Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / Transforms / Utils / Local.cpp
blob0f6d9ae99d664ea03af414839403850a9617d89f
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/GlobalAlias.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/IntrinsicInst.h"
23 #include "llvm/Metadata.h"
24 #include "llvm/Operator.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/Analysis/DebugInfo.h"
28 #include "llvm/Analysis/DIBuilder.h"
29 #include "llvm/Analysis/Dominators.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/ProfileInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Support/CFG.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/GetElementPtrTypeIterator.h"
38 #include "llvm/Support/IRBuilder.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/ValueHandle.h"
41 #include "llvm/Support/raw_ostream.h"
42 using namespace llvm;
44 //===----------------------------------------------------------------------===//
45 // Local constant propagation.
48 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
49 /// constant value, convert it into an unconditional branch to the constant
50 /// destination. This is a nontrivial operation because the successors of this
51 /// basic block must have their PHI nodes updated.
52 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
53 /// conditions and indirectbr addresses this might make dead if
54 /// DeleteDeadConditions is true.
55 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) {
56 TerminatorInst *T = BB->getTerminator();
57 IRBuilder<> Builder(T);
59 // Branch - See if we are conditional jumping on constant
60 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
61 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
62 BasicBlock *Dest1 = BI->getSuccessor(0);
63 BasicBlock *Dest2 = BI->getSuccessor(1);
65 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
66 // Are we branching on constant?
67 // YES. Change to unconditional branch...
68 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
69 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
71 //cerr << "Function: " << T->getParent()->getParent()
72 // << "\nRemoving branch from " << T->getParent()
73 // << "\n\nTo: " << OldDest << endl;
75 // Let the basic block know that we are letting go of it. Based on this,
76 // it will adjust it's PHI nodes.
77 OldDest->removePredecessor(BB);
79 // Replace the conditional branch with an unconditional one.
80 Builder.CreateBr(Destination);
81 BI->eraseFromParent();
82 return true;
85 if (Dest2 == Dest1) { // Conditional branch to same location?
86 // This branch matches something like this:
87 // br bool %cond, label %Dest, label %Dest
88 // and changes it into: br label %Dest
90 // Let the basic block know that we are letting go of one copy of it.
91 assert(BI->getParent() && "Terminator not inserted in block!");
92 Dest1->removePredecessor(BI->getParent());
94 // Replace the conditional branch with an unconditional one.
95 Builder.CreateBr(Dest1);
96 Value *Cond = BI->getCondition();
97 BI->eraseFromParent();
98 if (DeleteDeadConditions)
99 RecursivelyDeleteTriviallyDeadInstructions(Cond);
100 return true;
102 return false;
105 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
106 // If we are switching on a constant, we can convert the switch into a
107 // single branch instruction!
108 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
109 BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest
110 BasicBlock *DefaultDest = TheOnlyDest;
111 assert(TheOnlyDest == SI->getDefaultDest() &&
112 "Default destination is not successor #0?");
114 // Figure out which case it goes to.
115 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
116 // Found case matching a constant operand?
117 if (SI->getSuccessorValue(i) == CI) {
118 TheOnlyDest = SI->getSuccessor(i);
119 break;
122 // Check to see if this branch is going to the same place as the default
123 // dest. If so, eliminate it as an explicit compare.
124 if (SI->getSuccessor(i) == DefaultDest) {
125 // Remove this entry.
126 DefaultDest->removePredecessor(SI->getParent());
127 SI->removeCase(i);
128 --i; --e; // Don't skip an entry...
129 continue;
132 // Otherwise, check to see if the switch only branches to one destination.
133 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
134 // destinations.
135 if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
138 if (CI && !TheOnlyDest) {
139 // Branching on a constant, but not any of the cases, go to the default
140 // successor.
141 TheOnlyDest = SI->getDefaultDest();
144 // If we found a single destination that we can fold the switch into, do so
145 // now.
146 if (TheOnlyDest) {
147 // Insert the new branch.
148 Builder.CreateBr(TheOnlyDest);
149 BasicBlock *BB = SI->getParent();
151 // Remove entries from PHI nodes which we no longer branch to...
152 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
153 // Found case matching a constant operand?
154 BasicBlock *Succ = SI->getSuccessor(i);
155 if (Succ == TheOnlyDest)
156 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
157 else
158 Succ->removePredecessor(BB);
161 // Delete the old switch.
162 Value *Cond = SI->getCondition();
163 SI->eraseFromParent();
164 if (DeleteDeadConditions)
165 RecursivelyDeleteTriviallyDeadInstructions(Cond);
166 return true;
169 if (SI->getNumSuccessors() == 2) {
170 // Otherwise, we can fold this switch into a conditional branch
171 // instruction if it has only one non-default destination.
172 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
173 SI->getSuccessorValue(1), "cond");
175 // Insert the new branch.
176 Builder.CreateCondBr(Cond, SI->getSuccessor(1), SI->getSuccessor(0));
178 // Delete the old switch.
179 SI->eraseFromParent();
180 return true;
182 return false;
185 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
186 // indirectbr blockaddress(@F, @BB) -> br label @BB
187 if (BlockAddress *BA =
188 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
189 BasicBlock *TheOnlyDest = BA->getBasicBlock();
190 // Insert the new branch.
191 Builder.CreateBr(TheOnlyDest);
193 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
194 if (IBI->getDestination(i) == TheOnlyDest)
195 TheOnlyDest = 0;
196 else
197 IBI->getDestination(i)->removePredecessor(IBI->getParent());
199 Value *Address = IBI->getAddress();
200 IBI->eraseFromParent();
201 if (DeleteDeadConditions)
202 RecursivelyDeleteTriviallyDeadInstructions(Address);
204 // If we didn't find our destination in the IBI successor list, then we
205 // have undefined behavior. Replace the unconditional branch with an
206 // 'unreachable' instruction.
207 if (TheOnlyDest) {
208 BB->getTerminator()->eraseFromParent();
209 new UnreachableInst(BB->getContext(), BB);
212 return true;
216 return false;
220 //===----------------------------------------------------------------------===//
221 // Local dead code elimination.
224 /// isInstructionTriviallyDead - Return true if the result produced by the
225 /// instruction is not used, and the instruction has no side effects.
227 bool llvm::isInstructionTriviallyDead(Instruction *I) {
228 if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
230 // We don't want debug info removed by anything this general, unless
231 // debug info is empty.
232 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
233 if (DDI->getAddress())
234 return false;
235 return true;
237 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
238 if (DVI->getValue())
239 return false;
240 return true;
243 if (!I->mayHaveSideEffects()) return true;
245 // Special case intrinsics that "may have side effects" but can be deleted
246 // when dead.
247 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
248 // Safe to delete llvm.stacksave if dead.
249 if (II->getIntrinsicID() == Intrinsic::stacksave)
250 return true;
251 return false;
254 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
255 /// trivially dead instruction, delete it. If that makes any of its operands
256 /// trivially dead, delete them too, recursively. Return true if any
257 /// instructions were deleted.
258 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
259 Instruction *I = dyn_cast<Instruction>(V);
260 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
261 return false;
263 SmallVector<Instruction*, 16> DeadInsts;
264 DeadInsts.push_back(I);
266 do {
267 I = DeadInsts.pop_back_val();
269 // Null out all of the instruction's operands to see if any operand becomes
270 // dead as we go.
271 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
272 Value *OpV = I->getOperand(i);
273 I->setOperand(i, 0);
275 if (!OpV->use_empty()) continue;
277 // If the operand is an instruction that became dead as we nulled out the
278 // operand, and if it is 'trivially' dead, delete it in a future loop
279 // iteration.
280 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
281 if (isInstructionTriviallyDead(OpI))
282 DeadInsts.push_back(OpI);
285 I->eraseFromParent();
286 } while (!DeadInsts.empty());
288 return true;
291 /// areAllUsesEqual - Check whether the uses of a value are all the same.
292 /// This is similar to Instruction::hasOneUse() except this will also return
293 /// true when there are no uses or multiple uses that all refer to the same
294 /// value.
295 static bool areAllUsesEqual(Instruction *I) {
296 Value::use_iterator UI = I->use_begin();
297 Value::use_iterator UE = I->use_end();
298 if (UI == UE)
299 return true;
301 User *TheUse = *UI;
302 for (++UI; UI != UE; ++UI) {
303 if (*UI != TheUse)
304 return false;
306 return true;
309 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
310 /// dead PHI node, due to being a def-use chain of single-use nodes that
311 /// either forms a cycle or is terminated by a trivially dead instruction,
312 /// delete it. If that makes any of its operands trivially dead, delete them
313 /// too, recursively. Return true if a change was made.
314 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
315 SmallPtrSet<Instruction*, 4> Visited;
316 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
317 I = cast<Instruction>(*I->use_begin())) {
318 if (I->use_empty())
319 return RecursivelyDeleteTriviallyDeadInstructions(I);
321 // If we find an instruction more than once, we're on a cycle that
322 // won't prove fruitful.
323 if (!Visited.insert(I)) {
324 // Break the cycle and delete the instruction and its operands.
325 I->replaceAllUsesWith(UndefValue::get(I->getType()));
326 (void)RecursivelyDeleteTriviallyDeadInstructions(I);
327 return true;
330 return false;
333 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
334 /// simplify any instructions in it and recursively delete dead instructions.
336 /// This returns true if it changed the code, note that it can delete
337 /// instructions in other blocks as well in this block.
338 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
339 bool MadeChange = false;
340 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
341 Instruction *Inst = BI++;
343 if (Value *V = SimplifyInstruction(Inst, TD)) {
344 WeakVH BIHandle(BI);
345 ReplaceAndSimplifyAllUses(Inst, V, TD);
346 MadeChange = true;
347 if (BIHandle != BI)
348 BI = BB->begin();
349 continue;
352 if (Inst->isTerminator())
353 break;
355 WeakVH BIHandle(BI);
356 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
357 if (BIHandle != BI)
358 BI = BB->begin();
360 return MadeChange;
363 //===----------------------------------------------------------------------===//
364 // Control Flow Graph Restructuring.
368 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
369 /// method is called when we're about to delete Pred as a predecessor of BB. If
370 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
372 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
373 /// nodes that collapse into identity values. For example, if we have:
374 /// x = phi(1, 0, 0, 0)
375 /// y = and x, z
377 /// .. and delete the predecessor corresponding to the '1', this will attempt to
378 /// recursively fold the and to 0.
379 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
380 TargetData *TD) {
381 // This only adjusts blocks with PHI nodes.
382 if (!isa<PHINode>(BB->begin()))
383 return;
385 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
386 // them down. This will leave us with single entry phi nodes and other phis
387 // that can be removed.
388 BB->removePredecessor(Pred, true);
390 WeakVH PhiIt = &BB->front();
391 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
392 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
394 Value *PNV = SimplifyInstruction(PN, TD);
395 if (PNV == 0) continue;
397 // If we're able to simplify the phi to a single value, substitute the new
398 // value into all of its uses.
399 assert(PNV != PN && "SimplifyInstruction broken!");
401 Value *OldPhiIt = PhiIt;
402 ReplaceAndSimplifyAllUses(PN, PNV, TD);
404 // If recursive simplification ended up deleting the next PHI node we would
405 // iterate to, then our iterator is invalid, restart scanning from the top
406 // of the block.
407 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
412 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
413 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
414 /// between them, moving the instructions in the predecessor into DestBB and
415 /// deleting the predecessor block.
417 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
418 // If BB has single-entry PHI nodes, fold them.
419 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
420 Value *NewVal = PN->getIncomingValue(0);
421 // Replace self referencing PHI with undef, it must be dead.
422 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
423 PN->replaceAllUsesWith(NewVal);
424 PN->eraseFromParent();
427 BasicBlock *PredBB = DestBB->getSinglePredecessor();
428 assert(PredBB && "Block doesn't have a single predecessor!");
430 // Zap anything that took the address of DestBB. Not doing this will give the
431 // address an invalid value.
432 if (DestBB->hasAddressTaken()) {
433 BlockAddress *BA = BlockAddress::get(DestBB);
434 Constant *Replacement =
435 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
436 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
437 BA->getType()));
438 BA->destroyConstant();
441 // Anything that branched to PredBB now branches to DestBB.
442 PredBB->replaceAllUsesWith(DestBB);
444 // Splice all the instructions from PredBB to DestBB.
445 PredBB->getTerminator()->eraseFromParent();
446 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
448 if (P) {
449 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
450 if (DT) {
451 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
452 DT->changeImmediateDominator(DestBB, PredBBIDom);
453 DT->eraseNode(PredBB);
455 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
456 if (PI) {
457 PI->replaceAllUses(PredBB, DestBB);
458 PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
461 // Nuke BB.
462 PredBB->eraseFromParent();
465 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
466 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
468 /// Assumption: Succ is the single successor for BB.
470 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
471 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
473 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
474 << Succ->getName() << "\n");
475 // Shortcut, if there is only a single predecessor it must be BB and merging
476 // is always safe
477 if (Succ->getSinglePredecessor()) return true;
479 // Make a list of the predecessors of BB
480 typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
481 BlockSet BBPreds(pred_begin(BB), pred_end(BB));
483 // Use that list to make another list of common predecessors of BB and Succ
484 BlockSet CommonPreds;
485 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
486 PI != PE; ++PI) {
487 BasicBlock *P = *PI;
488 if (BBPreds.count(P))
489 CommonPreds.insert(P);
492 // Shortcut, if there are no common predecessors, merging is always safe
493 if (CommonPreds.empty())
494 return true;
496 // Look at all the phi nodes in Succ, to see if they present a conflict when
497 // merging these blocks
498 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
499 PHINode *PN = cast<PHINode>(I);
501 // If the incoming value from BB is again a PHINode in
502 // BB which has the same incoming value for *PI as PN does, we can
503 // merge the phi nodes and then the blocks can still be merged
504 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
505 if (BBPN && BBPN->getParent() == BB) {
506 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
507 PI != PE; PI++) {
508 if (BBPN->getIncomingValueForBlock(*PI)
509 != PN->getIncomingValueForBlock(*PI)) {
510 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
511 << Succ->getName() << " is conflicting with "
512 << BBPN->getName() << " with regard to common predecessor "
513 << (*PI)->getName() << "\n");
514 return false;
517 } else {
518 Value* Val = PN->getIncomingValueForBlock(BB);
519 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
520 PI != PE; PI++) {
521 // See if the incoming value for the common predecessor is equal to the
522 // one for BB, in which case this phi node will not prevent the merging
523 // of the block.
524 if (Val != PN->getIncomingValueForBlock(*PI)) {
525 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
526 << Succ->getName() << " is conflicting with regard to common "
527 << "predecessor " << (*PI)->getName() << "\n");
528 return false;
534 return true;
537 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
538 /// unconditional branch, and contains no instructions other than PHI nodes,
539 /// potential side-effect free intrinsics and the branch. If possible,
540 /// eliminate BB by rewriting all the predecessors to branch to the successor
541 /// block and return true. If we can't transform, return false.
542 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
543 assert(BB != &BB->getParent()->getEntryBlock() &&
544 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
546 // We can't eliminate infinite loops.
547 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
548 if (BB == Succ) return false;
550 // Check to see if merging these blocks would cause conflicts for any of the
551 // phi nodes in BB or Succ. If not, we can safely merge.
552 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
554 // Check for cases where Succ has multiple predecessors and a PHI node in BB
555 // has uses which will not disappear when the PHI nodes are merged. It is
556 // possible to handle such cases, but difficult: it requires checking whether
557 // BB dominates Succ, which is non-trivial to calculate in the case where
558 // Succ has multiple predecessors. Also, it requires checking whether
559 // constructing the necessary self-referential PHI node doesn't intoduce any
560 // conflicts; this isn't too difficult, but the previous code for doing this
561 // was incorrect.
563 // Note that if this check finds a live use, BB dominates Succ, so BB is
564 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
565 // folding the branch isn't profitable in that case anyway.
566 if (!Succ->getSinglePredecessor()) {
567 BasicBlock::iterator BBI = BB->begin();
568 while (isa<PHINode>(*BBI)) {
569 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
570 UI != E; ++UI) {
571 if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
572 if (PN->getIncomingBlock(UI) != BB)
573 return false;
574 } else {
575 return false;
578 ++BBI;
582 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
584 if (isa<PHINode>(Succ->begin())) {
585 // If there is more than one pred of succ, and there are PHI nodes in
586 // the successor, then we need to add incoming edges for the PHI nodes
588 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
590 // Loop over all of the PHI nodes in the successor of BB.
591 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
592 PHINode *PN = cast<PHINode>(I);
593 Value *OldVal = PN->removeIncomingValue(BB, false);
594 assert(OldVal && "No entry in PHI for Pred BB!");
596 // If this incoming value is one of the PHI nodes in BB, the new entries
597 // in the PHI node are the entries from the old PHI.
598 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
599 PHINode *OldValPN = cast<PHINode>(OldVal);
600 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
601 // Note that, since we are merging phi nodes and BB and Succ might
602 // have common predecessors, we could end up with a phi node with
603 // identical incoming branches. This will be cleaned up later (and
604 // will trigger asserts if we try to clean it up now, without also
605 // simplifying the corresponding conditional branch).
606 PN->addIncoming(OldValPN->getIncomingValue(i),
607 OldValPN->getIncomingBlock(i));
608 } else {
609 // Add an incoming value for each of the new incoming values.
610 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
611 PN->addIncoming(OldVal, BBPreds[i]);
616 if (Succ->getSinglePredecessor()) {
617 // BB is the only predecessor of Succ, so Succ will end up with exactly
618 // the same predecessors BB had.
620 // Copy over any phi, debug or lifetime instruction.
621 BB->getTerminator()->eraseFromParent();
622 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
623 } else {
624 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
625 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
626 assert(PN->use_empty() && "There shouldn't be any uses here!");
627 PN->eraseFromParent();
631 // Everything that jumped to BB now goes to Succ.
632 BB->replaceAllUsesWith(Succ);
633 if (!Succ->hasName()) Succ->takeName(BB);
634 BB->eraseFromParent(); // Delete the old basic block.
635 return true;
638 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
639 /// nodes in this block. This doesn't try to be clever about PHI nodes
640 /// which differ only in the order of the incoming values, but instcombine
641 /// orders them so it usually won't matter.
643 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
644 bool Changed = false;
646 // This implementation doesn't currently consider undef operands
647 // specially. Theoretically, two phis which are identical except for
648 // one having an undef where the other doesn't could be collapsed.
650 // Map from PHI hash values to PHI nodes. If multiple PHIs have
651 // the same hash value, the element is the first PHI in the
652 // linked list in CollisionMap.
653 DenseMap<uintptr_t, PHINode *> HashMap;
655 // Maintain linked lists of PHI nodes with common hash values.
656 DenseMap<PHINode *, PHINode *> CollisionMap;
658 // Examine each PHI.
659 for (BasicBlock::iterator I = BB->begin();
660 PHINode *PN = dyn_cast<PHINode>(I++); ) {
661 // Compute a hash value on the operands. Instcombine will likely have sorted
662 // them, which helps expose duplicates, but we have to check all the
663 // operands to be safe in case instcombine hasn't run.
664 uintptr_t Hash = 0;
665 // This hash algorithm is quite weak as hash functions go, but it seems
666 // to do a good enough job for this particular purpose, and is very quick.
667 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
668 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
669 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
671 for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
672 I != E; ++I) {
673 Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
674 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
676 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
677 Hash >>= 1;
678 // If we've never seen this hash value before, it's a unique PHI.
679 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
680 HashMap.insert(std::make_pair(Hash, PN));
681 if (Pair.second) continue;
682 // Otherwise it's either a duplicate or a hash collision.
683 for (PHINode *OtherPN = Pair.first->second; ; ) {
684 if (OtherPN->isIdenticalTo(PN)) {
685 // A duplicate. Replace this PHI with its duplicate.
686 PN->replaceAllUsesWith(OtherPN);
687 PN->eraseFromParent();
688 Changed = true;
689 break;
691 // A non-duplicate hash collision.
692 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
693 if (I == CollisionMap.end()) {
694 // Set this PHI to be the head of the linked list of colliding PHIs.
695 PHINode *Old = Pair.first->second;
696 Pair.first->second = PN;
697 CollisionMap[PN] = Old;
698 break;
700 // Procede to the next PHI in the list.
701 OtherPN = I->second;
705 return Changed;
708 /// enforceKnownAlignment - If the specified pointer points to an object that
709 /// we control, modify the object's alignment to PrefAlign. This isn't
710 /// often possible though. If alignment is important, a more reliable approach
711 /// is to simply align all global variables and allocation instructions to
712 /// their preferred alignment from the beginning.
714 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
715 unsigned PrefAlign) {
716 V = V->stripPointerCasts();
718 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
719 // If there is a requested alignment and if this is an alloca, round up.
720 if (AI->getAlignment() >= PrefAlign)
721 return AI->getAlignment();
722 AI->setAlignment(PrefAlign);
723 return PrefAlign;
726 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
727 // If there is a large requested alignment and we can, bump up the alignment
728 // of the global.
729 if (GV->isDeclaration()) return Align;
731 if (GV->getAlignment() >= PrefAlign)
732 return GV->getAlignment();
733 // We can only increase the alignment of the global if it has no alignment
734 // specified or if it is not assigned a section. If it is assigned a
735 // section, the global could be densely packed with other objects in the
736 // section, increasing the alignment could cause padding issues.
737 if (!GV->hasSection() || GV->getAlignment() == 0)
738 GV->setAlignment(PrefAlign);
739 return GV->getAlignment();
742 return Align;
745 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
746 /// we can determine, return it, otherwise return 0. If PrefAlign is specified,
747 /// and it is more than the alignment of the ultimate object, see if we can
748 /// increase the alignment of the ultimate object, making this check succeed.
749 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
750 const TargetData *TD) {
751 assert(V->getType()->isPointerTy() &&
752 "getOrEnforceKnownAlignment expects a pointer!");
753 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
754 APInt Mask = APInt::getAllOnesValue(BitWidth);
755 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
756 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
757 unsigned TrailZ = KnownZero.countTrailingOnes();
759 // Avoid trouble with rediculously large TrailZ values, such as
760 // those computed from a null pointer.
761 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
763 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
765 // LLVM doesn't support alignments larger than this currently.
766 Align = std::min(Align, +Value::MaximumAlignment);
768 if (PrefAlign > Align)
769 Align = enforceKnownAlignment(V, Align, PrefAlign);
771 // We don't need to make any adjustment.
772 return Align;
775 ///===---------------------------------------------------------------------===//
776 /// Dbg Intrinsic utilities
779 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
780 /// that has an associated llvm.dbg.decl intrinsic.
781 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
782 StoreInst *SI, DIBuilder &Builder) {
783 DIVariable DIVar(DDI->getVariable());
784 if (!DIVar.Verify())
785 return false;
787 Instruction *DbgVal = NULL;
788 // If an argument is zero extended then use argument directly. The ZExt
789 // may be zapped by an optimization pass in future.
790 Argument *ExtendedArg = NULL;
791 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
792 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
793 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
794 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
795 if (ExtendedArg)
796 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
797 else
798 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
800 // Propagate any debug metadata from the store onto the dbg.value.
801 DebugLoc SIDL = SI->getDebugLoc();
802 if (!SIDL.isUnknown())
803 DbgVal->setDebugLoc(SIDL);
804 // Otherwise propagate debug metadata from dbg.declare.
805 else
806 DbgVal->setDebugLoc(DDI->getDebugLoc());
807 return true;
810 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
811 /// that has an associated llvm.dbg.decl intrinsic.
812 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
813 LoadInst *LI, DIBuilder &Builder) {
814 DIVariable DIVar(DDI->getVariable());
815 if (!DIVar.Verify())
816 return false;
818 Instruction *DbgVal =
819 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
820 DIVar, LI);
822 // Propagate any debug metadata from the store onto the dbg.value.
823 DebugLoc LIDL = LI->getDebugLoc();
824 if (!LIDL.isUnknown())
825 DbgVal->setDebugLoc(LIDL);
826 // Otherwise propagate debug metadata from dbg.declare.
827 else
828 DbgVal->setDebugLoc(DDI->getDebugLoc());
829 return true;
832 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
833 /// of llvm.dbg.value intrinsics.
834 bool llvm::LowerDbgDeclare(Function &F) {
835 DIBuilder DIB(*F.getParent());
836 SmallVector<DbgDeclareInst *, 4> Dbgs;
837 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
838 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
839 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
840 Dbgs.push_back(DDI);
842 if (Dbgs.empty())
843 return false;
845 for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
846 E = Dbgs.end(); I != E; ++I) {
847 DbgDeclareInst *DDI = *I;
848 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
849 bool RemoveDDI = true;
850 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
851 UI != E; ++UI)
852 if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
853 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
854 else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
855 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
856 else
857 RemoveDDI = false;
858 if (RemoveDDI)
859 DDI->eraseFromParent();
862 return true;
865 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
866 /// alloca 'V', if any.
867 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
868 if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
869 for (Value::use_iterator UI = DebugNode->use_begin(),
870 E = DebugNode->use_end(); UI != E; ++UI)
871 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
872 return DDI;
874 return 0;