Silence -Wunused-variable in release builds.
[llvm/stm8.git] / utils / TableGen / FixedLenDecoderEmitter.cpp
blobc9dcb01de008d983901526b23ba24e5b03a9e1d7
1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // It contains the tablegen backend that emits the decoder functions for
11 // targets with fixed length instruction set.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "decoder-emitter"
17 #include "FixedLenDecoderEmitter.h"
18 #include "CodeGenTarget.h"
19 #include "Record.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
24 #include <vector>
25 #include <map>
26 #include <string>
28 using namespace llvm;
30 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
31 // for a bit value.
33 // BIT_UNFILTERED is used as the init value for a filter position. It is used
34 // only for filter processings.
35 typedef enum {
36 BIT_TRUE, // '1'
37 BIT_FALSE, // '0'
38 BIT_UNSET, // '?'
39 BIT_UNFILTERED // unfiltered
40 } bit_value_t;
42 static bool ValueSet(bit_value_t V) {
43 return (V == BIT_TRUE || V == BIT_FALSE);
45 static bool ValueNotSet(bit_value_t V) {
46 return (V == BIT_UNSET);
48 static int Value(bit_value_t V) {
49 return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
51 static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
52 if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
53 return bit->getValue() ? BIT_TRUE : BIT_FALSE;
55 // The bit is uninitialized.
56 return BIT_UNSET;
58 // Prints the bit value for each position.
59 static void dumpBits(raw_ostream &o, BitsInit &bits) {
60 unsigned index;
62 for (index = bits.getNumBits(); index > 0; index--) {
63 switch (bitFromBits(bits, index - 1)) {
64 case BIT_TRUE:
65 o << "1";
66 break;
67 case BIT_FALSE:
68 o << "0";
69 break;
70 case BIT_UNSET:
71 o << "_";
72 break;
73 default:
74 assert(0 && "unexpected return value from bitFromBits");
79 static BitsInit &getBitsField(const Record &def, const char *str) {
80 BitsInit *bits = def.getValueAsBitsInit(str);
81 return *bits;
84 // Forward declaration.
85 class FilterChooser;
87 // FIXME: Possibly auto-detected?
88 #define BIT_WIDTH 32
90 // Representation of the instruction to work on.
91 typedef bit_value_t insn_t[BIT_WIDTH];
93 /// Filter - Filter works with FilterChooser to produce the decoding tree for
94 /// the ISA.
95 ///
96 /// It is useful to think of a Filter as governing the switch stmts of the
97 /// decoding tree in a certain level. Each case stmt delegates to an inferior
98 /// FilterChooser to decide what further decoding logic to employ, or in another
99 /// words, what other remaining bits to look at. The FilterChooser eventually
100 /// chooses a best Filter to do its job.
102 /// This recursive scheme ends when the number of Opcodes assigned to the
103 /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
104 /// the Filter/FilterChooser combo does not know how to distinguish among the
105 /// Opcodes assigned.
107 /// An example of a conflict is
109 /// Conflict:
110 /// 111101000.00........00010000....
111 /// 111101000.00........0001........
112 /// 1111010...00........0001........
113 /// 1111010...00....................
114 /// 1111010.........................
115 /// 1111............................
116 /// ................................
117 /// VST4q8a 111101000_00________00010000____
118 /// VST4q8b 111101000_00________00010000____
120 /// The Debug output shows the path that the decoding tree follows to reach the
121 /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
122 /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
124 /// The encoding info in the .td files does not specify this meta information,
125 /// which could have been used by the decoder to resolve the conflict. The
126 /// decoder could try to decode the even/odd register numbering and assign to
127 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
128 /// version and return the Opcode since the two have the same Asm format string.
129 class Filter {
130 protected:
131 FilterChooser *Owner; // points to the FilterChooser who owns this filter
132 unsigned StartBit; // the starting bit position
133 unsigned NumBits; // number of bits to filter
134 bool Mixed; // a mixed region contains both set and unset bits
136 // Map of well-known segment value to the set of uid's with that value.
137 std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
139 // Set of uid's with non-constant segment values.
140 std::vector<unsigned> VariableInstructions;
142 // Map of well-known segment value to its delegate.
143 std::map<unsigned, FilterChooser*> FilterChooserMap;
145 // Number of instructions which fall under FilteredInstructions category.
146 unsigned NumFiltered;
148 // Keeps track of the last opcode in the filtered bucket.
149 unsigned LastOpcFiltered;
151 // Number of instructions which fall under VariableInstructions category.
152 unsigned NumVariable;
154 public:
155 unsigned getNumFiltered() { return NumFiltered; }
156 unsigned getNumVariable() { return NumVariable; }
157 unsigned getSingletonOpc() {
158 assert(NumFiltered == 1);
159 return LastOpcFiltered;
161 // Return the filter chooser for the group of instructions without constant
162 // segment values.
163 FilterChooser &getVariableFC() {
164 assert(NumFiltered == 1);
165 assert(FilterChooserMap.size() == 1);
166 return *(FilterChooserMap.find((unsigned)-1)->second);
169 Filter(const Filter &f);
170 Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
172 ~Filter();
174 // Divides the decoding task into sub tasks and delegates them to the
175 // inferior FilterChooser's.
177 // A special case arises when there's only one entry in the filtered
178 // instructions. In order to unambiguously decode the singleton, we need to
179 // match the remaining undecoded encoding bits against the singleton.
180 void recurse();
182 // Emit code to decode instructions given a segment or segments of bits.
183 void emit(raw_ostream &o, unsigned &Indentation);
185 // Returns the number of fanout produced by the filter. More fanout implies
186 // the filter distinguishes more categories of instructions.
187 unsigned usefulness() const;
188 }; // End of class Filter
190 // These are states of our finite state machines used in FilterChooser's
191 // filterProcessor() which produces the filter candidates to use.
192 typedef enum {
193 ATTR_NONE,
194 ATTR_FILTERED,
195 ATTR_ALL_SET,
196 ATTR_ALL_UNSET,
197 ATTR_MIXED
198 } bitAttr_t;
200 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
201 /// in order to perform the decoding of instructions at the current level.
203 /// Decoding proceeds from the top down. Based on the well-known encoding bits
204 /// of instructions available, FilterChooser builds up the possible Filters that
205 /// can further the task of decoding by distinguishing among the remaining
206 /// candidate instructions.
208 /// Once a filter has been chosen, it is called upon to divide the decoding task
209 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
210 /// processings.
212 /// It is useful to think of a Filter as governing the switch stmts of the
213 /// decoding tree. And each case is delegated to an inferior FilterChooser to
214 /// decide what further remaining bits to look at.
215 class FilterChooser {
216 protected:
217 friend class Filter;
219 // Vector of codegen instructions to choose our filter.
220 const std::vector<const CodeGenInstruction*> &AllInstructions;
222 // Vector of uid's for this filter chooser to work on.
223 const std::vector<unsigned> Opcodes;
225 // Lookup table for the operand decoding of instructions.
226 std::map<unsigned, std::vector<OperandInfo> > &Operands;
228 // Vector of candidate filters.
229 std::vector<Filter> Filters;
231 // Array of bit values passed down from our parent.
232 // Set to all BIT_UNFILTERED's for Parent == NULL.
233 bit_value_t FilterBitValues[BIT_WIDTH];
235 // Links to the FilterChooser above us in the decoding tree.
236 FilterChooser *Parent;
238 // Index of the best filter from Filters.
239 int BestIndex;
241 public:
242 FilterChooser(const FilterChooser &FC) :
243 AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
244 Operands(FC.Operands), Filters(FC.Filters), Parent(FC.Parent),
245 BestIndex(FC.BestIndex) {
246 memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
249 FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
250 const std::vector<unsigned> &IDs,
251 std::map<unsigned, std::vector<OperandInfo> > &Ops) :
252 AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
253 Parent(NULL), BestIndex(-1) {
254 for (unsigned i = 0; i < BIT_WIDTH; ++i)
255 FilterBitValues[i] = BIT_UNFILTERED;
257 doFilter();
260 FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
261 const std::vector<unsigned> &IDs,
262 std::map<unsigned, std::vector<OperandInfo> > &Ops,
263 bit_value_t (&ParentFilterBitValues)[BIT_WIDTH],
264 FilterChooser &parent) :
265 AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
266 Filters(), Parent(&parent), BestIndex(-1) {
267 for (unsigned i = 0; i < BIT_WIDTH; ++i)
268 FilterBitValues[i] = ParentFilterBitValues[i];
270 doFilter();
273 // The top level filter chooser has NULL as its parent.
274 bool isTopLevel() { return Parent == NULL; }
276 // Emit the top level typedef and decodeInstruction() function.
277 void emitTop(raw_ostream &o, unsigned Indentation);
279 protected:
280 // Populates the insn given the uid.
281 void insnWithID(insn_t &Insn, unsigned Opcode) const {
282 BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
284 for (unsigned i = 0; i < BIT_WIDTH; ++i)
285 Insn[i] = bitFromBits(Bits, i);
288 // Returns the record name.
289 const std::string &nameWithID(unsigned Opcode) const {
290 return AllInstructions[Opcode]->TheDef->getName();
293 // Populates the field of the insn given the start position and the number of
294 // consecutive bits to scan for.
296 // Returns false if there exists any uninitialized bit value in the range.
297 // Returns true, otherwise.
298 bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
299 unsigned NumBits) const;
301 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
302 /// filter array as a series of chars.
303 void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]);
305 /// dumpStack - dumpStack traverses the filter chooser chain and calls
306 /// dumpFilterArray on each filter chooser up to the top level one.
307 void dumpStack(raw_ostream &o, const char *prefix);
309 Filter &bestFilter() {
310 assert(BestIndex != -1 && "BestIndex not set");
311 return Filters[BestIndex];
314 // Called from Filter::recurse() when singleton exists. For debug purpose.
315 void SingletonExists(unsigned Opc);
317 bool PositionFiltered(unsigned i) {
318 return ValueSet(FilterBitValues[i]);
321 // Calculates the island(s) needed to decode the instruction.
322 // This returns a lit of undecoded bits of an instructions, for example,
323 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
324 // decoded bits in order to verify that the instruction matches the Opcode.
325 unsigned getIslands(std::vector<unsigned> &StartBits,
326 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
327 insn_t &Insn);
329 // Emits code to decode the singleton. Return true if we have matched all the
330 // well-known bits.
331 bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
333 // Emits code to decode the singleton, and then to decode the rest.
334 void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
336 // Assign a single filter and run with it.
337 void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
338 bool mixed);
340 // reportRegion is a helper function for filterProcessor to mark a region as
341 // eligible for use as a filter region.
342 void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
343 bool AllowMixed);
345 // FilterProcessor scans the well-known encoding bits of the instructions and
346 // builds up a list of candidate filters. It chooses the best filter and
347 // recursively descends down the decoding tree.
348 bool filterProcessor(bool AllowMixed, bool Greedy = true);
350 // Decides on the best configuration of filter(s) to use in order to decode
351 // the instructions. A conflict of instructions may occur, in which case we
352 // dump the conflict set to the standard error.
353 void doFilter();
355 // Emits code to decode our share of instructions. Returns true if the
356 // emitted code causes a return, which occurs if we know how to decode
357 // the instruction at this level or the instruction is not decodeable.
358 bool emit(raw_ostream &o, unsigned &Indentation);
361 ///////////////////////////
362 // //
363 // Filter Implmenetation //
364 // //
365 ///////////////////////////
367 Filter::Filter(const Filter &f) :
368 Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
369 FilteredInstructions(f.FilteredInstructions),
370 VariableInstructions(f.VariableInstructions),
371 FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
372 LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
375 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
376 bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
377 Mixed(mixed) {
378 assert(StartBit + NumBits - 1 < BIT_WIDTH);
380 NumFiltered = 0;
381 LastOpcFiltered = 0;
382 NumVariable = 0;
384 for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
385 insn_t Insn;
387 // Populates the insn given the uid.
388 Owner->insnWithID(Insn, Owner->Opcodes[i]);
390 uint64_t Field;
391 // Scans the segment for possibly well-specified encoding bits.
392 bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
394 if (ok) {
395 // The encoding bits are well-known. Lets add the uid of the
396 // instruction into the bucket keyed off the constant field value.
397 LastOpcFiltered = Owner->Opcodes[i];
398 FilteredInstructions[Field].push_back(LastOpcFiltered);
399 ++NumFiltered;
400 } else {
401 // Some of the encoding bit(s) are unspecfied. This contributes to
402 // one additional member of "Variable" instructions.
403 VariableInstructions.push_back(Owner->Opcodes[i]);
404 ++NumVariable;
408 assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
409 && "Filter returns no instruction categories");
412 Filter::~Filter() {
413 std::map<unsigned, FilterChooser*>::iterator filterIterator;
414 for (filterIterator = FilterChooserMap.begin();
415 filterIterator != FilterChooserMap.end();
416 filterIterator++) {
417 delete filterIterator->second;
421 // Divides the decoding task into sub tasks and delegates them to the
422 // inferior FilterChooser's.
424 // A special case arises when there's only one entry in the filtered
425 // instructions. In order to unambiguously decode the singleton, we need to
426 // match the remaining undecoded encoding bits against the singleton.
427 void Filter::recurse() {
428 std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
430 bit_value_t BitValueArray[BIT_WIDTH];
431 // Starts by inheriting our parent filter chooser's filter bit values.
432 memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray));
434 unsigned bitIndex;
436 if (VariableInstructions.size()) {
437 // Conservatively marks each segment position as BIT_UNSET.
438 for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
439 BitValueArray[StartBit + bitIndex] = BIT_UNSET;
441 // Delegates to an inferior filter chooser for further processing on this
442 // group of instructions whose segment values are variable.
443 FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
444 (unsigned)-1,
445 new FilterChooser(Owner->AllInstructions,
446 VariableInstructions,
447 Owner->Operands,
448 BitValueArray,
449 *Owner)
453 // No need to recurse for a singleton filtered instruction.
454 // See also Filter::emit().
455 if (getNumFiltered() == 1) {
456 //Owner->SingletonExists(LastOpcFiltered);
457 assert(FilterChooserMap.size() == 1);
458 return;
461 // Otherwise, create sub choosers.
462 for (mapIterator = FilteredInstructions.begin();
463 mapIterator != FilteredInstructions.end();
464 mapIterator++) {
466 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
467 for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
468 if (mapIterator->first & (1ULL << bitIndex))
469 BitValueArray[StartBit + bitIndex] = BIT_TRUE;
470 else
471 BitValueArray[StartBit + bitIndex] = BIT_FALSE;
474 // Delegates to an inferior filter chooser for further processing on this
475 // category of instructions.
476 FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
477 mapIterator->first,
478 new FilterChooser(Owner->AllInstructions,
479 mapIterator->second,
480 Owner->Operands,
481 BitValueArray,
482 *Owner)
487 // Emit code to decode instructions given a segment or segments of bits.
488 void Filter::emit(raw_ostream &o, unsigned &Indentation) {
489 o.indent(Indentation) << "// Check Inst{";
491 if (NumBits > 1)
492 o << (StartBit + NumBits - 1) << '-';
494 o << StartBit << "} ...\n";
496 o.indent(Indentation) << "switch (fieldFromInstruction(insn, "
497 << StartBit << ", " << NumBits << ")) {\n";
499 std::map<unsigned, FilterChooser*>::iterator filterIterator;
501 bool DefaultCase = false;
502 for (filterIterator = FilterChooserMap.begin();
503 filterIterator != FilterChooserMap.end();
504 filterIterator++) {
506 // Field value -1 implies a non-empty set of variable instructions.
507 // See also recurse().
508 if (filterIterator->first == (unsigned)-1) {
509 DefaultCase = true;
511 o.indent(Indentation) << "default:\n";
512 o.indent(Indentation) << " break; // fallthrough\n";
514 // Closing curly brace for the switch statement.
515 // This is unconventional because we want the default processing to be
516 // performed for the fallthrough cases as well, i.e., when the "cases"
517 // did not prove a decoded instruction.
518 o.indent(Indentation) << "}\n";
520 } else
521 o.indent(Indentation) << "case " << filterIterator->first << ":\n";
523 // We arrive at a category of instructions with the same segment value.
524 // Now delegate to the sub filter chooser for further decodings.
525 // The case may fallthrough, which happens if the remaining well-known
526 // encoding bits do not match exactly.
527 if (!DefaultCase) { ++Indentation; ++Indentation; }
529 bool finished = filterIterator->second->emit(o, Indentation);
530 // For top level default case, there's no need for a break statement.
531 if (Owner->isTopLevel() && DefaultCase)
532 break;
533 if (!finished)
534 o.indent(Indentation) << "break;\n";
536 if (!DefaultCase) { --Indentation; --Indentation; }
539 // If there is no default case, we still need to supply a closing brace.
540 if (!DefaultCase) {
541 // Closing curly brace for the switch statement.
542 o.indent(Indentation) << "}\n";
546 // Returns the number of fanout produced by the filter. More fanout implies
547 // the filter distinguishes more categories of instructions.
548 unsigned Filter::usefulness() const {
549 if (VariableInstructions.size())
550 return FilteredInstructions.size();
551 else
552 return FilteredInstructions.size() + 1;
555 //////////////////////////////////
556 // //
557 // Filterchooser Implementation //
558 // //
559 //////////////////////////////////
561 // Emit the top level typedef and decodeInstruction() function.
562 void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation) {
563 switch (BIT_WIDTH) {
564 case 8:
565 o.indent(Indentation) << "typedef uint8_t field_t;\n";
566 break;
567 case 16:
568 o.indent(Indentation) << "typedef uint16_t field_t;\n";
569 break;
570 case 32:
571 o.indent(Indentation) << "typedef uint32_t field_t;\n";
572 break;
573 case 64:
574 o.indent(Indentation) << "typedef uint64_t field_t;\n";
575 break;
576 default:
577 assert(0 && "Unexpected instruction size!");
580 o << '\n';
582 o.indent(Indentation) << "static field_t " <<
583 "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n";
585 o.indent(Indentation) << "{\n";
587 ++Indentation; ++Indentation;
588 o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH
589 << " && \"Instruction field out of bounds!\");\n";
590 o << '\n';
591 o.indent(Indentation) << "field_t fieldMask;\n";
592 o << '\n';
593 o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n";
595 ++Indentation; ++Indentation;
596 o.indent(Indentation) << "fieldMask = (field_t)-1;\n";
597 --Indentation; --Indentation;
599 o.indent(Indentation) << "else\n";
601 ++Indentation; ++Indentation;
602 o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
603 --Indentation; --Indentation;
605 o << '\n';
606 o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
607 --Indentation; --Indentation;
609 o.indent(Indentation) << "}\n";
611 o << '\n';
613 o.indent(Indentation) <<
614 "static bool decodeInstruction(MCInst &MI, field_t insn, "
615 "uint64_t Address, const void *Decoder) {\n";
616 o.indent(Indentation) << " unsigned tmp = 0;\n";
618 ++Indentation; ++Indentation;
619 // Emits code to decode the instructions.
620 emit(o, Indentation);
622 o << '\n';
623 o.indent(Indentation) << "return false;\n";
624 --Indentation; --Indentation;
626 o.indent(Indentation) << "}\n";
628 o << '\n';
631 // Populates the field of the insn given the start position and the number of
632 // consecutive bits to scan for.
634 // Returns false if and on the first uninitialized bit value encountered.
635 // Returns true, otherwise.
636 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
637 unsigned StartBit, unsigned NumBits) const {
638 Field = 0;
640 for (unsigned i = 0; i < NumBits; ++i) {
641 if (Insn[StartBit + i] == BIT_UNSET)
642 return false;
644 if (Insn[StartBit + i] == BIT_TRUE)
645 Field = Field | (1ULL << i);
648 return true;
651 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
652 /// filter array as a series of chars.
653 void FilterChooser::dumpFilterArray(raw_ostream &o,
654 bit_value_t (&filter)[BIT_WIDTH]) {
655 unsigned bitIndex;
657 for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) {
658 switch (filter[bitIndex - 1]) {
659 case BIT_UNFILTERED:
660 o << ".";
661 break;
662 case BIT_UNSET:
663 o << "_";
664 break;
665 case BIT_TRUE:
666 o << "1";
667 break;
668 case BIT_FALSE:
669 o << "0";
670 break;
675 /// dumpStack - dumpStack traverses the filter chooser chain and calls
676 /// dumpFilterArray on each filter chooser up to the top level one.
677 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
678 FilterChooser *current = this;
680 while (current) {
681 o << prefix;
682 dumpFilterArray(o, current->FilterBitValues);
683 o << '\n';
684 current = current->Parent;
688 // Called from Filter::recurse() when singleton exists. For debug purpose.
689 void FilterChooser::SingletonExists(unsigned Opc) {
690 insn_t Insn0;
691 insnWithID(Insn0, Opc);
693 errs() << "Singleton exists: " << nameWithID(Opc)
694 << " with its decoding dominating ";
695 for (unsigned i = 0; i < Opcodes.size(); ++i) {
696 if (Opcodes[i] == Opc) continue;
697 errs() << nameWithID(Opcodes[i]) << ' ';
699 errs() << '\n';
701 dumpStack(errs(), "\t\t");
702 for (unsigned i = 0; i < Opcodes.size(); i++) {
703 const std::string &Name = nameWithID(Opcodes[i]);
705 errs() << '\t' << Name << " ";
706 dumpBits(errs(),
707 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
708 errs() << '\n';
712 // Calculates the island(s) needed to decode the instruction.
713 // This returns a list of undecoded bits of an instructions, for example,
714 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
715 // decoded bits in order to verify that the instruction matches the Opcode.
716 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
717 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
718 insn_t &Insn) {
719 unsigned Num, BitNo;
720 Num = BitNo = 0;
722 uint64_t FieldVal = 0;
724 // 0: Init
725 // 1: Water (the bit value does not affect decoding)
726 // 2: Island (well-known bit value needed for decoding)
727 int State = 0;
728 int Val = -1;
730 for (unsigned i = 0; i < BIT_WIDTH; ++i) {
731 Val = Value(Insn[i]);
732 bool Filtered = PositionFiltered(i);
733 switch (State) {
734 default:
735 assert(0 && "Unreachable code!");
736 break;
737 case 0:
738 case 1:
739 if (Filtered || Val == -1)
740 State = 1; // Still in Water
741 else {
742 State = 2; // Into the Island
743 BitNo = 0;
744 StartBits.push_back(i);
745 FieldVal = Val;
747 break;
748 case 2:
749 if (Filtered || Val == -1) {
750 State = 1; // Into the Water
751 EndBits.push_back(i - 1);
752 FieldVals.push_back(FieldVal);
753 ++Num;
754 } else {
755 State = 2; // Still in Island
756 ++BitNo;
757 FieldVal = FieldVal | Val << BitNo;
759 break;
762 // If we are still in Island after the loop, do some housekeeping.
763 if (State == 2) {
764 EndBits.push_back(BIT_WIDTH - 1);
765 FieldVals.push_back(FieldVal);
766 ++Num;
769 assert(StartBits.size() == Num && EndBits.size() == Num &&
770 FieldVals.size() == Num);
771 return Num;
774 // Emits code to decode the singleton. Return true if we have matched all the
775 // well-known bits.
776 bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
777 unsigned Opc) {
778 std::vector<unsigned> StartBits;
779 std::vector<unsigned> EndBits;
780 std::vector<uint64_t> FieldVals;
781 insn_t Insn;
782 insnWithID(Insn, Opc);
784 // Look for islands of undecoded bits of the singleton.
785 getIslands(StartBits, EndBits, FieldVals, Insn);
787 unsigned Size = StartBits.size();
788 unsigned I, NumBits;
790 // If we have matched all the well-known bits, just issue a return.
791 if (Size == 0) {
792 o.indent(Indentation) << "{\n";
793 o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
794 std::vector<OperandInfo>& InsnOperands = Operands[Opc];
795 for (std::vector<OperandInfo>::iterator
796 I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
797 // If a custom instruction decoder was specified, use that.
798 if (I->FieldBase == ~0U && I->FieldLength == ~0U) {
799 o.indent(Indentation) << " " << I->Decoder
800 << "(MI, insn, Address, Decoder);\n";
801 break;
804 o.indent(Indentation)
805 << " tmp = fieldFromInstruction(insn, " << I->FieldBase
806 << ", " << I->FieldLength << ");\n";
807 if (I->Decoder != "") {
808 o.indent(Indentation) << " " << I->Decoder
809 << "(MI, tmp, Address, Decoder);\n";
810 } else {
811 o.indent(Indentation)
812 << " MI.addOperand(MCOperand::CreateImm(tmp));\n";
816 o.indent(Indentation) << " return true; // " << nameWithID(Opc)
817 << '\n';
818 o.indent(Indentation) << "}\n";
819 return true;
822 // Otherwise, there are more decodings to be done!
824 // Emit code to match the island(s) for the singleton.
825 o.indent(Indentation) << "// Check ";
827 for (I = Size; I != 0; --I) {
828 o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
829 if (I > 1)
830 o << "&& ";
831 else
832 o << "for singleton decoding...\n";
835 o.indent(Indentation) << "if (";
837 for (I = Size; I != 0; --I) {
838 NumBits = EndBits[I-1] - StartBits[I-1] + 1;
839 o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits
840 << ") == " << FieldVals[I-1];
841 if (I > 1)
842 o << " && ";
843 else
844 o << ") {\n";
846 o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
847 std::vector<OperandInfo>& InsnOperands = Operands[Opc];
848 for (std::vector<OperandInfo>::iterator
849 I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
850 // If a custom instruction decoder was specified, use that.
851 if (I->FieldBase == ~0U && I->FieldLength == ~0U) {
852 o.indent(Indentation) << " " << I->Decoder
853 << "(MI, insn, Address, Decoder);\n";
854 break;
857 o.indent(Indentation)
858 << " tmp = fieldFromInstruction(insn, " << I->FieldBase
859 << ", " << I->FieldLength << ");\n";
860 if (I->Decoder != "") {
861 o.indent(Indentation) << " " << I->Decoder
862 << "(MI, tmp, Address, Decoder);\n";
863 } else {
864 o.indent(Indentation)
865 << " MI.addOperand(MCOperand::CreateImm(tmp));\n";
868 o.indent(Indentation) << " return true; // " << nameWithID(Opc)
869 << '\n';
870 o.indent(Indentation) << "}\n";
872 return false;
875 // Emits code to decode the singleton, and then to decode the rest.
876 void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
877 Filter &Best) {
879 unsigned Opc = Best.getSingletonOpc();
881 emitSingletonDecoder(o, Indentation, Opc);
883 // Emit code for the rest.
884 o.indent(Indentation) << "else\n";
886 Indentation += 2;
887 Best.getVariableFC().emit(o, Indentation);
888 Indentation -= 2;
891 // Assign a single filter and run with it. Top level API client can initialize
892 // with a single filter to start the filtering process.
893 void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
894 unsigned numBit, bool mixed) {
895 Filters.clear();
896 Filter F(*this, startBit, numBit, true);
897 Filters.push_back(F);
898 BestIndex = 0; // Sole Filter instance to choose from.
899 bestFilter().recurse();
902 // reportRegion is a helper function for filterProcessor to mark a region as
903 // eligible for use as a filter region.
904 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
905 unsigned BitIndex, bool AllowMixed) {
906 if (RA == ATTR_MIXED && AllowMixed)
907 Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
908 else if (RA == ATTR_ALL_SET && !AllowMixed)
909 Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
912 // FilterProcessor scans the well-known encoding bits of the instructions and
913 // builds up a list of candidate filters. It chooses the best filter and
914 // recursively descends down the decoding tree.
915 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
916 Filters.clear();
917 BestIndex = -1;
918 unsigned numInstructions = Opcodes.size();
920 assert(numInstructions && "Filter created with no instructions");
922 // No further filtering is necessary.
923 if (numInstructions == 1)
924 return true;
926 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
927 // instructions is 3.
928 if (AllowMixed && !Greedy) {
929 assert(numInstructions == 3);
931 for (unsigned i = 0; i < Opcodes.size(); ++i) {
932 std::vector<unsigned> StartBits;
933 std::vector<unsigned> EndBits;
934 std::vector<uint64_t> FieldVals;
935 insn_t Insn;
937 insnWithID(Insn, Opcodes[i]);
939 // Look for islands of undecoded bits of any instruction.
940 if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
941 // Found an instruction with island(s). Now just assign a filter.
942 runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
943 true);
944 return true;
949 unsigned BitIndex, InsnIndex;
951 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
952 // The automaton consumes the corresponding bit from each
953 // instruction.
955 // Input symbols: 0, 1, and _ (unset).
956 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
957 // Initial state: NONE.
959 // (NONE) ------- [01] -> (ALL_SET)
960 // (NONE) ------- _ ----> (ALL_UNSET)
961 // (ALL_SET) ---- [01] -> (ALL_SET)
962 // (ALL_SET) ---- _ ----> (MIXED)
963 // (ALL_UNSET) -- [01] -> (MIXED)
964 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
965 // (MIXED) ------ . ----> (MIXED)
966 // (FILTERED)---- . ----> (FILTERED)
968 bitAttr_t bitAttrs[BIT_WIDTH];
970 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
971 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
972 for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex)
973 if (FilterBitValues[BitIndex] == BIT_TRUE ||
974 FilterBitValues[BitIndex] == BIT_FALSE)
975 bitAttrs[BitIndex] = ATTR_FILTERED;
976 else
977 bitAttrs[BitIndex] = ATTR_NONE;
979 for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
980 insn_t insn;
982 insnWithID(insn, Opcodes[InsnIndex]);
984 for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) {
985 switch (bitAttrs[BitIndex]) {
986 case ATTR_NONE:
987 if (insn[BitIndex] == BIT_UNSET)
988 bitAttrs[BitIndex] = ATTR_ALL_UNSET;
989 else
990 bitAttrs[BitIndex] = ATTR_ALL_SET;
991 break;
992 case ATTR_ALL_SET:
993 if (insn[BitIndex] == BIT_UNSET)
994 bitAttrs[BitIndex] = ATTR_MIXED;
995 break;
996 case ATTR_ALL_UNSET:
997 if (insn[BitIndex] != BIT_UNSET)
998 bitAttrs[BitIndex] = ATTR_MIXED;
999 break;
1000 case ATTR_MIXED:
1001 case ATTR_FILTERED:
1002 break;
1007 // The regionAttr automaton consumes the bitAttrs automatons' state,
1008 // lowest-to-highest.
1010 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1011 // States: NONE, ALL_SET, MIXED
1012 // Initial state: NONE
1014 // (NONE) ----- F --> (NONE)
1015 // (NONE) ----- S --> (ALL_SET) ; and set region start
1016 // (NONE) ----- U --> (NONE)
1017 // (NONE) ----- M --> (MIXED) ; and set region start
1018 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1019 // (ALL_SET) -- S --> (ALL_SET)
1020 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1021 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1022 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1023 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1024 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1025 // (MIXED) ---- M --> (MIXED)
1027 bitAttr_t RA = ATTR_NONE;
1028 unsigned StartBit = 0;
1030 for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) {
1031 bitAttr_t bitAttr = bitAttrs[BitIndex];
1033 assert(bitAttr != ATTR_NONE && "Bit without attributes");
1035 switch (RA) {
1036 case ATTR_NONE:
1037 switch (bitAttr) {
1038 case ATTR_FILTERED:
1039 break;
1040 case ATTR_ALL_SET:
1041 StartBit = BitIndex;
1042 RA = ATTR_ALL_SET;
1043 break;
1044 case ATTR_ALL_UNSET:
1045 break;
1046 case ATTR_MIXED:
1047 StartBit = BitIndex;
1048 RA = ATTR_MIXED;
1049 break;
1050 default:
1051 assert(0 && "Unexpected bitAttr!");
1053 break;
1054 case ATTR_ALL_SET:
1055 switch (bitAttr) {
1056 case ATTR_FILTERED:
1057 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1058 RA = ATTR_NONE;
1059 break;
1060 case ATTR_ALL_SET:
1061 break;
1062 case ATTR_ALL_UNSET:
1063 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1064 RA = ATTR_NONE;
1065 break;
1066 case ATTR_MIXED:
1067 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1068 StartBit = BitIndex;
1069 RA = ATTR_MIXED;
1070 break;
1071 default:
1072 assert(0 && "Unexpected bitAttr!");
1074 break;
1075 case ATTR_MIXED:
1076 switch (bitAttr) {
1077 case ATTR_FILTERED:
1078 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1079 StartBit = BitIndex;
1080 RA = ATTR_NONE;
1081 break;
1082 case ATTR_ALL_SET:
1083 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1084 StartBit = BitIndex;
1085 RA = ATTR_ALL_SET;
1086 break;
1087 case ATTR_ALL_UNSET:
1088 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1089 RA = ATTR_NONE;
1090 break;
1091 case ATTR_MIXED:
1092 break;
1093 default:
1094 assert(0 && "Unexpected bitAttr!");
1096 break;
1097 case ATTR_ALL_UNSET:
1098 assert(0 && "regionAttr state machine has no ATTR_UNSET state");
1099 case ATTR_FILTERED:
1100 assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
1104 // At the end, if we're still in ALL_SET or MIXED states, report a region
1105 switch (RA) {
1106 case ATTR_NONE:
1107 break;
1108 case ATTR_FILTERED:
1109 break;
1110 case ATTR_ALL_SET:
1111 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1112 break;
1113 case ATTR_ALL_UNSET:
1114 break;
1115 case ATTR_MIXED:
1116 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1117 break;
1120 // We have finished with the filter processings. Now it's time to choose
1121 // the best performing filter.
1122 BestIndex = 0;
1123 bool AllUseless = true;
1124 unsigned BestScore = 0;
1126 for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1127 unsigned Usefulness = Filters[i].usefulness();
1129 if (Usefulness)
1130 AllUseless = false;
1132 if (Usefulness > BestScore) {
1133 BestIndex = i;
1134 BestScore = Usefulness;
1138 if (!AllUseless)
1139 bestFilter().recurse();
1141 return !AllUseless;
1142 } // end of FilterChooser::filterProcessor(bool)
1144 // Decides on the best configuration of filter(s) to use in order to decode
1145 // the instructions. A conflict of instructions may occur, in which case we
1146 // dump the conflict set to the standard error.
1147 void FilterChooser::doFilter() {
1148 unsigned Num = Opcodes.size();
1149 assert(Num && "FilterChooser created with no instructions");
1151 // Try regions of consecutive known bit values first.
1152 if (filterProcessor(false))
1153 return;
1155 // Then regions of mixed bits (both known and unitialized bit values allowed).
1156 if (filterProcessor(true))
1157 return;
1159 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1160 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1161 // well-known encoding pattern. In such case, we backtrack and scan for the
1162 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1163 if (Num == 3 && filterProcessor(true, false))
1164 return;
1166 // If we come to here, the instruction decoding has failed.
1167 // Set the BestIndex to -1 to indicate so.
1168 BestIndex = -1;
1171 // Emits code to decode our share of instructions. Returns true if the
1172 // emitted code causes a return, which occurs if we know how to decode
1173 // the instruction at this level or the instruction is not decodeable.
1174 bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
1175 if (Opcodes.size() == 1)
1176 // There is only one instruction in the set, which is great!
1177 // Call emitSingletonDecoder() to see whether there are any remaining
1178 // encodings bits.
1179 return emitSingletonDecoder(o, Indentation, Opcodes[0]);
1181 // Choose the best filter to do the decodings!
1182 if (BestIndex != -1) {
1183 Filter &Best = bestFilter();
1184 if (Best.getNumFiltered() == 1)
1185 emitSingletonDecoder(o, Indentation, Best);
1186 else
1187 bestFilter().emit(o, Indentation);
1188 return false;
1191 // We don't know how to decode these instructions! Return 0 and dump the
1192 // conflict set!
1193 o.indent(Indentation) << "return 0;" << " // Conflict set: ";
1194 for (int i = 0, N = Opcodes.size(); i < N; ++i) {
1195 o << nameWithID(Opcodes[i]);
1196 if (i < (N - 1))
1197 o << ", ";
1198 else
1199 o << '\n';
1202 // Print out useful conflict information for postmortem analysis.
1203 errs() << "Decoding Conflict:\n";
1205 dumpStack(errs(), "\t\t");
1207 for (unsigned i = 0; i < Opcodes.size(); i++) {
1208 const std::string &Name = nameWithID(Opcodes[i]);
1210 errs() << '\t' << Name << " ";
1211 dumpBits(errs(),
1212 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1213 errs() << '\n';
1216 return true;
1219 bool FixedLenDecoderEmitter::populateInstruction(const CodeGenInstruction &CGI,
1220 unsigned Opc){
1221 const Record &Def = *CGI.TheDef;
1222 // If all the bit positions are not specified; do not decode this instruction.
1223 // We are bound to fail! For proper disassembly, the well-known encoding bits
1224 // of the instruction must be fully specified.
1226 // This also removes pseudo instructions from considerations of disassembly,
1227 // which is a better design and less fragile than the name matchings.
1228 // Ignore "asm parser only" instructions.
1229 if (Def.getValueAsBit("isAsmParserOnly") ||
1230 Def.getValueAsBit("isCodeGenOnly"))
1231 return false;
1233 BitsInit &Bits = getBitsField(Def, "Inst");
1234 if (Bits.allInComplete()) return false;
1236 std::vector<OperandInfo> InsnOperands;
1238 // If the instruction has specified a custom decoding hook, use that instead
1239 // of trying to auto-generate the decoder.
1240 std::string InstDecoder = Def.getValueAsString("DecoderMethod");
1241 if (InstDecoder != "") {
1242 InsnOperands.push_back(OperandInfo(~0U, ~0U, InstDecoder));
1243 Operands[Opc] = InsnOperands;
1244 return true;
1247 // Generate a description of the operand of the instruction that we know
1248 // how to decode automatically.
1249 // FIXME: We'll need to have a way to manually override this as needed.
1251 // Gather the outputs/inputs of the instruction, so we can find their
1252 // positions in the encoding. This assumes for now that they appear in the
1253 // MCInst in the order that they're listed.
1254 std::vector<std::pair<Init*, std::string> > InOutOperands;
1255 DagInit *Out = Def.getValueAsDag("OutOperandList");
1256 DagInit *In = Def.getValueAsDag("InOperandList");
1257 for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1258 InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
1259 for (unsigned i = 0; i < In->getNumArgs(); ++i)
1260 InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
1262 // For each operand, see if we can figure out where it is encoded.
1263 for (std::vector<std::pair<Init*, std::string> >::iterator
1264 NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
1265 unsigned PrevBit = ~0;
1266 unsigned Base = ~0;
1267 unsigned PrevPos = ~0;
1268 std::string Decoder = "";
1270 for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
1271 VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi));
1272 if (!BI) continue;
1274 VarInit *Var = dynamic_cast<VarInit*>(BI->getVariable());
1275 assert(Var);
1276 unsigned CurrBit = BI->getBitNum();
1277 if (Var->getName() != NI->second) continue;
1279 // Figure out the lowest bit of the value, and the width of the field.
1280 // Deliberately don't try to handle cases where the field is scattered,
1281 // or where not all bits of the the field are explicit.
1282 if (Base == ~0U && PrevBit == ~0U && PrevPos == ~0U) {
1283 if (CurrBit == 0)
1284 Base = bi;
1285 else
1286 continue;
1289 if ((PrevPos != ~0U && bi-1 != PrevPos) ||
1290 (CurrBit != ~0U && CurrBit-1 != PrevBit)) {
1291 PrevBit = ~0;
1292 Base = ~0;
1293 PrevPos = ~0;
1296 PrevPos = bi;
1297 PrevBit = CurrBit;
1299 // At this point, we can locate the field, but we need to know how to
1300 // interpret it. As a first step, require the target to provide callbacks
1301 // for decoding register classes.
1302 // FIXME: This need to be extended to handle instructions with custom
1303 // decoder methods, and operands with (simple) MIOperandInfo's.
1304 TypedInit *TI = dynamic_cast<TypedInit*>(NI->first);
1305 RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
1306 Record *TypeRecord = Type->getRecord();
1307 bool isReg = false;
1308 if (TypeRecord->isSubClassOf("RegisterOperand"))
1309 TypeRecord = TypeRecord->getValueAsDef("RegClass");
1310 if (TypeRecord->isSubClassOf("RegisterClass")) {
1311 Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1312 isReg = true;
1315 RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1316 StringInit *String = DecoderString ?
1317 dynamic_cast<StringInit*>(DecoderString->getValue()) :
1319 if (!isReg && String && String->getValue() != "")
1320 Decoder = String->getValue();
1323 if (Base != ~0U) {
1324 InsnOperands.push_back(OperandInfo(Base, PrevBit+1, Decoder));
1325 DEBUG(errs() << "ENCODED OPERAND: $" << NI->second << " @ ("
1326 << utostr(Base+PrevBit) << ", " << utostr(Base) << ")\n");
1330 Operands[Opc] = InsnOperands;
1333 #if 0
1334 DEBUG({
1335 // Dumps the instruction encoding bits.
1336 dumpBits(errs(), Bits);
1338 errs() << '\n';
1340 // Dumps the list of operand info.
1341 for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1342 const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
1343 const std::string &OperandName = Info.Name;
1344 const Record &OperandDef = *Info.Rec;
1346 errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1349 #endif
1351 return true;
1354 void FixedLenDecoderEmitter::populateInstructions() {
1355 for (unsigned i = 0, e = NumberedInstructions.size(); i < e; ++i) {
1356 Record *R = NumberedInstructions[i]->TheDef;
1357 if (R->getValueAsString("Namespace") == "TargetOpcode" ||
1358 R->getValueAsBit("isPseudo"))
1359 continue;
1361 if (populateInstruction(*NumberedInstructions[i], i))
1362 Opcodes.push_back(i);
1366 // Emits disassembler code for instruction decoding.
1367 void FixedLenDecoderEmitter::run(raw_ostream &o)
1369 o << "#include \"llvm/MC/MCInst.h\"\n";
1370 o << "#include \"llvm/Support/DataTypes.h\"\n";
1371 o << "#include <assert.h>\n";
1372 o << '\n';
1373 o << "namespace llvm {\n\n";
1375 NumberedInstructions = Target.getInstructionsByEnumValue();
1376 populateInstructions();
1377 FilterChooser FC(NumberedInstructions, Opcodes, Operands);
1378 FC.emitTop(o, 0);
1380 o << "\n} // End llvm namespace \n";