator I
= CallSite(CI
).arg_begin(),
398 E
= CallSite(CI
).arg_end();
399 Function::arg_iterator FI
= F
->arg_begin(),
401 for (; I
!= E
&& FI
!= FE
; ++I
, ++FI
)
402 if (*I
!= &*FI
) break;
403 if (I
== E
&& FI
== FE
)
410 bool TailCallElim::EliminateRecursiveTailCall(CallInst
*CI
, ReturnInst
*Ret
,
411 BasicBlock
*&OldEntry
,
412 bool &TailCallsAreMarkedTail
,
413 SmallVector
<PHINode
*, 8> &ArgumentPHIs
,
414 bool CannotTailCallElimCallsMarkedTail
) {
415 // If we are introducing accumulator recursion to eliminate operations after
416 // the call instruction that are both associative and commutative, the initial
417 // value for the accumulator is placed in this variable. If this value is set
418 // then we actually perform accumulator recursion elimination instead of
419 // simple tail recursion elimination. If the operation is an LLVM instruction
420 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then
421 // we are handling the case when the return instruction returns a constant C
422 // which is different to the constant returned by other return instructions
423 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a
424 // special case of accumulator recursion, the operation being "return C".
425 Value
*AccumulatorRecursionEliminationInitVal
= 0;
426 Instruction
*AccumulatorRecursionInstr
= 0;
428 // Ok, we found a potential tail call. We can currently only transform the
429 // tail call if all of the instructions between the call and the return are
430 // movable to above the call itself, leaving the call next to the return.
431 // Check that this is the case now.
432 BasicBlock::iterator BBI
= CI
;
433 for (++BBI
; &*BBI
!= Ret
; ++BBI
) {
434 if (CanMoveAboveCall(BBI
, CI
)) continue;
436 // If we can't move the instruction above the call, it might be because it
437 // is an associative and commutative operation that could be transformed
438 // using accumulator recursion elimination. Check to see if this is the
439 // case, and if so, remember the initial accumulator value for later.
440 if ((AccumulatorRecursionEliminationInitVal
=
441 CanTransformAccumulatorRecursion(BBI
, CI
))) {
442 // Yes, this is accumulator recursion. Remember which instruction
444 AccumulatorRecursionInstr
= BBI
;
446 return false; // Otherwise, we cannot eliminate the tail recursion!
450 // We can only transform call/return pairs that either ignore the return value
451 // of the call and return void, ignore the value of the call and return a
452 // constant, return the value returned by the tail call, or that are being
453 // accumulator recursion variable eliminated.
454 if (Ret
->getNumOperands() == 1 && Ret
->getReturnValue() != CI
&&
455 !isa
<UndefValue
>(Ret
->getReturnValue()) &&
456 AccumulatorRecursionEliminationInitVal
== 0 &&
457 !getCommonReturnValue(0, CI
)) {
458 // One case remains that we are able to handle: the current return
459 // instruction returns a constant, and all other return instructions
460 // return a different constant.
461 if (!isDynamicConstant(Ret
->getReturnValue(), CI
, Ret
))
462 return false; // Current return instruction does not return a constant.
463 // Check that all other return instructions return a common constant. If
464 // so, record it in AccumulatorRecursionEliminationInitVal.
465 AccumulatorRecursionEliminationInitVal
= getCommonReturnValue(Ret
, CI
);
466 if (!AccumulatorRecursionEliminationInitVal
)
470 BasicBlock
*BB
= Ret
->getParent();
471 Function
*F
= BB
->getParent();
473 // OK! We can transform this tail call. If this is the first one found,
474 // create the new entry block, allowing us to branch back to the old entry.
476 OldEntry
= &F
->getEntryBlock();
477 BasicBlock
*NewEntry
= BasicBlock::Create(F
->getContext(), "", F
, OldEntry
);
478 NewEntry
->takeName(OldEntry
);
479 OldEntry
->setName("tailrecurse");
480 BranchInst::Create(OldEntry
, NewEntry
);
482 // If this tail call is marked 'tail' and if there are any allocas in the
483 // entry block, move them up to the new entry block.
484 TailCallsAreMarkedTail
= CI
->isTailCall();
485 if (TailCallsAreMarkedTail
)
486 // Move all fixed sized allocas from OldEntry to NewEntry.
487 for (BasicBlock::iterator OEBI
= OldEntry
->begin(), E
= OldEntry
->end(),
488 NEBI
= NewEntry
->begin(); OEBI
!= E
; )
489 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(OEBI
++))
490 if (isa
<ConstantInt
>(AI
->getArraySize()))
491 AI
->moveBefore(NEBI
);
493 // Now that we have created a new block, which jumps to the entry
494 // block, insert a PHI node for each argument of the function.
495 // For now, we initialize each PHI to only have the real arguments
496 // which are passed in.
497 Instruction
*InsertPos
= OldEntry
->begin();
498 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
500 PHINode
*PN
= PHINode::Create(I
->getType(), 2,
501 I
->getName() + ".tr", InsertPos
);
502 I
->replaceAllUsesWith(PN
); // Everyone use the PHI node now!
503 PN
->addIncoming(I
, NewEntry
);
504 ArgumentPHIs
.push_back(PN
);
508 // If this function has self recursive calls in the tail position where some
509 // are marked tail and some are not, only transform one flavor or another. We
510 // have to choose whether we move allocas in the entry block to the new entry
511 // block or not, so we can't make a good choice for both. NOTE: We could do
512 // slightly better here in the case that the function has no entry block
514 if (TailCallsAreMarkedTail
&& !CI
->isTailCall())
517 // Ok, now that we know we have a pseudo-entry block WITH all of the
518 // required PHI nodes, add entries into the PHI node for the actual
519 // parameters passed into the tail-recursive call.
520 for (unsigned i
= 0, e
= CI
->getNumArgOperands(); i
!= e
; ++i
)
521 ArgumentPHIs
[i
]->addIncoming(CI
->getArgOperand(i
), BB
);
523 // If we are introducing an accumulator variable to eliminate the recursion,
524 // do so now. Note that we _know_ that no subsequent tail recursion
525 // eliminations will happen on this function because of the way the
526 // accumulator recursion predicate is set up.
528 if (AccumulatorRecursionEliminationInitVal
) {
529 Instruction
*AccRecInstr
= AccumulatorRecursionInstr
;
530 // Start by inserting a new PHI node for the accumulator.
531 pred_iterator PB
= pred_begin(OldEntry
), PE
= pred_end(OldEntry
);
533 PHINode::Create(AccumulatorRecursionEliminationInitVal
->getType(),
534 std::distance(PB
, PE
) + 1,
535 "accumulator.tr", OldEntry
->begin());
537 // Loop over all of the predecessors of the tail recursion block. For the
538 // real entry into the function we seed the PHI with the initial value,
539 // computed earlier. For any other existing branches to this block (due to
540 // other tail recursions eliminated) the accumulator is not modified.
541 // Because we haven't added the branch in the current block to OldEntry yet,
542 // it will not show up as a predecessor.
543 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
545 if (P
== &F
->getEntryBlock())
546 AccPN
->addIncoming(AccumulatorRecursionEliminationInitVal
, P
);
548 AccPN
->addIncoming(AccPN
, P
);
552 // Add an incoming argument for the current block, which is computed by
553 // our associative and commutative accumulator instruction.
554 AccPN
->addIncoming(AccRecInstr
, BB
);
556 // Next, rewrite the accumulator recursion instruction so that it does not
557 // use the result of the call anymore, instead, use the PHI node we just
559 AccRecInstr
->setOperand(AccRecInstr
->getOperand(0) != CI
, AccPN
);
561 // Add an incoming argument for the current block, which is just the
562 // constant returned by the current return instruction.
563 AccPN
->addIncoming(Ret
->getReturnValue(), BB
);
566 // Finally, rewrite any return instructions in the program to return the PHI
567 // node instead of the "initval" that they do currently. This loop will
568 // actually rewrite the return value we are destroying, but that's ok.
569 for (Function::iterator BBI
= F
->begin(), E
= F
->end(); BBI
!= E
; ++BBI
)
570 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BBI
->getTerminator()))
571 RI
->setOperand(0, AccPN
);
575 // Now that all of the PHI nodes are in place, remove the call and
576 // ret instructions, replacing them with an unconditional branch.
577 BranchInst
*NewBI
= BranchInst::Create(OldEntry
, Ret
);
578 NewBI
->setDebugLoc(CI
->getDebugLoc());
580 BB
->getInstList().erase(Ret
); // Remove return.
581 BB
->getInstList().erase(CI
); // Remove call.
586 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock
*BB
,
587 ReturnInst
*Ret
, BasicBlock
*&OldEntry
,
588 bool &TailCallsAreMarkedTail
,
589 SmallVector
<PHINode
*, 8> &ArgumentPHIs
,
590 bool CannotTailCallElimCallsMarkedTail
) {
593 // If the return block contains nothing but the return and PHI's,
594 // there might be an opportunity to duplicate the return in its
595 // predecessors and perform TRC there. Look for predecessors that end
596 // in unconditional branch and recursive call(s).
597 SmallVector
<BranchInst
*, 8> UncondBranchPreds
;
598 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
599 BasicBlock
*Pred
= *PI
;
600 TerminatorInst
*PTI
= Pred
->getTerminator();
601 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
))
602 if (BI
->isUnconditional())
603 UncondBranchPreds
.push_back(BI
);
606 while (!UncondBranchPreds
.empty()) {
607 BranchInst
*BI
= UncondBranchPreds
.pop_back_val();
608 BasicBlock
*Pred
= BI
->getParent();
609 if (CallInst
*CI
= FindTRECandidate(BI
, CannotTailCallElimCallsMarkedTail
)){
610 DEBUG(dbgs() << "FOLDING: " << *BB
611 << "INTO UNCOND BRANCH PRED: " << *Pred
);
612 EliminateRecursiveTailCall(CI
, FoldReturnIntoUncondBranch(Ret
, BB
, Pred
),
613 OldEntry
, TailCallsAreMarkedTail
, ArgumentPHIs
,
614 CannotTailCallElimCallsMarkedTail
);
623 bool TailCallElim::ProcessReturningBlock(ReturnInst
*Ret
, BasicBlock
*&OldEntry
,
624 bool &TailCallsAreMarkedTail
,
625 SmallVector
<PHINode
*, 8> &ArgumentPHIs
,
626 bool CannotTailCallElimCallsMarkedTail
) {
627 CallInst
*CI
= FindTRECandidate(Ret
, CannotTailCallElimCallsMarkedTail
);
631 return EliminateRecursiveTailCall(CI
, Ret
, OldEntry
, TailCallsAreMarkedTail
,
633 CannotTailCallElimCallsMarkedTail
);