Support using DebugLoc's in a DenseMap.
[llvm/stm8.git] / utils / TableGen / AsmMatcherEmitter.cpp
blob369ec9001b03be3b1571fd71ebf517b6bedab0a0
1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits a target specifier matcher for converting parsed
11 // assembly operands in the MCInst structures. It also emits a matcher for
12 // custom operand parsing.
14 // Converting assembly operands into MCInst structures
15 // ---------------------------------------------------
17 // The input to the target specific matcher is a list of literal tokens and
18 // operands. The target specific parser should generally eliminate any syntax
19 // which is not relevant for matching; for example, comma tokens should have
20 // already been consumed and eliminated by the parser. Most instructions will
21 // end up with a single literal token (the instruction name) and some number of
22 // operands.
24 // Some example inputs, for X86:
25 // 'addl' (immediate ...) (register ...)
26 // 'add' (immediate ...) (memory ...)
27 // 'call' '*' %epc
29 // The assembly matcher is responsible for converting this input into a precise
30 // machine instruction (i.e., an instruction with a well defined encoding). This
31 // mapping has several properties which complicate matching:
33 // - It may be ambiguous; many architectures can legally encode particular
34 // variants of an instruction in different ways (for example, using a smaller
35 // encoding for small immediates). Such ambiguities should never be
36 // arbitrarily resolved by the assembler, the assembler is always responsible
37 // for choosing the "best" available instruction.
39 // - It may depend on the subtarget or the assembler context. Instructions
40 // which are invalid for the current mode, but otherwise unambiguous (e.g.,
41 // an SSE instruction in a file being assembled for i486) should be accepted
42 // and rejected by the assembler front end. However, if the proper encoding
43 // for an instruction is dependent on the assembler context then the matcher
44 // is responsible for selecting the correct machine instruction for the
45 // current mode.
47 // The core matching algorithm attempts to exploit the regularity in most
48 // instruction sets to quickly determine the set of possibly matching
49 // instructions, and the simplify the generated code. Additionally, this helps
50 // to ensure that the ambiguities are intentionally resolved by the user.
52 // The matching is divided into two distinct phases:
54 // 1. Classification: Each operand is mapped to the unique set which (a)
55 // contains it, and (b) is the largest such subset for which a single
56 // instruction could match all members.
58 // For register classes, we can generate these subgroups automatically. For
59 // arbitrary operands, we expect the user to define the classes and their
60 // relations to one another (for example, 8-bit signed immediates as a
61 // subset of 32-bit immediates).
63 // By partitioning the operands in this way, we guarantee that for any
64 // tuple of classes, any single instruction must match either all or none
65 // of the sets of operands which could classify to that tuple.
67 // In addition, the subset relation amongst classes induces a partial order
68 // on such tuples, which we use to resolve ambiguities.
70 // 2. The input can now be treated as a tuple of classes (static tokens are
71 // simple singleton sets). Each such tuple should generally map to a single
72 // instruction (we currently ignore cases where this isn't true, whee!!!),
73 // which we can emit a simple matcher for.
75 // Custom Operand Parsing
76 // ----------------------
78 // Some targets need a custom way to parse operands, some specific instructions
79 // can contain arguments that can represent processor flags and other kinds of
80 // identifiers that need to be mapped to specific valeus in the final encoded
81 // instructions. The target specific custom operand parsing works in the
82 // following way:
84 // 1. A operand match table is built, each entry contains a mnemonic, an
85 // operand class, a mask for all operand positions for that same
86 // class/mnemonic and target features to be checked while trying to match.
88 // 2. The operand matcher will try every possible entry with the same
89 // mnemonic and will check if the target feature for this mnemonic also
90 // matches. After that, if the operand to be matched has its index
91 // present in the mask, a successfull match occurs. Otherwise, fallback
92 // to the regular operand parsing.
94 // 3. For a match success, each operand class that has a 'ParserMethod'
95 // becomes part of a switch from where the custom method is called.
97 //===----------------------------------------------------------------------===//
99 #include "AsmMatcherEmitter.h"
100 #include "CodeGenTarget.h"
101 #include "Record.h"
102 #include "StringMatcher.h"
103 #include "llvm/ADT/OwningPtr.h"
104 #include "llvm/ADT/PointerUnion.h"
105 #include "llvm/ADT/SmallPtrSet.h"
106 #include "llvm/ADT/SmallVector.h"
107 #include "llvm/ADT/STLExtras.h"
108 #include "llvm/ADT/StringExtras.h"
109 #include "llvm/Support/CommandLine.h"
110 #include "llvm/Support/Debug.h"
111 #include <map>
112 #include <set>
113 using namespace llvm;
115 static cl::opt<std::string>
116 MatchPrefix("match-prefix", cl::init(""),
117 cl::desc("Only match instructions with the given prefix"));
119 namespace {
120 class AsmMatcherInfo;
121 struct SubtargetFeatureInfo;
123 /// ClassInfo - Helper class for storing the information about a particular
124 /// class of operands which can be matched.
125 struct ClassInfo {
126 enum ClassInfoKind {
127 /// Invalid kind, for use as a sentinel value.
128 Invalid = 0,
130 /// The class for a particular token.
131 Token,
133 /// The (first) register class, subsequent register classes are
134 /// RegisterClass0+1, and so on.
135 RegisterClass0,
137 /// The (first) user defined class, subsequent user defined classes are
138 /// UserClass0+1, and so on.
139 UserClass0 = 1<<16
142 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
143 /// N) for the Nth user defined class.
144 unsigned Kind;
146 /// SuperClasses - The super classes of this class. Note that for simplicities
147 /// sake user operands only record their immediate super class, while register
148 /// operands include all superclasses.
149 std::vector<ClassInfo*> SuperClasses;
151 /// Name - The full class name, suitable for use in an enum.
152 std::string Name;
154 /// ClassName - The unadorned generic name for this class (e.g., Token).
155 std::string ClassName;
157 /// ValueName - The name of the value this class represents; for a token this
158 /// is the literal token string, for an operand it is the TableGen class (or
159 /// empty if this is a derived class).
160 std::string ValueName;
162 /// PredicateMethod - The name of the operand method to test whether the
163 /// operand matches this class; this is not valid for Token or register kinds.
164 std::string PredicateMethod;
166 /// RenderMethod - The name of the operand method to add this operand to an
167 /// MCInst; this is not valid for Token or register kinds.
168 std::string RenderMethod;
170 /// ParserMethod - The name of the operand method to do a target specific
171 /// parsing on the operand.
172 std::string ParserMethod;
174 /// For register classes, the records for all the registers in this class.
175 std::set<Record*> Registers;
177 public:
178 /// isRegisterClass() - Check if this is a register class.
179 bool isRegisterClass() const {
180 return Kind >= RegisterClass0 && Kind < UserClass0;
183 /// isUserClass() - Check if this is a user defined class.
184 bool isUserClass() const {
185 return Kind >= UserClass0;
188 /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
189 /// are related if they are in the same class hierarchy.
190 bool isRelatedTo(const ClassInfo &RHS) const {
191 // Tokens are only related to tokens.
192 if (Kind == Token || RHS.Kind == Token)
193 return Kind == Token && RHS.Kind == Token;
195 // Registers classes are only related to registers classes, and only if
196 // their intersection is non-empty.
197 if (isRegisterClass() || RHS.isRegisterClass()) {
198 if (!isRegisterClass() || !RHS.isRegisterClass())
199 return false;
201 std::set<Record*> Tmp;
202 std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
203 std::set_intersection(Registers.begin(), Registers.end(),
204 RHS.Registers.begin(), RHS.Registers.end(),
205 II);
207 return !Tmp.empty();
210 // Otherwise we have two users operands; they are related if they are in the
211 // same class hierarchy.
213 // FIXME: This is an oversimplification, they should only be related if they
214 // intersect, however we don't have that information.
215 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
216 const ClassInfo *Root = this;
217 while (!Root->SuperClasses.empty())
218 Root = Root->SuperClasses.front();
220 const ClassInfo *RHSRoot = &RHS;
221 while (!RHSRoot->SuperClasses.empty())
222 RHSRoot = RHSRoot->SuperClasses.front();
224 return Root == RHSRoot;
227 /// isSubsetOf - Test whether this class is a subset of \arg RHS;
228 bool isSubsetOf(const ClassInfo &RHS) const {
229 // This is a subset of RHS if it is the same class...
230 if (this == &RHS)
231 return true;
233 // ... or if any of its super classes are a subset of RHS.
234 for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
235 ie = SuperClasses.end(); it != ie; ++it)
236 if ((*it)->isSubsetOf(RHS))
237 return true;
239 return false;
242 /// operator< - Compare two classes.
243 bool operator<(const ClassInfo &RHS) const {
244 if (this == &RHS)
245 return false;
247 // Unrelated classes can be ordered by kind.
248 if (!isRelatedTo(RHS))
249 return Kind < RHS.Kind;
251 switch (Kind) {
252 case Invalid:
253 assert(0 && "Invalid kind!");
254 case Token:
255 // Tokens are comparable by value.
257 // FIXME: Compare by enum value.
258 return ValueName < RHS.ValueName;
260 default:
261 // This class preceeds the RHS if it is a proper subset of the RHS.
262 if (isSubsetOf(RHS))
263 return true;
264 if (RHS.isSubsetOf(*this))
265 return false;
267 // Otherwise, order by name to ensure we have a total ordering.
268 return ValueName < RHS.ValueName;
273 /// MatchableInfo - Helper class for storing the necessary information for an
274 /// instruction or alias which is capable of being matched.
275 struct MatchableInfo {
276 struct AsmOperand {
277 /// Token - This is the token that the operand came from.
278 StringRef Token;
280 /// The unique class instance this operand should match.
281 ClassInfo *Class;
283 /// The operand name this is, if anything.
284 StringRef SrcOpName;
286 /// The suboperand index within SrcOpName, or -1 for the entire operand.
287 int SubOpIdx;
289 explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1) {}
292 /// ResOperand - This represents a single operand in the result instruction
293 /// generated by the match. In cases (like addressing modes) where a single
294 /// assembler operand expands to multiple MCOperands, this represents the
295 /// single assembler operand, not the MCOperand.
296 struct ResOperand {
297 enum {
298 /// RenderAsmOperand - This represents an operand result that is
299 /// generated by calling the render method on the assembly operand. The
300 /// corresponding AsmOperand is specified by AsmOperandNum.
301 RenderAsmOperand,
303 /// TiedOperand - This represents a result operand that is a duplicate of
304 /// a previous result operand.
305 TiedOperand,
307 /// ImmOperand - This represents an immediate value that is dumped into
308 /// the operand.
309 ImmOperand,
311 /// RegOperand - This represents a fixed register that is dumped in.
312 RegOperand
313 } Kind;
315 union {
316 /// This is the operand # in the AsmOperands list that this should be
317 /// copied from.
318 unsigned AsmOperandNum;
320 /// TiedOperandNum - This is the (earlier) result operand that should be
321 /// copied from.
322 unsigned TiedOperandNum;
324 /// ImmVal - This is the immediate value added to the instruction.
325 int64_t ImmVal;
327 /// Register - This is the register record.
328 Record *Register;
331 /// MINumOperands - The number of MCInst operands populated by this
332 /// operand.
333 unsigned MINumOperands;
335 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
336 ResOperand X;
337 X.Kind = RenderAsmOperand;
338 X.AsmOperandNum = AsmOpNum;
339 X.MINumOperands = NumOperands;
340 return X;
343 static ResOperand getTiedOp(unsigned TiedOperandNum) {
344 ResOperand X;
345 X.Kind = TiedOperand;
346 X.TiedOperandNum = TiedOperandNum;
347 X.MINumOperands = 1;
348 return X;
351 static ResOperand getImmOp(int64_t Val) {
352 ResOperand X;
353 X.Kind = ImmOperand;
354 X.ImmVal = Val;
355 X.MINumOperands = 1;
356 return X;
359 static ResOperand getRegOp(Record *Reg) {
360 ResOperand X;
361 X.Kind = RegOperand;
362 X.Register = Reg;
363 X.MINumOperands = 1;
364 return X;
368 /// TheDef - This is the definition of the instruction or InstAlias that this
369 /// matchable came from.
370 Record *const TheDef;
372 /// DefRec - This is the definition that it came from.
373 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
375 const CodeGenInstruction *getResultInst() const {
376 if (DefRec.is<const CodeGenInstruction*>())
377 return DefRec.get<const CodeGenInstruction*>();
378 return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
381 /// ResOperands - This is the operand list that should be built for the result
382 /// MCInst.
383 std::vector<ResOperand> ResOperands;
385 /// AsmString - The assembly string for this instruction (with variants
386 /// removed), e.g. "movsx $src, $dst".
387 std::string AsmString;
389 /// Mnemonic - This is the first token of the matched instruction, its
390 /// mnemonic.
391 StringRef Mnemonic;
393 /// AsmOperands - The textual operands that this instruction matches,
394 /// annotated with a class and where in the OperandList they were defined.
395 /// This directly corresponds to the tokenized AsmString after the mnemonic is
396 /// removed.
397 SmallVector<AsmOperand, 4> AsmOperands;
399 /// Predicates - The required subtarget features to match this instruction.
400 SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
402 /// ConversionFnKind - The enum value which is passed to the generated
403 /// ConvertToMCInst to convert parsed operands into an MCInst for this
404 /// function.
405 std::string ConversionFnKind;
407 MatchableInfo(const CodeGenInstruction &CGI)
408 : TheDef(CGI.TheDef), DefRec(&CGI), AsmString(CGI.AsmString) {
411 MatchableInfo(const CodeGenInstAlias *Alias)
412 : TheDef(Alias->TheDef), DefRec(Alias), AsmString(Alias->AsmString) {
415 void Initialize(const AsmMatcherInfo &Info,
416 SmallPtrSet<Record*, 16> &SingletonRegisters);
418 /// Validate - Return true if this matchable is a valid thing to match against
419 /// and perform a bunch of validity checking.
420 bool Validate(StringRef CommentDelimiter, bool Hack) const;
422 /// getSingletonRegisterForAsmOperand - If the specified token is a singleton
423 /// register, return the Record for it, otherwise return null.
424 Record *getSingletonRegisterForAsmOperand(unsigned i,
425 const AsmMatcherInfo &Info) const;
427 /// FindAsmOperand - Find the AsmOperand with the specified name and
428 /// suboperand index.
429 int FindAsmOperand(StringRef N, int SubOpIdx) const {
430 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
431 if (N == AsmOperands[i].SrcOpName &&
432 SubOpIdx == AsmOperands[i].SubOpIdx)
433 return i;
434 return -1;
437 /// FindAsmOperandNamed - Find the first AsmOperand with the specified name.
438 /// This does not check the suboperand index.
439 int FindAsmOperandNamed(StringRef N) const {
440 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
441 if (N == AsmOperands[i].SrcOpName)
442 return i;
443 return -1;
446 void BuildInstructionResultOperands();
447 void BuildAliasResultOperands();
449 /// operator< - Compare two matchables.
450 bool operator<(const MatchableInfo &RHS) const {
451 // The primary comparator is the instruction mnemonic.
452 if (Mnemonic != RHS.Mnemonic)
453 return Mnemonic < RHS.Mnemonic;
455 if (AsmOperands.size() != RHS.AsmOperands.size())
456 return AsmOperands.size() < RHS.AsmOperands.size();
458 // Compare lexicographically by operand. The matcher validates that other
459 // orderings wouldn't be ambiguous using \see CouldMatchAmbiguouslyWith().
460 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
461 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
462 return true;
463 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
464 return false;
467 return false;
470 /// CouldMatchAmbiguouslyWith - Check whether this matchable could
471 /// ambiguously match the same set of operands as \arg RHS (without being a
472 /// strictly superior match).
473 bool CouldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
474 // The primary comparator is the instruction mnemonic.
475 if (Mnemonic != RHS.Mnemonic)
476 return false;
478 // The number of operands is unambiguous.
479 if (AsmOperands.size() != RHS.AsmOperands.size())
480 return false;
482 // Otherwise, make sure the ordering of the two instructions is unambiguous
483 // by checking that either (a) a token or operand kind discriminates them,
484 // or (b) the ordering among equivalent kinds is consistent.
486 // Tokens and operand kinds are unambiguous (assuming a correct target
487 // specific parser).
488 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
489 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
490 AsmOperands[i].Class->Kind == ClassInfo::Token)
491 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
492 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
493 return false;
495 // Otherwise, this operand could commute if all operands are equivalent, or
496 // there is a pair of operands that compare less than and a pair that
497 // compare greater than.
498 bool HasLT = false, HasGT = false;
499 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
500 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
501 HasLT = true;
502 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
503 HasGT = true;
506 return !(HasLT ^ HasGT);
509 void dump();
511 private:
512 void TokenizeAsmString(const AsmMatcherInfo &Info);
515 /// SubtargetFeatureInfo - Helper class for storing information on a subtarget
516 /// feature which participates in instruction matching.
517 struct SubtargetFeatureInfo {
518 /// \brief The predicate record for this feature.
519 Record *TheDef;
521 /// \brief An unique index assigned to represent this feature.
522 unsigned Index;
524 SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
526 /// \brief The name of the enumerated constant identifying this feature.
527 std::string getEnumName() const {
528 return "Feature_" + TheDef->getName();
532 struct OperandMatchEntry {
533 unsigned OperandMask;
534 MatchableInfo* MI;
535 ClassInfo *CI;
537 static OperandMatchEntry Create(MatchableInfo* mi, ClassInfo *ci,
538 unsigned opMask) {
539 OperandMatchEntry X;
540 X.OperandMask = opMask;
541 X.CI = ci;
542 X.MI = mi;
543 return X;
548 class AsmMatcherInfo {
549 public:
550 /// Tracked Records
551 RecordKeeper &Records;
553 /// The tablegen AsmParser record.
554 Record *AsmParser;
556 /// Target - The target information.
557 CodeGenTarget &Target;
559 /// The AsmParser "RegisterPrefix" value.
560 std::string RegisterPrefix;
562 /// The classes which are needed for matching.
563 std::vector<ClassInfo*> Classes;
565 /// The information on the matchables to match.
566 std::vector<MatchableInfo*> Matchables;
568 /// Info for custom matching operands by user defined methods.
569 std::vector<OperandMatchEntry> OperandMatchInfo;
571 /// Map of Register records to their class information.
572 std::map<Record*, ClassInfo*> RegisterClasses;
574 /// Map of Predicate records to their subtarget information.
575 std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
577 private:
578 /// Map of token to class information which has already been constructed.
579 std::map<std::string, ClassInfo*> TokenClasses;
581 /// Map of RegisterClass records to their class information.
582 std::map<Record*, ClassInfo*> RegisterClassClasses;
584 /// Map of AsmOperandClass records to their class information.
585 std::map<Record*, ClassInfo*> AsmOperandClasses;
587 private:
588 /// getTokenClass - Lookup or create the class for the given token.
589 ClassInfo *getTokenClass(StringRef Token);
591 /// getOperandClass - Lookup or create the class for the given operand.
592 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
593 int SubOpIdx = -1);
595 /// BuildRegisterClasses - Build the ClassInfo* instances for register
596 /// classes.
597 void BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
599 /// BuildOperandClasses - Build the ClassInfo* instances for user defined
600 /// operand classes.
601 void BuildOperandClasses();
603 void BuildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
604 unsigned AsmOpIdx);
605 void BuildAliasOperandReference(MatchableInfo *II, StringRef OpName,
606 MatchableInfo::AsmOperand &Op);
608 public:
609 AsmMatcherInfo(Record *AsmParser,
610 CodeGenTarget &Target,
611 RecordKeeper &Records);
613 /// BuildInfo - Construct the various tables used during matching.
614 void BuildInfo();
616 /// BuildOperandMatchInfo - Build the necessary information to handle user
617 /// defined operand parsing methods.
618 void BuildOperandMatchInfo();
620 /// getSubtargetFeature - Lookup or create the subtarget feature info for the
621 /// given operand.
622 SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
623 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
624 std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
625 SubtargetFeatures.find(Def);
626 return I == SubtargetFeatures.end() ? 0 : I->second;
629 RecordKeeper &getRecords() const {
630 return Records;
636 void MatchableInfo::dump() {
637 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
639 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
640 AsmOperand &Op = AsmOperands[i];
641 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
642 errs() << '\"' << Op.Token << "\"\n";
646 void MatchableInfo::Initialize(const AsmMatcherInfo &Info,
647 SmallPtrSet<Record*, 16> &SingletonRegisters) {
648 // TODO: Eventually support asmparser for Variant != 0.
649 AsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, 0);
651 TokenizeAsmString(Info);
653 // Compute the require features.
654 std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
655 for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
656 if (SubtargetFeatureInfo *Feature =
657 Info.getSubtargetFeature(Predicates[i]))
658 RequiredFeatures.push_back(Feature);
660 // Collect singleton registers, if used.
661 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
662 if (Record *Reg = getSingletonRegisterForAsmOperand(i, Info))
663 SingletonRegisters.insert(Reg);
667 /// TokenizeAsmString - Tokenize a simplified assembly string.
668 void MatchableInfo::TokenizeAsmString(const AsmMatcherInfo &Info) {
669 StringRef String = AsmString;
670 unsigned Prev = 0;
671 bool InTok = true;
672 for (unsigned i = 0, e = String.size(); i != e; ++i) {
673 switch (String[i]) {
674 case '[':
675 case ']':
676 case '*':
677 case '!':
678 case ' ':
679 case '\t':
680 case ',':
681 if (InTok) {
682 AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
683 InTok = false;
685 if (!isspace(String[i]) && String[i] != ',')
686 AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
687 Prev = i + 1;
688 break;
690 case '\\':
691 if (InTok) {
692 AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
693 InTok = false;
695 ++i;
696 assert(i != String.size() && "Invalid quoted character");
697 AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
698 Prev = i + 1;
699 break;
701 case '$': {
702 if (InTok) {
703 AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
704 InTok = false;
707 // If this isn't "${", treat like a normal token.
708 if (i + 1 == String.size() || String[i + 1] != '{') {
709 Prev = i;
710 break;
713 StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
714 assert(End != String.end() && "Missing brace in operand reference!");
715 size_t EndPos = End - String.begin();
716 AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
717 Prev = EndPos + 1;
718 i = EndPos;
719 break;
722 case '.':
723 if (InTok)
724 AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
725 Prev = i;
726 InTok = true;
727 break;
729 default:
730 InTok = true;
733 if (InTok && Prev != String.size())
734 AsmOperands.push_back(AsmOperand(String.substr(Prev)));
736 // The first token of the instruction is the mnemonic, which must be a
737 // simple string, not a $foo variable or a singleton register.
738 assert(!AsmOperands.empty() && "Instruction has no tokens?");
739 Mnemonic = AsmOperands[0].Token;
740 if (Mnemonic[0] == '$' || getSingletonRegisterForAsmOperand(0, Info))
741 throw TGError(TheDef->getLoc(),
742 "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
744 // Remove the first operand, it is tracked in the mnemonic field.
745 AsmOperands.erase(AsmOperands.begin());
748 bool MatchableInfo::Validate(StringRef CommentDelimiter, bool Hack) const {
749 // Reject matchables with no .s string.
750 if (AsmString.empty())
751 throw TGError(TheDef->getLoc(), "instruction with empty asm string");
753 // Reject any matchables with a newline in them, they should be marked
754 // isCodeGenOnly if they are pseudo instructions.
755 if (AsmString.find('\n') != std::string::npos)
756 throw TGError(TheDef->getLoc(),
757 "multiline instruction is not valid for the asmparser, "
758 "mark it isCodeGenOnly");
760 // Remove comments from the asm string. We know that the asmstring only
761 // has one line.
762 if (!CommentDelimiter.empty() &&
763 StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
764 throw TGError(TheDef->getLoc(),
765 "asmstring for instruction has comment character in it, "
766 "mark it isCodeGenOnly");
768 // Reject matchables with operand modifiers, these aren't something we can
769 // handle, the target should be refactored to use operands instead of
770 // modifiers.
772 // Also, check for instructions which reference the operand multiple times;
773 // this implies a constraint we would not honor.
774 std::set<std::string> OperandNames;
775 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
776 StringRef Tok = AsmOperands[i].Token;
777 if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
778 throw TGError(TheDef->getLoc(),
779 "matchable with operand modifier '" + Tok.str() +
780 "' not supported by asm matcher. Mark isCodeGenOnly!");
782 // Verify that any operand is only mentioned once.
783 // We reject aliases and ignore instructions for now.
784 if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
785 if (!Hack)
786 throw TGError(TheDef->getLoc(),
787 "ERROR: matchable with tied operand '" + Tok.str() +
788 "' can never be matched!");
789 // FIXME: Should reject these. The ARM backend hits this with $lane in a
790 // bunch of instructions. It is unclear what the right answer is.
791 DEBUG({
792 errs() << "warning: '" << TheDef->getName() << "': "
793 << "ignoring instruction with tied operand '"
794 << Tok.str() << "'\n";
796 return false;
800 return true;
803 /// getSingletonRegisterForAsmOperand - If the specified token is a singleton
804 /// register, return the register name, otherwise return a null StringRef.
805 Record *MatchableInfo::
806 getSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info) const{
807 StringRef Tok = AsmOperands[i].Token;
808 if (!Tok.startswith(Info.RegisterPrefix))
809 return 0;
811 StringRef RegName = Tok.substr(Info.RegisterPrefix.size());
812 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
813 return Reg->TheDef;
815 // If there is no register prefix (i.e. "%" in "%eax"), then this may
816 // be some random non-register token, just ignore it.
817 if (Info.RegisterPrefix.empty())
818 return 0;
820 // Otherwise, we have something invalid prefixed with the register prefix,
821 // such as %foo.
822 std::string Err = "unable to find register for '" + RegName.str() +
823 "' (which matches register prefix)";
824 throw TGError(TheDef->getLoc(), Err);
827 static std::string getEnumNameForToken(StringRef Str) {
828 std::string Res;
830 for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
831 switch (*it) {
832 case '*': Res += "_STAR_"; break;
833 case '%': Res += "_PCT_"; break;
834 case ':': Res += "_COLON_"; break;
835 case '!': Res += "_EXCLAIM_"; break;
836 case '.': Res += "_DOT_"; break;
837 default:
838 if (isalnum(*it))
839 Res += *it;
840 else
841 Res += "_" + utostr((unsigned) *it) + "_";
845 return Res;
848 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
849 ClassInfo *&Entry = TokenClasses[Token];
851 if (!Entry) {
852 Entry = new ClassInfo();
853 Entry->Kind = ClassInfo::Token;
854 Entry->ClassName = "Token";
855 Entry->Name = "MCK_" + getEnumNameForToken(Token);
856 Entry->ValueName = Token;
857 Entry->PredicateMethod = "<invalid>";
858 Entry->RenderMethod = "<invalid>";
859 Entry->ParserMethod = "";
860 Classes.push_back(Entry);
863 return Entry;
866 ClassInfo *
867 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
868 int SubOpIdx) {
869 Record *Rec = OI.Rec;
870 if (SubOpIdx != -1)
871 Rec = dynamic_cast<DefInit*>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
873 if (Rec->isSubClassOf("RegisterClass")) {
874 if (ClassInfo *CI = RegisterClassClasses[Rec])
875 return CI;
876 throw TGError(Rec->getLoc(), "register class has no class info!");
879 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
880 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
881 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
882 return CI;
884 throw TGError(Rec->getLoc(), "operand has no match class!");
887 void AsmMatcherInfo::
888 BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
889 const std::vector<CodeGenRegister> &Registers = Target.getRegisters();
890 const std::vector<CodeGenRegisterClass> &RegClassList =
891 Target.getRegisterClasses();
893 // The register sets used for matching.
894 std::set< std::set<Record*> > RegisterSets;
896 // Gather the defined sets.
897 for (std::vector<CodeGenRegisterClass>::const_iterator it =
898 RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
899 RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
900 it->Elements.end()));
902 // Add any required singleton sets.
903 for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
904 ie = SingletonRegisters.end(); it != ie; ++it) {
905 Record *Rec = *it;
906 RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
909 // Introduce derived sets where necessary (when a register does not determine
910 // a unique register set class), and build the mapping of registers to the set
911 // they should classify to.
912 std::map<Record*, std::set<Record*> > RegisterMap;
913 for (std::vector<CodeGenRegister>::const_iterator it = Registers.begin(),
914 ie = Registers.end(); it != ie; ++it) {
915 const CodeGenRegister &CGR = *it;
916 // Compute the intersection of all sets containing this register.
917 std::set<Record*> ContainingSet;
919 for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
920 ie = RegisterSets.end(); it != ie; ++it) {
921 if (!it->count(CGR.TheDef))
922 continue;
924 if (ContainingSet.empty()) {
925 ContainingSet = *it;
926 continue;
929 std::set<Record*> Tmp;
930 std::swap(Tmp, ContainingSet);
931 std::insert_iterator< std::set<Record*> > II(ContainingSet,
932 ContainingSet.begin());
933 std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
936 if (!ContainingSet.empty()) {
937 RegisterSets.insert(ContainingSet);
938 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
942 // Construct the register classes.
943 std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
944 unsigned Index = 0;
945 for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
946 ie = RegisterSets.end(); it != ie; ++it, ++Index) {
947 ClassInfo *CI = new ClassInfo();
948 CI->Kind = ClassInfo::RegisterClass0 + Index;
949 CI->ClassName = "Reg" + utostr(Index);
950 CI->Name = "MCK_Reg" + utostr(Index);
951 CI->ValueName = "";
952 CI->PredicateMethod = ""; // unused
953 CI->RenderMethod = "addRegOperands";
954 CI->Registers = *it;
955 Classes.push_back(CI);
956 RegisterSetClasses.insert(std::make_pair(*it, CI));
959 // Find the superclasses; we could compute only the subgroup lattice edges,
960 // but there isn't really a point.
961 for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
962 ie = RegisterSets.end(); it != ie; ++it) {
963 ClassInfo *CI = RegisterSetClasses[*it];
964 for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
965 ie2 = RegisterSets.end(); it2 != ie2; ++it2)
966 if (*it != *it2 &&
967 std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
968 CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
971 // Name the register classes which correspond to a user defined RegisterClass.
972 for (std::vector<CodeGenRegisterClass>::const_iterator
973 it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
974 ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
975 it->Elements.end())];
976 if (CI->ValueName.empty()) {
977 CI->ClassName = it->getName();
978 CI->Name = "MCK_" + it->getName();
979 CI->ValueName = it->getName();
980 } else
981 CI->ValueName = CI->ValueName + "," + it->getName();
983 RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
986 // Populate the map for individual registers.
987 for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
988 ie = RegisterMap.end(); it != ie; ++it)
989 RegisterClasses[it->first] = RegisterSetClasses[it->second];
991 // Name the register classes which correspond to singleton registers.
992 for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
993 ie = SingletonRegisters.end(); it != ie; ++it) {
994 Record *Rec = *it;
995 ClassInfo *CI = RegisterClasses[Rec];
996 assert(CI && "Missing singleton register class info!");
998 if (CI->ValueName.empty()) {
999 CI->ClassName = Rec->getName();
1000 CI->Name = "MCK_" + Rec->getName();
1001 CI->ValueName = Rec->getName();
1002 } else
1003 CI->ValueName = CI->ValueName + "," + Rec->getName();
1007 void AsmMatcherInfo::BuildOperandClasses() {
1008 std::vector<Record*> AsmOperands =
1009 Records.getAllDerivedDefinitions("AsmOperandClass");
1011 // Pre-populate AsmOperandClasses map.
1012 for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1013 ie = AsmOperands.end(); it != ie; ++it)
1014 AsmOperandClasses[*it] = new ClassInfo();
1016 unsigned Index = 0;
1017 for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1018 ie = AsmOperands.end(); it != ie; ++it, ++Index) {
1019 ClassInfo *CI = AsmOperandClasses[*it];
1020 CI->Kind = ClassInfo::UserClass0 + Index;
1022 ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
1023 for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
1024 DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
1025 if (!DI) {
1026 PrintError((*it)->getLoc(), "Invalid super class reference!");
1027 continue;
1030 ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1031 if (!SC)
1032 PrintError((*it)->getLoc(), "Invalid super class reference!");
1033 else
1034 CI->SuperClasses.push_back(SC);
1036 CI->ClassName = (*it)->getValueAsString("Name");
1037 CI->Name = "MCK_" + CI->ClassName;
1038 CI->ValueName = (*it)->getName();
1040 // Get or construct the predicate method name.
1041 Init *PMName = (*it)->getValueInit("PredicateMethod");
1042 if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
1043 CI->PredicateMethod = SI->getValue();
1044 } else {
1045 assert(dynamic_cast<UnsetInit*>(PMName) &&
1046 "Unexpected PredicateMethod field!");
1047 CI->PredicateMethod = "is" + CI->ClassName;
1050 // Get or construct the render method name.
1051 Init *RMName = (*it)->getValueInit("RenderMethod");
1052 if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
1053 CI->RenderMethod = SI->getValue();
1054 } else {
1055 assert(dynamic_cast<UnsetInit*>(RMName) &&
1056 "Unexpected RenderMethod field!");
1057 CI->RenderMethod = "add" + CI->ClassName + "Operands";
1060 // Get the parse method name or leave it as empty.
1061 Init *PRMName = (*it)->getValueInit("ParserMethod");
1062 if (StringInit *SI = dynamic_cast<StringInit*>(PRMName))
1063 CI->ParserMethod = SI->getValue();
1065 AsmOperandClasses[*it] = CI;
1066 Classes.push_back(CI);
1070 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1071 CodeGenTarget &target,
1072 RecordKeeper &records)
1073 : Records(records), AsmParser(asmParser), Target(target),
1074 RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix")) {
1077 /// BuildOperandMatchInfo - Build the necessary information to handle user
1078 /// defined operand parsing methods.
1079 void AsmMatcherInfo::BuildOperandMatchInfo() {
1081 /// Map containing a mask with all operands indicies that can be found for
1082 /// that class inside a instruction.
1083 std::map<ClassInfo*, unsigned> OpClassMask;
1085 for (std::vector<MatchableInfo*>::const_iterator it =
1086 Matchables.begin(), ie = Matchables.end();
1087 it != ie; ++it) {
1088 MatchableInfo &II = **it;
1089 OpClassMask.clear();
1091 // Keep track of all operands of this instructions which belong to the
1092 // same class.
1093 for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
1094 MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
1095 if (Op.Class->ParserMethod.empty())
1096 continue;
1097 unsigned &OperandMask = OpClassMask[Op.Class];
1098 OperandMask |= (1 << i);
1101 // Generate operand match info for each mnemonic/operand class pair.
1102 for (std::map<ClassInfo*, unsigned>::iterator iit = OpClassMask.begin(),
1103 iie = OpClassMask.end(); iit != iie; ++iit) {
1104 unsigned OpMask = iit->second;
1105 ClassInfo *CI = iit->first;
1106 OperandMatchInfo.push_back(OperandMatchEntry::Create(&II, CI, OpMask));
1111 void AsmMatcherInfo::BuildInfo() {
1112 // Build information about all of the AssemblerPredicates.
1113 std::vector<Record*> AllPredicates =
1114 Records.getAllDerivedDefinitions("Predicate");
1115 for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
1116 Record *Pred = AllPredicates[i];
1117 // Ignore predicates that are not intended for the assembler.
1118 if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1119 continue;
1121 if (Pred->getName().empty())
1122 throw TGError(Pred->getLoc(), "Predicate has no name!");
1124 unsigned FeatureNo = SubtargetFeatures.size();
1125 SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
1126 assert(FeatureNo < 32 && "Too many subtarget features!");
1129 StringRef CommentDelimiter = AsmParser->getValueAsString("CommentDelimiter");
1131 // Parse the instructions; we need to do this first so that we can gather the
1132 // singleton register classes.
1133 SmallPtrSet<Record*, 16> SingletonRegisters;
1134 for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
1135 E = Target.inst_end(); I != E; ++I) {
1136 const CodeGenInstruction &CGI = **I;
1138 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1139 // filter the set of instructions we consider.
1140 if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
1141 continue;
1143 // Ignore "codegen only" instructions.
1144 if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
1145 continue;
1147 // Validate the operand list to ensure we can handle this instruction.
1148 for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1149 const CGIOperandList::OperandInfo &OI = CGI.Operands[i];
1151 // Validate tied operands.
1152 if (OI.getTiedRegister() != -1) {
1153 // If we have a tied operand that consists of multiple MCOperands,
1154 // reject it. We reject aliases and ignore instructions for now.
1155 if (OI.MINumOperands != 1) {
1156 // FIXME: Should reject these. The ARM backend hits this with $lane
1157 // in a bunch of instructions. It is unclear what the right answer is.
1158 DEBUG({
1159 errs() << "warning: '" << CGI.TheDef->getName() << "': "
1160 << "ignoring instruction with multi-operand tied operand '"
1161 << OI.Name << "'\n";
1163 continue;
1168 OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
1170 II->Initialize(*this, SingletonRegisters);
1172 // Ignore instructions which shouldn't be matched and diagnose invalid
1173 // instruction definitions with an error.
1174 if (!II->Validate(CommentDelimiter, true))
1175 continue;
1177 // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
1179 // FIXME: This is a total hack.
1180 if (StringRef(II->TheDef->getName()).startswith("Int_") ||
1181 StringRef(II->TheDef->getName()).endswith("_Int"))
1182 continue;
1184 Matchables.push_back(II.take());
1187 // Parse all of the InstAlias definitions and stick them in the list of
1188 // matchables.
1189 std::vector<Record*> AllInstAliases =
1190 Records.getAllDerivedDefinitions("InstAlias");
1191 for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1192 CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
1194 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1195 // filter the set of instruction aliases we consider, based on the target
1196 // instruction.
1197 if (!StringRef(Alias->ResultInst->TheDef->getName()).startswith(
1198 MatchPrefix))
1199 continue;
1201 OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
1203 II->Initialize(*this, SingletonRegisters);
1205 // Validate the alias definitions.
1206 II->Validate(CommentDelimiter, false);
1208 Matchables.push_back(II.take());
1211 // Build info for the register classes.
1212 BuildRegisterClasses(SingletonRegisters);
1214 // Build info for the user defined assembly operand classes.
1215 BuildOperandClasses();
1217 // Build the information about matchables, now that we have fully formed
1218 // classes.
1219 for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
1220 ie = Matchables.end(); it != ie; ++it) {
1221 MatchableInfo *II = *it;
1223 // Parse the tokens after the mnemonic.
1224 // Note: BuildInstructionOperandReference may insert new AsmOperands, so
1225 // don't precompute the loop bound.
1226 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1227 MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1228 StringRef Token = Op.Token;
1230 // Check for singleton registers.
1231 if (Record *RegRecord = II->getSingletonRegisterForAsmOperand(i, *this)) {
1232 Op.Class = RegisterClasses[RegRecord];
1233 assert(Op.Class && Op.Class->Registers.size() == 1 &&
1234 "Unexpected class for singleton register");
1235 continue;
1238 // Check for simple tokens.
1239 if (Token[0] != '$') {
1240 Op.Class = getTokenClass(Token);
1241 continue;
1244 if (Token.size() > 1 && isdigit(Token[1])) {
1245 Op.Class = getTokenClass(Token);
1246 continue;
1249 // Otherwise this is an operand reference.
1250 StringRef OperandName;
1251 if (Token[1] == '{')
1252 OperandName = Token.substr(2, Token.size() - 3);
1253 else
1254 OperandName = Token.substr(1);
1256 if (II->DefRec.is<const CodeGenInstruction*>())
1257 BuildInstructionOperandReference(II, OperandName, i);
1258 else
1259 BuildAliasOperandReference(II, OperandName, Op);
1262 if (II->DefRec.is<const CodeGenInstruction*>())
1263 II->BuildInstructionResultOperands();
1264 else
1265 II->BuildAliasResultOperands();
1268 // Reorder classes so that classes preceed super classes.
1269 std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1272 /// BuildInstructionOperandReference - The specified operand is a reference to a
1273 /// named operand such as $src. Resolve the Class and OperandInfo pointers.
1274 void AsmMatcherInfo::
1275 BuildInstructionOperandReference(MatchableInfo *II,
1276 StringRef OperandName,
1277 unsigned AsmOpIdx) {
1278 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1279 const CGIOperandList &Operands = CGI.Operands;
1280 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1282 // Map this token to an operand.
1283 unsigned Idx;
1284 if (!Operands.hasOperandNamed(OperandName, Idx))
1285 throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1286 OperandName.str() + "'");
1288 // If the instruction operand has multiple suboperands, but the parser
1289 // match class for the asm operand is still the default "ImmAsmOperand",
1290 // then handle each suboperand separately.
1291 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1292 Record *Rec = Operands[Idx].Rec;
1293 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1294 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1295 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1296 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1297 StringRef Token = Op->Token; // save this in case Op gets moved
1298 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1299 MatchableInfo::AsmOperand NewAsmOp(Token);
1300 NewAsmOp.SubOpIdx = SI;
1301 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1303 // Replace Op with first suboperand.
1304 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1305 Op->SubOpIdx = 0;
1309 // Set up the operand class.
1310 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1312 // If the named operand is tied, canonicalize it to the untied operand.
1313 // For example, something like:
1314 // (outs GPR:$dst), (ins GPR:$src)
1315 // with an asmstring of
1316 // "inc $src"
1317 // we want to canonicalize to:
1318 // "inc $dst"
1319 // so that we know how to provide the $dst operand when filling in the result.
1320 int OITied = Operands[Idx].getTiedRegister();
1321 if (OITied != -1) {
1322 // The tied operand index is an MIOperand index, find the operand that
1323 // contains it.
1324 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1325 OperandName = Operands[Idx.first].Name;
1326 Op->SubOpIdx = Idx.second;
1329 Op->SrcOpName = OperandName;
1332 /// BuildAliasOperandReference - When parsing an operand reference out of the
1333 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1334 /// operand reference is by looking it up in the result pattern definition.
1335 void AsmMatcherInfo::BuildAliasOperandReference(MatchableInfo *II,
1336 StringRef OperandName,
1337 MatchableInfo::AsmOperand &Op) {
1338 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1340 // Set up the operand class.
1341 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1342 if (CGA.ResultOperands[i].isRecord() &&
1343 CGA.ResultOperands[i].getName() == OperandName) {
1344 // It's safe to go with the first one we find, because CodeGenInstAlias
1345 // validates that all operands with the same name have the same record.
1346 unsigned ResultIdx = CGA.ResultInstOperandIndex[i].first;
1347 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1348 Op.Class = getOperandClass(CGA.ResultInst->Operands[ResultIdx],
1349 Op.SubOpIdx);
1350 Op.SrcOpName = OperandName;
1351 return;
1354 throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1355 OperandName.str() + "'");
1358 void MatchableInfo::BuildInstructionResultOperands() {
1359 const CodeGenInstruction *ResultInst = getResultInst();
1361 // Loop over all operands of the result instruction, determining how to
1362 // populate them.
1363 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1364 const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1366 // If this is a tied operand, just copy from the previously handled operand.
1367 int TiedOp = OpInfo.getTiedRegister();
1368 if (TiedOp != -1) {
1369 ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1370 continue;
1373 // Find out what operand from the asmparser this MCInst operand comes from.
1374 int SrcOperand = FindAsmOperandNamed(OpInfo.Name);
1375 if (OpInfo.Name.empty() || SrcOperand == -1)
1376 throw TGError(TheDef->getLoc(), "Instruction '" +
1377 TheDef->getName() + "' has operand '" + OpInfo.Name +
1378 "' that doesn't appear in asm string!");
1380 // Check if the one AsmOperand populates the entire operand.
1381 unsigned NumOperands = OpInfo.MINumOperands;
1382 if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1383 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1384 continue;
1387 // Add a separate ResOperand for each suboperand.
1388 for (unsigned AI = 0; AI < NumOperands; ++AI) {
1389 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1390 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1391 "unexpected AsmOperands for suboperands");
1392 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1397 void MatchableInfo::BuildAliasResultOperands() {
1398 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1399 const CodeGenInstruction *ResultInst = getResultInst();
1401 // Loop over all operands of the result instruction, determining how to
1402 // populate them.
1403 unsigned AliasOpNo = 0;
1404 unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1405 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1406 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1408 // If this is a tied operand, just copy from the previously handled operand.
1409 int TiedOp = OpInfo->getTiedRegister();
1410 if (TiedOp != -1) {
1411 ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1412 continue;
1415 // Handle all the suboperands for this operand.
1416 const std::string &OpName = OpInfo->Name;
1417 for ( ; AliasOpNo < LastOpNo &&
1418 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1419 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1421 // Find out what operand from the asmparser that this MCInst operand
1422 // comes from.
1423 switch (CGA.ResultOperands[AliasOpNo].Kind) {
1424 default: assert(0 && "unexpected InstAlias operand kind");
1425 case CodeGenInstAlias::ResultOperand::K_Record: {
1426 StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1427 int SrcOperand = FindAsmOperand(Name, SubIdx);
1428 if (SrcOperand == -1)
1429 throw TGError(TheDef->getLoc(), "Instruction '" +
1430 TheDef->getName() + "' has operand '" + OpName +
1431 "' that doesn't appear in asm string!");
1432 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1433 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1434 NumOperands));
1435 break;
1437 case CodeGenInstAlias::ResultOperand::K_Imm: {
1438 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1439 ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1440 break;
1442 case CodeGenInstAlias::ResultOperand::K_Reg: {
1443 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1444 ResOperands.push_back(ResOperand::getRegOp(Reg));
1445 break;
1452 static void EmitConvertToMCInst(CodeGenTarget &Target, StringRef ClassName,
1453 std::vector<MatchableInfo*> &Infos,
1454 raw_ostream &OS) {
1455 // Write the convert function to a separate stream, so we can drop it after
1456 // the enum.
1457 std::string ConvertFnBody;
1458 raw_string_ostream CvtOS(ConvertFnBody);
1460 // Function we have already generated.
1461 std::set<std::string> GeneratedFns;
1463 // Start the unified conversion function.
1464 CvtOS << "bool " << Target.getName() << ClassName << "::\n";
1465 CvtOS << "ConvertToMCInst(unsigned Kind, MCInst &Inst, "
1466 << "unsigned Opcode,\n"
1467 << " const SmallVectorImpl<MCParsedAsmOperand*"
1468 << "> &Operands) {\n";
1469 CvtOS << " Inst.setOpcode(Opcode);\n";
1470 CvtOS << " switch (Kind) {\n";
1471 CvtOS << " default:\n";
1473 // Start the enum, which we will generate inline.
1475 OS << "// Unified function for converting operands to MCInst instances.\n\n";
1476 OS << "enum ConversionKind {\n";
1478 // TargetOperandClass - This is the target's operand class, like X86Operand.
1479 std::string TargetOperandClass = Target.getName() + "Operand";
1481 for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
1482 ie = Infos.end(); it != ie; ++it) {
1483 MatchableInfo &II = **it;
1485 // Check if we have a custom match function.
1486 std::string AsmMatchConverter =
1487 II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
1488 if (!AsmMatchConverter.empty()) {
1489 std::string Signature = "ConvertCustom_" + AsmMatchConverter;
1490 II.ConversionFnKind = Signature;
1492 // Check if we have already generated this signature.
1493 if (!GeneratedFns.insert(Signature).second)
1494 continue;
1496 // If not, emit it now. Add to the enum list.
1497 OS << " " << Signature << ",\n";
1499 CvtOS << " case " << Signature << ":\n";
1500 CvtOS << " return " << AsmMatchConverter
1501 << "(Inst, Opcode, Operands);\n";
1502 continue;
1505 // Build the conversion function signature.
1506 std::string Signature = "Convert";
1507 std::string CaseBody;
1508 raw_string_ostream CaseOS(CaseBody);
1510 // Compute the convert enum and the case body.
1511 for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
1512 const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
1514 // Generate code to populate each result operand.
1515 switch (OpInfo.Kind) {
1516 case MatchableInfo::ResOperand::RenderAsmOperand: {
1517 // This comes from something we parsed.
1518 MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
1520 // Registers are always converted the same, don't duplicate the
1521 // conversion function based on them.
1522 Signature += "__";
1523 if (Op.Class->isRegisterClass())
1524 Signature += "Reg";
1525 else
1526 Signature += Op.Class->ClassName;
1527 Signature += utostr(OpInfo.MINumOperands);
1528 Signature += "_" + itostr(OpInfo.AsmOperandNum);
1530 CaseOS << " ((" << TargetOperandClass << "*)Operands["
1531 << (OpInfo.AsmOperandNum+1) << "])->" << Op.Class->RenderMethod
1532 << "(Inst, " << OpInfo.MINumOperands << ");\n";
1533 break;
1536 case MatchableInfo::ResOperand::TiedOperand: {
1537 // If this operand is tied to a previous one, just copy the MCInst
1538 // operand from the earlier one.We can only tie single MCOperand values.
1539 //assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
1540 unsigned TiedOp = OpInfo.TiedOperandNum;
1541 assert(i > TiedOp && "Tied operand preceeds its target!");
1542 CaseOS << " Inst.addOperand(Inst.getOperand(" << TiedOp << "));\n";
1543 Signature += "__Tie" + utostr(TiedOp);
1544 break;
1546 case MatchableInfo::ResOperand::ImmOperand: {
1547 int64_t Val = OpInfo.ImmVal;
1548 CaseOS << " Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n";
1549 Signature += "__imm" + itostr(Val);
1550 break;
1552 case MatchableInfo::ResOperand::RegOperand: {
1553 if (OpInfo.Register == 0) {
1554 CaseOS << " Inst.addOperand(MCOperand::CreateReg(0));\n";
1555 Signature += "__reg0";
1556 } else {
1557 std::string N = getQualifiedName(OpInfo.Register);
1558 CaseOS << " Inst.addOperand(MCOperand::CreateReg(" << N << "));\n";
1559 Signature += "__reg" + OpInfo.Register->getName();
1565 II.ConversionFnKind = Signature;
1567 // Check if we have already generated this signature.
1568 if (!GeneratedFns.insert(Signature).second)
1569 continue;
1571 // If not, emit it now. Add to the enum list.
1572 OS << " " << Signature << ",\n";
1574 CvtOS << " case " << Signature << ":\n";
1575 CvtOS << CaseOS.str();
1576 CvtOS << " return true;\n";
1579 // Finish the convert function.
1581 CvtOS << " }\n";
1582 CvtOS << " return false;\n";
1583 CvtOS << "}\n\n";
1585 // Finish the enum, and drop the convert function after it.
1587 OS << " NumConversionVariants\n";
1588 OS << "};\n\n";
1590 OS << CvtOS.str();
1593 /// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1594 static void EmitMatchClassEnumeration(CodeGenTarget &Target,
1595 std::vector<ClassInfo*> &Infos,
1596 raw_ostream &OS) {
1597 OS << "namespace {\n\n";
1599 OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1600 << "/// instruction matching.\n";
1601 OS << "enum MatchClassKind {\n";
1602 OS << " InvalidMatchClass = 0,\n";
1603 for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1604 ie = Infos.end(); it != ie; ++it) {
1605 ClassInfo &CI = **it;
1606 OS << " " << CI.Name << ", // ";
1607 if (CI.Kind == ClassInfo::Token) {
1608 OS << "'" << CI.ValueName << "'\n";
1609 } else if (CI.isRegisterClass()) {
1610 if (!CI.ValueName.empty())
1611 OS << "register class '" << CI.ValueName << "'\n";
1612 else
1613 OS << "derived register class\n";
1614 } else {
1615 OS << "user defined class '" << CI.ValueName << "'\n";
1618 OS << " NumMatchClassKinds\n";
1619 OS << "};\n\n";
1621 OS << "}\n\n";
1624 /// EmitValidateOperandClass - Emit the function to validate an operand class.
1625 static void EmitValidateOperandClass(AsmMatcherInfo &Info,
1626 raw_ostream &OS) {
1627 OS << "static bool ValidateOperandClass(MCParsedAsmOperand *GOp, "
1628 << "MatchClassKind Kind) {\n";
1629 OS << " " << Info.Target.getName() << "Operand &Operand = *("
1630 << Info.Target.getName() << "Operand*)GOp;\n";
1632 // Check for Token operands first.
1633 OS << " if (Operand.isToken())\n";
1634 OS << " return MatchTokenString(Operand.getToken()) == Kind;\n\n";
1636 // Check for register operands, including sub-classes.
1637 OS << " if (Operand.isReg()) {\n";
1638 OS << " MatchClassKind OpKind;\n";
1639 OS << " switch (Operand.getReg()) {\n";
1640 OS << " default: OpKind = InvalidMatchClass; break;\n";
1641 for (std::map<Record*, ClassInfo*>::iterator
1642 it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
1643 it != ie; ++it)
1644 OS << " case " << Info.Target.getName() << "::"
1645 << it->first->getName() << ": OpKind = " << it->second->Name
1646 << "; break;\n";
1647 OS << " }\n";
1648 OS << " return IsSubclass(OpKind, Kind);\n";
1649 OS << " }\n\n";
1651 // Check the user classes. We don't care what order since we're only
1652 // actually matching against one of them.
1653 for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1654 ie = Info.Classes.end(); it != ie; ++it) {
1655 ClassInfo &CI = **it;
1657 if (!CI.isUserClass())
1658 continue;
1660 OS << " // '" << CI.ClassName << "' class\n";
1661 OS << " if (Kind == " << CI.Name
1662 << " && Operand." << CI.PredicateMethod << "()) {\n";
1663 OS << " return true;\n";
1664 OS << " }\n\n";
1667 OS << " return false;\n";
1668 OS << "}\n\n";
1671 /// EmitIsSubclass - Emit the subclass predicate function.
1672 static void EmitIsSubclass(CodeGenTarget &Target,
1673 std::vector<ClassInfo*> &Infos,
1674 raw_ostream &OS) {
1675 OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1676 OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
1677 OS << " if (A == B)\n";
1678 OS << " return true;\n\n";
1680 OS << " switch (A) {\n";
1681 OS << " default:\n";
1682 OS << " return false;\n";
1683 for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1684 ie = Infos.end(); it != ie; ++it) {
1685 ClassInfo &A = **it;
1687 if (A.Kind != ClassInfo::Token) {
1688 std::vector<StringRef> SuperClasses;
1689 for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1690 ie = Infos.end(); it != ie; ++it) {
1691 ClassInfo &B = **it;
1693 if (&A != &B && A.isSubsetOf(B))
1694 SuperClasses.push_back(B.Name);
1697 if (SuperClasses.empty())
1698 continue;
1700 OS << "\n case " << A.Name << ":\n";
1702 if (SuperClasses.size() == 1) {
1703 OS << " return B == " << SuperClasses.back() << ";\n";
1704 continue;
1707 OS << " switch (B) {\n";
1708 OS << " default: return false;\n";
1709 for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
1710 OS << " case " << SuperClasses[i] << ": return true;\n";
1711 OS << " }\n";
1714 OS << " }\n";
1715 OS << "}\n\n";
1718 /// EmitMatchTokenString - Emit the function to match a token string to the
1719 /// appropriate match class value.
1720 static void EmitMatchTokenString(CodeGenTarget &Target,
1721 std::vector<ClassInfo*> &Infos,
1722 raw_ostream &OS) {
1723 // Construct the match list.
1724 std::vector<StringMatcher::StringPair> Matches;
1725 for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1726 ie = Infos.end(); it != ie; ++it) {
1727 ClassInfo &CI = **it;
1729 if (CI.Kind == ClassInfo::Token)
1730 Matches.push_back(StringMatcher::StringPair(CI.ValueName,
1731 "return " + CI.Name + ";"));
1734 OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
1736 StringMatcher("Name", Matches, OS).Emit();
1738 OS << " return InvalidMatchClass;\n";
1739 OS << "}\n\n";
1742 /// EmitMatchRegisterName - Emit the function to match a string to the target
1743 /// specific register enum.
1744 static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
1745 raw_ostream &OS) {
1746 // Construct the match list.
1747 std::vector<StringMatcher::StringPair> Matches;
1748 for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
1749 const CodeGenRegister &Reg = Target.getRegisters()[i];
1750 if (Reg.TheDef->getValueAsString("AsmName").empty())
1751 continue;
1753 Matches.push_back(StringMatcher::StringPair(
1754 Reg.TheDef->getValueAsString("AsmName"),
1755 "return " + utostr(i + 1) + ";"));
1758 OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
1760 StringMatcher("Name", Matches, OS).Emit();
1762 OS << " return 0;\n";
1763 OS << "}\n\n";
1766 /// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
1767 /// definitions.
1768 static void EmitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
1769 raw_ostream &OS) {
1770 OS << "// Flags for subtarget features that participate in "
1771 << "instruction matching.\n";
1772 OS << "enum SubtargetFeatureFlag {\n";
1773 for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1774 it = Info.SubtargetFeatures.begin(),
1775 ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1776 SubtargetFeatureInfo &SFI = *it->second;
1777 OS << " " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
1779 OS << " Feature_None = 0\n";
1780 OS << "};\n\n";
1783 /// EmitComputeAvailableFeatures - Emit the function to compute the list of
1784 /// available features given a subtarget.
1785 static void EmitComputeAvailableFeatures(AsmMatcherInfo &Info,
1786 raw_ostream &OS) {
1787 std::string ClassName =
1788 Info.AsmParser->getValueAsString("AsmParserClassName");
1790 OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
1791 << "ComputeAvailableFeatures(const " << Info.Target.getName()
1792 << "Subtarget *Subtarget) const {\n";
1793 OS << " unsigned Features = 0;\n";
1794 for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1795 it = Info.SubtargetFeatures.begin(),
1796 ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1797 SubtargetFeatureInfo &SFI = *it->second;
1798 OS << " if (" << SFI.TheDef->getValueAsString("CondString")
1799 << ")\n";
1800 OS << " Features |= " << SFI.getEnumName() << ";\n";
1802 OS << " return Features;\n";
1803 OS << "}\n\n";
1806 static std::string GetAliasRequiredFeatures(Record *R,
1807 const AsmMatcherInfo &Info) {
1808 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
1809 std::string Result;
1810 unsigned NumFeatures = 0;
1811 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
1812 SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
1814 if (F == 0)
1815 throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
1816 "' is not marked as an AssemblerPredicate!");
1818 if (NumFeatures)
1819 Result += '|';
1821 Result += F->getEnumName();
1822 ++NumFeatures;
1825 if (NumFeatures > 1)
1826 Result = '(' + Result + ')';
1827 return Result;
1830 /// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
1831 /// emit a function for them and return true, otherwise return false.
1832 static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
1833 // Ignore aliases when match-prefix is set.
1834 if (!MatchPrefix.empty())
1835 return false;
1837 std::vector<Record*> Aliases =
1838 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
1839 if (Aliases.empty()) return false;
1841 OS << "static void ApplyMnemonicAliases(StringRef &Mnemonic, "
1842 "unsigned Features) {\n";
1844 // Keep track of all the aliases from a mnemonic. Use an std::map so that the
1845 // iteration order of the map is stable.
1846 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
1848 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
1849 Record *R = Aliases[i];
1850 AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
1853 // Process each alias a "from" mnemonic at a time, building the code executed
1854 // by the string remapper.
1855 std::vector<StringMatcher::StringPair> Cases;
1856 for (std::map<std::string, std::vector<Record*> >::iterator
1857 I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
1858 I != E; ++I) {
1859 const std::vector<Record*> &ToVec = I->second;
1861 // Loop through each alias and emit code that handles each case. If there
1862 // are two instructions without predicates, emit an error. If there is one,
1863 // emit it last.
1864 std::string MatchCode;
1865 int AliasWithNoPredicate = -1;
1867 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
1868 Record *R = ToVec[i];
1869 std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
1871 // If this unconditionally matches, remember it for later and diagnose
1872 // duplicates.
1873 if (FeatureMask.empty()) {
1874 if (AliasWithNoPredicate != -1) {
1875 // We can't have two aliases from the same mnemonic with no predicate.
1876 PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
1877 "two MnemonicAliases with the same 'from' mnemonic!");
1878 throw TGError(R->getLoc(), "this is the other MnemonicAlias.");
1881 AliasWithNoPredicate = i;
1882 continue;
1884 if (R->getValueAsString("ToMnemonic") == I->first)
1885 throw TGError(R->getLoc(), "MnemonicAlias to the same string");
1887 if (!MatchCode.empty())
1888 MatchCode += "else ";
1889 MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
1890 MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
1893 if (AliasWithNoPredicate != -1) {
1894 Record *R = ToVec[AliasWithNoPredicate];
1895 if (!MatchCode.empty())
1896 MatchCode += "else\n ";
1897 MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
1900 MatchCode += "return;";
1902 Cases.push_back(std::make_pair(I->first, MatchCode));
1905 StringMatcher("Mnemonic", Cases, OS).Emit();
1906 OS << "}\n\n";
1908 return true;
1911 static void EmitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
1912 const AsmMatcherInfo &Info, StringRef ClassName) {
1913 // Emit the static custom operand parsing table;
1914 OS << "namespace {\n";
1915 OS << " struct OperandMatchEntry {\n";
1916 OS << " const char *Mnemonic;\n";
1917 OS << " unsigned OperandMask;\n";
1918 OS << " MatchClassKind Class;\n";
1919 OS << " unsigned RequiredFeatures;\n";
1920 OS << " };\n\n";
1922 OS << " // Predicate for searching for an opcode.\n";
1923 OS << " struct LessOpcodeOperand {\n";
1924 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
1925 OS << " return StringRef(LHS.Mnemonic) < RHS;\n";
1926 OS << " }\n";
1927 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
1928 OS << " return LHS < StringRef(RHS.Mnemonic);\n";
1929 OS << " }\n";
1930 OS << " bool operator()(const OperandMatchEntry &LHS,";
1931 OS << " const OperandMatchEntry &RHS) {\n";
1932 OS << " return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
1933 OS << " }\n";
1934 OS << " };\n";
1936 OS << "} // end anonymous namespace.\n\n";
1938 OS << "static const OperandMatchEntry OperandMatchTable["
1939 << Info.OperandMatchInfo.size() << "] = {\n";
1941 OS << " /* Mnemonic, Operand List Mask, Operand Class, Features */\n";
1942 for (std::vector<OperandMatchEntry>::const_iterator it =
1943 Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
1944 it != ie; ++it) {
1945 const OperandMatchEntry &OMI = *it;
1946 const MatchableInfo &II = *OMI.MI;
1948 OS << " { \"" << II.Mnemonic << "\""
1949 << ", " << OMI.OperandMask;
1951 OS << " /* ";
1952 bool printComma = false;
1953 for (int i = 0, e = 31; i !=e; ++i)
1954 if (OMI.OperandMask & (1 << i)) {
1955 if (printComma)
1956 OS << ", ";
1957 OS << i;
1958 printComma = true;
1960 OS << " */";
1962 OS << ", " << OMI.CI->Name
1963 << ", ";
1965 // Write the required features mask.
1966 if (!II.RequiredFeatures.empty()) {
1967 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
1968 if (i) OS << "|";
1969 OS << II.RequiredFeatures[i]->getEnumName();
1971 } else
1972 OS << "0";
1973 OS << " },\n";
1975 OS << "};\n\n";
1977 // Emit the operand class switch to call the correct custom parser for
1978 // the found operand class.
1979 OS << Target.getName() << ClassName << "::OperandMatchResultTy "
1980 << Target.getName() << ClassName << "::\n"
1981 << "TryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>"
1982 << " &Operands,\n unsigned MCK) {\n\n"
1983 << " switch(MCK) {\n";
1985 for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
1986 ie = Info.Classes.end(); it != ie; ++it) {
1987 ClassInfo *CI = *it;
1988 if (CI->ParserMethod.empty())
1989 continue;
1990 OS << " case " << CI->Name << ":\n"
1991 << " return " << CI->ParserMethod << "(Operands);\n";
1994 OS << " default:\n";
1995 OS << " return MatchOperand_NoMatch;\n";
1996 OS << " }\n";
1997 OS << " return MatchOperand_NoMatch;\n";
1998 OS << "}\n\n";
2000 // Emit the static custom operand parser. This code is very similar with
2001 // the other matcher. Also use MatchResultTy here just in case we go for
2002 // a better error handling.
2003 OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2004 << Target.getName() << ClassName << "::\n"
2005 << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>"
2006 << " &Operands,\n StringRef Mnemonic) {\n";
2008 // Emit code to get the available features.
2009 OS << " // Get the current feature set.\n";
2010 OS << " unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2012 OS << " // Get the next operand index.\n";
2013 OS << " unsigned NextOpNum = Operands.size()-1;\n";
2015 // Emit code to search the table.
2016 OS << " // Search the table.\n";
2017 OS << " std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
2018 OS << " MnemonicRange =\n";
2019 OS << " std::equal_range(OperandMatchTable, OperandMatchTable+"
2020 << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
2021 << " LessOpcodeOperand());\n\n";
2023 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
2024 OS << " return MatchOperand_NoMatch;\n\n";
2026 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2027 << " *ie = MnemonicRange.second; it != ie; ++it) {\n";
2029 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
2030 OS << " assert(Mnemonic == it->Mnemonic);\n\n";
2032 // Emit check that the required features are available.
2033 OS << " // check if the available features match\n";
2034 OS << " if ((AvailableFeatures & it->RequiredFeatures) "
2035 << "!= it->RequiredFeatures) {\n";
2036 OS << " continue;\n";
2037 OS << " }\n\n";
2039 // Emit check to ensure the operand number matches.
2040 OS << " // check if the operand in question has a custom parser.\n";
2041 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n";
2042 OS << " continue;\n\n";
2044 // Emit call to the custom parser method
2045 OS << " // call custom parse method to handle the operand\n";
2046 OS << " OperandMatchResultTy Result = ";
2047 OS << "TryCustomParseOperand(Operands, it->Class);\n";
2048 OS << " if (Result != MatchOperand_NoMatch)\n";
2049 OS << " return Result;\n";
2050 OS << " }\n\n";
2052 OS << " // Okay, we had no match.\n";
2053 OS << " return MatchOperand_NoMatch;\n";
2054 OS << "}\n\n";
2057 void AsmMatcherEmitter::run(raw_ostream &OS) {
2058 CodeGenTarget Target(Records);
2059 Record *AsmParser = Target.getAsmParser();
2060 std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2062 // Compute the information on the instructions to match.
2063 AsmMatcherInfo Info(AsmParser, Target, Records);
2064 Info.BuildInfo();
2066 // Sort the instruction table using the partial order on classes. We use
2067 // stable_sort to ensure that ambiguous instructions are still
2068 // deterministically ordered.
2069 std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
2070 less_ptr<MatchableInfo>());
2072 DEBUG_WITH_TYPE("instruction_info", {
2073 for (std::vector<MatchableInfo*>::iterator
2074 it = Info.Matchables.begin(), ie = Info.Matchables.end();
2075 it != ie; ++it)
2076 (*it)->dump();
2079 // Check for ambiguous matchables.
2080 DEBUG_WITH_TYPE("ambiguous_instrs", {
2081 unsigned NumAmbiguous = 0;
2082 for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
2083 for (unsigned j = i + 1; j != e; ++j) {
2084 MatchableInfo &A = *Info.Matchables[i];
2085 MatchableInfo &B = *Info.Matchables[j];
2087 if (A.CouldMatchAmbiguouslyWith(B)) {
2088 errs() << "warning: ambiguous matchables:\n";
2089 A.dump();
2090 errs() << "\nis incomparable with:\n";
2091 B.dump();
2092 errs() << "\n\n";
2093 ++NumAmbiguous;
2097 if (NumAmbiguous)
2098 errs() << "warning: " << NumAmbiguous
2099 << " ambiguous matchables!\n";
2102 // Compute the information on the custom operand parsing.
2103 Info.BuildOperandMatchInfo();
2105 // Write the output.
2107 EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
2109 // Information for the class declaration.
2110 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2111 OS << "#undef GET_ASSEMBLER_HEADER\n";
2112 OS << " // This should be included into the middle of the declaration of\n";
2113 OS << " // your subclasses implementation of TargetAsmParser.\n";
2114 OS << " unsigned ComputeAvailableFeatures(const " <<
2115 Target.getName() << "Subtarget *Subtarget) const;\n";
2116 OS << " enum MatchResultTy {\n";
2117 OS << " Match_ConversionFail,\n";
2118 OS << " Match_InvalidOperand,\n";
2119 OS << " Match_MissingFeature,\n";
2120 OS << " Match_MnemonicFail,\n";
2121 OS << " Match_Success\n";
2122 OS << " };\n";
2123 OS << " bool ConvertToMCInst(unsigned Kind, MCInst &Inst, "
2124 << "unsigned Opcode,\n"
2125 << " const SmallVectorImpl<MCParsedAsmOperand*> "
2126 << "&Operands);\n";
2127 OS << " bool MnemonicIsValid(StringRef Mnemonic);\n";
2128 OS << " MatchResultTy MatchInstructionImpl(\n";
2129 OS << " const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2130 OS << " MCInst &Inst, unsigned &ErrorInfo);\n";
2132 if (Info.OperandMatchInfo.size()) {
2133 OS << "\n enum OperandMatchResultTy {\n";
2134 OS << " MatchOperand_Success, // operand matched successfully\n";
2135 OS << " MatchOperand_NoMatch, // operand did not match\n";
2136 OS << " MatchOperand_ParseFail // operand matched but had errors\n";
2137 OS << " };\n";
2138 OS << " OperandMatchResultTy MatchOperandParserImpl(\n";
2139 OS << " SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2140 OS << " StringRef Mnemonic);\n";
2142 OS << " OperandMatchResultTy TryCustomParseOperand(\n";
2143 OS << " SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2144 OS << " unsigned MCK);\n\n";
2147 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2149 OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2150 OS << "#undef GET_REGISTER_MATCHER\n\n";
2152 // Emit the subtarget feature enumeration.
2153 EmitSubtargetFeatureFlagEnumeration(Info, OS);
2155 // Emit the function to match a register name to number.
2156 EmitMatchRegisterName(Target, AsmParser, OS);
2158 OS << "#endif // GET_REGISTER_MATCHER\n\n";
2161 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2162 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2164 // Generate the function that remaps for mnemonic aliases.
2165 bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info);
2167 // Generate the unified function to convert operands into an MCInst.
2168 EmitConvertToMCInst(Target, ClassName, Info.Matchables, OS);
2170 // Emit the enumeration for classes which participate in matching.
2171 EmitMatchClassEnumeration(Target, Info.Classes, OS);
2173 // Emit the routine to match token strings to their match class.
2174 EmitMatchTokenString(Target, Info.Classes, OS);
2176 // Emit the subclass predicate routine.
2177 EmitIsSubclass(Target, Info.Classes, OS);
2179 // Emit the routine to validate an operand against a match class.
2180 EmitValidateOperandClass(Info, OS);
2182 // Emit the available features compute function.
2183 EmitComputeAvailableFeatures(Info, OS);
2186 size_t MaxNumOperands = 0;
2187 for (std::vector<MatchableInfo*>::const_iterator it =
2188 Info.Matchables.begin(), ie = Info.Matchables.end();
2189 it != ie; ++it)
2190 MaxNumOperands = std::max(MaxNumOperands, (*it)->AsmOperands.size());
2192 // Emit the static match table; unused classes get initalized to 0 which is
2193 // guaranteed to be InvalidMatchClass.
2195 // FIXME: We can reduce the size of this table very easily. First, we change
2196 // it so that store the kinds in separate bit-fields for each index, which
2197 // only needs to be the max width used for classes at that index (we also need
2198 // to reject based on this during classification). If we then make sure to
2199 // order the match kinds appropriately (putting mnemonics last), then we
2200 // should only end up using a few bits for each class, especially the ones
2201 // following the mnemonic.
2202 OS << "namespace {\n";
2203 OS << " struct MatchEntry {\n";
2204 OS << " unsigned Opcode;\n";
2205 OS << " const char *Mnemonic;\n";
2206 OS << " ConversionKind ConvertFn;\n";
2207 OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n";
2208 OS << " unsigned RequiredFeatures;\n";
2209 OS << " };\n\n";
2211 OS << " // Predicate for searching for an opcode.\n";
2212 OS << " struct LessOpcode {\n";
2213 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
2214 OS << " return StringRef(LHS.Mnemonic) < RHS;\n";
2215 OS << " }\n";
2216 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
2217 OS << " return LHS < StringRef(RHS.Mnemonic);\n";
2218 OS << " }\n";
2219 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
2220 OS << " return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
2221 OS << " }\n";
2222 OS << " };\n";
2224 OS << "} // end anonymous namespace.\n\n";
2226 OS << "static const MatchEntry MatchTable["
2227 << Info.Matchables.size() << "] = {\n";
2229 for (std::vector<MatchableInfo*>::const_iterator it =
2230 Info.Matchables.begin(), ie = Info.Matchables.end();
2231 it != ie; ++it) {
2232 MatchableInfo &II = **it;
2234 OS << " { " << Target.getName() << "::"
2235 << II.getResultInst()->TheDef->getName() << ", \"" << II.Mnemonic << "\""
2236 << ", " << II.ConversionFnKind << ", { ";
2237 for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
2238 MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
2240 if (i) OS << ", ";
2241 OS << Op.Class->Name;
2243 OS << " }, ";
2245 // Write the required features mask.
2246 if (!II.RequiredFeatures.empty()) {
2247 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2248 if (i) OS << "|";
2249 OS << II.RequiredFeatures[i]->getEnumName();
2251 } else
2252 OS << "0";
2254 OS << "},\n";
2257 OS << "};\n\n";
2259 // A method to determine if a mnemonic is in the list.
2260 OS << "bool " << Target.getName() << ClassName << "::\n"
2261 << "MnemonicIsValid(StringRef Mnemonic) {\n";
2262 OS << " // Search the table.\n";
2263 OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2264 OS << " std::equal_range(MatchTable, MatchTable+"
2265 << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n";
2266 OS << " return MnemonicRange.first != MnemonicRange.second;\n";
2267 OS << "}\n\n";
2269 // Finally, build the match function.
2270 OS << Target.getName() << ClassName << "::MatchResultTy "
2271 << Target.getName() << ClassName << "::\n"
2272 << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
2273 << " &Operands,\n";
2274 OS << " MCInst &Inst, unsigned &ErrorInfo) {\n";
2276 // Emit code to get the available features.
2277 OS << " // Get the current feature set.\n";
2278 OS << " unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2280 OS << " // Get the instruction mnemonic, which is the first token.\n";
2281 OS << " StringRef Mnemonic = ((" << Target.getName()
2282 << "Operand*)Operands[0])->getToken();\n\n";
2284 if (HasMnemonicAliases) {
2285 OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
2286 OS << " ApplyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
2289 // Emit code to compute the class list for this operand vector.
2290 OS << " // Eliminate obvious mismatches.\n";
2291 OS << " if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
2292 OS << " ErrorInfo = " << (MaxNumOperands+1) << ";\n";
2293 OS << " return Match_InvalidOperand;\n";
2294 OS << " }\n\n";
2296 OS << " // Some state to try to produce better error messages.\n";
2297 OS << " bool HadMatchOtherThanFeatures = false;\n\n";
2298 OS << " // Set ErrorInfo to the operand that mismatches if it is\n";
2299 OS << " // wrong for all instances of the instruction.\n";
2300 OS << " ErrorInfo = ~0U;\n";
2302 // Emit code to search the table.
2303 OS << " // Search the table.\n";
2304 OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2305 OS << " std::equal_range(MatchTable, MatchTable+"
2306 << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
2308 OS << " // Return a more specific error code if no mnemonics match.\n";
2309 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
2310 OS << " return Match_MnemonicFail;\n\n";
2312 OS << " for (const MatchEntry *it = MnemonicRange.first, "
2313 << "*ie = MnemonicRange.second;\n";
2314 OS << " it != ie; ++it) {\n";
2316 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
2317 OS << " assert(Mnemonic == it->Mnemonic);\n";
2319 // Emit check that the subclasses match.
2320 OS << " bool OperandsValid = true;\n";
2321 OS << " for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
2322 OS << " if (i + 1 >= Operands.size()) {\n";
2323 OS << " OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
2324 OS << " break;";
2325 OS << " }\n";
2326 OS << " if (ValidateOperandClass(Operands[i+1], it->Classes[i]))\n";
2327 OS << " continue;\n";
2328 OS << " // If this operand is broken for all of the instances of this\n";
2329 OS << " // mnemonic, keep track of it so we can report loc info.\n";
2330 OS << " if (it == MnemonicRange.first || ErrorInfo <= i+1)\n";
2331 OS << " ErrorInfo = i+1;\n";
2332 OS << " // Otherwise, just reject this instance of the mnemonic.\n";
2333 OS << " OperandsValid = false;\n";
2334 OS << " break;\n";
2335 OS << " }\n\n";
2337 OS << " if (!OperandsValid) continue;\n";
2339 // Emit check that the required features are available.
2340 OS << " if ((AvailableFeatures & it->RequiredFeatures) "
2341 << "!= it->RequiredFeatures) {\n";
2342 OS << " HadMatchOtherThanFeatures = true;\n";
2343 OS << " continue;\n";
2344 OS << " }\n";
2345 OS << "\n";
2346 OS << " // We have selected a definite instruction, convert the parsed\n"
2347 << " // operands into the appropriate MCInst.\n";
2348 OS << " if (!ConvertToMCInst(it->ConvertFn, Inst,\n"
2349 << " it->Opcode, Operands))\n";
2350 OS << " return Match_ConversionFail;\n";
2351 OS << "\n";
2353 // Call the post-processing function, if used.
2354 std::string InsnCleanupFn =
2355 AsmParser->getValueAsString("AsmParserInstCleanup");
2356 if (!InsnCleanupFn.empty())
2357 OS << " " << InsnCleanupFn << "(Inst);\n";
2359 OS << " return Match_Success;\n";
2360 OS << " }\n\n";
2362 OS << " // Okay, we had no match. Try to return a useful error code.\n";
2363 OS << " if (HadMatchOtherThanFeatures) return Match_MissingFeature;\n";
2364 OS << " return Match_InvalidOperand;\n";
2365 OS << "}\n\n";
2367 if (Info.OperandMatchInfo.size())
2368 EmitCustomOperandParsing(OS, Target, Info, ClassName);
2370 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";