1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the BasicBlock class for the VMCore library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/BasicBlock.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/LLVMContext.h"
19 #include "llvm/Type.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Support/CFG.h"
22 #include "llvm/Support/LeakDetector.h"
23 #include "SymbolTableListTraitsImpl.h"
27 ValueSymbolTable
*BasicBlock::getValueSymbolTable() {
28 if (Function
*F
= getParent())
29 return &F
->getValueSymbolTable();
33 LLVMContext
&BasicBlock::getContext() const {
34 return getType()->getContext();
37 // Explicit instantiation of SymbolTableListTraits since some of the methods
38 // are not in the public header file...
39 template class llvm::SymbolTableListTraits
<Instruction
, BasicBlock
>;
42 BasicBlock::BasicBlock(LLVMContext
&C
, const Twine
&Name
, Function
*NewParent
,
43 BasicBlock
*InsertBefore
)
44 : Value(Type::getLabelTy(C
), Value::BasicBlockVal
), Parent(0) {
46 // Make sure that we get added to a function
47 LeakDetector::addGarbageObject(this);
51 "Cannot insert block before another block with no function!");
52 NewParent
->getBasicBlockList().insert(InsertBefore
, this);
53 } else if (NewParent
) {
54 NewParent
->getBasicBlockList().push_back(this);
61 BasicBlock::~BasicBlock() {
62 // If the address of the block is taken and it is being deleted (e.g. because
63 // it is dead), this means that there is either a dangling constant expr
64 // hanging off the block, or an undefined use of the block (source code
65 // expecting the address of a label to keep the block alive even though there
66 // is no indirect branch). Handle these cases by zapping the BlockAddress
67 // nodes. There are no other possible uses at this point.
68 if (hasAddressTaken()) {
69 assert(!use_empty() && "There should be at least one blockaddress!");
70 Constant
*Replacement
=
71 ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
72 while (!use_empty()) {
73 BlockAddress
*BA
= cast
<BlockAddress
>(use_back());
74 BA
->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement
,
76 BA
->destroyConstant();
80 assert(getParent() == 0 && "BasicBlock still linked into the program!");
85 void BasicBlock::setParent(Function
*parent
) {
87 LeakDetector::addGarbageObject(this);
89 // Set Parent=parent, updating instruction symtab entries as appropriate.
90 InstList
.setSymTabObject(&Parent
, parent
);
93 LeakDetector::removeGarbageObject(this);
96 void BasicBlock::removeFromParent() {
97 getParent()->getBasicBlockList().remove(this);
100 void BasicBlock::eraseFromParent() {
101 getParent()->getBasicBlockList().erase(this);
104 /// moveBefore - Unlink this basic block from its current function and
105 /// insert it into the function that MovePos lives in, right before MovePos.
106 void BasicBlock::moveBefore(BasicBlock
*MovePos
) {
107 MovePos
->getParent()->getBasicBlockList().splice(MovePos
,
108 getParent()->getBasicBlockList(), this);
111 /// moveAfter - Unlink this basic block from its current function and
112 /// insert it into the function that MovePos lives in, right after MovePos.
113 void BasicBlock::moveAfter(BasicBlock
*MovePos
) {
114 Function::iterator I
= MovePos
;
115 MovePos
->getParent()->getBasicBlockList().splice(++I
,
116 getParent()->getBasicBlockList(), this);
120 TerminatorInst
*BasicBlock::getTerminator() {
121 if (InstList
.empty()) return 0;
122 return dyn_cast
<TerminatorInst
>(&InstList
.back());
125 const TerminatorInst
*BasicBlock::getTerminator() const {
126 if (InstList
.empty()) return 0;
127 return dyn_cast
<TerminatorInst
>(&InstList
.back());
130 Instruction
* BasicBlock::getFirstNonPHI() {
131 BasicBlock::iterator i
= begin();
132 // All valid basic blocks should have a terminator,
133 // which is not a PHINode. If we have an invalid basic
134 // block we'll get an assertion failure when dereferencing
135 // a past-the-end iterator.
136 while (isa
<PHINode
>(i
)) ++i
;
140 Instruction
* BasicBlock::getFirstNonPHIOrDbg() {
141 BasicBlock::iterator i
= begin();
142 // All valid basic blocks should have a terminator,
143 // which is not a PHINode. If we have an invalid basic
144 // block we'll get an assertion failure when dereferencing
145 // a past-the-end iterator.
146 while (isa
<PHINode
>(i
) || isa
<DbgInfoIntrinsic
>(i
)) ++i
;
150 Instruction
* BasicBlock::getFirstNonPHIOrDbgOrLifetime() {
151 // All valid basic blocks should have a terminator,
152 // which is not a PHINode. If we have an invalid basic
153 // block we'll get an assertion failure when dereferencing
154 // a past-the-end iterator.
155 BasicBlock::iterator i
= begin();
157 if (isa
<PHINode
>(i
) || isa
<DbgInfoIntrinsic
>(i
))
160 const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(i
);
163 if (II
->getIntrinsicID() != Intrinsic::lifetime_start
&&
164 II
->getIntrinsicID() != Intrinsic::lifetime_end
)
170 void BasicBlock::dropAllReferences() {
171 for(iterator I
= begin(), E
= end(); I
!= E
; ++I
)
172 I
->dropAllReferences();
175 /// getSinglePredecessor - If this basic block has a single predecessor block,
176 /// return the block, otherwise return a null pointer.
177 BasicBlock
*BasicBlock::getSinglePredecessor() {
178 pred_iterator PI
= pred_begin(this), E
= pred_end(this);
179 if (PI
== E
) return 0; // No preds.
180 BasicBlock
*ThePred
= *PI
;
182 return (PI
== E
) ? ThePred
: 0 /*multiple preds*/;
185 /// getUniquePredecessor - If this basic block has a unique predecessor block,
186 /// return the block, otherwise return a null pointer.
187 /// Note that unique predecessor doesn't mean single edge, there can be
188 /// multiple edges from the unique predecessor to this block (for example
189 /// a switch statement with multiple cases having the same destination).
190 BasicBlock
*BasicBlock::getUniquePredecessor() {
191 pred_iterator PI
= pred_begin(this), E
= pred_end(this);
192 if (PI
== E
) return 0; // No preds.
193 BasicBlock
*PredBB
= *PI
;
195 for (;PI
!= E
; ++PI
) {
198 // The same predecessor appears multiple times in the predecessor list.
204 /// removePredecessor - This method is used to notify a BasicBlock that the
205 /// specified Predecessor of the block is no longer able to reach it. This is
206 /// actually not used to update the Predecessor list, but is actually used to
207 /// update the PHI nodes that reside in the block. Note that this should be
208 /// called while the predecessor still refers to this block.
210 void BasicBlock::removePredecessor(BasicBlock
*Pred
,
211 bool DontDeleteUselessPHIs
) {
212 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
213 find(pred_begin(this), pred_end(this), Pred
) != pred_end(this)) &&
214 "removePredecessor: BB is not a predecessor!");
216 if (InstList
.empty()) return;
217 PHINode
*APN
= dyn_cast
<PHINode
>(&front());
218 if (!APN
) return; // Quick exit.
220 // If there are exactly two predecessors, then we want to nuke the PHI nodes
221 // altogether. However, we cannot do this, if this in this case:
224 // %x = phi [X, Loop]
225 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
226 // br Loop ;; %x2 does not dominate all uses
228 // This is because the PHI node input is actually taken from the predecessor
229 // basic block. The only case this can happen is with a self loop, so we
230 // check for this case explicitly now.
232 unsigned max_idx
= APN
->getNumIncomingValues();
233 assert(max_idx
!= 0 && "PHI Node in block with 0 predecessors!?!?!");
235 BasicBlock
*Other
= APN
->getIncomingBlock(APN
->getIncomingBlock(0) == Pred
);
237 // Disable PHI elimination!
238 if (this == Other
) max_idx
= 3;
241 // <= Two predecessors BEFORE I remove one?
242 if (max_idx
<= 2 && !DontDeleteUselessPHIs
) {
243 // Yup, loop through and nuke the PHI nodes
244 while (PHINode
*PN
= dyn_cast
<PHINode
>(&front())) {
245 // Remove the predecessor first.
246 PN
->removeIncomingValue(Pred
, !DontDeleteUselessPHIs
);
248 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
250 if (PN
->getIncomingValue(0) != PN
)
251 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
253 // We are left with an infinite loop with no entries: kill the PHI.
254 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
255 getInstList().pop_front(); // Remove the PHI node
258 // If the PHI node already only had one entry, it got deleted by
259 // removeIncomingValue.
262 // Okay, now we know that we need to remove predecessor #pred_idx from all
263 // PHI nodes. Iterate over each PHI node fixing them up
265 for (iterator II
= begin(); (PN
= dyn_cast
<PHINode
>(II
)); ) {
267 PN
->removeIncomingValue(Pred
, false);
268 // If all incoming values to the Phi are the same, we can replace the Phi
271 if (!DontDeleteUselessPHIs
&& (PNV
= PN
->hasConstantValue()))
273 PN
->replaceAllUsesWith(PNV
);
274 PN
->eraseFromParent();
281 /// splitBasicBlock - This splits a basic block into two at the specified
282 /// instruction. Note that all instructions BEFORE the specified iterator stay
283 /// as part of the original basic block, an unconditional branch is added to
284 /// the new BB, and the rest of the instructions in the BB are moved to the new
285 /// BB, including the old terminator. This invalidates the iterator.
287 /// Note that this only works on well formed basic blocks (must have a
288 /// terminator), and 'I' must not be the end of instruction list (which would
289 /// cause a degenerate basic block to be formed, having a terminator inside of
290 /// the basic block).
292 BasicBlock
*BasicBlock::splitBasicBlock(iterator I
, const Twine
&BBName
) {
293 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
294 assert(I
!= InstList
.end() &&
295 "Trying to get me to create degenerate basic block!");
297 BasicBlock
*InsertBefore
= llvm::next(Function::iterator(this))
298 .getNodePtrUnchecked();
299 BasicBlock
*New
= BasicBlock::Create(getContext(), BBName
,
300 getParent(), InsertBefore
);
302 // Move all of the specified instructions from the original basic block into
303 // the new basic block.
304 New
->getInstList().splice(New
->end(), this->getInstList(), I
, end());
306 // Add a branch instruction to the newly formed basic block.
307 BranchInst::Create(New
, this);
309 // Now we must loop through all of the successors of the New block (which
310 // _were_ the successors of the 'this' block), and update any PHI nodes in
311 // successors. If there were PHI nodes in the successors, then they need to
312 // know that incoming branches will be from New, not from Old.
314 for (succ_iterator I
= succ_begin(New
), E
= succ_end(New
); I
!= E
; ++I
) {
315 // Loop over any phi nodes in the basic block, updating the BB field of
316 // incoming values...
317 BasicBlock
*Successor
= *I
;
319 for (BasicBlock::iterator II
= Successor
->begin();
320 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
321 int IDX
= PN
->getBasicBlockIndex(this);
323 PN
->setIncomingBlock((unsigned)IDX
, New
);
324 IDX
= PN
->getBasicBlockIndex(this);
331 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock
*New
) {
332 TerminatorInst
*TI
= getTerminator();
334 // Cope with being called on a BasicBlock that doesn't have a terminator
335 // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
337 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
338 BasicBlock
*Succ
= TI
->getSuccessor(i
);
339 for (iterator II
= Succ
->begin(); PHINode
*PN
= dyn_cast
<PHINode
>(II
);
342 while ((i
= PN
->getBasicBlockIndex(this)) >= 0)
343 PN
->setIncomingBlock(i
, New
);