1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This class wraps target description classes used by the various code
11 // generation TableGen backends. This makes it easier to access the data and
12 // provides a single place that needs to check it for validity. All of these
13 // classes throw exceptions on error conditions.
15 //===----------------------------------------------------------------------===//
17 #include "CodeGenTarget.h"
18 #include "CodeGenIntrinsics.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Support/CommandLine.h"
26 static cl::opt
<unsigned>
27 AsmParserNum("asmparsernum", cl::init(0),
28 cl::desc("Make -gen-asm-parser emit assembly parser #N"));
30 static cl::opt
<unsigned>
31 AsmWriterNum("asmwriternum", cl::init(0),
32 cl::desc("Make -gen-asm-writer emit assembly writer #N"));
34 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
35 /// record corresponds to.
36 MVT::SimpleValueType
llvm::getValueType(Record
*Rec
) {
37 return (MVT::SimpleValueType
)Rec
->getValueAsInt("Value");
40 std::string
llvm::getName(MVT::SimpleValueType T
) {
42 case MVT::Other
: return "UNKNOWN";
43 case MVT::iPTR
: return "TLI.getPointerTy()";
44 case MVT::iPTRAny
: return "TLI.getPointerTy()";
45 default: return getEnumName(T
);
49 std::string
llvm::getEnumName(MVT::SimpleValueType T
) {
51 case MVT::Other
: return "MVT::Other";
52 case MVT::i1
: return "MVT::i1";
53 case MVT::i8
: return "MVT::i8";
54 case MVT::i16
: return "MVT::i16";
55 case MVT::i32
: return "MVT::i32";
56 case MVT::i64
: return "MVT::i64";
57 case MVT::i128
: return "MVT::i128";
58 case MVT::iAny
: return "MVT::iAny";
59 case MVT::fAny
: return "MVT::fAny";
60 case MVT::vAny
: return "MVT::vAny";
61 case MVT::f32
: return "MVT::f32";
62 case MVT::f64
: return "MVT::f64";
63 case MVT::f80
: return "MVT::f80";
64 case MVT::f128
: return "MVT::f128";
65 case MVT::ppcf128
: return "MVT::ppcf128";
66 case MVT::x86mmx
: return "MVT::x86mmx";
67 case MVT::Glue
: return "MVT::Glue";
68 case MVT::isVoid
: return "MVT::isVoid";
69 case MVT::v2i8
: return "MVT::v2i8";
70 case MVT::v4i8
: return "MVT::v4i8";
71 case MVT::v8i8
: return "MVT::v8i8";
72 case MVT::v16i8
: return "MVT::v16i8";
73 case MVT::v32i8
: return "MVT::v32i8";
74 case MVT::v2i16
: return "MVT::v2i16";
75 case MVT::v4i16
: return "MVT::v4i16";
76 case MVT::v8i16
: return "MVT::v8i16";
77 case MVT::v16i16
: return "MVT::v16i16";
78 case MVT::v2i32
: return "MVT::v2i32";
79 case MVT::v4i32
: return "MVT::v4i32";
80 case MVT::v8i32
: return "MVT::v8i32";
81 case MVT::v1i64
: return "MVT::v1i64";
82 case MVT::v2i64
: return "MVT::v2i64";
83 case MVT::v4i64
: return "MVT::v4i64";
84 case MVT::v8i64
: return "MVT::v8i64";
85 case MVT::v2f32
: return "MVT::v2f32";
86 case MVT::v4f32
: return "MVT::v4f32";
87 case MVT::v8f32
: return "MVT::v8f32";
88 case MVT::v2f64
: return "MVT::v2f64";
89 case MVT::v4f64
: return "MVT::v4f64";
90 case MVT::Metadata
: return "MVT::Metadata";
91 case MVT::iPTR
: return "MVT::iPTR";
92 case MVT::iPTRAny
: return "MVT::iPTRAny";
93 case MVT::untyped
: return "MVT::untyped";
94 default: assert(0 && "ILLEGAL VALUE TYPE!"); return "";
98 /// getQualifiedName - Return the name of the specified record, with a
99 /// namespace qualifier if the record contains one.
101 std::string
llvm::getQualifiedName(const Record
*R
) {
102 std::string Namespace
;
103 if (R
->getValue("Namespace"))
104 Namespace
= R
->getValueAsString("Namespace");
105 if (Namespace
.empty()) return R
->getName();
106 return Namespace
+ "::" + R
->getName();
110 /// getTarget - Return the current instance of the Target class.
112 CodeGenTarget::CodeGenTarget(RecordKeeper
&records
)
113 : Records(records
), RegBank(0) {
114 std::vector
<Record
*> Targets
= Records
.getAllDerivedDefinitions("Target");
115 if (Targets
.size() == 0)
116 throw std::string("ERROR: No 'Target' subclasses defined!");
117 if (Targets
.size() != 1)
118 throw std::string("ERROR: Multiple subclasses of Target defined!");
119 TargetRec
= Targets
[0];
123 const std::string
&CodeGenTarget::getName() const {
124 return TargetRec
->getName();
127 std::string
CodeGenTarget::getInstNamespace() const {
128 for (inst_iterator i
= inst_begin(), e
= inst_end(); i
!= e
; ++i
) {
129 // Make sure not to pick up "TargetOpcode" by accidentally getting
130 // the namespace off the PHI instruction or something.
131 if ((*i
)->Namespace
!= "TargetOpcode")
132 return (*i
)->Namespace
;
138 Record
*CodeGenTarget::getInstructionSet() const {
139 return TargetRec
->getValueAsDef("InstructionSet");
143 /// getAsmParser - Return the AssemblyParser definition for this target.
145 Record
*CodeGenTarget::getAsmParser() const {
146 std::vector
<Record
*> LI
= TargetRec
->getValueAsListOfDefs("AssemblyParsers");
147 if (AsmParserNum
>= LI
.size())
148 throw "Target does not have an AsmParser #" + utostr(AsmParserNum
) + "!";
149 return LI
[AsmParserNum
];
152 /// getAsmWriter - Return the AssemblyWriter definition for this target.
154 Record
*CodeGenTarget::getAsmWriter() const {
155 std::vector
<Record
*> LI
= TargetRec
->getValueAsListOfDefs("AssemblyWriters");
156 if (AsmWriterNum
>= LI
.size())
157 throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum
) + "!";
158 return LI
[AsmWriterNum
];
161 CodeGenRegBank
&CodeGenTarget::getRegBank() const {
163 RegBank
= new CodeGenRegBank(Records
);
167 void CodeGenTarget::ReadRegAltNameIndices() const {
168 RegAltNameIndices
= Records
.getAllDerivedDefinitions("RegAltNameIndex");
169 std::sort(RegAltNameIndices
.begin(), RegAltNameIndices
.end(), LessRecord());
172 /// getRegisterByName - If there is a register with the specific AsmName,
174 const CodeGenRegister
*CodeGenTarget::getRegisterByName(StringRef Name
) const {
175 const std::vector
<CodeGenRegister
*> &Regs
= getRegBank().getRegisters();
176 for (unsigned i
= 0, e
= Regs
.size(); i
!= e
; ++i
)
177 if (Regs
[i
]->TheDef
->getValueAsString("AsmName") == Name
)
183 std::vector
<MVT::SimpleValueType
> CodeGenTarget::
184 getRegisterVTs(Record
*R
) const {
185 const CodeGenRegister
*Reg
= getRegBank().getReg(R
);
186 std::vector
<MVT::SimpleValueType
> Result
;
187 const std::vector
<CodeGenRegisterClass
> &RCs
= getRegisterClasses();
188 for (unsigned i
= 0, e
= RCs
.size(); i
!= e
; ++i
) {
189 const CodeGenRegisterClass
&RC
= RCs
[i
];
190 if (RC
.contains(Reg
)) {
191 const std::vector
<MVT::SimpleValueType
> &InVTs
= RC
.getValueTypes();
192 Result
.insert(Result
.end(), InVTs
.begin(), InVTs
.end());
196 // Remove duplicates.
197 array_pod_sort(Result
.begin(), Result
.end());
198 Result
.erase(std::unique(Result
.begin(), Result
.end()), Result
.end());
203 void CodeGenTarget::ReadLegalValueTypes() const {
204 const std::vector
<CodeGenRegisterClass
> &RCs
= getRegisterClasses();
205 for (unsigned i
= 0, e
= RCs
.size(); i
!= e
; ++i
)
206 for (unsigned ri
= 0, re
= RCs
[i
].VTs
.size(); ri
!= re
; ++ri
)
207 LegalValueTypes
.push_back(RCs
[i
].VTs
[ri
]);
209 // Remove duplicates.
210 std::sort(LegalValueTypes
.begin(), LegalValueTypes
.end());
211 LegalValueTypes
.erase(std::unique(LegalValueTypes
.begin(),
212 LegalValueTypes
.end()),
213 LegalValueTypes
.end());
217 void CodeGenTarget::ReadInstructions() const {
218 std::vector
<Record
*> Insts
= Records
.getAllDerivedDefinitions("Instruction");
219 if (Insts
.size() <= 2)
220 throw std::string("No 'Instruction' subclasses defined!");
222 // Parse the instructions defined in the .td file.
223 for (unsigned i
= 0, e
= Insts
.size(); i
!= e
; ++i
)
224 Instructions
[Insts
[i
]] = new CodeGenInstruction(Insts
[i
]);
227 static const CodeGenInstruction
*
228 GetInstByName(const char *Name
,
229 const DenseMap
<const Record
*, CodeGenInstruction
*> &Insts
,
230 RecordKeeper
&Records
) {
231 const Record
*Rec
= Records
.getDef(Name
);
233 DenseMap
<const Record
*, CodeGenInstruction
*>::const_iterator
235 if (Rec
== 0 || I
== Insts
.end())
236 throw std::string("Could not find '") + Name
+ "' instruction!";
241 /// SortInstByName - Sorting predicate to sort instructions by name.
243 struct SortInstByName
{
244 bool operator()(const CodeGenInstruction
*Rec1
,
245 const CodeGenInstruction
*Rec2
) const {
246 return Rec1
->TheDef
->getName() < Rec2
->TheDef
->getName();
251 /// getInstructionsByEnumValue - Return all of the instructions defined by the
252 /// target, ordered by their enum value.
253 void CodeGenTarget::ComputeInstrsByEnum() const {
254 // The ordering here must match the ordering in TargetOpcodes.h.
255 const char *const FixedInstrs
[] = {
272 const DenseMap
<const Record
*, CodeGenInstruction
*> &Insts
= getInstructions();
273 for (const char *const *p
= FixedInstrs
; *p
; ++p
) {
274 const CodeGenInstruction
*Instr
= GetInstByName(*p
, Insts
, Records
);
275 assert(Instr
&& "Missing target independent instruction");
276 assert(Instr
->Namespace
== "TargetOpcode" && "Bad namespace");
277 InstrsByEnum
.push_back(Instr
);
279 unsigned EndOfPredefines
= InstrsByEnum
.size();
281 for (DenseMap
<const Record
*, CodeGenInstruction
*>::const_iterator
282 I
= Insts
.begin(), E
= Insts
.end(); I
!= E
; ++I
) {
283 const CodeGenInstruction
*CGI
= I
->second
;
284 if (CGI
->Namespace
!= "TargetOpcode")
285 InstrsByEnum
.push_back(CGI
);
288 assert(InstrsByEnum
.size() == Insts
.size() && "Missing predefined instr");
290 // All of the instructions are now in random order based on the map iteration.
291 // Sort them by name.
292 std::sort(InstrsByEnum
.begin()+EndOfPredefines
, InstrsByEnum
.end(),
297 /// isLittleEndianEncoding - Return whether this target encodes its instruction
298 /// in little-endian format, i.e. bits laid out in the order [0..n]
300 bool CodeGenTarget::isLittleEndianEncoding() const {
301 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
304 //===----------------------------------------------------------------------===//
305 // ComplexPattern implementation
307 ComplexPattern::ComplexPattern(Record
*R
) {
308 Ty
= ::getValueType(R
->getValueAsDef("Ty"));
309 NumOperands
= R
->getValueAsInt("NumOperands");
310 SelectFunc
= R
->getValueAsString("SelectFunc");
311 RootNodes
= R
->getValueAsListOfDefs("RootNodes");
313 // Parse the properties.
315 std::vector
<Record
*> PropList
= R
->getValueAsListOfDefs("Properties");
316 for (unsigned i
= 0, e
= PropList
.size(); i
!= e
; ++i
)
317 if (PropList
[i
]->getName() == "SDNPHasChain") {
318 Properties
|= 1 << SDNPHasChain
;
319 } else if (PropList
[i
]->getName() == "SDNPOptInGlue") {
320 Properties
|= 1 << SDNPOptInGlue
;
321 } else if (PropList
[i
]->getName() == "SDNPMayStore") {
322 Properties
|= 1 << SDNPMayStore
;
323 } else if (PropList
[i
]->getName() == "SDNPMayLoad") {
324 Properties
|= 1 << SDNPMayLoad
;
325 } else if (PropList
[i
]->getName() == "SDNPSideEffect") {
326 Properties
|= 1 << SDNPSideEffect
;
327 } else if (PropList
[i
]->getName() == "SDNPMemOperand") {
328 Properties
|= 1 << SDNPMemOperand
;
329 } else if (PropList
[i
]->getName() == "SDNPVariadic") {
330 Properties
|= 1 << SDNPVariadic
;
331 } else if (PropList
[i
]->getName() == "SDNPWantRoot") {
332 Properties
|= 1 << SDNPWantRoot
;
333 } else if (PropList
[i
]->getName() == "SDNPWantParent") {
334 Properties
|= 1 << SDNPWantParent
;
336 errs() << "Unsupported SD Node property '" << PropList
[i
]->getName()
337 << "' on ComplexPattern '" << R
->getName() << "'!\n";
342 //===----------------------------------------------------------------------===//
343 // CodeGenIntrinsic Implementation
344 //===----------------------------------------------------------------------===//
346 std::vector
<CodeGenIntrinsic
> llvm::LoadIntrinsics(const RecordKeeper
&RC
,
348 std::vector
<Record
*> I
= RC
.getAllDerivedDefinitions("Intrinsic");
350 std::vector
<CodeGenIntrinsic
> Result
;
352 for (unsigned i
= 0, e
= I
.size(); i
!= e
; ++i
) {
353 bool isTarget
= I
[i
]->getValueAsBit("isTarget");
354 if (isTarget
== TargetOnly
)
355 Result
.push_back(CodeGenIntrinsic(I
[i
]));
360 CodeGenIntrinsic::CodeGenIntrinsic(Record
*R
) {
362 std::string DefName
= R
->getName();
363 ModRef
= ReadWriteMem
;
364 isOverloaded
= false;
365 isCommutative
= false;
368 if (DefName
.size() <= 4 ||
369 std::string(DefName
.begin(), DefName
.begin() + 4) != "int_")
370 throw "Intrinsic '" + DefName
+ "' does not start with 'int_'!";
372 EnumName
= std::string(DefName
.begin()+4, DefName
.end());
374 if (R
->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
375 GCCBuiltinName
= R
->getValueAsString("GCCBuiltinName");
377 TargetPrefix
= R
->getValueAsString("TargetPrefix");
378 Name
= R
->getValueAsString("LLVMName");
381 // If an explicit name isn't specified, derive one from the DefName.
384 for (unsigned i
= 0, e
= EnumName
.size(); i
!= e
; ++i
)
385 Name
+= (EnumName
[i
] == '_') ? '.' : EnumName
[i
];
387 // Verify it starts with "llvm.".
388 if (Name
.size() <= 5 ||
389 std::string(Name
.begin(), Name
.begin() + 5) != "llvm.")
390 throw "Intrinsic '" + DefName
+ "'s name does not start with 'llvm.'!";
393 // If TargetPrefix is specified, make sure that Name starts with
394 // "llvm.<targetprefix>.".
395 if (!TargetPrefix
.empty()) {
396 if (Name
.size() < 6+TargetPrefix
.size() ||
397 std::string(Name
.begin() + 5, Name
.begin() + 6 + TargetPrefix
.size())
398 != (TargetPrefix
+ "."))
399 throw "Intrinsic '" + DefName
+ "' does not start with 'llvm." +
400 TargetPrefix
+ ".'!";
403 // Parse the list of return types.
404 std::vector
<MVT::SimpleValueType
> OverloadedVTs
;
405 ListInit
*TypeList
= R
->getValueAsListInit("RetTypes");
406 for (unsigned i
= 0, e
= TypeList
->getSize(); i
!= e
; ++i
) {
407 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
408 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
409 MVT::SimpleValueType VT
;
410 if (TyEl
->isSubClassOf("LLVMMatchType")) {
411 unsigned MatchTy
= TyEl
->getValueAsInt("Number");
412 assert(MatchTy
< OverloadedVTs
.size() &&
413 "Invalid matching number!");
414 VT
= OverloadedVTs
[MatchTy
];
415 // It only makes sense to use the extended and truncated vector element
416 // variants with iAny types; otherwise, if the intrinsic is not
417 // overloaded, all the types can be specified directly.
418 assert(((!TyEl
->isSubClassOf("LLVMExtendedElementVectorType") &&
419 !TyEl
->isSubClassOf("LLVMTruncatedElementVectorType")) ||
420 VT
== MVT::iAny
|| VT
== MVT::vAny
) &&
421 "Expected iAny or vAny type");
423 VT
= getValueType(TyEl
->getValueAsDef("VT"));
425 if (EVT(VT
).isOverloaded()) {
426 OverloadedVTs
.push_back(VT
);
430 // Reject invalid types.
431 if (VT
== MVT::isVoid
)
432 throw "Intrinsic '" + DefName
+ " has void in result type list!";
434 IS
.RetVTs
.push_back(VT
);
435 IS
.RetTypeDefs
.push_back(TyEl
);
438 // Parse the list of parameter types.
439 TypeList
= R
->getValueAsListInit("ParamTypes");
440 for (unsigned i
= 0, e
= TypeList
->getSize(); i
!= e
; ++i
) {
441 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
442 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
443 MVT::SimpleValueType VT
;
444 if (TyEl
->isSubClassOf("LLVMMatchType")) {
445 unsigned MatchTy
= TyEl
->getValueAsInt("Number");
446 assert(MatchTy
< OverloadedVTs
.size() &&
447 "Invalid matching number!");
448 VT
= OverloadedVTs
[MatchTy
];
449 // It only makes sense to use the extended and truncated vector element
450 // variants with iAny types; otherwise, if the intrinsic is not
451 // overloaded, all the types can be specified directly.
452 assert(((!TyEl
->isSubClassOf("LLVMExtendedElementVectorType") &&
453 !TyEl
->isSubClassOf("LLVMTruncatedElementVectorType")) ||
454 VT
== MVT::iAny
|| VT
== MVT::vAny
) &&
455 "Expected iAny or vAny type");
457 VT
= getValueType(TyEl
->getValueAsDef("VT"));
459 if (EVT(VT
).isOverloaded()) {
460 OverloadedVTs
.push_back(VT
);
464 // Reject invalid types.
465 if (VT
== MVT::isVoid
&& i
!= e
-1 /*void at end means varargs*/)
466 throw "Intrinsic '" + DefName
+ " has void in result type list!";
468 IS
.ParamVTs
.push_back(VT
);
469 IS
.ParamTypeDefs
.push_back(TyEl
);
472 // Parse the intrinsic properties.
473 ListInit
*PropList
= R
->getValueAsListInit("Properties");
474 for (unsigned i
= 0, e
= PropList
->getSize(); i
!= e
; ++i
) {
475 Record
*Property
= PropList
->getElementAsRecord(i
);
476 assert(Property
->isSubClassOf("IntrinsicProperty") &&
477 "Expected a property!");
479 if (Property
->getName() == "IntrNoMem")
481 else if (Property
->getName() == "IntrReadArgMem")
483 else if (Property
->getName() == "IntrReadMem")
485 else if (Property
->getName() == "IntrReadWriteArgMem")
486 ModRef
= ReadWriteArgMem
;
487 else if (Property
->getName() == "Commutative")
488 isCommutative
= true;
489 else if (Property
->getName() == "Throws")
491 else if (Property
->isSubClassOf("NoCapture")) {
492 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
493 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, NoCapture
));
495 assert(0 && "Unknown property!");
498 // Sort the argument attributes for later benefit.
499 std::sort(ArgumentAttributes
.begin(), ArgumentAttributes
.end());