merge SimpleRegisterCoalescing.h into RegisterCoalescer.h.
[llvm/stm8.git] / lib / CodeGen / MachineInstr.cpp
blobe423e3f04fdd61b263b0754bbeb228a4441aa8ae
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/InlineAsm.h"
18 #include "llvm/Metadata.h"
19 #include "llvm/Type.h"
20 #include "llvm/Value.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/MC/MCSymbol.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetInstrDesc.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/DebugInfo.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/LeakDetector.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/ADT/FoldingSet.h"
40 using namespace llvm;
42 //===----------------------------------------------------------------------===//
43 // MachineOperand Implementation
44 //===----------------------------------------------------------------------===//
46 /// AddRegOperandToRegInfo - Add this register operand to the specified
47 /// MachineRegisterInfo. If it is null, then the next/prev fields should be
48 /// explicitly nulled out.
49 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
50 assert(isReg() && "Can only add reg operand to use lists");
52 // If the reginfo pointer is null, just explicitly null out or next/prev
53 // pointers, to ensure they are not garbage.
54 if (RegInfo == 0) {
55 Contents.Reg.Prev = 0;
56 Contents.Reg.Next = 0;
57 return;
60 // Otherwise, add this operand to the head of the registers use/def list.
61 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
63 // For SSA values, we prefer to keep the definition at the start of the list.
64 // we do this by skipping over the definition if it is at the head of the
65 // list.
66 if (*Head && (*Head)->isDef())
67 Head = &(*Head)->Contents.Reg.Next;
69 Contents.Reg.Next = *Head;
70 if (Contents.Reg.Next) {
71 assert(getReg() == Contents.Reg.Next->getReg() &&
72 "Different regs on the same list!");
73 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
76 Contents.Reg.Prev = Head;
77 *Head = this;
80 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
81 /// MachineRegisterInfo it is linked with.
82 void MachineOperand::RemoveRegOperandFromRegInfo() {
83 assert(isOnRegUseList() && "Reg operand is not on a use list");
84 // Unlink this from the doubly linked list of operands.
85 MachineOperand *NextOp = Contents.Reg.Next;
86 *Contents.Reg.Prev = NextOp;
87 if (NextOp) {
88 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
89 NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
91 Contents.Reg.Prev = 0;
92 Contents.Reg.Next = 0;
95 void MachineOperand::setReg(unsigned Reg) {
96 if (getReg() == Reg) return; // No change.
98 // Otherwise, we have to change the register. If this operand is embedded
99 // into a machine function, we need to update the old and new register's
100 // use/def lists.
101 if (MachineInstr *MI = getParent())
102 if (MachineBasicBlock *MBB = MI->getParent())
103 if (MachineFunction *MF = MBB->getParent()) {
104 RemoveRegOperandFromRegInfo();
105 SmallContents.RegNo = Reg;
106 AddRegOperandToRegInfo(&MF->getRegInfo());
107 return;
110 // Otherwise, just change the register, no problem. :)
111 SmallContents.RegNo = Reg;
114 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
115 const TargetRegisterInfo &TRI) {
116 assert(TargetRegisterInfo::isVirtualRegister(Reg));
117 if (SubIdx && getSubReg())
118 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
119 setReg(Reg);
120 if (SubIdx)
121 setSubReg(SubIdx);
124 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
125 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
126 if (getSubReg()) {
127 Reg = TRI.getSubReg(Reg, getSubReg());
128 // Note that getSubReg() may return 0 if the sub-register doesn't exist.
129 // That won't happen in legal code.
130 setSubReg(0);
132 setReg(Reg);
135 /// ChangeToImmediate - Replace this operand with a new immediate operand of
136 /// the specified value. If an operand is known to be an immediate already,
137 /// the setImm method should be used.
138 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
139 // If this operand is currently a register operand, and if this is in a
140 // function, deregister the operand from the register's use/def list.
141 if (isReg() && getParent() && getParent()->getParent() &&
142 getParent()->getParent()->getParent())
143 RemoveRegOperandFromRegInfo();
145 OpKind = MO_Immediate;
146 Contents.ImmVal = ImmVal;
149 /// ChangeToRegister - Replace this operand with a new register operand of
150 /// the specified value. If an operand is known to be an register already,
151 /// the setReg method should be used.
152 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
153 bool isKill, bool isDead, bool isUndef,
154 bool isDebug) {
155 // If this operand is already a register operand, use setReg to update the
156 // register's use/def lists.
157 if (isReg()) {
158 assert(!isEarlyClobber());
159 setReg(Reg);
160 } else {
161 // Otherwise, change this to a register and set the reg#.
162 OpKind = MO_Register;
163 SmallContents.RegNo = Reg;
165 // If this operand is embedded in a function, add the operand to the
166 // register's use/def list.
167 if (MachineInstr *MI = getParent())
168 if (MachineBasicBlock *MBB = MI->getParent())
169 if (MachineFunction *MF = MBB->getParent())
170 AddRegOperandToRegInfo(&MF->getRegInfo());
173 IsDef = isDef;
174 IsImp = isImp;
175 IsKill = isKill;
176 IsDead = isDead;
177 IsUndef = isUndef;
178 IsEarlyClobber = false;
179 IsDebug = isDebug;
180 SubReg = 0;
183 /// isIdenticalTo - Return true if this operand is identical to the specified
184 /// operand.
185 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
186 if (getType() != Other.getType() ||
187 getTargetFlags() != Other.getTargetFlags())
188 return false;
190 switch (getType()) {
191 default: llvm_unreachable("Unrecognized operand type");
192 case MachineOperand::MO_Register:
193 return getReg() == Other.getReg() && isDef() == Other.isDef() &&
194 getSubReg() == Other.getSubReg();
195 case MachineOperand::MO_Immediate:
196 return getImm() == Other.getImm();
197 case MachineOperand::MO_FPImmediate:
198 return getFPImm() == Other.getFPImm();
199 case MachineOperand::MO_MachineBasicBlock:
200 return getMBB() == Other.getMBB();
201 case MachineOperand::MO_FrameIndex:
202 return getIndex() == Other.getIndex();
203 case MachineOperand::MO_ConstantPoolIndex:
204 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
205 case MachineOperand::MO_JumpTableIndex:
206 return getIndex() == Other.getIndex();
207 case MachineOperand::MO_GlobalAddress:
208 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
209 case MachineOperand::MO_ExternalSymbol:
210 return !strcmp(getSymbolName(), Other.getSymbolName()) &&
211 getOffset() == Other.getOffset();
212 case MachineOperand::MO_BlockAddress:
213 return getBlockAddress() == Other.getBlockAddress();
214 case MachineOperand::MO_MCSymbol:
215 return getMCSymbol() == Other.getMCSymbol();
216 case MachineOperand::MO_Metadata:
217 return getMetadata() == Other.getMetadata();
221 /// print - Print the specified machine operand.
223 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
224 // If the instruction is embedded into a basic block, we can find the
225 // target info for the instruction.
226 if (!TM)
227 if (const MachineInstr *MI = getParent())
228 if (const MachineBasicBlock *MBB = MI->getParent())
229 if (const MachineFunction *MF = MBB->getParent())
230 TM = &MF->getTarget();
231 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
233 switch (getType()) {
234 case MachineOperand::MO_Register:
235 OS << PrintReg(getReg(), TRI, getSubReg());
237 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
238 isEarlyClobber()) {
239 OS << '<';
240 bool NeedComma = false;
241 if (isDef()) {
242 if (NeedComma) OS << ',';
243 if (isEarlyClobber())
244 OS << "earlyclobber,";
245 if (isImplicit())
246 OS << "imp-";
247 OS << "def";
248 NeedComma = true;
249 } else if (isImplicit()) {
250 OS << "imp-use";
251 NeedComma = true;
254 if (isKill() || isDead() || isUndef()) {
255 if (NeedComma) OS << ',';
256 if (isKill()) OS << "kill";
257 if (isDead()) OS << "dead";
258 if (isUndef()) {
259 if (isKill() || isDead())
260 OS << ',';
261 OS << "undef";
264 OS << '>';
266 break;
267 case MachineOperand::MO_Immediate:
268 OS << getImm();
269 break;
270 case MachineOperand::MO_CImmediate:
271 getCImm()->getValue().print(OS, false);
272 break;
273 case MachineOperand::MO_FPImmediate:
274 if (getFPImm()->getType()->isFloatTy())
275 OS << getFPImm()->getValueAPF().convertToFloat();
276 else
277 OS << getFPImm()->getValueAPF().convertToDouble();
278 break;
279 case MachineOperand::MO_MachineBasicBlock:
280 OS << "<BB#" << getMBB()->getNumber() << ">";
281 break;
282 case MachineOperand::MO_FrameIndex:
283 OS << "<fi#" << getIndex() << '>';
284 break;
285 case MachineOperand::MO_ConstantPoolIndex:
286 OS << "<cp#" << getIndex();
287 if (getOffset()) OS << "+" << getOffset();
288 OS << '>';
289 break;
290 case MachineOperand::MO_JumpTableIndex:
291 OS << "<jt#" << getIndex() << '>';
292 break;
293 case MachineOperand::MO_GlobalAddress:
294 OS << "<ga:";
295 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
296 if (getOffset()) OS << "+" << getOffset();
297 OS << '>';
298 break;
299 case MachineOperand::MO_ExternalSymbol:
300 OS << "<es:" << getSymbolName();
301 if (getOffset()) OS << "+" << getOffset();
302 OS << '>';
303 break;
304 case MachineOperand::MO_BlockAddress:
305 OS << '<';
306 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
307 OS << '>';
308 break;
309 case MachineOperand::MO_Metadata:
310 OS << '<';
311 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
312 OS << '>';
313 break;
314 case MachineOperand::MO_MCSymbol:
315 OS << "<MCSym=" << *getMCSymbol() << '>';
316 break;
317 default:
318 llvm_unreachable("Unrecognized operand type");
321 if (unsigned TF = getTargetFlags())
322 OS << "[TF=" << TF << ']';
325 //===----------------------------------------------------------------------===//
326 // MachineMemOperand Implementation
327 //===----------------------------------------------------------------------===//
329 /// getAddrSpace - Return the LLVM IR address space number that this pointer
330 /// points into.
331 unsigned MachinePointerInfo::getAddrSpace() const {
332 if (V == 0) return 0;
333 return cast<PointerType>(V->getType())->getAddressSpace();
336 /// getConstantPool - Return a MachinePointerInfo record that refers to the
337 /// constant pool.
338 MachinePointerInfo MachinePointerInfo::getConstantPool() {
339 return MachinePointerInfo(PseudoSourceValue::getConstantPool());
342 /// getFixedStack - Return a MachinePointerInfo record that refers to the
343 /// the specified FrameIndex.
344 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
345 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
348 MachinePointerInfo MachinePointerInfo::getJumpTable() {
349 return MachinePointerInfo(PseudoSourceValue::getJumpTable());
352 MachinePointerInfo MachinePointerInfo::getGOT() {
353 return MachinePointerInfo(PseudoSourceValue::getGOT());
356 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
357 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
360 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
361 uint64_t s, unsigned int a,
362 const MDNode *TBAAInfo)
363 : PtrInfo(ptrinfo), Size(s),
364 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
365 TBAAInfo(TBAAInfo) {
366 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
367 "invalid pointer value");
368 assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
369 assert((isLoad() || isStore()) && "Not a load/store!");
372 /// Profile - Gather unique data for the object.
374 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
375 ID.AddInteger(getOffset());
376 ID.AddInteger(Size);
377 ID.AddPointer(getValue());
378 ID.AddInteger(Flags);
381 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
382 // The Value and Offset may differ due to CSE. But the flags and size
383 // should be the same.
384 assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
385 assert(MMO->getSize() == getSize() && "Size mismatch!");
387 if (MMO->getBaseAlignment() >= getBaseAlignment()) {
388 // Update the alignment value.
389 Flags = (Flags & ((1 << MOMaxBits) - 1)) |
390 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
391 // Also update the base and offset, because the new alignment may
392 // not be applicable with the old ones.
393 PtrInfo = MMO->PtrInfo;
397 /// getAlignment - Return the minimum known alignment in bytes of the
398 /// actual memory reference.
399 uint64_t MachineMemOperand::getAlignment() const {
400 return MinAlign(getBaseAlignment(), getOffset());
403 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
404 assert((MMO.isLoad() || MMO.isStore()) &&
405 "SV has to be a load, store or both.");
407 if (MMO.isVolatile())
408 OS << "Volatile ";
410 if (MMO.isLoad())
411 OS << "LD";
412 if (MMO.isStore())
413 OS << "ST";
414 OS << MMO.getSize();
416 // Print the address information.
417 OS << "[";
418 if (!MMO.getValue())
419 OS << "<unknown>";
420 else
421 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
423 // If the alignment of the memory reference itself differs from the alignment
424 // of the base pointer, print the base alignment explicitly, next to the base
425 // pointer.
426 if (MMO.getBaseAlignment() != MMO.getAlignment())
427 OS << "(align=" << MMO.getBaseAlignment() << ")";
429 if (MMO.getOffset() != 0)
430 OS << "+" << MMO.getOffset();
431 OS << "]";
433 // Print the alignment of the reference.
434 if (MMO.getBaseAlignment() != MMO.getAlignment() ||
435 MMO.getBaseAlignment() != MMO.getSize())
436 OS << "(align=" << MMO.getAlignment() << ")";
438 // Print TBAA info.
439 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
440 OS << "(tbaa=";
441 if (TBAAInfo->getNumOperands() > 0)
442 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
443 else
444 OS << "<unknown>";
445 OS << ")";
448 // Print nontemporal info.
449 if (MMO.isNonTemporal())
450 OS << "(nontemporal)";
452 return OS;
455 //===----------------------------------------------------------------------===//
456 // MachineInstr Implementation
457 //===----------------------------------------------------------------------===//
459 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
460 /// TID NULL and no operands.
461 MachineInstr::MachineInstr()
462 : TID(0), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
463 MemRefs(0), MemRefsEnd(0),
464 Parent(0) {
465 // Make sure that we get added to a machine basicblock
466 LeakDetector::addGarbageObject(this);
469 void MachineInstr::addImplicitDefUseOperands() {
470 if (TID->ImplicitDefs)
471 for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
472 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
473 if (TID->ImplicitUses)
474 for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
475 addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
478 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
479 /// implicit operands. It reserves space for the number of operands specified by
480 /// the TargetInstrDesc.
481 MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
482 : TID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
483 MemRefs(0), MemRefsEnd(0), Parent(0) {
484 if (!NoImp)
485 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
486 Operands.reserve(NumImplicitOps + TID->getNumOperands());
487 if (!NoImp)
488 addImplicitDefUseOperands();
489 // Make sure that we get added to a machine basicblock
490 LeakDetector::addGarbageObject(this);
493 /// MachineInstr ctor - As above, but with a DebugLoc.
494 MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
495 bool NoImp)
496 : TID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
497 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
498 if (!NoImp)
499 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
500 Operands.reserve(NumImplicitOps + TID->getNumOperands());
501 if (!NoImp)
502 addImplicitDefUseOperands();
503 // Make sure that we get added to a machine basicblock
504 LeakDetector::addGarbageObject(this);
507 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
508 /// that the MachineInstr is created and added to the end of the specified
509 /// basic block.
510 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
511 : TID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
512 MemRefs(0), MemRefsEnd(0), Parent(0) {
513 assert(MBB && "Cannot use inserting ctor with null basic block!");
514 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
515 Operands.reserve(NumImplicitOps + TID->getNumOperands());
516 addImplicitDefUseOperands();
517 // Make sure that we get added to a machine basicblock
518 LeakDetector::addGarbageObject(this);
519 MBB->push_back(this); // Add instruction to end of basic block!
522 /// MachineInstr ctor - As above, but with a DebugLoc.
524 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
525 const TargetInstrDesc &tid)
526 : TID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
527 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
528 assert(MBB && "Cannot use inserting ctor with null basic block!");
529 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
530 Operands.reserve(NumImplicitOps + TID->getNumOperands());
531 addImplicitDefUseOperands();
532 // Make sure that we get added to a machine basicblock
533 LeakDetector::addGarbageObject(this);
534 MBB->push_back(this); // Add instruction to end of basic block!
537 /// MachineInstr ctor - Copies MachineInstr arg exactly
539 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
540 : TID(&MI.getDesc()), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
541 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
542 Parent(0), debugLoc(MI.getDebugLoc()) {
543 Operands.reserve(MI.getNumOperands());
545 // Add operands
546 for (unsigned i = 0; i != MI.getNumOperands(); ++i)
547 addOperand(MI.getOperand(i));
548 NumImplicitOps = MI.NumImplicitOps;
550 // Copy all the flags.
551 Flags = MI.Flags;
553 // Set parent to null.
554 Parent = 0;
556 LeakDetector::addGarbageObject(this);
559 MachineInstr::~MachineInstr() {
560 LeakDetector::removeGarbageObject(this);
561 #ifndef NDEBUG
562 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
563 assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
564 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
565 "Reg operand def/use list corrupted");
567 #endif
570 /// getRegInfo - If this instruction is embedded into a MachineFunction,
571 /// return the MachineRegisterInfo object for the current function, otherwise
572 /// return null.
573 MachineRegisterInfo *MachineInstr::getRegInfo() {
574 if (MachineBasicBlock *MBB = getParent())
575 return &MBB->getParent()->getRegInfo();
576 return 0;
579 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
580 /// this instruction from their respective use lists. This requires that the
581 /// operands already be on their use lists.
582 void MachineInstr::RemoveRegOperandsFromUseLists() {
583 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
584 if (Operands[i].isReg())
585 Operands[i].RemoveRegOperandFromRegInfo();
589 /// AddRegOperandsToUseLists - Add all of the register operands in
590 /// this instruction from their respective use lists. This requires that the
591 /// operands not be on their use lists yet.
592 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
593 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
594 if (Operands[i].isReg())
595 Operands[i].AddRegOperandToRegInfo(&RegInfo);
600 /// addOperand - Add the specified operand to the instruction. If it is an
601 /// implicit operand, it is added to the end of the operand list. If it is
602 /// an explicit operand it is added at the end of the explicit operand list
603 /// (before the first implicit operand).
604 void MachineInstr::addOperand(const MachineOperand &Op) {
605 bool isImpReg = Op.isReg() && Op.isImplicit();
606 assert((isImpReg || !OperandsComplete()) &&
607 "Trying to add an operand to a machine instr that is already done!");
609 MachineRegisterInfo *RegInfo = getRegInfo();
611 // If we are adding the operand to the end of the list, our job is simpler.
612 // This is true most of the time, so this is a reasonable optimization.
613 if (isImpReg || NumImplicitOps == 0) {
614 // We can only do this optimization if we know that the operand list won't
615 // reallocate.
616 if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
617 Operands.push_back(Op);
619 // Set the parent of the operand.
620 Operands.back().ParentMI = this;
622 // If the operand is a register, update the operand's use list.
623 if (Op.isReg()) {
624 Operands.back().AddRegOperandToRegInfo(RegInfo);
625 // If the register operand is flagged as early, mark the operand as such
626 unsigned OpNo = Operands.size() - 1;
627 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
628 Operands[OpNo].setIsEarlyClobber(true);
630 return;
634 // Otherwise, we have to insert a real operand before any implicit ones.
635 unsigned OpNo = Operands.size()-NumImplicitOps;
637 // If this instruction isn't embedded into a function, then we don't need to
638 // update any operand lists.
639 if (RegInfo == 0) {
640 // Simple insertion, no reginfo update needed for other register operands.
641 Operands.insert(Operands.begin()+OpNo, Op);
642 Operands[OpNo].ParentMI = this;
644 // Do explicitly set the reginfo for this operand though, to ensure the
645 // next/prev fields are properly nulled out.
646 if (Operands[OpNo].isReg()) {
647 Operands[OpNo].AddRegOperandToRegInfo(0);
648 // If the register operand is flagged as early, mark the operand as such
649 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
650 Operands[OpNo].setIsEarlyClobber(true);
653 } else if (Operands.size()+1 <= Operands.capacity()) {
654 // Otherwise, we have to remove register operands from their register use
655 // list, add the operand, then add the register operands back to their use
656 // list. This also must handle the case when the operand list reallocates
657 // to somewhere else.
659 // If insertion of this operand won't cause reallocation of the operand
660 // list, just remove the implicit operands, add the operand, then re-add all
661 // the rest of the operands.
662 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
663 assert(Operands[i].isReg() && "Should only be an implicit reg!");
664 Operands[i].RemoveRegOperandFromRegInfo();
667 // Add the operand. If it is a register, add it to the reg list.
668 Operands.insert(Operands.begin()+OpNo, Op);
669 Operands[OpNo].ParentMI = this;
671 if (Operands[OpNo].isReg()) {
672 Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
673 // If the register operand is flagged as early, mark the operand as such
674 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
675 Operands[OpNo].setIsEarlyClobber(true);
678 // Re-add all the implicit ops.
679 for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
680 assert(Operands[i].isReg() && "Should only be an implicit reg!");
681 Operands[i].AddRegOperandToRegInfo(RegInfo);
683 } else {
684 // Otherwise, we will be reallocating the operand list. Remove all reg
685 // operands from their list, then readd them after the operand list is
686 // reallocated.
687 RemoveRegOperandsFromUseLists();
689 Operands.insert(Operands.begin()+OpNo, Op);
690 Operands[OpNo].ParentMI = this;
692 // Re-add all the operands.
693 AddRegOperandsToUseLists(*RegInfo);
695 // If the register operand is flagged as early, mark the operand as such
696 if (Operands[OpNo].isReg()
697 && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
698 Operands[OpNo].setIsEarlyClobber(true);
702 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
703 /// fewer operand than it started with.
705 void MachineInstr::RemoveOperand(unsigned OpNo) {
706 assert(OpNo < Operands.size() && "Invalid operand number");
708 // Special case removing the last one.
709 if (OpNo == Operands.size()-1) {
710 // If needed, remove from the reg def/use list.
711 if (Operands.back().isReg() && Operands.back().isOnRegUseList())
712 Operands.back().RemoveRegOperandFromRegInfo();
714 Operands.pop_back();
715 return;
718 // Otherwise, we are removing an interior operand. If we have reginfo to
719 // update, remove all operands that will be shifted down from their reg lists,
720 // move everything down, then re-add them.
721 MachineRegisterInfo *RegInfo = getRegInfo();
722 if (RegInfo) {
723 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
724 if (Operands[i].isReg())
725 Operands[i].RemoveRegOperandFromRegInfo();
729 Operands.erase(Operands.begin()+OpNo);
731 if (RegInfo) {
732 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
733 if (Operands[i].isReg())
734 Operands[i].AddRegOperandToRegInfo(RegInfo);
739 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
740 /// This function should be used only occasionally. The setMemRefs function
741 /// is the primary method for setting up a MachineInstr's MemRefs list.
742 void MachineInstr::addMemOperand(MachineFunction &MF,
743 MachineMemOperand *MO) {
744 mmo_iterator OldMemRefs = MemRefs;
745 mmo_iterator OldMemRefsEnd = MemRefsEnd;
747 size_t NewNum = (MemRefsEnd - MemRefs) + 1;
748 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
749 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
751 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
752 NewMemRefs[NewNum - 1] = MO;
754 MemRefs = NewMemRefs;
755 MemRefsEnd = NewMemRefsEnd;
758 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
759 MICheckType Check) const {
760 // If opcodes or number of operands are not the same then the two
761 // instructions are obviously not identical.
762 if (Other->getOpcode() != getOpcode() ||
763 Other->getNumOperands() != getNumOperands())
764 return false;
766 // Check operands to make sure they match.
767 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
768 const MachineOperand &MO = getOperand(i);
769 const MachineOperand &OMO = Other->getOperand(i);
770 if (!MO.isReg()) {
771 if (!MO.isIdenticalTo(OMO))
772 return false;
773 continue;
776 // Clients may or may not want to ignore defs when testing for equality.
777 // For example, machine CSE pass only cares about finding common
778 // subexpressions, so it's safe to ignore virtual register defs.
779 if (MO.isDef()) {
780 if (Check == IgnoreDefs)
781 continue;
782 else if (Check == IgnoreVRegDefs) {
783 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
784 TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
785 if (MO.getReg() != OMO.getReg())
786 return false;
787 } else {
788 if (!MO.isIdenticalTo(OMO))
789 return false;
790 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
791 return false;
793 } else {
794 if (!MO.isIdenticalTo(OMO))
795 return false;
796 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
797 return false;
800 return true;
803 /// removeFromParent - This method unlinks 'this' from the containing basic
804 /// block, and returns it, but does not delete it.
805 MachineInstr *MachineInstr::removeFromParent() {
806 assert(getParent() && "Not embedded in a basic block!");
807 getParent()->remove(this);
808 return this;
812 /// eraseFromParent - This method unlinks 'this' from the containing basic
813 /// block, and deletes it.
814 void MachineInstr::eraseFromParent() {
815 assert(getParent() && "Not embedded in a basic block!");
816 getParent()->erase(this);
820 /// OperandComplete - Return true if it's illegal to add a new operand
822 bool MachineInstr::OperandsComplete() const {
823 unsigned short NumOperands = TID->getNumOperands();
824 if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
825 return true; // Broken: we have all the operands of this instruction!
826 return false;
829 /// getNumExplicitOperands - Returns the number of non-implicit operands.
831 unsigned MachineInstr::getNumExplicitOperands() const {
832 unsigned NumOperands = TID->getNumOperands();
833 if (!TID->isVariadic())
834 return NumOperands;
836 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
837 const MachineOperand &MO = getOperand(i);
838 if (!MO.isReg() || !MO.isImplicit())
839 NumOperands++;
841 return NumOperands;
844 bool MachineInstr::isStackAligningInlineAsm() const {
845 if (isInlineAsm()) {
846 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
847 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
848 return true;
850 return false;
853 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
854 /// the specific register or -1 if it is not found. It further tightens
855 /// the search criteria to a use that kills the register if isKill is true.
856 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
857 const TargetRegisterInfo *TRI) const {
858 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
859 const MachineOperand &MO = getOperand(i);
860 if (!MO.isReg() || !MO.isUse())
861 continue;
862 unsigned MOReg = MO.getReg();
863 if (!MOReg)
864 continue;
865 if (MOReg == Reg ||
866 (TRI &&
867 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
868 TargetRegisterInfo::isPhysicalRegister(Reg) &&
869 TRI->isSubRegister(MOReg, Reg)))
870 if (!isKill || MO.isKill())
871 return i;
873 return -1;
876 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
877 /// indicating if this instruction reads or writes Reg. This also considers
878 /// partial defines.
879 std::pair<bool,bool>
880 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
881 SmallVectorImpl<unsigned> *Ops) const {
882 bool PartDef = false; // Partial redefine.
883 bool FullDef = false; // Full define.
884 bool Use = false;
886 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
887 const MachineOperand &MO = getOperand(i);
888 if (!MO.isReg() || MO.getReg() != Reg)
889 continue;
890 if (Ops)
891 Ops->push_back(i);
892 if (MO.isUse())
893 Use |= !MO.isUndef();
894 else if (MO.getSubReg())
895 PartDef = true;
896 else
897 FullDef = true;
899 // A partial redefine uses Reg unless there is also a full define.
900 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
903 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
904 /// the specified register or -1 if it is not found. If isDead is true, defs
905 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
906 /// also checks if there is a def of a super-register.
908 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
909 const TargetRegisterInfo *TRI) const {
910 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
911 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
912 const MachineOperand &MO = getOperand(i);
913 if (!MO.isReg() || !MO.isDef())
914 continue;
915 unsigned MOReg = MO.getReg();
916 bool Found = (MOReg == Reg);
917 if (!Found && TRI && isPhys &&
918 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
919 if (Overlap)
920 Found = TRI->regsOverlap(MOReg, Reg);
921 else
922 Found = TRI->isSubRegister(MOReg, Reg);
924 if (Found && (!isDead || MO.isDead()))
925 return i;
927 return -1;
930 /// findFirstPredOperandIdx() - Find the index of the first operand in the
931 /// operand list that is used to represent the predicate. It returns -1 if
932 /// none is found.
933 int MachineInstr::findFirstPredOperandIdx() const {
934 const TargetInstrDesc &TID = getDesc();
935 if (TID.isPredicable()) {
936 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
937 if (TID.OpInfo[i].isPredicate())
938 return i;
941 return -1;
944 /// isRegTiedToUseOperand - Given the index of a register def operand,
945 /// check if the register def is tied to a source operand, due to either
946 /// two-address elimination or inline assembly constraints. Returns the
947 /// first tied use operand index by reference is UseOpIdx is not null.
948 bool MachineInstr::
949 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
950 if (isInlineAsm()) {
951 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
952 const MachineOperand &MO = getOperand(DefOpIdx);
953 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
954 return false;
955 // Determine the actual operand index that corresponds to this index.
956 unsigned DefNo = 0;
957 unsigned DefPart = 0;
958 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
959 i < e; ) {
960 const MachineOperand &FMO = getOperand(i);
961 // After the normal asm operands there may be additional imp-def regs.
962 if (!FMO.isImm())
963 return false;
964 // Skip over this def.
965 unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
966 unsigned PrevDef = i + 1;
967 i = PrevDef + NumOps;
968 if (i > DefOpIdx) {
969 DefPart = DefOpIdx - PrevDef;
970 break;
972 ++DefNo;
974 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
975 i != e; ++i) {
976 const MachineOperand &FMO = getOperand(i);
977 if (!FMO.isImm())
978 continue;
979 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
980 continue;
981 unsigned Idx;
982 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
983 Idx == DefNo) {
984 if (UseOpIdx)
985 *UseOpIdx = (unsigned)i + 1 + DefPart;
986 return true;
989 return false;
992 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
993 const TargetInstrDesc &TID = getDesc();
994 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
995 const MachineOperand &MO = getOperand(i);
996 if (MO.isReg() && MO.isUse() &&
997 TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
998 if (UseOpIdx)
999 *UseOpIdx = (unsigned)i;
1000 return true;
1003 return false;
1006 /// isRegTiedToDefOperand - Return true if the operand of the specified index
1007 /// is a register use and it is tied to an def operand. It also returns the def
1008 /// operand index by reference.
1009 bool MachineInstr::
1010 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
1011 if (isInlineAsm()) {
1012 const MachineOperand &MO = getOperand(UseOpIdx);
1013 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
1014 return false;
1016 // Find the flag operand corresponding to UseOpIdx
1017 unsigned FlagIdx, NumOps=0;
1018 for (FlagIdx = InlineAsm::MIOp_FirstOperand;
1019 FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
1020 const MachineOperand &UFMO = getOperand(FlagIdx);
1021 // After the normal asm operands there may be additional imp-def regs.
1022 if (!UFMO.isImm())
1023 return false;
1024 NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
1025 assert(NumOps < getNumOperands() && "Invalid inline asm flag");
1026 if (UseOpIdx < FlagIdx+NumOps+1)
1027 break;
1029 if (FlagIdx >= UseOpIdx)
1030 return false;
1031 const MachineOperand &UFMO = getOperand(FlagIdx);
1032 unsigned DefNo;
1033 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
1034 if (!DefOpIdx)
1035 return true;
1037 unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
1038 // Remember to adjust the index. First operand is asm string, second is
1039 // the HasSideEffects and AlignStack bits, then there is a flag for each.
1040 while (DefNo) {
1041 const MachineOperand &FMO = getOperand(DefIdx);
1042 assert(FMO.isImm());
1043 // Skip over this def.
1044 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
1045 --DefNo;
1047 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
1048 return true;
1050 return false;
1053 const TargetInstrDesc &TID = getDesc();
1054 if (UseOpIdx >= TID.getNumOperands())
1055 return false;
1056 const MachineOperand &MO = getOperand(UseOpIdx);
1057 if (!MO.isReg() || !MO.isUse())
1058 return false;
1059 int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
1060 if (DefIdx == -1)
1061 return false;
1062 if (DefOpIdx)
1063 *DefOpIdx = (unsigned)DefIdx;
1064 return true;
1067 /// clearKillInfo - Clears kill flags on all operands.
1069 void MachineInstr::clearKillInfo() {
1070 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1071 MachineOperand &MO = getOperand(i);
1072 if (MO.isReg() && MO.isUse())
1073 MO.setIsKill(false);
1077 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1079 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1080 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1081 const MachineOperand &MO = MI->getOperand(i);
1082 if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1083 continue;
1084 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1085 MachineOperand &MOp = getOperand(j);
1086 if (!MOp.isIdenticalTo(MO))
1087 continue;
1088 if (MO.isKill())
1089 MOp.setIsKill();
1090 else
1091 MOp.setIsDead();
1092 break;
1097 /// copyPredicates - Copies predicate operand(s) from MI.
1098 void MachineInstr::copyPredicates(const MachineInstr *MI) {
1099 const TargetInstrDesc &TID = MI->getDesc();
1100 if (!TID.isPredicable())
1101 return;
1102 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1103 if (TID.OpInfo[i].isPredicate()) {
1104 // Predicated operands must be last operands.
1105 addOperand(MI->getOperand(i));
1110 void MachineInstr::substituteRegister(unsigned FromReg,
1111 unsigned ToReg,
1112 unsigned SubIdx,
1113 const TargetRegisterInfo &RegInfo) {
1114 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1115 if (SubIdx)
1116 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1117 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1118 MachineOperand &MO = getOperand(i);
1119 if (!MO.isReg() || MO.getReg() != FromReg)
1120 continue;
1121 MO.substPhysReg(ToReg, RegInfo);
1123 } else {
1124 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1125 MachineOperand &MO = getOperand(i);
1126 if (!MO.isReg() || MO.getReg() != FromReg)
1127 continue;
1128 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1133 /// isSafeToMove - Return true if it is safe to move this instruction. If
1134 /// SawStore is set to true, it means that there is a store (or call) between
1135 /// the instruction's location and its intended destination.
1136 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1137 AliasAnalysis *AA,
1138 bool &SawStore) const {
1139 // Ignore stuff that we obviously can't move.
1140 if (TID->mayStore() || TID->isCall()) {
1141 SawStore = true;
1142 return false;
1145 if (isLabel() || isDebugValue() ||
1146 TID->isTerminator() || hasUnmodeledSideEffects())
1147 return false;
1149 // See if this instruction does a load. If so, we have to guarantee that the
1150 // loaded value doesn't change between the load and the its intended
1151 // destination. The check for isInvariantLoad gives the targe the chance to
1152 // classify the load as always returning a constant, e.g. a constant pool
1153 // load.
1154 if (TID->mayLoad() && !isInvariantLoad(AA))
1155 // Otherwise, this is a real load. If there is a store between the load and
1156 // end of block, or if the load is volatile, we can't move it.
1157 return !SawStore && !hasVolatileMemoryRef();
1159 return true;
1162 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
1163 /// instruction which defined the specified register instead of copying it.
1164 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1165 AliasAnalysis *AA,
1166 unsigned DstReg) const {
1167 bool SawStore = false;
1168 if (!TII->isTriviallyReMaterializable(this, AA) ||
1169 !isSafeToMove(TII, AA, SawStore))
1170 return false;
1171 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1172 const MachineOperand &MO = getOperand(i);
1173 if (!MO.isReg())
1174 continue;
1175 // FIXME: For now, do not remat any instruction with register operands.
1176 // Later on, we can loosen the restriction is the register operands have
1177 // not been modified between the def and use. Note, this is different from
1178 // MachineSink because the code is no longer in two-address form (at least
1179 // partially).
1180 if (MO.isUse())
1181 return false;
1182 else if (!MO.isDead() && MO.getReg() != DstReg)
1183 return false;
1185 return true;
1188 /// hasVolatileMemoryRef - Return true if this instruction may have a
1189 /// volatile memory reference, or if the information describing the
1190 /// memory reference is not available. Return false if it is known to
1191 /// have no volatile memory references.
1192 bool MachineInstr::hasVolatileMemoryRef() const {
1193 // An instruction known never to access memory won't have a volatile access.
1194 if (!TID->mayStore() &&
1195 !TID->mayLoad() &&
1196 !TID->isCall() &&
1197 !hasUnmodeledSideEffects())
1198 return false;
1200 // Otherwise, if the instruction has no memory reference information,
1201 // conservatively assume it wasn't preserved.
1202 if (memoperands_empty())
1203 return true;
1205 // Check the memory reference information for volatile references.
1206 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1207 if ((*I)->isVolatile())
1208 return true;
1210 return false;
1213 /// isInvariantLoad - Return true if this instruction is loading from a
1214 /// location whose value is invariant across the function. For example,
1215 /// loading a value from the constant pool or from the argument area
1216 /// of a function if it does not change. This should only return true of
1217 /// *all* loads the instruction does are invariant (if it does multiple loads).
1218 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1219 // If the instruction doesn't load at all, it isn't an invariant load.
1220 if (!TID->mayLoad())
1221 return false;
1223 // If the instruction has lost its memoperands, conservatively assume that
1224 // it may not be an invariant load.
1225 if (memoperands_empty())
1226 return false;
1228 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1230 for (mmo_iterator I = memoperands_begin(),
1231 E = memoperands_end(); I != E; ++I) {
1232 if ((*I)->isVolatile()) return false;
1233 if ((*I)->isStore()) return false;
1235 if (const Value *V = (*I)->getValue()) {
1236 // A load from a constant PseudoSourceValue is invariant.
1237 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1238 if (PSV->isConstant(MFI))
1239 continue;
1240 // If we have an AliasAnalysis, ask it whether the memory is constant.
1241 if (AA && AA->pointsToConstantMemory(
1242 AliasAnalysis::Location(V, (*I)->getSize(),
1243 (*I)->getTBAAInfo())))
1244 continue;
1247 // Otherwise assume conservatively.
1248 return false;
1251 // Everything checks out.
1252 return true;
1255 /// isConstantValuePHI - If the specified instruction is a PHI that always
1256 /// merges together the same virtual register, return the register, otherwise
1257 /// return 0.
1258 unsigned MachineInstr::isConstantValuePHI() const {
1259 if (!isPHI())
1260 return 0;
1261 assert(getNumOperands() >= 3 &&
1262 "It's illegal to have a PHI without source operands");
1264 unsigned Reg = getOperand(1).getReg();
1265 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1266 if (getOperand(i).getReg() != Reg)
1267 return 0;
1268 return Reg;
1271 bool MachineInstr::hasUnmodeledSideEffects() const {
1272 if (getDesc().hasUnmodeledSideEffects())
1273 return true;
1274 if (isInlineAsm()) {
1275 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1276 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1277 return true;
1280 return false;
1283 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1285 bool MachineInstr::allDefsAreDead() const {
1286 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1287 const MachineOperand &MO = getOperand(i);
1288 if (!MO.isReg() || MO.isUse())
1289 continue;
1290 if (!MO.isDead())
1291 return false;
1293 return true;
1296 /// copyImplicitOps - Copy implicit register operands from specified
1297 /// instruction to this instruction.
1298 void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1299 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1300 i != e; ++i) {
1301 const MachineOperand &MO = MI->getOperand(i);
1302 if (MO.isReg() && MO.isImplicit())
1303 addOperand(MO);
1307 void MachineInstr::dump() const {
1308 dbgs() << " " << *this;
1311 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1312 raw_ostream &CommentOS) {
1313 const LLVMContext &Ctx = MF->getFunction()->getContext();
1314 if (!DL.isUnknown()) { // Print source line info.
1315 DIScope Scope(DL.getScope(Ctx));
1316 // Omit the directory, because it's likely to be long and uninteresting.
1317 if (Scope.Verify())
1318 CommentOS << Scope.getFilename();
1319 else
1320 CommentOS << "<unknown>";
1321 CommentOS << ':' << DL.getLine();
1322 if (DL.getCol() != 0)
1323 CommentOS << ':' << DL.getCol();
1324 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1325 if (!InlinedAtDL.isUnknown()) {
1326 CommentOS << " @[ ";
1327 printDebugLoc(InlinedAtDL, MF, CommentOS);
1328 CommentOS << " ]";
1333 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1334 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1335 const MachineFunction *MF = 0;
1336 const MachineRegisterInfo *MRI = 0;
1337 if (const MachineBasicBlock *MBB = getParent()) {
1338 MF = MBB->getParent();
1339 if (!TM && MF)
1340 TM = &MF->getTarget();
1341 if (MF)
1342 MRI = &MF->getRegInfo();
1345 // Save a list of virtual registers.
1346 SmallVector<unsigned, 8> VirtRegs;
1348 // Print explicitly defined operands on the left of an assignment syntax.
1349 unsigned StartOp = 0, e = getNumOperands();
1350 for (; StartOp < e && getOperand(StartOp).isReg() &&
1351 getOperand(StartOp).isDef() &&
1352 !getOperand(StartOp).isImplicit();
1353 ++StartOp) {
1354 if (StartOp != 0) OS << ", ";
1355 getOperand(StartOp).print(OS, TM);
1356 unsigned Reg = getOperand(StartOp).getReg();
1357 if (TargetRegisterInfo::isVirtualRegister(Reg))
1358 VirtRegs.push_back(Reg);
1361 if (StartOp != 0)
1362 OS << " = ";
1364 // Print the opcode name.
1365 OS << getDesc().getName();
1367 // Print the rest of the operands.
1368 bool OmittedAnyCallClobbers = false;
1369 bool FirstOp = true;
1371 if (isInlineAsm()) {
1372 // Print asm string.
1373 OS << " ";
1374 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1376 // Print HasSideEffects, IsAlignStack
1377 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1378 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1379 OS << " [sideeffect]";
1380 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1381 OS << " [alignstack]";
1383 StartOp = InlineAsm::MIOp_FirstOperand;
1384 FirstOp = false;
1388 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1389 const MachineOperand &MO = getOperand(i);
1391 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1392 VirtRegs.push_back(MO.getReg());
1394 // Omit call-clobbered registers which aren't used anywhere. This makes
1395 // call instructions much less noisy on targets where calls clobber lots
1396 // of registers. Don't rely on MO.isDead() because we may be called before
1397 // LiveVariables is run, or we may be looking at a non-allocatable reg.
1398 if (MF && getDesc().isCall() &&
1399 MO.isReg() && MO.isImplicit() && MO.isDef()) {
1400 unsigned Reg = MO.getReg();
1401 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1402 const MachineRegisterInfo &MRI = MF->getRegInfo();
1403 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1404 bool HasAliasLive = false;
1405 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1406 unsigned AliasReg = *Alias; ++Alias)
1407 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1408 HasAliasLive = true;
1409 break;
1411 if (!HasAliasLive) {
1412 OmittedAnyCallClobbers = true;
1413 continue;
1419 if (FirstOp) FirstOp = false; else OS << ",";
1420 OS << " ";
1421 if (i < getDesc().NumOperands) {
1422 const TargetOperandInfo &TOI = getDesc().OpInfo[i];
1423 if (TOI.isPredicate())
1424 OS << "pred:";
1425 if (TOI.isOptionalDef())
1426 OS << "opt:";
1428 if (isDebugValue() && MO.isMetadata()) {
1429 // Pretty print DBG_VALUE instructions.
1430 const MDNode *MD = MO.getMetadata();
1431 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1432 OS << "!\"" << MDS->getString() << '\"';
1433 else
1434 MO.print(OS, TM);
1435 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1436 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1437 } else
1438 MO.print(OS, TM);
1441 // Briefly indicate whether any call clobbers were omitted.
1442 if (OmittedAnyCallClobbers) {
1443 if (!FirstOp) OS << ",";
1444 OS << " ...";
1447 bool HaveSemi = false;
1448 if (Flags) {
1449 if (!HaveSemi) OS << ";"; HaveSemi = true;
1450 OS << " flags: ";
1452 if (Flags & FrameSetup)
1453 OS << "FrameSetup";
1456 if (!memoperands_empty()) {
1457 if (!HaveSemi) OS << ";"; HaveSemi = true;
1459 OS << " mem:";
1460 for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1461 i != e; ++i) {
1462 OS << **i;
1463 if (llvm::next(i) != e)
1464 OS << " ";
1468 // Print the regclass of any virtual registers encountered.
1469 if (MRI && !VirtRegs.empty()) {
1470 if (!HaveSemi) OS << ";"; HaveSemi = true;
1471 for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1472 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1473 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1474 for (unsigned j = i+1; j != VirtRegs.size();) {
1475 if (MRI->getRegClass(VirtRegs[j]) != RC) {
1476 ++j;
1477 continue;
1479 if (VirtRegs[i] != VirtRegs[j])
1480 OS << "," << PrintReg(VirtRegs[j]);
1481 VirtRegs.erase(VirtRegs.begin()+j);
1486 // Print debug location information.
1487 if (!debugLoc.isUnknown() && MF) {
1488 if (!HaveSemi) OS << ";"; HaveSemi = true;
1489 OS << " dbg:";
1490 printDebugLoc(debugLoc, MF, OS);
1493 OS << '\n';
1496 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1497 const TargetRegisterInfo *RegInfo,
1498 bool AddIfNotFound) {
1499 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1500 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1501 bool Found = false;
1502 SmallVector<unsigned,4> DeadOps;
1503 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1504 MachineOperand &MO = getOperand(i);
1505 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1506 continue;
1507 unsigned Reg = MO.getReg();
1508 if (!Reg)
1509 continue;
1511 if (Reg == IncomingReg) {
1512 if (!Found) {
1513 if (MO.isKill())
1514 // The register is already marked kill.
1515 return true;
1516 if (isPhysReg && isRegTiedToDefOperand(i))
1517 // Two-address uses of physregs must not be marked kill.
1518 return true;
1519 MO.setIsKill();
1520 Found = true;
1522 } else if (hasAliases && MO.isKill() &&
1523 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1524 // A super-register kill already exists.
1525 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1526 return true;
1527 if (RegInfo->isSubRegister(IncomingReg, Reg))
1528 DeadOps.push_back(i);
1532 // Trim unneeded kill operands.
1533 while (!DeadOps.empty()) {
1534 unsigned OpIdx = DeadOps.back();
1535 if (getOperand(OpIdx).isImplicit())
1536 RemoveOperand(OpIdx);
1537 else
1538 getOperand(OpIdx).setIsKill(false);
1539 DeadOps.pop_back();
1542 // If not found, this means an alias of one of the operands is killed. Add a
1543 // new implicit operand if required.
1544 if (!Found && AddIfNotFound) {
1545 addOperand(MachineOperand::CreateReg(IncomingReg,
1546 false /*IsDef*/,
1547 true /*IsImp*/,
1548 true /*IsKill*/));
1549 return true;
1551 return Found;
1554 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1555 const TargetRegisterInfo *RegInfo,
1556 bool AddIfNotFound) {
1557 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1558 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1559 bool Found = false;
1560 SmallVector<unsigned,4> DeadOps;
1561 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1562 MachineOperand &MO = getOperand(i);
1563 if (!MO.isReg() || !MO.isDef())
1564 continue;
1565 unsigned Reg = MO.getReg();
1566 if (!Reg)
1567 continue;
1569 if (Reg == IncomingReg) {
1570 MO.setIsDead();
1571 Found = true;
1572 } else if (hasAliases && MO.isDead() &&
1573 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1574 // There exists a super-register that's marked dead.
1575 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1576 return true;
1577 if (RegInfo->getSubRegisters(IncomingReg) &&
1578 RegInfo->getSuperRegisters(Reg) &&
1579 RegInfo->isSubRegister(IncomingReg, Reg))
1580 DeadOps.push_back(i);
1584 // Trim unneeded dead operands.
1585 while (!DeadOps.empty()) {
1586 unsigned OpIdx = DeadOps.back();
1587 if (getOperand(OpIdx).isImplicit())
1588 RemoveOperand(OpIdx);
1589 else
1590 getOperand(OpIdx).setIsDead(false);
1591 DeadOps.pop_back();
1594 // If not found, this means an alias of one of the operands is dead. Add a
1595 // new implicit operand if required.
1596 if (Found || !AddIfNotFound)
1597 return Found;
1599 addOperand(MachineOperand::CreateReg(IncomingReg,
1600 true /*IsDef*/,
1601 true /*IsImp*/,
1602 false /*IsKill*/,
1603 true /*IsDead*/));
1604 return true;
1607 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1608 const TargetRegisterInfo *RegInfo) {
1609 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1610 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1611 if (MO)
1612 return;
1613 } else {
1614 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1615 const MachineOperand &MO = getOperand(i);
1616 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1617 MO.getSubReg() == 0)
1618 return;
1621 addOperand(MachineOperand::CreateReg(IncomingReg,
1622 true /*IsDef*/,
1623 true /*IsImp*/));
1626 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
1627 const TargetRegisterInfo &TRI) {
1628 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1629 MachineOperand &MO = getOperand(i);
1630 if (!MO.isReg() || !MO.isDef()) continue;
1631 unsigned Reg = MO.getReg();
1632 if (Reg == 0) continue;
1633 bool Dead = true;
1634 for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
1635 E = UsedRegs.end(); I != E; ++I)
1636 if (TRI.regsOverlap(*I, Reg)) {
1637 Dead = false;
1638 break;
1640 // If there are no uses, including partial uses, the def is dead.
1641 if (Dead) MO.setIsDead();
1645 unsigned
1646 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1647 unsigned Hash = MI->getOpcode() * 37;
1648 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1649 const MachineOperand &MO = MI->getOperand(i);
1650 uint64_t Key = (uint64_t)MO.getType() << 32;
1651 switch (MO.getType()) {
1652 default: break;
1653 case MachineOperand::MO_Register:
1654 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1655 continue; // Skip virtual register defs.
1656 Key |= MO.getReg();
1657 break;
1658 case MachineOperand::MO_Immediate:
1659 Key |= MO.getImm();
1660 break;
1661 case MachineOperand::MO_FrameIndex:
1662 case MachineOperand::MO_ConstantPoolIndex:
1663 case MachineOperand::MO_JumpTableIndex:
1664 Key |= MO.getIndex();
1665 break;
1666 case MachineOperand::MO_MachineBasicBlock:
1667 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
1668 break;
1669 case MachineOperand::MO_GlobalAddress:
1670 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
1671 break;
1672 case MachineOperand::MO_BlockAddress:
1673 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
1674 break;
1675 case MachineOperand::MO_MCSymbol:
1676 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
1677 break;
1679 Key += ~(Key << 32);
1680 Key ^= (Key >> 22);
1681 Key += ~(Key << 13);
1682 Key ^= (Key >> 8);
1683 Key += (Key << 3);
1684 Key ^= (Key >> 15);
1685 Key += ~(Key << 27);
1686 Key ^= (Key >> 31);
1687 Hash = (unsigned)Key + Hash * 37;
1689 return Hash;