1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Utils/FunctionUtils.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Analysis/Dominators.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/Verifier.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/ADT/SetVector.h"
33 #include "llvm/ADT/StringExtras.h"
38 // Provide a command-line option to aggregate function arguments into a struct
39 // for functions produced by the code extractor. This is useful when converting
40 // extracted functions to pthread-based code, as only one argument (void*) can
41 // be passed in to pthread_create().
43 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden
,
44 cl::desc("Aggregate arguments to code-extracted functions"));
48 typedef SetVector
<Value
*> Values
;
49 SetVector
<BasicBlock
*> BlocksToExtract
;
52 unsigned NumExitBlocks
;
55 CodeExtractor(DominatorTree
* dt
= 0, bool AggArgs
= false)
56 : DT(dt
), AggregateArgs(AggArgs
||AggregateArgsOpt
), NumExitBlocks(~0U) {}
58 Function
*ExtractCodeRegion(const std::vector
<BasicBlock
*> &code
);
60 bool isEligible(const std::vector
<BasicBlock
*> &code
);
63 /// definedInRegion - Return true if the specified value is defined in the
65 bool definedInRegion(Value
*V
) const {
66 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
67 if (BlocksToExtract
.count(I
->getParent()))
72 /// definedInCaller - Return true if the specified value is defined in the
73 /// function being code extracted, but not in the region being extracted.
74 /// These values must be passed in as live-ins to the function.
75 bool definedInCaller(Value
*V
) const {
76 if (isa
<Argument
>(V
)) return true;
77 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
78 if (!BlocksToExtract
.count(I
->getParent()))
83 void severSplitPHINodes(BasicBlock
*&Header
);
84 void splitReturnBlocks();
85 void findInputsOutputs(Values
&inputs
, Values
&outputs
);
87 Function
*constructFunction(const Values
&inputs
,
88 const Values
&outputs
,
90 BasicBlock
*newRootNode
, BasicBlock
*newHeader
,
91 Function
*oldFunction
, Module
*M
);
93 void moveCodeToFunction(Function
*newFunction
);
95 void emitCallAndSwitchStatement(Function
*newFunction
,
96 BasicBlock
*newHeader
,
103 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
104 /// region, we need to split the entry block of the region so that the PHI node
105 /// is easier to deal with.
106 void CodeExtractor::severSplitPHINodes(BasicBlock
*&Header
) {
107 unsigned NumPredsFromRegion
= 0;
108 unsigned NumPredsOutsideRegion
= 0;
110 if (Header
!= &Header
->getParent()->getEntryBlock()) {
111 PHINode
*PN
= dyn_cast
<PHINode
>(Header
->begin());
112 if (!PN
) return; // No PHI nodes.
114 // If the header node contains any PHI nodes, check to see if there is more
115 // than one entry from outside the region. If so, we need to sever the
116 // header block into two.
117 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
118 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
)))
119 ++NumPredsFromRegion
;
121 ++NumPredsOutsideRegion
;
123 // If there is one (or fewer) predecessor from outside the region, we don't
124 // need to do anything special.
125 if (NumPredsOutsideRegion
<= 1) return;
128 // Otherwise, we need to split the header block into two pieces: one
129 // containing PHI nodes merging values from outside of the region, and a
130 // second that contains all of the code for the block and merges back any
131 // incoming values from inside of the region.
132 BasicBlock::iterator AfterPHIs
= Header
->getFirstNonPHI();
133 BasicBlock
*NewBB
= Header
->splitBasicBlock(AfterPHIs
,
134 Header
->getName()+".ce");
136 // We only want to code extract the second block now, and it becomes the new
137 // header of the region.
138 BasicBlock
*OldPred
= Header
;
139 BlocksToExtract
.remove(OldPred
);
140 BlocksToExtract
.insert(NewBB
);
143 // Okay, update dominator sets. The blocks that dominate the new one are the
144 // blocks that dominate TIBB plus the new block itself.
146 DT
->splitBlock(NewBB
);
148 // Okay, now we need to adjust the PHI nodes and any branches from within the
149 // region to go to the new header block instead of the old header block.
150 if (NumPredsFromRegion
) {
151 PHINode
*PN
= cast
<PHINode
>(OldPred
->begin());
152 // Loop over all of the predecessors of OldPred that are in the region,
153 // changing them to branch to NewBB instead.
154 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
155 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
))) {
156 TerminatorInst
*TI
= PN
->getIncomingBlock(i
)->getTerminator();
157 TI
->replaceUsesOfWith(OldPred
, NewBB
);
160 // Okay, everything within the region is now branching to the right block, we
161 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
162 for (AfterPHIs
= OldPred
->begin(); isa
<PHINode
>(AfterPHIs
); ++AfterPHIs
) {
163 PHINode
*PN
= cast
<PHINode
>(AfterPHIs
);
164 // Create a new PHI node in the new region, which has an incoming value
165 // from OldPred of PN.
166 PHINode
*NewPN
= PHINode::Create(PN
->getType(), 1 + NumPredsFromRegion
,
167 PN
->getName()+".ce", NewBB
->begin());
168 NewPN
->addIncoming(PN
, OldPred
);
170 // Loop over all of the incoming value in PN, moving them to NewPN if they
171 // are from the extracted region.
172 for (unsigned i
= 0; i
!= PN
->getNumIncomingValues(); ++i
) {
173 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
))) {
174 NewPN
->addIncoming(PN
->getIncomingValue(i
), PN
->getIncomingBlock(i
));
175 PN
->removeIncomingValue(i
);
183 void CodeExtractor::splitReturnBlocks() {
184 for (SetVector
<BasicBlock
*>::iterator I
= BlocksToExtract
.begin(),
185 E
= BlocksToExtract
.end(); I
!= E
; ++I
)
186 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>((*I
)->getTerminator())) {
187 BasicBlock
*New
= (*I
)->splitBasicBlock(RI
, (*I
)->getName()+".ret");
189 // Old dominates New. New node dominates all other nodes dominated
191 DomTreeNode
*OldNode
= DT
->getNode(*I
);
192 SmallVector
<DomTreeNode
*, 8> Children
;
193 for (DomTreeNode::iterator DI
= OldNode
->begin(), DE
= OldNode
->end();
195 Children
.push_back(*DI
);
197 DomTreeNode
*NewNode
= DT
->addNewBlock(New
, *I
);
199 for (SmallVector
<DomTreeNode
*, 8>::iterator I
= Children
.begin(),
200 E
= Children
.end(); I
!= E
; ++I
)
201 DT
->changeImmediateDominator(*I
, NewNode
);
206 // findInputsOutputs - Find inputs to, outputs from the code region.
208 void CodeExtractor::findInputsOutputs(Values
&inputs
, Values
&outputs
) {
209 std::set
<BasicBlock
*> ExitBlocks
;
210 for (SetVector
<BasicBlock
*>::const_iterator ci
= BlocksToExtract
.begin(),
211 ce
= BlocksToExtract
.end(); ci
!= ce
; ++ci
) {
212 BasicBlock
*BB
= *ci
;
214 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
215 // If a used value is defined outside the region, it's an input. If an
216 // instruction is used outside the region, it's an output.
217 for (User::op_iterator O
= I
->op_begin(), E
= I
->op_end(); O
!= E
; ++O
)
218 if (definedInCaller(*O
))
221 // Consider uses of this instruction (outputs).
222 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
224 if (!definedInRegion(*UI
)) {
230 // Keep track of the exit blocks from the region.
231 TerminatorInst
*TI
= BB
->getTerminator();
232 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
233 if (!BlocksToExtract
.count(TI
->getSuccessor(i
)))
234 ExitBlocks
.insert(TI
->getSuccessor(i
));
235 } // for: basic blocks
237 NumExitBlocks
= ExitBlocks
.size();
240 /// constructFunction - make a function based on inputs and outputs, as follows:
241 /// f(in0, ..., inN, out0, ..., outN)
243 Function
*CodeExtractor::constructFunction(const Values
&inputs
,
244 const Values
&outputs
,
246 BasicBlock
*newRootNode
,
247 BasicBlock
*newHeader
,
248 Function
*oldFunction
,
250 DEBUG(dbgs() << "inputs: " << inputs
.size() << "\n");
251 DEBUG(dbgs() << "outputs: " << outputs
.size() << "\n");
253 // This function returns unsigned, outputs will go back by reference.
254 switch (NumExitBlocks
) {
256 case 1: RetTy
= Type::getVoidTy(header
->getContext()); break;
257 case 2: RetTy
= Type::getInt1Ty(header
->getContext()); break;
258 default: RetTy
= Type::getInt16Ty(header
->getContext()); break;
261 std::vector
<const Type
*> paramTy
;
263 // Add the types of the input values to the function's argument list
264 for (Values::const_iterator i
= inputs
.begin(),
265 e
= inputs
.end(); i
!= e
; ++i
) {
266 const Value
*value
= *i
;
267 DEBUG(dbgs() << "value used in func: " << *value
<< "\n");
268 paramTy
.push_back(value
->getType());
271 // Add the types of the output values to the function's argument list.
272 for (Values::const_iterator I
= outputs
.begin(), E
= outputs
.end();
274 DEBUG(dbgs() << "instr used in func: " << **I
<< "\n");
276 paramTy
.push_back((*I
)->getType());
278 paramTy
.push_back(PointerType::getUnqual((*I
)->getType()));
281 DEBUG(dbgs() << "Function type: " << *RetTy
<< " f(");
282 for (std::vector
<const Type
*>::iterator i
= paramTy
.begin(),
283 e
= paramTy
.end(); i
!= e
; ++i
)
284 DEBUG(dbgs() << **i
<< ", ");
285 DEBUG(dbgs() << ")\n");
287 if (AggregateArgs
&& (inputs
.size() + outputs
.size() > 0)) {
288 PointerType
*StructPtr
=
289 PointerType::getUnqual(StructType::get(M
->getContext(), paramTy
));
291 paramTy
.push_back(StructPtr
);
293 const FunctionType
*funcType
=
294 FunctionType::get(RetTy
, paramTy
, false);
296 // Create the new function
297 Function
*newFunction
= Function::Create(funcType
,
298 GlobalValue::InternalLinkage
,
299 oldFunction
->getName() + "_" +
300 header
->getName(), M
);
301 // If the old function is no-throw, so is the new one.
302 if (oldFunction
->doesNotThrow())
303 newFunction
->setDoesNotThrow(true);
305 newFunction
->getBasicBlockList().push_back(newRootNode
);
307 // Create an iterator to name all of the arguments we inserted.
308 Function::arg_iterator AI
= newFunction
->arg_begin();
310 // Rewrite all users of the inputs in the extracted region to use the
311 // arguments (or appropriate addressing into struct) instead.
312 for (unsigned i
= 0, e
= inputs
.size(); i
!= e
; ++i
) {
316 Idx
[0] = Constant::getNullValue(Type::getInt32Ty(header
->getContext()));
317 Idx
[1] = ConstantInt::get(Type::getInt32Ty(header
->getContext()), i
);
318 TerminatorInst
*TI
= newFunction
->begin()->getTerminator();
319 GetElementPtrInst
*GEP
=
320 GetElementPtrInst::Create(AI
, Idx
, Idx
+2,
321 "gep_" + inputs
[i
]->getName(), TI
);
322 RewriteVal
= new LoadInst(GEP
, "loadgep_" + inputs
[i
]->getName(), TI
);
326 std::vector
<User
*> Users(inputs
[i
]->use_begin(), inputs
[i
]->use_end());
327 for (std::vector
<User
*>::iterator use
= Users
.begin(), useE
= Users
.end();
329 if (Instruction
* inst
= dyn_cast
<Instruction
>(*use
))
330 if (BlocksToExtract
.count(inst
->getParent()))
331 inst
->replaceUsesOfWith(inputs
[i
], RewriteVal
);
334 // Set names for input and output arguments.
335 if (!AggregateArgs
) {
336 AI
= newFunction
->arg_begin();
337 for (unsigned i
= 0, e
= inputs
.size(); i
!= e
; ++i
, ++AI
)
338 AI
->setName(inputs
[i
]->getName());
339 for (unsigned i
= 0, e
= outputs
.size(); i
!= e
; ++i
, ++AI
)
340 AI
->setName(outputs
[i
]->getName()+".out");
343 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
344 // within the new function. This must be done before we lose track of which
345 // blocks were originally in the code region.
346 std::vector
<User
*> Users(header
->use_begin(), header
->use_end());
347 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
)
348 // The BasicBlock which contains the branch is not in the region
349 // modify the branch target to a new block
350 if (TerminatorInst
*TI
= dyn_cast
<TerminatorInst
>(Users
[i
]))
351 if (!BlocksToExtract
.count(TI
->getParent()) &&
352 TI
->getParent()->getParent() == oldFunction
)
353 TI
->replaceUsesOfWith(header
, newHeader
);
358 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
359 /// that uses the value within the basic block, and return the predecessor
360 /// block associated with that use, or return 0 if none is found.
361 static BasicBlock
* FindPhiPredForUseInBlock(Value
* Used
, BasicBlock
* BB
) {
362 for (Value::use_iterator UI
= Used
->use_begin(),
363 UE
= Used
->use_end(); UI
!= UE
; ++UI
) {
364 PHINode
*P
= dyn_cast
<PHINode
>(*UI
);
365 if (P
&& P
->getParent() == BB
)
366 return P
->getIncomingBlock(UI
);
372 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
373 /// the call instruction, splitting any PHI nodes in the header block as
376 emitCallAndSwitchStatement(Function
*newFunction
, BasicBlock
*codeReplacer
,
377 Values
&inputs
, Values
&outputs
) {
378 // Emit a call to the new function, passing in: *pointer to struct (if
379 // aggregating parameters), or plan inputs and allocated memory for outputs
380 std::vector
<Value
*> params
, StructValues
, ReloadOutputs
, Reloads
;
382 LLVMContext
&Context
= newFunction
->getContext();
384 // Add inputs as params, or to be filled into the struct
385 for (Values::iterator i
= inputs
.begin(), e
= inputs
.end(); i
!= e
; ++i
)
387 StructValues
.push_back(*i
);
389 params
.push_back(*i
);
391 // Create allocas for the outputs
392 for (Values::iterator i
= outputs
.begin(), e
= outputs
.end(); i
!= e
; ++i
) {
394 StructValues
.push_back(*i
);
397 new AllocaInst((*i
)->getType(), 0, (*i
)->getName()+".loc",
398 codeReplacer
->getParent()->begin()->begin());
399 ReloadOutputs
.push_back(alloca
);
400 params
.push_back(alloca
);
404 AllocaInst
*Struct
= 0;
405 if (AggregateArgs
&& (inputs
.size() + outputs
.size() > 0)) {
406 std::vector
<const Type
*> ArgTypes
;
407 for (Values::iterator v
= StructValues
.begin(),
408 ve
= StructValues
.end(); v
!= ve
; ++v
)
409 ArgTypes
.push_back((*v
)->getType());
411 // Allocate a struct at the beginning of this function
412 Type
*StructArgTy
= StructType::get(newFunction
->getContext(), ArgTypes
);
414 new AllocaInst(StructArgTy
, 0, "structArg",
415 codeReplacer
->getParent()->begin()->begin());
416 params
.push_back(Struct
);
418 for (unsigned i
= 0, e
= inputs
.size(); i
!= e
; ++i
) {
420 Idx
[0] = Constant::getNullValue(Type::getInt32Ty(Context
));
421 Idx
[1] = ConstantInt::get(Type::getInt32Ty(Context
), i
);
422 GetElementPtrInst
*GEP
=
423 GetElementPtrInst::Create(Struct
, Idx
, Idx
+ 2,
424 "gep_" + StructValues
[i
]->getName());
425 codeReplacer
->getInstList().push_back(GEP
);
426 StoreInst
*SI
= new StoreInst(StructValues
[i
], GEP
);
427 codeReplacer
->getInstList().push_back(SI
);
431 // Emit the call to the function
432 CallInst
*call
= CallInst::Create(newFunction
, params
.begin(), params
.end(),
433 NumExitBlocks
> 1 ? "targetBlock" : "");
434 codeReplacer
->getInstList().push_back(call
);
436 Function::arg_iterator OutputArgBegin
= newFunction
->arg_begin();
437 unsigned FirstOut
= inputs
.size();
439 std::advance(OutputArgBegin
, inputs
.size());
441 // Reload the outputs passed in by reference
442 for (unsigned i
= 0, e
= outputs
.size(); i
!= e
; ++i
) {
446 Idx
[0] = Constant::getNullValue(Type::getInt32Ty(Context
));
447 Idx
[1] = ConstantInt::get(Type::getInt32Ty(Context
), FirstOut
+ i
);
448 GetElementPtrInst
*GEP
449 = GetElementPtrInst::Create(Struct
, Idx
, Idx
+ 2,
450 "gep_reload_" + outputs
[i
]->getName());
451 codeReplacer
->getInstList().push_back(GEP
);
454 Output
= ReloadOutputs
[i
];
456 LoadInst
*load
= new LoadInst(Output
, outputs
[i
]->getName()+".reload");
457 Reloads
.push_back(load
);
458 codeReplacer
->getInstList().push_back(load
);
459 std::vector
<User
*> Users(outputs
[i
]->use_begin(), outputs
[i
]->use_end());
460 for (unsigned u
= 0, e
= Users
.size(); u
!= e
; ++u
) {
461 Instruction
*inst
= cast
<Instruction
>(Users
[u
]);
462 if (!BlocksToExtract
.count(inst
->getParent()))
463 inst
->replaceUsesOfWith(outputs
[i
], load
);
467 // Now we can emit a switch statement using the call as a value.
468 SwitchInst
*TheSwitch
=
469 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context
)),
470 codeReplacer
, 0, codeReplacer
);
472 // Since there may be multiple exits from the original region, make the new
473 // function return an unsigned, switch on that number. This loop iterates
474 // over all of the blocks in the extracted region, updating any terminator
475 // instructions in the to-be-extracted region that branch to blocks that are
476 // not in the region to be extracted.
477 std::map
<BasicBlock
*, BasicBlock
*> ExitBlockMap
;
479 unsigned switchVal
= 0;
480 for (SetVector
<BasicBlock
*>::const_iterator i
= BlocksToExtract
.begin(),
481 e
= BlocksToExtract
.end(); i
!= e
; ++i
) {
482 TerminatorInst
*TI
= (*i
)->getTerminator();
483 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
484 if (!BlocksToExtract
.count(TI
->getSuccessor(i
))) {
485 BasicBlock
*OldTarget
= TI
->getSuccessor(i
);
486 // add a new basic block which returns the appropriate value
487 BasicBlock
*&NewTarget
= ExitBlockMap
[OldTarget
];
489 // If we don't already have an exit stub for this non-extracted
490 // destination, create one now!
491 NewTarget
= BasicBlock::Create(Context
,
492 OldTarget
->getName() + ".exitStub",
494 unsigned SuccNum
= switchVal
++;
497 switch (NumExitBlocks
) {
499 case 1: break; // No value needed.
500 case 2: // Conditional branch, return a bool
501 brVal
= ConstantInt::get(Type::getInt1Ty(Context
), !SuccNum
);
504 brVal
= ConstantInt::get(Type::getInt16Ty(Context
), SuccNum
);
508 ReturnInst
*NTRet
= ReturnInst::Create(Context
, brVal
, NewTarget
);
510 // Update the switch instruction.
511 TheSwitch
->addCase(ConstantInt::get(Type::getInt16Ty(Context
),
515 // Restore values just before we exit
516 Function::arg_iterator OAI
= OutputArgBegin
;
517 for (unsigned out
= 0, e
= outputs
.size(); out
!= e
; ++out
) {
518 // For an invoke, the normal destination is the only one that is
519 // dominated by the result of the invocation
520 BasicBlock
*DefBlock
= cast
<Instruction
>(outputs
[out
])->getParent();
522 bool DominatesDef
= true;
524 if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(outputs
[out
])) {
525 DefBlock
= Invoke
->getNormalDest();
527 // Make sure we are looking at the original successor block, not
528 // at a newly inserted exit block, which won't be in the dominator
530 for (std::map
<BasicBlock
*, BasicBlock
*>::iterator I
=
531 ExitBlockMap
.begin(), E
= ExitBlockMap
.end(); I
!= E
; ++I
)
532 if (DefBlock
== I
->second
) {
537 // In the extract block case, if the block we are extracting ends
538 // with an invoke instruction, make sure that we don't emit a
539 // store of the invoke value for the unwind block.
540 if (!DT
&& DefBlock
!= OldTarget
)
541 DominatesDef
= false;
545 DominatesDef
= DT
->dominates(DefBlock
, OldTarget
);
547 // If the output value is used by a phi in the target block,
548 // then we need to test for dominance of the phi's predecessor
549 // instead. Unfortunately, this a little complicated since we
550 // have already rewritten uses of the value to uses of the reload.
551 BasicBlock
* pred
= FindPhiPredForUseInBlock(Reloads
[out
],
553 if (pred
&& DT
&& DT
->dominates(DefBlock
, pred
))
560 Idx
[0] = Constant::getNullValue(Type::getInt32Ty(Context
));
561 Idx
[1] = ConstantInt::get(Type::getInt32Ty(Context
),
563 GetElementPtrInst
*GEP
=
564 GetElementPtrInst::Create(OAI
, Idx
, Idx
+ 2,
565 "gep_" + outputs
[out
]->getName(),
567 new StoreInst(outputs
[out
], GEP
, NTRet
);
569 new StoreInst(outputs
[out
], OAI
, NTRet
);
572 // Advance output iterator even if we don't emit a store
573 if (!AggregateArgs
) ++OAI
;
577 // rewrite the original branch instruction with this new target
578 TI
->setSuccessor(i
, NewTarget
);
582 // Now that we've done the deed, simplify the switch instruction.
583 const Type
*OldFnRetTy
= TheSwitch
->getParent()->getParent()->getReturnType();
584 switch (NumExitBlocks
) {
586 // There are no successors (the block containing the switch itself), which
587 // means that previously this was the last part of the function, and hence
588 // this should be rewritten as a `ret'
590 // Check if the function should return a value
591 if (OldFnRetTy
->isVoidTy()) {
592 ReturnInst::Create(Context
, 0, TheSwitch
); // Return void
593 } else if (OldFnRetTy
== TheSwitch
->getCondition()->getType()) {
594 // return what we have
595 ReturnInst::Create(Context
, TheSwitch
->getCondition(), TheSwitch
);
597 // Otherwise we must have code extracted an unwind or something, just
598 // return whatever we want.
599 ReturnInst::Create(Context
,
600 Constant::getNullValue(OldFnRetTy
), TheSwitch
);
603 TheSwitch
->eraseFromParent();
606 // Only a single destination, change the switch into an unconditional
608 BranchInst::Create(TheSwitch
->getSuccessor(1), TheSwitch
);
609 TheSwitch
->eraseFromParent();
612 BranchInst::Create(TheSwitch
->getSuccessor(1), TheSwitch
->getSuccessor(2),
614 TheSwitch
->eraseFromParent();
617 // Otherwise, make the default destination of the switch instruction be one
618 // of the other successors.
619 TheSwitch
->setOperand(0, call
);
620 TheSwitch
->setSuccessor(0, TheSwitch
->getSuccessor(NumExitBlocks
));
621 TheSwitch
->removeCase(NumExitBlocks
); // Remove redundant case
626 void CodeExtractor::moveCodeToFunction(Function
*newFunction
) {
627 Function
*oldFunc
= (*BlocksToExtract
.begin())->getParent();
628 Function::BasicBlockListType
&oldBlocks
= oldFunc
->getBasicBlockList();
629 Function::BasicBlockListType
&newBlocks
= newFunction
->getBasicBlockList();
631 for (SetVector
<BasicBlock
*>::const_iterator i
= BlocksToExtract
.begin(),
632 e
= BlocksToExtract
.end(); i
!= e
; ++i
) {
633 // Delete the basic block from the old function, and the list of blocks
634 oldBlocks
.remove(*i
);
636 // Insert this basic block into the new function
637 newBlocks
.push_back(*i
);
641 /// ExtractRegion - Removes a loop from a function, replaces it with a call to
642 /// new function. Returns pointer to the new function.
646 /// find inputs and outputs for the region
648 /// for inputs: add to function as args, map input instr* to arg#
649 /// for outputs: add allocas for scalars,
650 /// add to func as args, map output instr* to arg#
652 /// rewrite func to use argument #s instead of instr*
654 /// for each scalar output in the function: at every exit, store intermediate
655 /// computed result back into memory.
657 Function
*CodeExtractor::
658 ExtractCodeRegion(const std::vector
<BasicBlock
*> &code
) {
659 if (!isEligible(code
))
662 // 1) Find inputs, outputs
663 // 2) Construct new function
664 // * Add allocas for defs, pass as args by reference
665 // * Pass in uses as args
666 // 3) Move code region, add call instr to func
668 BlocksToExtract
.insert(code
.begin(), code
.end());
670 Values inputs
, outputs
;
672 // Assumption: this is a single-entry code region, and the header is the first
673 // block in the region.
674 BasicBlock
*header
= code
[0];
676 for (unsigned i
= 1, e
= code
.size(); i
!= e
; ++i
)
677 for (pred_iterator PI
= pred_begin(code
[i
]), E
= pred_end(code
[i
]);
679 assert(BlocksToExtract
.count(*PI
) &&
680 "No blocks in this region may have entries from outside the region"
681 " except for the first block!");
683 // If we have to split PHI nodes or the entry block, do so now.
684 severSplitPHINodes(header
);
686 // If we have any return instructions in the region, split those blocks so
687 // that the return is not in the region.
690 Function
*oldFunction
= header
->getParent();
692 // This takes place of the original loop
693 BasicBlock
*codeReplacer
= BasicBlock::Create(header
->getContext(),
694 "codeRepl", oldFunction
,
697 // The new function needs a root node because other nodes can branch to the
698 // head of the region, but the entry node of a function cannot have preds.
699 BasicBlock
*newFuncRoot
= BasicBlock::Create(header
->getContext(),
701 newFuncRoot
->getInstList().push_back(BranchInst::Create(header
));
703 // Find inputs to, outputs from the code region.
704 findInputsOutputs(inputs
, outputs
);
706 // Construct new function based on inputs/outputs & add allocas for all defs.
707 Function
*newFunction
= constructFunction(inputs
, outputs
, header
,
709 codeReplacer
, oldFunction
,
710 oldFunction
->getParent());
712 emitCallAndSwitchStatement(newFunction
, codeReplacer
, inputs
, outputs
);
714 moveCodeToFunction(newFunction
);
716 // Loop over all of the PHI nodes in the header block, and change any
717 // references to the old incoming edge to be the new incoming edge.
718 for (BasicBlock::iterator I
= header
->begin(); isa
<PHINode
>(I
); ++I
) {
719 PHINode
*PN
= cast
<PHINode
>(I
);
720 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
721 if (!BlocksToExtract
.count(PN
->getIncomingBlock(i
)))
722 PN
->setIncomingBlock(i
, newFuncRoot
);
725 // Look at all successors of the codeReplacer block. If any of these blocks
726 // had PHI nodes in them, we need to update the "from" block to be the code
727 // replacer, not the original block in the extracted region.
728 std::vector
<BasicBlock
*> Succs(succ_begin(codeReplacer
),
729 succ_end(codeReplacer
));
730 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
)
731 for (BasicBlock::iterator I
= Succs
[i
]->begin(); isa
<PHINode
>(I
); ++I
) {
732 PHINode
*PN
= cast
<PHINode
>(I
);
733 std::set
<BasicBlock
*> ProcessedPreds
;
734 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
735 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
))) {
736 if (ProcessedPreds
.insert(PN
->getIncomingBlock(i
)).second
)
737 PN
->setIncomingBlock(i
, codeReplacer
);
739 // There were multiple entries in the PHI for this block, now there
740 // is only one, so remove the duplicated entries.
741 PN
->removeIncomingValue(i
, false);
747 //cerr << "NEW FUNCTION: " << *newFunction;
748 // verifyFunction(*newFunction);
750 // cerr << "OLD FUNCTION: " << *oldFunction;
751 // verifyFunction(*oldFunction);
753 DEBUG(if (verifyFunction(*newFunction
))
754 report_fatal_error("verifyFunction failed!"));
758 bool CodeExtractor::isEligible(const std::vector
<BasicBlock
*> &code
) {
759 // Deny code region if it contains allocas or vastarts.
760 for (std::vector
<BasicBlock
*>::const_iterator BB
= code
.begin(), e
=code
.end();
762 for (BasicBlock::const_iterator I
= (*BB
)->begin(), Ie
= (*BB
)->end();
764 if (isa
<AllocaInst
>(*I
))
766 else if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
767 if (const Function
*F
= CI
->getCalledFunction())
768 if (F
->getIntrinsicID() == Intrinsic::vastart
)
774 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
777 Function
* llvm::ExtractCodeRegion(DominatorTree
&DT
,
778 const std::vector
<BasicBlock
*> &code
,
779 bool AggregateArgs
) {
780 return CodeExtractor(&DT
, AggregateArgs
).ExtractCodeRegion(code
);
783 /// ExtractBasicBlock - slurp a natural loop into a brand new function
785 Function
* llvm::ExtractLoop(DominatorTree
&DT
, Loop
*L
, bool AggregateArgs
) {
786 return CodeExtractor(&DT
, AggregateArgs
).ExtractCodeRegion(L
->getBlocks());
789 /// ExtractBasicBlock - slurp a basic block into a brand new function
791 Function
* llvm::ExtractBasicBlock(BasicBlock
*BB
, bool AggregateArgs
) {
792 std::vector
<BasicBlock
*> Blocks
;
793 Blocks
.push_back(BB
);
794 return CodeExtractor(0, AggregateArgs
).ExtractCodeRegion(Blocks
);