1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the parser class for .ll files.
12 //===----------------------------------------------------------------------===//
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Module.h"
22 #include "llvm/Operator.h"
23 #include "llvm/ValueSymbolTable.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
29 static std::string
getTypeString(const Type
*T
) {
31 raw_string_ostream
Tmp(Result
);
36 /// Run: module ::= toplevelentity*
37 bool LLParser::Run() {
41 return ParseTopLevelEntities() ||
42 ValidateEndOfModule();
45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
47 bool LLParser::ValidateEndOfModule() {
48 // Handle any instruction metadata forward references.
49 if (!ForwardRefInstMetadata
.empty()) {
50 for (DenseMap
<Instruction
*, std::vector
<MDRef
> >::iterator
51 I
= ForwardRefInstMetadata
.begin(), E
= ForwardRefInstMetadata
.end();
53 Instruction
*Inst
= I
->first
;
54 const std::vector
<MDRef
> &MDList
= I
->second
;
56 for (unsigned i
= 0, e
= MDList
.size(); i
!= e
; ++i
) {
57 unsigned SlotNo
= MDList
[i
].MDSlot
;
59 if (SlotNo
>= NumberedMetadata
.size() || NumberedMetadata
[SlotNo
] == 0)
60 return Error(MDList
[i
].Loc
, "use of undefined metadata '!" +
62 Inst
->setMetadata(MDList
[i
].MDKind
, NumberedMetadata
[SlotNo
]);
65 ForwardRefInstMetadata
.clear();
69 // If there are entries in ForwardRefBlockAddresses at this point, they are
70 // references after the function was defined. Resolve those now.
71 while (!ForwardRefBlockAddresses
.empty()) {
72 // Okay, we are referencing an already-parsed function, resolve them now.
74 const ValID
&Fn
= ForwardRefBlockAddresses
.begin()->first
;
75 if (Fn
.Kind
== ValID::t_GlobalName
)
76 TheFn
= M
->getFunction(Fn
.StrVal
);
77 else if (Fn
.UIntVal
< NumberedVals
.size())
78 TheFn
= dyn_cast
<Function
>(NumberedVals
[Fn
.UIntVal
]);
81 return Error(Fn
.Loc
, "unknown function referenced by blockaddress");
83 // Resolve all these references.
84 if (ResolveForwardRefBlockAddresses(TheFn
,
85 ForwardRefBlockAddresses
.begin()->second
,
89 ForwardRefBlockAddresses
.erase(ForwardRefBlockAddresses
.begin());
92 for (unsigned i
= 0, e
= NumberedTypes
.size(); i
!= e
; ++i
)
93 if (NumberedTypes
[i
].second
.isValid())
94 return Error(NumberedTypes
[i
].second
,
95 "use of undefined type '%" + Twine(i
) + "'");
97 for (StringMap
<std::pair
<Type
*, LocTy
> >::iterator I
=
98 NamedTypes
.begin(), E
= NamedTypes
.end(); I
!= E
; ++I
)
99 if (I
->second
.second
.isValid())
100 return Error(I
->second
.second
,
101 "use of undefined type named '" + I
->getKey() + "'");
103 if (!ForwardRefVals
.empty())
104 return Error(ForwardRefVals
.begin()->second
.second
,
105 "use of undefined value '@" + ForwardRefVals
.begin()->first
+
108 if (!ForwardRefValIDs
.empty())
109 return Error(ForwardRefValIDs
.begin()->second
.second
,
110 "use of undefined value '@" +
111 Twine(ForwardRefValIDs
.begin()->first
) + "'");
113 if (!ForwardRefMDNodes
.empty())
114 return Error(ForwardRefMDNodes
.begin()->second
.second
,
115 "use of undefined metadata '!" +
116 Twine(ForwardRefMDNodes
.begin()->first
) + "'");
119 // Look for intrinsic functions and CallInst that need to be upgraded
120 for (Module::iterator FI
= M
->begin(), FE
= M
->end(); FI
!= FE
; )
121 UpgradeCallsToIntrinsic(FI
++); // must be post-increment, as we remove
123 // Check debug info intrinsics.
124 CheckDebugInfoIntrinsics(M
);
128 bool LLParser::ResolveForwardRefBlockAddresses(Function
*TheFn
,
129 std::vector
<std::pair
<ValID
, GlobalValue
*> > &Refs
,
130 PerFunctionState
*PFS
) {
131 // Loop over all the references, resolving them.
132 for (unsigned i
= 0, e
= Refs
.size(); i
!= e
; ++i
) {
135 if (Refs
[i
].first
.Kind
== ValID::t_LocalName
)
136 Res
= PFS
->GetBB(Refs
[i
].first
.StrVal
, Refs
[i
].first
.Loc
);
138 Res
= PFS
->GetBB(Refs
[i
].first
.UIntVal
, Refs
[i
].first
.Loc
);
139 } else if (Refs
[i
].first
.Kind
== ValID::t_LocalID
) {
140 return Error(Refs
[i
].first
.Loc
,
141 "cannot take address of numeric label after the function is defined");
143 Res
= dyn_cast_or_null
<BasicBlock
>(
144 TheFn
->getValueSymbolTable().lookup(Refs
[i
].first
.StrVal
));
148 return Error(Refs
[i
].first
.Loc
,
149 "referenced value is not a basic block");
151 // Get the BlockAddress for this and update references to use it.
152 BlockAddress
*BA
= BlockAddress::get(TheFn
, Res
);
153 Refs
[i
].second
->replaceAllUsesWith(BA
);
154 Refs
[i
].second
->eraseFromParent();
160 //===----------------------------------------------------------------------===//
161 // Top-Level Entities
162 //===----------------------------------------------------------------------===//
164 bool LLParser::ParseTopLevelEntities() {
166 switch (Lex
.getKind()) {
167 default: return TokError("expected top-level entity");
168 case lltok::Eof
: return false;
169 case lltok::kw_declare
: if (ParseDeclare()) return true; break;
170 case lltok::kw_define
: if (ParseDefine()) return true; break;
171 case lltok::kw_module
: if (ParseModuleAsm()) return true; break;
172 case lltok::kw_target
: if (ParseTargetDefinition()) return true; break;
173 case lltok::kw_deplibs
: if (ParseDepLibs()) return true; break;
174 case lltok::LocalVarID
: if (ParseUnnamedType()) return true; break;
175 case lltok::LocalVar
: if (ParseNamedType()) return true; break;
176 case lltok::GlobalID
: if (ParseUnnamedGlobal()) return true; break;
177 case lltok::GlobalVar
: if (ParseNamedGlobal()) return true; break;
178 case lltok::exclaim
: if (ParseStandaloneMetadata()) return true; break;
179 case lltok::MetadataVar
: if (ParseNamedMetadata()) return true; break;
181 // The Global variable production with no name can have many different
182 // optional leading prefixes, the production is:
183 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
184 // OptionalAddrSpace OptionalUnNammedAddr
185 // ('constant'|'global') ...
186 case lltok::kw_private
: // OptionalLinkage
187 case lltok::kw_linker_private
: // OptionalLinkage
188 case lltok::kw_linker_private_weak
: // OptionalLinkage
189 case lltok::kw_linker_private_weak_def_auto
: // OptionalLinkage
190 case lltok::kw_internal
: // OptionalLinkage
191 case lltok::kw_weak
: // OptionalLinkage
192 case lltok::kw_weak_odr
: // OptionalLinkage
193 case lltok::kw_linkonce
: // OptionalLinkage
194 case lltok::kw_linkonce_odr
: // OptionalLinkage
195 case lltok::kw_appending
: // OptionalLinkage
196 case lltok::kw_dllexport
: // OptionalLinkage
197 case lltok::kw_common
: // OptionalLinkage
198 case lltok::kw_dllimport
: // OptionalLinkage
199 case lltok::kw_extern_weak
: // OptionalLinkage
200 case lltok::kw_external
: { // OptionalLinkage
201 unsigned Linkage
, Visibility
;
202 if (ParseOptionalLinkage(Linkage
) ||
203 ParseOptionalVisibility(Visibility
) ||
204 ParseGlobal("", SMLoc(), Linkage
, true, Visibility
))
208 case lltok::kw_default
: // OptionalVisibility
209 case lltok::kw_hidden
: // OptionalVisibility
210 case lltok::kw_protected
: { // OptionalVisibility
212 if (ParseOptionalVisibility(Visibility
) ||
213 ParseGlobal("", SMLoc(), 0, false, Visibility
))
218 case lltok::kw_thread_local
: // OptionalThreadLocal
219 case lltok::kw_addrspace
: // OptionalAddrSpace
220 case lltok::kw_constant
: // GlobalType
221 case lltok::kw_global
: // GlobalType
222 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
230 /// ::= 'module' 'asm' STRINGCONSTANT
231 bool LLParser::ParseModuleAsm() {
232 assert(Lex
.getKind() == lltok::kw_module
);
236 if (ParseToken(lltok::kw_asm
, "expected 'module asm'") ||
237 ParseStringConstant(AsmStr
)) return true;
239 M
->appendModuleInlineAsm(AsmStr
);
244 /// ::= 'target' 'triple' '=' STRINGCONSTANT
245 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
246 bool LLParser::ParseTargetDefinition() {
247 assert(Lex
.getKind() == lltok::kw_target
);
250 default: return TokError("unknown target property");
251 case lltok::kw_triple
:
253 if (ParseToken(lltok::equal
, "expected '=' after target triple") ||
254 ParseStringConstant(Str
))
256 M
->setTargetTriple(Str
);
258 case lltok::kw_datalayout
:
260 if (ParseToken(lltok::equal
, "expected '=' after target datalayout") ||
261 ParseStringConstant(Str
))
263 M
->setDataLayout(Str
);
269 /// ::= 'deplibs' '=' '[' ']'
270 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
271 bool LLParser::ParseDepLibs() {
272 assert(Lex
.getKind() == lltok::kw_deplibs
);
274 if (ParseToken(lltok::equal
, "expected '=' after deplibs") ||
275 ParseToken(lltok::lsquare
, "expected '=' after deplibs"))
278 if (EatIfPresent(lltok::rsquare
))
282 if (ParseStringConstant(Str
)) return true;
285 while (EatIfPresent(lltok::comma
)) {
286 if (ParseStringConstant(Str
)) return true;
290 return ParseToken(lltok::rsquare
, "expected ']' at end of list");
293 /// ParseUnnamedType:
294 /// ::= LocalVarID '=' 'type' type
295 bool LLParser::ParseUnnamedType() {
296 LocTy TypeLoc
= Lex
.getLoc();
297 unsigned TypeID
= Lex
.getUIntVal();
298 Lex
.Lex(); // eat LocalVarID;
300 if (ParseToken(lltok::equal
, "expected '=' after name") ||
301 ParseToken(lltok::kw_type
, "expected 'type' after '='"))
304 if (TypeID
>= NumberedTypes
.size())
305 NumberedTypes
.resize(TypeID
+1);
308 if (ParseStructDefinition(TypeLoc
, "",
309 NumberedTypes
[TypeID
], Result
)) return true;
311 if (!isa
<StructType
>(Result
)) {
312 std::pair
<Type
*, LocTy
> &Entry
= NumberedTypes
[TypeID
];
314 return Error(TypeLoc
, "non-struct types may not be recursive");
315 Entry
.first
= Result
;
316 Entry
.second
= SMLoc();
324 /// ::= LocalVar '=' 'type' type
325 bool LLParser::ParseNamedType() {
326 std::string Name
= Lex
.getStrVal();
327 LocTy NameLoc
= Lex
.getLoc();
328 Lex
.Lex(); // eat LocalVar.
330 if (ParseToken(lltok::equal
, "expected '=' after name") ||
331 ParseToken(lltok::kw_type
, "expected 'type' after name"))
335 if (ParseStructDefinition(NameLoc
, Name
,
336 NamedTypes
[Name
], Result
)) return true;
338 if (!isa
<StructType
>(Result
)) {
339 std::pair
<Type
*, LocTy
> &Entry
= NamedTypes
[Name
];
341 return Error(NameLoc
, "non-struct types may not be recursive");
342 Entry
.first
= Result
;
343 Entry
.second
= SMLoc();
351 /// ::= 'declare' FunctionHeader
352 bool LLParser::ParseDeclare() {
353 assert(Lex
.getKind() == lltok::kw_declare
);
357 return ParseFunctionHeader(F
, false);
361 /// ::= 'define' FunctionHeader '{' ...
362 bool LLParser::ParseDefine() {
363 assert(Lex
.getKind() == lltok::kw_define
);
367 return ParseFunctionHeader(F
, true) ||
368 ParseFunctionBody(*F
);
374 bool LLParser::ParseGlobalType(bool &IsConstant
) {
375 if (Lex
.getKind() == lltok::kw_constant
)
377 else if (Lex
.getKind() == lltok::kw_global
)
381 return TokError("expected 'global' or 'constant'");
387 /// ParseUnnamedGlobal:
388 /// OptionalVisibility ALIAS ...
389 /// OptionalLinkage OptionalVisibility ... -> global variable
390 /// GlobalID '=' OptionalVisibility ALIAS ...
391 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable
392 bool LLParser::ParseUnnamedGlobal() {
393 unsigned VarID
= NumberedVals
.size();
395 LocTy NameLoc
= Lex
.getLoc();
397 // Handle the GlobalID form.
398 if (Lex
.getKind() == lltok::GlobalID
) {
399 if (Lex
.getUIntVal() != VarID
)
400 return Error(Lex
.getLoc(), "variable expected to be numbered '%" +
402 Lex
.Lex(); // eat GlobalID;
404 if (ParseToken(lltok::equal
, "expected '=' after name"))
409 unsigned Linkage
, Visibility
;
410 if (ParseOptionalLinkage(Linkage
, HasLinkage
) ||
411 ParseOptionalVisibility(Visibility
))
414 if (HasLinkage
|| Lex
.getKind() != lltok::kw_alias
)
415 return ParseGlobal(Name
, NameLoc
, Linkage
, HasLinkage
, Visibility
);
416 return ParseAlias(Name
, NameLoc
, Visibility
);
419 /// ParseNamedGlobal:
420 /// GlobalVar '=' OptionalVisibility ALIAS ...
421 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
422 bool LLParser::ParseNamedGlobal() {
423 assert(Lex
.getKind() == lltok::GlobalVar
);
424 LocTy NameLoc
= Lex
.getLoc();
425 std::string Name
= Lex
.getStrVal();
429 unsigned Linkage
, Visibility
;
430 if (ParseToken(lltok::equal
, "expected '=' in global variable") ||
431 ParseOptionalLinkage(Linkage
, HasLinkage
) ||
432 ParseOptionalVisibility(Visibility
))
435 if (HasLinkage
|| Lex
.getKind() != lltok::kw_alias
)
436 return ParseGlobal(Name
, NameLoc
, Linkage
, HasLinkage
, Visibility
);
437 return ParseAlias(Name
, NameLoc
, Visibility
);
441 // ::= '!' STRINGCONSTANT
442 bool LLParser::ParseMDString(MDString
*&Result
) {
444 if (ParseStringConstant(Str
)) return true;
445 Result
= MDString::get(Context
, Str
);
450 // ::= '!' MDNodeNumber
452 /// This version of ParseMDNodeID returns the slot number and null in the case
453 /// of a forward reference.
454 bool LLParser::ParseMDNodeID(MDNode
*&Result
, unsigned &SlotNo
) {
455 // !{ ..., !42, ... }
456 if (ParseUInt32(SlotNo
)) return true;
458 // Check existing MDNode.
459 if (SlotNo
< NumberedMetadata
.size() && NumberedMetadata
[SlotNo
] != 0)
460 Result
= NumberedMetadata
[SlotNo
];
466 bool LLParser::ParseMDNodeID(MDNode
*&Result
) {
467 // !{ ..., !42, ... }
469 if (ParseMDNodeID(Result
, MID
)) return true;
471 // If not a forward reference, just return it now.
472 if (Result
) return false;
474 // Otherwise, create MDNode forward reference.
475 MDNode
*FwdNode
= MDNode::getTemporary(Context
, ArrayRef
<Value
*>());
476 ForwardRefMDNodes
[MID
] = std::make_pair(FwdNode
, Lex
.getLoc());
478 if (NumberedMetadata
.size() <= MID
)
479 NumberedMetadata
.resize(MID
+1);
480 NumberedMetadata
[MID
] = FwdNode
;
485 /// ParseNamedMetadata:
486 /// !foo = !{ !1, !2 }
487 bool LLParser::ParseNamedMetadata() {
488 assert(Lex
.getKind() == lltok::MetadataVar
);
489 std::string Name
= Lex
.getStrVal();
492 if (ParseToken(lltok::equal
, "expected '=' here") ||
493 ParseToken(lltok::exclaim
, "Expected '!' here") ||
494 ParseToken(lltok::lbrace
, "Expected '{' here"))
497 NamedMDNode
*NMD
= M
->getOrInsertNamedMetadata(Name
);
498 if (Lex
.getKind() != lltok::rbrace
)
500 if (ParseToken(lltok::exclaim
, "Expected '!' here"))
504 if (ParseMDNodeID(N
)) return true;
506 } while (EatIfPresent(lltok::comma
));
508 if (ParseToken(lltok::rbrace
, "expected end of metadata node"))
514 /// ParseStandaloneMetadata:
516 bool LLParser::ParseStandaloneMetadata() {
517 assert(Lex
.getKind() == lltok::exclaim
);
519 unsigned MetadataID
= 0;
523 SmallVector
<Value
*, 16> Elts
;
524 if (ParseUInt32(MetadataID
) ||
525 ParseToken(lltok::equal
, "expected '=' here") ||
526 ParseType(Ty
, TyLoc
) ||
527 ParseToken(lltok::exclaim
, "Expected '!' here") ||
528 ParseToken(lltok::lbrace
, "Expected '{' here") ||
529 ParseMDNodeVector(Elts
, NULL
) ||
530 ParseToken(lltok::rbrace
, "expected end of metadata node"))
533 MDNode
*Init
= MDNode::get(Context
, Elts
);
535 // See if this was forward referenced, if so, handle it.
536 std::map
<unsigned, std::pair
<TrackingVH
<MDNode
>, LocTy
> >::iterator
537 FI
= ForwardRefMDNodes
.find(MetadataID
);
538 if (FI
!= ForwardRefMDNodes
.end()) {
539 MDNode
*Temp
= FI
->second
.first
;
540 Temp
->replaceAllUsesWith(Init
);
541 MDNode::deleteTemporary(Temp
);
542 ForwardRefMDNodes
.erase(FI
);
544 assert(NumberedMetadata
[MetadataID
] == Init
&& "Tracking VH didn't work");
546 if (MetadataID
>= NumberedMetadata
.size())
547 NumberedMetadata
.resize(MetadataID
+1);
549 if (NumberedMetadata
[MetadataID
] != 0)
550 return TokError("Metadata id is already used");
551 NumberedMetadata
[MetadataID
] = Init
;
558 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
561 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
562 /// ::= 'getelementptr' 'inbounds'? '(' ... ')'
564 /// Everything through visibility has already been parsed.
566 bool LLParser::ParseAlias(const std::string
&Name
, LocTy NameLoc
,
567 unsigned Visibility
) {
568 assert(Lex
.getKind() == lltok::kw_alias
);
571 LocTy LinkageLoc
= Lex
.getLoc();
572 if (ParseOptionalLinkage(Linkage
))
575 if (Linkage
!= GlobalValue::ExternalLinkage
&&
576 Linkage
!= GlobalValue::WeakAnyLinkage
&&
577 Linkage
!= GlobalValue::WeakODRLinkage
&&
578 Linkage
!= GlobalValue::InternalLinkage
&&
579 Linkage
!= GlobalValue::PrivateLinkage
&&
580 Linkage
!= GlobalValue::LinkerPrivateLinkage
&&
581 Linkage
!= GlobalValue::LinkerPrivateWeakLinkage
&&
582 Linkage
!= GlobalValue::LinkerPrivateWeakDefAutoLinkage
)
583 return Error(LinkageLoc
, "invalid linkage type for alias");
586 LocTy AliaseeLoc
= Lex
.getLoc();
587 if (Lex
.getKind() != lltok::kw_bitcast
&&
588 Lex
.getKind() != lltok::kw_getelementptr
) {
589 if (ParseGlobalTypeAndValue(Aliasee
)) return true;
591 // The bitcast dest type is not present, it is implied by the dest type.
593 if (ParseValID(ID
)) return true;
594 if (ID
.Kind
!= ValID::t_Constant
)
595 return Error(AliaseeLoc
, "invalid aliasee");
596 Aliasee
= ID
.ConstantVal
;
599 if (!Aliasee
->getType()->isPointerTy())
600 return Error(AliaseeLoc
, "alias must have pointer type");
602 // Okay, create the alias but do not insert it into the module yet.
603 GlobalAlias
* GA
= new GlobalAlias(Aliasee
->getType(),
604 (GlobalValue::LinkageTypes
)Linkage
, Name
,
606 GA
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
608 // See if this value already exists in the symbol table. If so, it is either
609 // a redefinition or a definition of a forward reference.
610 if (GlobalValue
*Val
= M
->getNamedValue(Name
)) {
611 // See if this was a redefinition. If so, there is no entry in
613 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator
614 I
= ForwardRefVals
.find(Name
);
615 if (I
== ForwardRefVals
.end())
616 return Error(NameLoc
, "redefinition of global named '@" + Name
+ "'");
618 // Otherwise, this was a definition of forward ref. Verify that types
620 if (Val
->getType() != GA
->getType())
621 return Error(NameLoc
,
622 "forward reference and definition of alias have different types");
624 // If they agree, just RAUW the old value with the alias and remove the
626 Val
->replaceAllUsesWith(GA
);
627 Val
->eraseFromParent();
628 ForwardRefVals
.erase(I
);
631 // Insert into the module, we know its name won't collide now.
632 M
->getAliasList().push_back(GA
);
633 assert(GA
->getName() == Name
&& "Should not be a name conflict!");
639 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
640 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
641 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
642 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
644 /// Everything through visibility has been parsed already.
646 bool LLParser::ParseGlobal(const std::string
&Name
, LocTy NameLoc
,
647 unsigned Linkage
, bool HasLinkage
,
648 unsigned Visibility
) {
650 bool ThreadLocal
, IsConstant
, UnnamedAddr
;
651 LocTy UnnamedAddrLoc
;
655 if (ParseOptionalToken(lltok::kw_thread_local
, ThreadLocal
) ||
656 ParseOptionalAddrSpace(AddrSpace
) ||
657 ParseOptionalToken(lltok::kw_unnamed_addr
, UnnamedAddr
,
659 ParseGlobalType(IsConstant
) ||
660 ParseType(Ty
, TyLoc
))
663 // If the linkage is specified and is external, then no initializer is
666 if (!HasLinkage
|| (Linkage
!= GlobalValue::DLLImportLinkage
&&
667 Linkage
!= GlobalValue::ExternalWeakLinkage
&&
668 Linkage
!= GlobalValue::ExternalLinkage
)) {
669 if (ParseGlobalValue(Ty
, Init
))
673 if (Ty
->isFunctionTy() || Ty
->isLabelTy())
674 return Error(TyLoc
, "invalid type for global variable");
676 GlobalVariable
*GV
= 0;
678 // See if the global was forward referenced, if so, use the global.
680 if (GlobalValue
*GVal
= M
->getNamedValue(Name
)) {
681 if (!ForwardRefVals
.erase(Name
) || !isa
<GlobalValue
>(GVal
))
682 return Error(NameLoc
, "redefinition of global '@" + Name
+ "'");
683 GV
= cast
<GlobalVariable
>(GVal
);
686 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator
687 I
= ForwardRefValIDs
.find(NumberedVals
.size());
688 if (I
!= ForwardRefValIDs
.end()) {
689 GV
= cast
<GlobalVariable
>(I
->second
.first
);
690 ForwardRefValIDs
.erase(I
);
695 GV
= new GlobalVariable(*M
, Ty
, false, GlobalValue::ExternalLinkage
, 0,
696 Name
, 0, false, AddrSpace
);
698 if (GV
->getType()->getElementType() != Ty
)
700 "forward reference and definition of global have different types");
702 // Move the forward-reference to the correct spot in the module.
703 M
->getGlobalList().splice(M
->global_end(), M
->getGlobalList(), GV
);
707 NumberedVals
.push_back(GV
);
709 // Set the parsed properties on the global.
711 GV
->setInitializer(Init
);
712 GV
->setConstant(IsConstant
);
713 GV
->setLinkage((GlobalValue::LinkageTypes
)Linkage
);
714 GV
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
715 GV
->setThreadLocal(ThreadLocal
);
716 GV
->setUnnamedAddr(UnnamedAddr
);
718 // Parse attributes on the global.
719 while (Lex
.getKind() == lltok::comma
) {
722 if (Lex
.getKind() == lltok::kw_section
) {
724 GV
->setSection(Lex
.getStrVal());
725 if (ParseToken(lltok::StringConstant
, "expected global section string"))
727 } else if (Lex
.getKind() == lltok::kw_align
) {
729 if (ParseOptionalAlignment(Alignment
)) return true;
730 GV
->setAlignment(Alignment
);
732 TokError("unknown global variable property!");
740 //===----------------------------------------------------------------------===//
741 // GlobalValue Reference/Resolution Routines.
742 //===----------------------------------------------------------------------===//
744 /// GetGlobalVal - Get a value with the specified name or ID, creating a
745 /// forward reference record if needed. This can return null if the value
746 /// exists but does not have the right type.
747 GlobalValue
*LLParser::GetGlobalVal(const std::string
&Name
, const Type
*Ty
,
749 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
751 Error(Loc
, "global variable reference must have pointer type");
755 // Look this name up in the normal function symbol table.
757 cast_or_null
<GlobalValue
>(M
->getValueSymbolTable().lookup(Name
));
759 // If this is a forward reference for the value, see if we already created a
760 // forward ref record.
762 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator
763 I
= ForwardRefVals
.find(Name
);
764 if (I
!= ForwardRefVals
.end())
765 Val
= I
->second
.first
;
768 // If we have the value in the symbol table or fwd-ref table, return it.
770 if (Val
->getType() == Ty
) return Val
;
771 Error(Loc
, "'@" + Name
+ "' defined with type '" +
772 getTypeString(Val
->getType()) + "'");
776 // Otherwise, create a new forward reference for this value and remember it.
778 if (const FunctionType
*FT
= dyn_cast
<FunctionType
>(PTy
->getElementType()))
779 FwdVal
= Function::Create(FT
, GlobalValue::ExternalWeakLinkage
, Name
, M
);
781 FwdVal
= new GlobalVariable(*M
, PTy
->getElementType(), false,
782 GlobalValue::ExternalWeakLinkage
, 0, Name
);
784 ForwardRefVals
[Name
] = std::make_pair(FwdVal
, Loc
);
788 GlobalValue
*LLParser::GetGlobalVal(unsigned ID
, const Type
*Ty
, LocTy Loc
) {
789 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
791 Error(Loc
, "global variable reference must have pointer type");
795 GlobalValue
*Val
= ID
< NumberedVals
.size() ? NumberedVals
[ID
] : 0;
797 // If this is a forward reference for the value, see if we already created a
798 // forward ref record.
800 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator
801 I
= ForwardRefValIDs
.find(ID
);
802 if (I
!= ForwardRefValIDs
.end())
803 Val
= I
->second
.first
;
806 // If we have the value in the symbol table or fwd-ref table, return it.
808 if (Val
->getType() == Ty
) return Val
;
809 Error(Loc
, "'@" + Twine(ID
) + "' defined with type '" +
810 getTypeString(Val
->getType()) + "'");
814 // Otherwise, create a new forward reference for this value and remember it.
816 if (const FunctionType
*FT
= dyn_cast
<FunctionType
>(PTy
->getElementType()))
817 FwdVal
= Function::Create(FT
, GlobalValue::ExternalWeakLinkage
, "", M
);
819 FwdVal
= new GlobalVariable(*M
, PTy
->getElementType(), false,
820 GlobalValue::ExternalWeakLinkage
, 0, "");
822 ForwardRefValIDs
[ID
] = std::make_pair(FwdVal
, Loc
);
827 //===----------------------------------------------------------------------===//
829 //===----------------------------------------------------------------------===//
831 /// ParseToken - If the current token has the specified kind, eat it and return
832 /// success. Otherwise, emit the specified error and return failure.
833 bool LLParser::ParseToken(lltok::Kind T
, const char *ErrMsg
) {
834 if (Lex
.getKind() != T
)
835 return TokError(ErrMsg
);
840 /// ParseStringConstant
841 /// ::= StringConstant
842 bool LLParser::ParseStringConstant(std::string
&Result
) {
843 if (Lex
.getKind() != lltok::StringConstant
)
844 return TokError("expected string constant");
845 Result
= Lex
.getStrVal();
852 bool LLParser::ParseUInt32(unsigned &Val
) {
853 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned())
854 return TokError("expected integer");
855 uint64_t Val64
= Lex
.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL
+1);
856 if (Val64
!= unsigned(Val64
))
857 return TokError("expected 32-bit integer (too large)");
864 /// ParseOptionalAddrSpace
866 /// := 'addrspace' '(' uint32 ')'
867 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace
) {
869 if (!EatIfPresent(lltok::kw_addrspace
))
871 return ParseToken(lltok::lparen
, "expected '(' in address space") ||
872 ParseUInt32(AddrSpace
) ||
873 ParseToken(lltok::rparen
, "expected ')' in address space");
876 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
877 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
878 /// 2: function attr.
879 bool LLParser::ParseOptionalAttrs(unsigned &Attrs
, unsigned AttrKind
) {
880 Attrs
= Attribute::None
;
881 LocTy AttrLoc
= Lex
.getLoc();
884 switch (Lex
.getKind()) {
885 default: // End of attributes.
886 if (AttrKind
!= 2 && (Attrs
& Attribute::FunctionOnly
))
887 return Error(AttrLoc
, "invalid use of function-only attribute");
889 // As a hack, we allow "align 2" on functions as a synonym for
892 (Attrs
& ~(Attribute::FunctionOnly
| Attribute::Alignment
)))
893 return Error(AttrLoc
, "invalid use of attribute on a function");
895 if (AttrKind
!= 0 && (Attrs
& Attribute::ParameterOnly
))
896 return Error(AttrLoc
, "invalid use of parameter-only attribute");
899 case lltok::kw_zeroext
: Attrs
|= Attribute::ZExt
; break;
900 case lltok::kw_signext
: Attrs
|= Attribute::SExt
; break;
901 case lltok::kw_inreg
: Attrs
|= Attribute::InReg
; break;
902 case lltok::kw_sret
: Attrs
|= Attribute::StructRet
; break;
903 case lltok::kw_noalias
: Attrs
|= Attribute::NoAlias
; break;
904 case lltok::kw_nocapture
: Attrs
|= Attribute::NoCapture
; break;
905 case lltok::kw_byval
: Attrs
|= Attribute::ByVal
; break;
906 case lltok::kw_nest
: Attrs
|= Attribute::Nest
; break;
908 case lltok::kw_noreturn
: Attrs
|= Attribute::NoReturn
; break;
909 case lltok::kw_nounwind
: Attrs
|= Attribute::NoUnwind
; break;
910 case lltok::kw_uwtable
: Attrs
|= Attribute::UWTable
; break;
911 case lltok::kw_noinline
: Attrs
|= Attribute::NoInline
; break;
912 case lltok::kw_readnone
: Attrs
|= Attribute::ReadNone
; break;
913 case lltok::kw_readonly
: Attrs
|= Attribute::ReadOnly
; break;
914 case lltok::kw_inlinehint
: Attrs
|= Attribute::InlineHint
; break;
915 case lltok::kw_alwaysinline
: Attrs
|= Attribute::AlwaysInline
; break;
916 case lltok::kw_optsize
: Attrs
|= Attribute::OptimizeForSize
; break;
917 case lltok::kw_ssp
: Attrs
|= Attribute::StackProtect
; break;
918 case lltok::kw_sspreq
: Attrs
|= Attribute::StackProtectReq
; break;
919 case lltok::kw_noredzone
: Attrs
|= Attribute::NoRedZone
; break;
920 case lltok::kw_noimplicitfloat
: Attrs
|= Attribute::NoImplicitFloat
; break;
921 case lltok::kw_naked
: Attrs
|= Attribute::Naked
; break;
922 case lltok::kw_hotpatch
: Attrs
|= Attribute::Hotpatch
; break;
923 case lltok::kw_nonlazybind
: Attrs
|= Attribute::NonLazyBind
; break;
925 case lltok::kw_alignstack
: {
927 if (ParseOptionalStackAlignment(Alignment
))
929 Attrs
|= Attribute::constructStackAlignmentFromInt(Alignment
);
933 case lltok::kw_align
: {
935 if (ParseOptionalAlignment(Alignment
))
937 Attrs
|= Attribute::constructAlignmentFromInt(Alignment
);
946 /// ParseOptionalLinkage
949 /// ::= 'linker_private'
950 /// ::= 'linker_private_weak'
951 /// ::= 'linker_private_weak_def_auto'
956 /// ::= 'linkonce_odr'
957 /// ::= 'available_externally'
962 /// ::= 'extern_weak'
964 bool LLParser::ParseOptionalLinkage(unsigned &Res
, bool &HasLinkage
) {
966 switch (Lex
.getKind()) {
967 default: Res
=GlobalValue::ExternalLinkage
; return false;
968 case lltok::kw_private
: Res
= GlobalValue::PrivateLinkage
; break;
969 case lltok::kw_linker_private
: Res
= GlobalValue::LinkerPrivateLinkage
; break;
970 case lltok::kw_linker_private_weak
:
971 Res
= GlobalValue::LinkerPrivateWeakLinkage
;
973 case lltok::kw_linker_private_weak_def_auto
:
974 Res
= GlobalValue::LinkerPrivateWeakDefAutoLinkage
;
976 case lltok::kw_internal
: Res
= GlobalValue::InternalLinkage
; break;
977 case lltok::kw_weak
: Res
= GlobalValue::WeakAnyLinkage
; break;
978 case lltok::kw_weak_odr
: Res
= GlobalValue::WeakODRLinkage
; break;
979 case lltok::kw_linkonce
: Res
= GlobalValue::LinkOnceAnyLinkage
; break;
980 case lltok::kw_linkonce_odr
: Res
= GlobalValue::LinkOnceODRLinkage
; break;
981 case lltok::kw_available_externally
:
982 Res
= GlobalValue::AvailableExternallyLinkage
;
984 case lltok::kw_appending
: Res
= GlobalValue::AppendingLinkage
; break;
985 case lltok::kw_dllexport
: Res
= GlobalValue::DLLExportLinkage
; break;
986 case lltok::kw_common
: Res
= GlobalValue::CommonLinkage
; break;
987 case lltok::kw_dllimport
: Res
= GlobalValue::DLLImportLinkage
; break;
988 case lltok::kw_extern_weak
: Res
= GlobalValue::ExternalWeakLinkage
; break;
989 case lltok::kw_external
: Res
= GlobalValue::ExternalLinkage
; break;
996 /// ParseOptionalVisibility
1002 bool LLParser::ParseOptionalVisibility(unsigned &Res
) {
1003 switch (Lex
.getKind()) {
1004 default: Res
= GlobalValue::DefaultVisibility
; return false;
1005 case lltok::kw_default
: Res
= GlobalValue::DefaultVisibility
; break;
1006 case lltok::kw_hidden
: Res
= GlobalValue::HiddenVisibility
; break;
1007 case lltok::kw_protected
: Res
= GlobalValue::ProtectedVisibility
; break;
1013 /// ParseOptionalCallingConv
1018 /// ::= 'x86_stdcallcc'
1019 /// ::= 'x86_fastcallcc'
1020 /// ::= 'x86_thiscallcc'
1021 /// ::= 'arm_apcscc'
1022 /// ::= 'arm_aapcscc'
1023 /// ::= 'arm_aapcs_vfpcc'
1024 /// ::= 'msp430_intrcc'
1025 /// ::= 'ptx_kernel'
1026 /// ::= 'ptx_device'
1029 bool LLParser::ParseOptionalCallingConv(CallingConv::ID
&CC
) {
1030 switch (Lex
.getKind()) {
1031 default: CC
= CallingConv::C
; return false;
1032 case lltok::kw_ccc
: CC
= CallingConv::C
; break;
1033 case lltok::kw_fastcc
: CC
= CallingConv::Fast
; break;
1034 case lltok::kw_coldcc
: CC
= CallingConv::Cold
; break;
1035 case lltok::kw_x86_stdcallcc
: CC
= CallingConv::X86_StdCall
; break;
1036 case lltok::kw_x86_fastcallcc
: CC
= CallingConv::X86_FastCall
; break;
1037 case lltok::kw_x86_thiscallcc
: CC
= CallingConv::X86_ThisCall
; break;
1038 case lltok::kw_arm_apcscc
: CC
= CallingConv::ARM_APCS
; break;
1039 case lltok::kw_arm_aapcscc
: CC
= CallingConv::ARM_AAPCS
; break;
1040 case lltok::kw_arm_aapcs_vfpcc
:CC
= CallingConv::ARM_AAPCS_VFP
; break;
1041 case lltok::kw_msp430_intrcc
: CC
= CallingConv::MSP430_INTR
; break;
1042 case lltok::kw_ptx_kernel
: CC
= CallingConv::PTX_Kernel
; break;
1043 case lltok::kw_ptx_device
: CC
= CallingConv::PTX_Device
; break;
1044 case lltok::kw_cc
: {
1045 unsigned ArbitraryCC
;
1047 if (ParseUInt32(ArbitraryCC
)) {
1050 CC
= static_cast<CallingConv::ID
>(ArbitraryCC
);
1060 /// ParseInstructionMetadata
1061 /// ::= !dbg !42 (',' !dbg !57)*
1062 bool LLParser::ParseInstructionMetadata(Instruction
*Inst
,
1063 PerFunctionState
*PFS
) {
1065 if (Lex
.getKind() != lltok::MetadataVar
)
1066 return TokError("expected metadata after comma");
1068 std::string Name
= Lex
.getStrVal();
1069 unsigned MDK
= M
->getMDKindID(Name
.c_str());
1073 SMLoc Loc
= Lex
.getLoc();
1075 if (ParseToken(lltok::exclaim
, "expected '!' here"))
1078 // This code is similar to that of ParseMetadataValue, however it needs to
1079 // have special-case code for a forward reference; see the comments on
1080 // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1081 // at the top level here.
1082 if (Lex
.getKind() == lltok::lbrace
) {
1084 if (ParseMetadataListValue(ID
, PFS
))
1086 assert(ID
.Kind
== ValID::t_MDNode
);
1087 Inst
->setMetadata(MDK
, ID
.MDNodeVal
);
1089 unsigned NodeID
= 0;
1090 if (ParseMDNodeID(Node
, NodeID
))
1093 // If we got the node, add it to the instruction.
1094 Inst
->setMetadata(MDK
, Node
);
1096 MDRef R
= { Loc
, MDK
, NodeID
};
1097 // Otherwise, remember that this should be resolved later.
1098 ForwardRefInstMetadata
[Inst
].push_back(R
);
1102 // If this is the end of the list, we're done.
1103 } while (EatIfPresent(lltok::comma
));
1107 /// ParseOptionalAlignment
1110 bool LLParser::ParseOptionalAlignment(unsigned &Alignment
) {
1112 if (!EatIfPresent(lltok::kw_align
))
1114 LocTy AlignLoc
= Lex
.getLoc();
1115 if (ParseUInt32(Alignment
)) return true;
1116 if (!isPowerOf2_32(Alignment
))
1117 return Error(AlignLoc
, "alignment is not a power of two");
1118 if (Alignment
> Value::MaximumAlignment
)
1119 return Error(AlignLoc
, "huge alignments are not supported yet");
1123 /// ParseOptionalCommaAlign
1127 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1129 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment
,
1130 bool &AteExtraComma
) {
1131 AteExtraComma
= false;
1132 while (EatIfPresent(lltok::comma
)) {
1133 // Metadata at the end is an early exit.
1134 if (Lex
.getKind() == lltok::MetadataVar
) {
1135 AteExtraComma
= true;
1139 if (Lex
.getKind() != lltok::kw_align
)
1140 return Error(Lex
.getLoc(), "expected metadata or 'align'");
1142 if (ParseOptionalAlignment(Alignment
)) return true;
1148 /// ParseOptionalStackAlignment
1150 /// ::= 'alignstack' '(' 4 ')'
1151 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment
) {
1153 if (!EatIfPresent(lltok::kw_alignstack
))
1155 LocTy ParenLoc
= Lex
.getLoc();
1156 if (!EatIfPresent(lltok::lparen
))
1157 return Error(ParenLoc
, "expected '('");
1158 LocTy AlignLoc
= Lex
.getLoc();
1159 if (ParseUInt32(Alignment
)) return true;
1160 ParenLoc
= Lex
.getLoc();
1161 if (!EatIfPresent(lltok::rparen
))
1162 return Error(ParenLoc
, "expected ')'");
1163 if (!isPowerOf2_32(Alignment
))
1164 return Error(AlignLoc
, "stack alignment is not a power of two");
1168 /// ParseIndexList - This parses the index list for an insert/extractvalue
1169 /// instruction. This sets AteExtraComma in the case where we eat an extra
1170 /// comma at the end of the line and find that it is followed by metadata.
1171 /// Clients that don't allow metadata can call the version of this function that
1172 /// only takes one argument.
1175 /// ::= (',' uint32)+
1177 bool LLParser::ParseIndexList(SmallVectorImpl
<unsigned> &Indices
,
1178 bool &AteExtraComma
) {
1179 AteExtraComma
= false;
1181 if (Lex
.getKind() != lltok::comma
)
1182 return TokError("expected ',' as start of index list");
1184 while (EatIfPresent(lltok::comma
)) {
1185 if (Lex
.getKind() == lltok::MetadataVar
) {
1186 AteExtraComma
= true;
1190 if (ParseUInt32(Idx
)) return true;
1191 Indices
.push_back(Idx
);
1197 //===----------------------------------------------------------------------===//
1199 //===----------------------------------------------------------------------===//
1201 /// ParseType - Parse a type.
1202 bool LLParser::ParseType(Type
*&Result
, bool AllowVoid
) {
1203 SMLoc TypeLoc
= Lex
.getLoc();
1204 switch (Lex
.getKind()) {
1206 return TokError("expected type");
1208 // Type ::= 'float' | 'void' (etc)
1209 Result
= Lex
.getTyVal();
1213 // Type ::= StructType
1214 if (ParseAnonStructType(Result
, false))
1217 case lltok::lsquare
:
1218 // Type ::= '[' ... ']'
1219 Lex
.Lex(); // eat the lsquare.
1220 if (ParseArrayVectorType(Result
, false))
1223 case lltok::less
: // Either vector or packed struct.
1224 // Type ::= '<' ... '>'
1226 if (Lex
.getKind() == lltok::lbrace
) {
1227 if (ParseAnonStructType(Result
, true) ||
1228 ParseToken(lltok::greater
, "expected '>' at end of packed struct"))
1230 } else if (ParseArrayVectorType(Result
, true))
1233 case lltok::LocalVar
: {
1235 std::pair
<Type
*, LocTy
> &Entry
= NamedTypes
[Lex
.getStrVal()];
1237 // If the type hasn't been defined yet, create a forward definition and
1238 // remember where that forward def'n was seen (in case it never is defined).
1239 if (Entry
.first
== 0) {
1240 Entry
.first
= StructType::createNamed(Context
, Lex
.getStrVal());
1241 Entry
.second
= Lex
.getLoc();
1243 Result
= Entry
.first
;
1248 case lltok::LocalVarID
: {
1250 if (Lex
.getUIntVal() >= NumberedTypes
.size())
1251 NumberedTypes
.resize(Lex
.getUIntVal()+1);
1252 std::pair
<Type
*, LocTy
> &Entry
= NumberedTypes
[Lex
.getUIntVal()];
1254 // If the type hasn't been defined yet, create a forward definition and
1255 // remember where that forward def'n was seen (in case it never is defined).
1256 if (Entry
.first
== 0) {
1257 Entry
.first
= StructType::createNamed(Context
, "");
1258 Entry
.second
= Lex
.getLoc();
1260 Result
= Entry
.first
;
1266 // Parse the type suffixes.
1268 switch (Lex
.getKind()) {
1271 if (!AllowVoid
&& Result
->isVoidTy())
1272 return Error(TypeLoc
, "void type only allowed for function results");
1275 // Type ::= Type '*'
1277 if (Result
->isLabelTy())
1278 return TokError("basic block pointers are invalid");
1279 if (Result
->isVoidTy())
1280 return TokError("pointers to void are invalid - use i8* instead");
1281 if (!PointerType::isValidElementType(Result
))
1282 return TokError("pointer to this type is invalid");
1283 Result
= PointerType::getUnqual(Result
);
1287 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1288 case lltok::kw_addrspace
: {
1289 if (Result
->isLabelTy())
1290 return TokError("basic block pointers are invalid");
1291 if (Result
->isVoidTy())
1292 return TokError("pointers to void are invalid; use i8* instead");
1293 if (!PointerType::isValidElementType(Result
))
1294 return TokError("pointer to this type is invalid");
1296 if (ParseOptionalAddrSpace(AddrSpace
) ||
1297 ParseToken(lltok::star
, "expected '*' in address space"))
1300 Result
= PointerType::get(Result
, AddrSpace
);
1304 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1306 if (ParseFunctionType(Result
))
1313 /// ParseParameterList
1315 /// ::= '(' Arg (',' Arg)* ')'
1317 /// ::= Type OptionalAttributes Value OptionalAttributes
1318 bool LLParser::ParseParameterList(SmallVectorImpl
<ParamInfo
> &ArgList
,
1319 PerFunctionState
&PFS
) {
1320 if (ParseToken(lltok::lparen
, "expected '(' in call"))
1323 while (Lex
.getKind() != lltok::rparen
) {
1324 // If this isn't the first argument, we need a comma.
1325 if (!ArgList
.empty() &&
1326 ParseToken(lltok::comma
, "expected ',' in argument list"))
1329 // Parse the argument.
1332 unsigned ArgAttrs1
= Attribute::None
;
1333 unsigned ArgAttrs2
= Attribute::None
;
1335 if (ParseType(ArgTy
, ArgLoc
))
1338 // Otherwise, handle normal operands.
1339 if (ParseOptionalAttrs(ArgAttrs1
, 0) || ParseValue(ArgTy
, V
, PFS
))
1341 ArgList
.push_back(ParamInfo(ArgLoc
, V
, ArgAttrs1
|ArgAttrs2
));
1344 Lex
.Lex(); // Lex the ')'.
1350 /// ParseArgumentList - Parse the argument list for a function type or function
1352 /// ::= '(' ArgTypeListI ')'
1356 /// ::= ArgTypeList ',' '...'
1357 /// ::= ArgType (',' ArgType)*
1359 bool LLParser::ParseArgumentList(SmallVectorImpl
<ArgInfo
> &ArgList
,
1362 assert(Lex
.getKind() == lltok::lparen
);
1363 Lex
.Lex(); // eat the (.
1365 if (Lex
.getKind() == lltok::rparen
) {
1367 } else if (Lex
.getKind() == lltok::dotdotdot
) {
1371 LocTy TypeLoc
= Lex
.getLoc();
1376 if (ParseType(ArgTy
) ||
1377 ParseOptionalAttrs(Attrs
, 0)) return true;
1379 if (ArgTy
->isVoidTy())
1380 return Error(TypeLoc
, "argument can not have void type");
1382 if (Lex
.getKind() == lltok::LocalVar
) {
1383 Name
= Lex
.getStrVal();
1387 if (!FunctionType::isValidArgumentType(ArgTy
))
1388 return Error(TypeLoc
, "invalid type for function argument");
1390 ArgList
.push_back(ArgInfo(TypeLoc
, ArgTy
, Attrs
, Name
));
1392 while (EatIfPresent(lltok::comma
)) {
1393 // Handle ... at end of arg list.
1394 if (EatIfPresent(lltok::dotdotdot
)) {
1399 // Otherwise must be an argument type.
1400 TypeLoc
= Lex
.getLoc();
1401 if (ParseType(ArgTy
) || ParseOptionalAttrs(Attrs
, 0)) return true;
1403 if (ArgTy
->isVoidTy())
1404 return Error(TypeLoc
, "argument can not have void type");
1406 if (Lex
.getKind() == lltok::LocalVar
) {
1407 Name
= Lex
.getStrVal();
1413 if (!ArgTy
->isFirstClassType())
1414 return Error(TypeLoc
, "invalid type for function argument");
1416 ArgList
.push_back(ArgInfo(TypeLoc
, ArgTy
, Attrs
, Name
));
1420 return ParseToken(lltok::rparen
, "expected ')' at end of argument list");
1423 /// ParseFunctionType
1424 /// ::= Type ArgumentList OptionalAttrs
1425 bool LLParser::ParseFunctionType(Type
*&Result
) {
1426 assert(Lex
.getKind() == lltok::lparen
);
1428 if (!FunctionType::isValidReturnType(Result
))
1429 return TokError("invalid function return type");
1431 SmallVector
<ArgInfo
, 8> ArgList
;
1433 if (ParseArgumentList(ArgList
, isVarArg
))
1436 // Reject names on the arguments lists.
1437 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
1438 if (!ArgList
[i
].Name
.empty())
1439 return Error(ArgList
[i
].Loc
, "argument name invalid in function type");
1440 if (ArgList
[i
].Attrs
!= 0)
1441 return Error(ArgList
[i
].Loc
,
1442 "argument attributes invalid in function type");
1445 SmallVector
<const Type
*, 16> ArgListTy
;
1446 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
1447 ArgListTy
.push_back(ArgList
[i
].Ty
);
1449 Result
= FunctionType::get(Result
, ArgListTy
, isVarArg
);
1453 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1455 bool LLParser::ParseAnonStructType(Type
*&Result
, bool Packed
) {
1456 SmallVector
<Type
*, 8> Elts
;
1457 if (ParseStructBody(Elts
)) return true;
1459 Result
= StructType::get(Context
, Elts
, Packed
);
1463 /// ParseStructDefinition - Parse a struct in a 'type' definition.
1464 bool LLParser::ParseStructDefinition(SMLoc TypeLoc
, StringRef Name
,
1465 std::pair
<Type
*, LocTy
> &Entry
,
1467 // If the type was already defined, diagnose the redefinition.
1468 if (Entry
.first
&& !Entry
.second
.isValid())
1469 return Error(TypeLoc
, "redefinition of type");
1471 // If we have opaque, just return without filling in the definition for the
1472 // struct. This counts as a definition as far as the .ll file goes.
1473 if (EatIfPresent(lltok::kw_opaque
)) {
1474 // This type is being defined, so clear the location to indicate this.
1475 Entry
.second
= SMLoc();
1477 // If this type number has never been uttered, create it.
1478 if (Entry
.first
== 0)
1479 Entry
.first
= StructType::createNamed(Context
, Name
);
1480 ResultTy
= Entry
.first
;
1484 // If the type starts with '<', then it is either a packed struct or a vector.
1485 bool isPacked
= EatIfPresent(lltok::less
);
1487 // If we don't have a struct, then we have a random type alias, which we
1488 // accept for compatibility with old files. These types are not allowed to be
1489 // forward referenced and not allowed to be recursive.
1490 if (Lex
.getKind() != lltok::lbrace
) {
1492 return Error(TypeLoc
, "forward references to non-struct type");
1496 return ParseArrayVectorType(ResultTy
, true);
1497 return ParseType(ResultTy
);
1500 // This type is being defined, so clear the location to indicate this.
1501 Entry
.second
= SMLoc();
1503 // If this type number has never been uttered, create it.
1504 if (Entry
.first
== 0)
1505 Entry
.first
= StructType::createNamed(Context
, Name
);
1507 StructType
*STy
= cast
<StructType
>(Entry
.first
);
1509 SmallVector
<Type
*, 8> Body
;
1510 if (ParseStructBody(Body
) ||
1511 (isPacked
&& ParseToken(lltok::greater
, "expected '>' in packed struct")))
1514 STy
->setBody(Body
, isPacked
);
1520 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1523 /// ::= '{' Type (',' Type)* '}'
1524 /// ::= '<' '{' '}' '>'
1525 /// ::= '<' '{' Type (',' Type)* '}' '>'
1526 bool LLParser::ParseStructBody(SmallVectorImpl
<Type
*> &Body
) {
1527 assert(Lex
.getKind() == lltok::lbrace
);
1528 Lex
.Lex(); // Consume the '{'
1530 // Handle the empty struct.
1531 if (EatIfPresent(lltok::rbrace
))
1534 LocTy EltTyLoc
= Lex
.getLoc();
1536 if (ParseType(Ty
)) return true;
1539 if (!StructType::isValidElementType(Ty
))
1540 return Error(EltTyLoc
, "invalid element type for struct");
1542 while (EatIfPresent(lltok::comma
)) {
1543 EltTyLoc
= Lex
.getLoc();
1544 if (ParseType(Ty
)) return true;
1546 if (!StructType::isValidElementType(Ty
))
1547 return Error(EltTyLoc
, "invalid element type for struct");
1552 return ParseToken(lltok::rbrace
, "expected '}' at end of struct");
1555 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1556 /// token has already been consumed.
1558 /// ::= '[' APSINTVAL 'x' Types ']'
1559 /// ::= '<' APSINTVAL 'x' Types '>'
1560 bool LLParser::ParseArrayVectorType(Type
*&Result
, bool isVector
) {
1561 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned() ||
1562 Lex
.getAPSIntVal().getBitWidth() > 64)
1563 return TokError("expected number in address space");
1565 LocTy SizeLoc
= Lex
.getLoc();
1566 uint64_t Size
= Lex
.getAPSIntVal().getZExtValue();
1569 if (ParseToken(lltok::kw_x
, "expected 'x' after element count"))
1572 LocTy TypeLoc
= Lex
.getLoc();
1574 if (ParseType(EltTy
)) return true;
1576 if (ParseToken(isVector
? lltok::greater
: lltok::rsquare
,
1577 "expected end of sequential type"))
1582 return Error(SizeLoc
, "zero element vector is illegal");
1583 if ((unsigned)Size
!= Size
)
1584 return Error(SizeLoc
, "size too large for vector");
1585 if (!VectorType::isValidElementType(EltTy
))
1586 return Error(TypeLoc
, "vector element type must be fp or integer");
1587 Result
= VectorType::get(EltTy
, unsigned(Size
));
1589 if (!ArrayType::isValidElementType(EltTy
))
1590 return Error(TypeLoc
, "invalid array element type");
1591 Result
= ArrayType::get(EltTy
, Size
);
1596 //===----------------------------------------------------------------------===//
1597 // Function Semantic Analysis.
1598 //===----------------------------------------------------------------------===//
1600 LLParser::PerFunctionState::PerFunctionState(LLParser
&p
, Function
&f
,
1602 : P(p
), F(f
), FunctionNumber(functionNumber
) {
1604 // Insert unnamed arguments into the NumberedVals list.
1605 for (Function::arg_iterator AI
= F
.arg_begin(), E
= F
.arg_end();
1608 NumberedVals
.push_back(AI
);
1611 LLParser::PerFunctionState::~PerFunctionState() {
1612 // If there were any forward referenced non-basicblock values, delete them.
1613 for (std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1614 I
= ForwardRefVals
.begin(), E
= ForwardRefVals
.end(); I
!= E
; ++I
)
1615 if (!isa
<BasicBlock
>(I
->second
.first
)) {
1616 I
->second
.first
->replaceAllUsesWith(
1617 UndefValue::get(I
->second
.first
->getType()));
1618 delete I
->second
.first
;
1619 I
->second
.first
= 0;
1622 for (std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator
1623 I
= ForwardRefValIDs
.begin(), E
= ForwardRefValIDs
.end(); I
!= E
; ++I
)
1624 if (!isa
<BasicBlock
>(I
->second
.first
)) {
1625 I
->second
.first
->replaceAllUsesWith(
1626 UndefValue::get(I
->second
.first
->getType()));
1627 delete I
->second
.first
;
1628 I
->second
.first
= 0;
1632 bool LLParser::PerFunctionState::FinishFunction() {
1633 // Check to see if someone took the address of labels in this block.
1634 if (!P
.ForwardRefBlockAddresses
.empty()) {
1636 if (!F
.getName().empty()) {
1637 FunctionID
.Kind
= ValID::t_GlobalName
;
1638 FunctionID
.StrVal
= F
.getName();
1640 FunctionID
.Kind
= ValID::t_GlobalID
;
1641 FunctionID
.UIntVal
= FunctionNumber
;
1644 std::map
<ValID
, std::vector
<std::pair
<ValID
, GlobalValue
*> > >::iterator
1645 FRBAI
= P
.ForwardRefBlockAddresses
.find(FunctionID
);
1646 if (FRBAI
!= P
.ForwardRefBlockAddresses
.end()) {
1647 // Resolve all these references.
1648 if (P
.ResolveForwardRefBlockAddresses(&F
, FRBAI
->second
, this))
1651 P
.ForwardRefBlockAddresses
.erase(FRBAI
);
1655 if (!ForwardRefVals
.empty())
1656 return P
.Error(ForwardRefVals
.begin()->second
.second
,
1657 "use of undefined value '%" + ForwardRefVals
.begin()->first
+
1659 if (!ForwardRefValIDs
.empty())
1660 return P
.Error(ForwardRefValIDs
.begin()->second
.second
,
1661 "use of undefined value '%" +
1662 Twine(ForwardRefValIDs
.begin()->first
) + "'");
1667 /// GetVal - Get a value with the specified name or ID, creating a
1668 /// forward reference record if needed. This can return null if the value
1669 /// exists but does not have the right type.
1670 Value
*LLParser::PerFunctionState::GetVal(const std::string
&Name
,
1671 const Type
*Ty
, LocTy Loc
) {
1672 // Look this name up in the normal function symbol table.
1673 Value
*Val
= F
.getValueSymbolTable().lookup(Name
);
1675 // If this is a forward reference for the value, see if we already created a
1676 // forward ref record.
1678 std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1679 I
= ForwardRefVals
.find(Name
);
1680 if (I
!= ForwardRefVals
.end())
1681 Val
= I
->second
.first
;
1684 // If we have the value in the symbol table or fwd-ref table, return it.
1686 if (Val
->getType() == Ty
) return Val
;
1687 if (Ty
->isLabelTy())
1688 P
.Error(Loc
, "'%" + Name
+ "' is not a basic block");
1690 P
.Error(Loc
, "'%" + Name
+ "' defined with type '" +
1691 getTypeString(Val
->getType()) + "'");
1695 // Don't make placeholders with invalid type.
1696 if (!Ty
->isFirstClassType() && !Ty
->isLabelTy()) {
1697 P
.Error(Loc
, "invalid use of a non-first-class type");
1701 // Otherwise, create a new forward reference for this value and remember it.
1703 if (Ty
->isLabelTy())
1704 FwdVal
= BasicBlock::Create(F
.getContext(), Name
, &F
);
1706 FwdVal
= new Argument(Ty
, Name
);
1708 ForwardRefVals
[Name
] = std::make_pair(FwdVal
, Loc
);
1712 Value
*LLParser::PerFunctionState::GetVal(unsigned ID
, const Type
*Ty
,
1714 // Look this name up in the normal function symbol table.
1715 Value
*Val
= ID
< NumberedVals
.size() ? NumberedVals
[ID
] : 0;
1717 // If this is a forward reference for the value, see if we already created a
1718 // forward ref record.
1720 std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator
1721 I
= ForwardRefValIDs
.find(ID
);
1722 if (I
!= ForwardRefValIDs
.end())
1723 Val
= I
->second
.first
;
1726 // If we have the value in the symbol table or fwd-ref table, return it.
1728 if (Val
->getType() == Ty
) return Val
;
1729 if (Ty
->isLabelTy())
1730 P
.Error(Loc
, "'%" + Twine(ID
) + "' is not a basic block");
1732 P
.Error(Loc
, "'%" + Twine(ID
) + "' defined with type '" +
1733 getTypeString(Val
->getType()) + "'");
1737 if (!Ty
->isFirstClassType() && !Ty
->isLabelTy()) {
1738 P
.Error(Loc
, "invalid use of a non-first-class type");
1742 // Otherwise, create a new forward reference for this value and remember it.
1744 if (Ty
->isLabelTy())
1745 FwdVal
= BasicBlock::Create(F
.getContext(), "", &F
);
1747 FwdVal
= new Argument(Ty
);
1749 ForwardRefValIDs
[ID
] = std::make_pair(FwdVal
, Loc
);
1753 /// SetInstName - After an instruction is parsed and inserted into its
1754 /// basic block, this installs its name.
1755 bool LLParser::PerFunctionState::SetInstName(int NameID
,
1756 const std::string
&NameStr
,
1757 LocTy NameLoc
, Instruction
*Inst
) {
1758 // If this instruction has void type, it cannot have a name or ID specified.
1759 if (Inst
->getType()->isVoidTy()) {
1760 if (NameID
!= -1 || !NameStr
.empty())
1761 return P
.Error(NameLoc
, "instructions returning void cannot have a name");
1765 // If this was a numbered instruction, verify that the instruction is the
1766 // expected value and resolve any forward references.
1767 if (NameStr
.empty()) {
1768 // If neither a name nor an ID was specified, just use the next ID.
1770 NameID
= NumberedVals
.size();
1772 if (unsigned(NameID
) != NumberedVals
.size())
1773 return P
.Error(NameLoc
, "instruction expected to be numbered '%" +
1774 Twine(NumberedVals
.size()) + "'");
1776 std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator FI
=
1777 ForwardRefValIDs
.find(NameID
);
1778 if (FI
!= ForwardRefValIDs
.end()) {
1779 if (FI
->second
.first
->getType() != Inst
->getType())
1780 return P
.Error(NameLoc
, "instruction forward referenced with type '" +
1781 getTypeString(FI
->second
.first
->getType()) + "'");
1782 FI
->second
.first
->replaceAllUsesWith(Inst
);
1783 delete FI
->second
.first
;
1784 ForwardRefValIDs
.erase(FI
);
1787 NumberedVals
.push_back(Inst
);
1791 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1792 std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1793 FI
= ForwardRefVals
.find(NameStr
);
1794 if (FI
!= ForwardRefVals
.end()) {
1795 if (FI
->second
.first
->getType() != Inst
->getType())
1796 return P
.Error(NameLoc
, "instruction forward referenced with type '" +
1797 getTypeString(FI
->second
.first
->getType()) + "'");
1798 FI
->second
.first
->replaceAllUsesWith(Inst
);
1799 delete FI
->second
.first
;
1800 ForwardRefVals
.erase(FI
);
1803 // Set the name on the instruction.
1804 Inst
->setName(NameStr
);
1806 if (Inst
->getName() != NameStr
)
1807 return P
.Error(NameLoc
, "multiple definition of local value named '" +
1812 /// GetBB - Get a basic block with the specified name or ID, creating a
1813 /// forward reference record if needed.
1814 BasicBlock
*LLParser::PerFunctionState::GetBB(const std::string
&Name
,
1816 return cast_or_null
<BasicBlock
>(GetVal(Name
,
1817 Type::getLabelTy(F
.getContext()), Loc
));
1820 BasicBlock
*LLParser::PerFunctionState::GetBB(unsigned ID
, LocTy Loc
) {
1821 return cast_or_null
<BasicBlock
>(GetVal(ID
,
1822 Type::getLabelTy(F
.getContext()), Loc
));
1825 /// DefineBB - Define the specified basic block, which is either named or
1826 /// unnamed. If there is an error, this returns null otherwise it returns
1827 /// the block being defined.
1828 BasicBlock
*LLParser::PerFunctionState::DefineBB(const std::string
&Name
,
1832 BB
= GetBB(NumberedVals
.size(), Loc
);
1834 BB
= GetBB(Name
, Loc
);
1835 if (BB
== 0) return 0; // Already diagnosed error.
1837 // Move the block to the end of the function. Forward ref'd blocks are
1838 // inserted wherever they happen to be referenced.
1839 F
.getBasicBlockList().splice(F
.end(), F
.getBasicBlockList(), BB
);
1841 // Remove the block from forward ref sets.
1843 ForwardRefValIDs
.erase(NumberedVals
.size());
1844 NumberedVals
.push_back(BB
);
1846 // BB forward references are already in the function symbol table.
1847 ForwardRefVals
.erase(Name
);
1853 //===----------------------------------------------------------------------===//
1855 //===----------------------------------------------------------------------===//
1857 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1858 /// type implied. For example, if we parse "4" we don't know what integer type
1859 /// it has. The value will later be combined with its type and checked for
1860 /// sanity. PFS is used to convert function-local operands of metadata (since
1861 /// metadata operands are not just parsed here but also converted to values).
1862 /// PFS can be null when we are not parsing metadata values inside a function.
1863 bool LLParser::ParseValID(ValID
&ID
, PerFunctionState
*PFS
) {
1864 ID
.Loc
= Lex
.getLoc();
1865 switch (Lex
.getKind()) {
1866 default: return TokError("expected value token");
1867 case lltok::GlobalID
: // @42
1868 ID
.UIntVal
= Lex
.getUIntVal();
1869 ID
.Kind
= ValID::t_GlobalID
;
1871 case lltok::GlobalVar
: // @foo
1872 ID
.StrVal
= Lex
.getStrVal();
1873 ID
.Kind
= ValID::t_GlobalName
;
1875 case lltok::LocalVarID
: // %42
1876 ID
.UIntVal
= Lex
.getUIntVal();
1877 ID
.Kind
= ValID::t_LocalID
;
1879 case lltok::LocalVar
: // %foo
1880 ID
.StrVal
= Lex
.getStrVal();
1881 ID
.Kind
= ValID::t_LocalName
;
1883 case lltok::exclaim
: // !42, !{...}, or !"foo"
1884 return ParseMetadataValue(ID
, PFS
);
1886 ID
.APSIntVal
= Lex
.getAPSIntVal();
1887 ID
.Kind
= ValID::t_APSInt
;
1889 case lltok::APFloat
:
1890 ID
.APFloatVal
= Lex
.getAPFloatVal();
1891 ID
.Kind
= ValID::t_APFloat
;
1893 case lltok::kw_true
:
1894 ID
.ConstantVal
= ConstantInt::getTrue(Context
);
1895 ID
.Kind
= ValID::t_Constant
;
1897 case lltok::kw_false
:
1898 ID
.ConstantVal
= ConstantInt::getFalse(Context
);
1899 ID
.Kind
= ValID::t_Constant
;
1901 case lltok::kw_null
: ID
.Kind
= ValID::t_Null
; break;
1902 case lltok::kw_undef
: ID
.Kind
= ValID::t_Undef
; break;
1903 case lltok::kw_zeroinitializer
: ID
.Kind
= ValID::t_Zero
; break;
1905 case lltok::lbrace
: {
1906 // ValID ::= '{' ConstVector '}'
1908 SmallVector
<Constant
*, 16> Elts
;
1909 if (ParseGlobalValueVector(Elts
) ||
1910 ParseToken(lltok::rbrace
, "expected end of struct constant"))
1913 ID
.ConstantStructElts
= new Constant
*[Elts
.size()];
1914 ID
.UIntVal
= Elts
.size();
1915 memcpy(ID
.ConstantStructElts
, Elts
.data(), Elts
.size()*sizeof(Elts
[0]));
1916 ID
.Kind
= ValID::t_ConstantStruct
;
1920 // ValID ::= '<' ConstVector '>' --> Vector.
1921 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1923 bool isPackedStruct
= EatIfPresent(lltok::lbrace
);
1925 SmallVector
<Constant
*, 16> Elts
;
1926 LocTy FirstEltLoc
= Lex
.getLoc();
1927 if (ParseGlobalValueVector(Elts
) ||
1929 ParseToken(lltok::rbrace
, "expected end of packed struct")) ||
1930 ParseToken(lltok::greater
, "expected end of constant"))
1933 if (isPackedStruct
) {
1934 ID
.ConstantStructElts
= new Constant
*[Elts
.size()];
1935 memcpy(ID
.ConstantStructElts
, Elts
.data(), Elts
.size()*sizeof(Elts
[0]));
1936 ID
.UIntVal
= Elts
.size();
1937 ID
.Kind
= ValID::t_PackedConstantStruct
;
1942 return Error(ID
.Loc
, "constant vector must not be empty");
1944 if (!Elts
[0]->getType()->isIntegerTy() &&
1945 !Elts
[0]->getType()->isFloatingPointTy())
1946 return Error(FirstEltLoc
,
1947 "vector elements must have integer or floating point type");
1949 // Verify that all the vector elements have the same type.
1950 for (unsigned i
= 1, e
= Elts
.size(); i
!= e
; ++i
)
1951 if (Elts
[i
]->getType() != Elts
[0]->getType())
1952 return Error(FirstEltLoc
,
1953 "vector element #" + Twine(i
) +
1954 " is not of type '" + getTypeString(Elts
[0]->getType()));
1956 ID
.ConstantVal
= ConstantVector::get(Elts
);
1957 ID
.Kind
= ValID::t_Constant
;
1960 case lltok::lsquare
: { // Array Constant
1962 SmallVector
<Constant
*, 16> Elts
;
1963 LocTy FirstEltLoc
= Lex
.getLoc();
1964 if (ParseGlobalValueVector(Elts
) ||
1965 ParseToken(lltok::rsquare
, "expected end of array constant"))
1968 // Handle empty element.
1970 // Use undef instead of an array because it's inconvenient to determine
1971 // the element type at this point, there being no elements to examine.
1972 ID
.Kind
= ValID::t_EmptyArray
;
1976 if (!Elts
[0]->getType()->isFirstClassType())
1977 return Error(FirstEltLoc
, "invalid array element type: " +
1978 getTypeString(Elts
[0]->getType()));
1980 ArrayType
*ATy
= ArrayType::get(Elts
[0]->getType(), Elts
.size());
1982 // Verify all elements are correct type!
1983 for (unsigned i
= 0, e
= Elts
.size(); i
!= e
; ++i
) {
1984 if (Elts
[i
]->getType() != Elts
[0]->getType())
1985 return Error(FirstEltLoc
,
1986 "array element #" + Twine(i
) +
1987 " is not of type '" + getTypeString(Elts
[0]->getType()));
1990 ID
.ConstantVal
= ConstantArray::get(ATy
, Elts
);
1991 ID
.Kind
= ValID::t_Constant
;
1994 case lltok::kw_c
: // c "foo"
1996 ID
.ConstantVal
= ConstantArray::get(Context
, Lex
.getStrVal(), false);
1997 if (ParseToken(lltok::StringConstant
, "expected string")) return true;
1998 ID
.Kind
= ValID::t_Constant
;
2001 case lltok::kw_asm
: {
2002 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2003 bool HasSideEffect
, AlignStack
;
2005 if (ParseOptionalToken(lltok::kw_sideeffect
, HasSideEffect
) ||
2006 ParseOptionalToken(lltok::kw_alignstack
, AlignStack
) ||
2007 ParseStringConstant(ID
.StrVal
) ||
2008 ParseToken(lltok::comma
, "expected comma in inline asm expression") ||
2009 ParseToken(lltok::StringConstant
, "expected constraint string"))
2011 ID
.StrVal2
= Lex
.getStrVal();
2012 ID
.UIntVal
= unsigned(HasSideEffect
) | (unsigned(AlignStack
)<<1);
2013 ID
.Kind
= ValID::t_InlineAsm
;
2017 case lltok::kw_blockaddress
: {
2018 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2022 LocTy FnLoc
, LabelLoc
;
2024 if (ParseToken(lltok::lparen
, "expected '(' in block address expression") ||
2026 ParseToken(lltok::comma
, "expected comma in block address expression")||
2027 ParseValID(Label
) ||
2028 ParseToken(lltok::rparen
, "expected ')' in block address expression"))
2031 if (Fn
.Kind
!= ValID::t_GlobalID
&& Fn
.Kind
!= ValID::t_GlobalName
)
2032 return Error(Fn
.Loc
, "expected function name in blockaddress");
2033 if (Label
.Kind
!= ValID::t_LocalID
&& Label
.Kind
!= ValID::t_LocalName
)
2034 return Error(Label
.Loc
, "expected basic block name in blockaddress");
2036 // Make a global variable as a placeholder for this reference.
2037 GlobalVariable
*FwdRef
= new GlobalVariable(*M
, Type::getInt8Ty(Context
),
2038 false, GlobalValue::InternalLinkage
,
2040 ForwardRefBlockAddresses
[Fn
].push_back(std::make_pair(Label
, FwdRef
));
2041 ID
.ConstantVal
= FwdRef
;
2042 ID
.Kind
= ValID::t_Constant
;
2046 case lltok::kw_trunc
:
2047 case lltok::kw_zext
:
2048 case lltok::kw_sext
:
2049 case lltok::kw_fptrunc
:
2050 case lltok::kw_fpext
:
2051 case lltok::kw_bitcast
:
2052 case lltok::kw_uitofp
:
2053 case lltok::kw_sitofp
:
2054 case lltok::kw_fptoui
:
2055 case lltok::kw_fptosi
:
2056 case lltok::kw_inttoptr
:
2057 case lltok::kw_ptrtoint
: {
2058 unsigned Opc
= Lex
.getUIntVal();
2062 if (ParseToken(lltok::lparen
, "expected '(' after constantexpr cast") ||
2063 ParseGlobalTypeAndValue(SrcVal
) ||
2064 ParseToken(lltok::kw_to
, "expected 'to' in constantexpr cast") ||
2065 ParseType(DestTy
) ||
2066 ParseToken(lltok::rparen
, "expected ')' at end of constantexpr cast"))
2068 if (!CastInst::castIsValid((Instruction::CastOps
)Opc
, SrcVal
, DestTy
))
2069 return Error(ID
.Loc
, "invalid cast opcode for cast from '" +
2070 getTypeString(SrcVal
->getType()) + "' to '" +
2071 getTypeString(DestTy
) + "'");
2072 ID
.ConstantVal
= ConstantExpr::getCast((Instruction::CastOps
)Opc
,
2074 ID
.Kind
= ValID::t_Constant
;
2077 case lltok::kw_extractvalue
: {
2080 SmallVector
<unsigned, 4> Indices
;
2081 if (ParseToken(lltok::lparen
, "expected '(' in extractvalue constantexpr")||
2082 ParseGlobalTypeAndValue(Val
) ||
2083 ParseIndexList(Indices
) ||
2084 ParseToken(lltok::rparen
, "expected ')' in extractvalue constantexpr"))
2087 if (!Val
->getType()->isAggregateType())
2088 return Error(ID
.Loc
, "extractvalue operand must be aggregate type");
2089 if (!ExtractValueInst::getIndexedType(Val
->getType(), Indices
.begin(),
2091 return Error(ID
.Loc
, "invalid indices for extractvalue");
2093 ConstantExpr::getExtractValue(Val
, Indices
.data(), Indices
.size());
2094 ID
.Kind
= ValID::t_Constant
;
2097 case lltok::kw_insertvalue
: {
2099 Constant
*Val0
, *Val1
;
2100 SmallVector
<unsigned, 4> Indices
;
2101 if (ParseToken(lltok::lparen
, "expected '(' in insertvalue constantexpr")||
2102 ParseGlobalTypeAndValue(Val0
) ||
2103 ParseToken(lltok::comma
, "expected comma in insertvalue constantexpr")||
2104 ParseGlobalTypeAndValue(Val1
) ||
2105 ParseIndexList(Indices
) ||
2106 ParseToken(lltok::rparen
, "expected ')' in insertvalue constantexpr"))
2108 if (!Val0
->getType()->isAggregateType())
2109 return Error(ID
.Loc
, "insertvalue operand must be aggregate type");
2110 if (!ExtractValueInst::getIndexedType(Val0
->getType(), Indices
.begin(),
2112 return Error(ID
.Loc
, "invalid indices for insertvalue");
2113 ID
.ConstantVal
= ConstantExpr::getInsertValue(Val0
, Val1
,
2114 Indices
.data(), Indices
.size());
2115 ID
.Kind
= ValID::t_Constant
;
2118 case lltok::kw_icmp
:
2119 case lltok::kw_fcmp
: {
2120 unsigned PredVal
, Opc
= Lex
.getUIntVal();
2121 Constant
*Val0
, *Val1
;
2123 if (ParseCmpPredicate(PredVal
, Opc
) ||
2124 ParseToken(lltok::lparen
, "expected '(' in compare constantexpr") ||
2125 ParseGlobalTypeAndValue(Val0
) ||
2126 ParseToken(lltok::comma
, "expected comma in compare constantexpr") ||
2127 ParseGlobalTypeAndValue(Val1
) ||
2128 ParseToken(lltok::rparen
, "expected ')' in compare constantexpr"))
2131 if (Val0
->getType() != Val1
->getType())
2132 return Error(ID
.Loc
, "compare operands must have the same type");
2134 CmpInst::Predicate Pred
= (CmpInst::Predicate
)PredVal
;
2136 if (Opc
== Instruction::FCmp
) {
2137 if (!Val0
->getType()->isFPOrFPVectorTy())
2138 return Error(ID
.Loc
, "fcmp requires floating point operands");
2139 ID
.ConstantVal
= ConstantExpr::getFCmp(Pred
, Val0
, Val1
);
2141 assert(Opc
== Instruction::ICmp
&& "Unexpected opcode for CmpInst!");
2142 if (!Val0
->getType()->isIntOrIntVectorTy() &&
2143 !Val0
->getType()->isPointerTy())
2144 return Error(ID
.Loc
, "icmp requires pointer or integer operands");
2145 ID
.ConstantVal
= ConstantExpr::getICmp(Pred
, Val0
, Val1
);
2147 ID
.Kind
= ValID::t_Constant
;
2151 // Binary Operators.
2153 case lltok::kw_fadd
:
2155 case lltok::kw_fsub
:
2157 case lltok::kw_fmul
:
2158 case lltok::kw_udiv
:
2159 case lltok::kw_sdiv
:
2160 case lltok::kw_fdiv
:
2161 case lltok::kw_urem
:
2162 case lltok::kw_srem
:
2163 case lltok::kw_frem
:
2165 case lltok::kw_lshr
:
2166 case lltok::kw_ashr
: {
2170 unsigned Opc
= Lex
.getUIntVal();
2171 Constant
*Val0
, *Val1
;
2173 LocTy ModifierLoc
= Lex
.getLoc();
2174 if (Opc
== Instruction::Add
|| Opc
== Instruction::Sub
||
2175 Opc
== Instruction::Mul
|| Opc
== Instruction::Shl
) {
2176 if (EatIfPresent(lltok::kw_nuw
))
2178 if (EatIfPresent(lltok::kw_nsw
)) {
2180 if (EatIfPresent(lltok::kw_nuw
))
2183 } else if (Opc
== Instruction::SDiv
|| Opc
== Instruction::UDiv
||
2184 Opc
== Instruction::LShr
|| Opc
== Instruction::AShr
) {
2185 if (EatIfPresent(lltok::kw_exact
))
2188 if (ParseToken(lltok::lparen
, "expected '(' in binary constantexpr") ||
2189 ParseGlobalTypeAndValue(Val0
) ||
2190 ParseToken(lltok::comma
, "expected comma in binary constantexpr") ||
2191 ParseGlobalTypeAndValue(Val1
) ||
2192 ParseToken(lltok::rparen
, "expected ')' in binary constantexpr"))
2194 if (Val0
->getType() != Val1
->getType())
2195 return Error(ID
.Loc
, "operands of constexpr must have same type");
2196 if (!Val0
->getType()->isIntOrIntVectorTy()) {
2198 return Error(ModifierLoc
, "nuw only applies to integer operations");
2200 return Error(ModifierLoc
, "nsw only applies to integer operations");
2202 // Check that the type is valid for the operator.
2204 case Instruction::Add
:
2205 case Instruction::Sub
:
2206 case Instruction::Mul
:
2207 case Instruction::UDiv
:
2208 case Instruction::SDiv
:
2209 case Instruction::URem
:
2210 case Instruction::SRem
:
2211 case Instruction::Shl
:
2212 case Instruction::AShr
:
2213 case Instruction::LShr
:
2214 if (!Val0
->getType()->isIntOrIntVectorTy())
2215 return Error(ID
.Loc
, "constexpr requires integer operands");
2217 case Instruction::FAdd
:
2218 case Instruction::FSub
:
2219 case Instruction::FMul
:
2220 case Instruction::FDiv
:
2221 case Instruction::FRem
:
2222 if (!Val0
->getType()->isFPOrFPVectorTy())
2223 return Error(ID
.Loc
, "constexpr requires fp operands");
2225 default: llvm_unreachable("Unknown binary operator!");
2228 if (NUW
) Flags
|= OverflowingBinaryOperator::NoUnsignedWrap
;
2229 if (NSW
) Flags
|= OverflowingBinaryOperator::NoSignedWrap
;
2230 if (Exact
) Flags
|= PossiblyExactOperator::IsExact
;
2231 Constant
*C
= ConstantExpr::get(Opc
, Val0
, Val1
, Flags
);
2233 ID
.Kind
= ValID::t_Constant
;
2237 // Logical Operations
2240 case lltok::kw_xor
: {
2241 unsigned Opc
= Lex
.getUIntVal();
2242 Constant
*Val0
, *Val1
;
2244 if (ParseToken(lltok::lparen
, "expected '(' in logical constantexpr") ||
2245 ParseGlobalTypeAndValue(Val0
) ||
2246 ParseToken(lltok::comma
, "expected comma in logical constantexpr") ||
2247 ParseGlobalTypeAndValue(Val1
) ||
2248 ParseToken(lltok::rparen
, "expected ')' in logical constantexpr"))
2250 if (Val0
->getType() != Val1
->getType())
2251 return Error(ID
.Loc
, "operands of constexpr must have same type");
2252 if (!Val0
->getType()->isIntOrIntVectorTy())
2253 return Error(ID
.Loc
,
2254 "constexpr requires integer or integer vector operands");
2255 ID
.ConstantVal
= ConstantExpr::get(Opc
, Val0
, Val1
);
2256 ID
.Kind
= ValID::t_Constant
;
2260 case lltok::kw_getelementptr
:
2261 case lltok::kw_shufflevector
:
2262 case lltok::kw_insertelement
:
2263 case lltok::kw_extractelement
:
2264 case lltok::kw_select
: {
2265 unsigned Opc
= Lex
.getUIntVal();
2266 SmallVector
<Constant
*, 16> Elts
;
2267 bool InBounds
= false;
2269 if (Opc
== Instruction::GetElementPtr
)
2270 InBounds
= EatIfPresent(lltok::kw_inbounds
);
2271 if (ParseToken(lltok::lparen
, "expected '(' in constantexpr") ||
2272 ParseGlobalValueVector(Elts
) ||
2273 ParseToken(lltok::rparen
, "expected ')' in constantexpr"))
2276 if (Opc
== Instruction::GetElementPtr
) {
2277 if (Elts
.size() == 0 || !Elts
[0]->getType()->isPointerTy())
2278 return Error(ID
.Loc
, "getelementptr requires pointer operand");
2280 if (!GetElementPtrInst::getIndexedType(Elts
[0]->getType(),
2281 (Value
**)(Elts
.data() + 1),
2283 return Error(ID
.Loc
, "invalid indices for getelementptr");
2284 ID
.ConstantVal
= InBounds
?
2285 ConstantExpr::getInBoundsGetElementPtr(Elts
[0],
2288 ConstantExpr::getGetElementPtr(Elts
[0],
2289 Elts
.data() + 1, Elts
.size() - 1);
2290 } else if (Opc
== Instruction::Select
) {
2291 if (Elts
.size() != 3)
2292 return Error(ID
.Loc
, "expected three operands to select");
2293 if (const char *Reason
= SelectInst::areInvalidOperands(Elts
[0], Elts
[1],
2295 return Error(ID
.Loc
, Reason
);
2296 ID
.ConstantVal
= ConstantExpr::getSelect(Elts
[0], Elts
[1], Elts
[2]);
2297 } else if (Opc
== Instruction::ShuffleVector
) {
2298 if (Elts
.size() != 3)
2299 return Error(ID
.Loc
, "expected three operands to shufflevector");
2300 if (!ShuffleVectorInst::isValidOperands(Elts
[0], Elts
[1], Elts
[2]))
2301 return Error(ID
.Loc
, "invalid operands to shufflevector");
2303 ConstantExpr::getShuffleVector(Elts
[0], Elts
[1],Elts
[2]);
2304 } else if (Opc
== Instruction::ExtractElement
) {
2305 if (Elts
.size() != 2)
2306 return Error(ID
.Loc
, "expected two operands to extractelement");
2307 if (!ExtractElementInst::isValidOperands(Elts
[0], Elts
[1]))
2308 return Error(ID
.Loc
, "invalid extractelement operands");
2309 ID
.ConstantVal
= ConstantExpr::getExtractElement(Elts
[0], Elts
[1]);
2311 assert(Opc
== Instruction::InsertElement
&& "Unknown opcode");
2312 if (Elts
.size() != 3)
2313 return Error(ID
.Loc
, "expected three operands to insertelement");
2314 if (!InsertElementInst::isValidOperands(Elts
[0], Elts
[1], Elts
[2]))
2315 return Error(ID
.Loc
, "invalid insertelement operands");
2317 ConstantExpr::getInsertElement(Elts
[0], Elts
[1],Elts
[2]);
2320 ID
.Kind
= ValID::t_Constant
;
2329 /// ParseGlobalValue - Parse a global value with the specified type.
2330 bool LLParser::ParseGlobalValue(const Type
*Ty
, Constant
*&C
) {
2334 bool Parsed
= ParseValID(ID
) ||
2335 ConvertValIDToValue(Ty
, ID
, V
, NULL
);
2336 if (V
&& !(C
= dyn_cast
<Constant
>(V
)))
2337 return Error(ID
.Loc
, "global values must be constants");
2341 bool LLParser::ParseGlobalTypeAndValue(Constant
*&V
) {
2343 return ParseType(Ty
) ||
2344 ParseGlobalValue(Ty
, V
);
2347 /// ParseGlobalValueVector
2349 /// ::= TypeAndValue (',' TypeAndValue)*
2350 bool LLParser::ParseGlobalValueVector(SmallVectorImpl
<Constant
*> &Elts
) {
2352 if (Lex
.getKind() == lltok::rbrace
||
2353 Lex
.getKind() == lltok::rsquare
||
2354 Lex
.getKind() == lltok::greater
||
2355 Lex
.getKind() == lltok::rparen
)
2359 if (ParseGlobalTypeAndValue(C
)) return true;
2362 while (EatIfPresent(lltok::comma
)) {
2363 if (ParseGlobalTypeAndValue(C
)) return true;
2370 bool LLParser::ParseMetadataListValue(ValID
&ID
, PerFunctionState
*PFS
) {
2371 assert(Lex
.getKind() == lltok::lbrace
);
2374 SmallVector
<Value
*, 16> Elts
;
2375 if (ParseMDNodeVector(Elts
, PFS
) ||
2376 ParseToken(lltok::rbrace
, "expected end of metadata node"))
2379 ID
.MDNodeVal
= MDNode::get(Context
, Elts
);
2380 ID
.Kind
= ValID::t_MDNode
;
2384 /// ParseMetadataValue
2388 bool LLParser::ParseMetadataValue(ValID
&ID
, PerFunctionState
*PFS
) {
2389 assert(Lex
.getKind() == lltok::exclaim
);
2394 if (Lex
.getKind() == lltok::lbrace
)
2395 return ParseMetadataListValue(ID
, PFS
);
2397 // Standalone metadata reference
2399 if (Lex
.getKind() == lltok::APSInt
) {
2400 if (ParseMDNodeID(ID
.MDNodeVal
)) return true;
2401 ID
.Kind
= ValID::t_MDNode
;
2406 // ::= '!' STRINGCONSTANT
2407 if (ParseMDString(ID
.MDStringVal
)) return true;
2408 ID
.Kind
= ValID::t_MDString
;
2413 //===----------------------------------------------------------------------===//
2414 // Function Parsing.
2415 //===----------------------------------------------------------------------===//
2417 bool LLParser::ConvertValIDToValue(const Type
*Ty
, ValID
&ID
, Value
*&V
,
2418 PerFunctionState
*PFS
) {
2419 if (Ty
->isFunctionTy())
2420 return Error(ID
.Loc
, "functions are not values, refer to them as pointers");
2423 default: llvm_unreachable("Unknown ValID!");
2424 case ValID::t_LocalID
:
2425 if (!PFS
) return Error(ID
.Loc
, "invalid use of function-local name");
2426 V
= PFS
->GetVal(ID
.UIntVal
, Ty
, ID
.Loc
);
2428 case ValID::t_LocalName
:
2429 if (!PFS
) return Error(ID
.Loc
, "invalid use of function-local name");
2430 V
= PFS
->GetVal(ID
.StrVal
, Ty
, ID
.Loc
);
2432 case ValID::t_InlineAsm
: {
2433 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
2434 const FunctionType
*FTy
=
2435 PTy
? dyn_cast
<FunctionType
>(PTy
->getElementType()) : 0;
2436 if (!FTy
|| !InlineAsm::Verify(FTy
, ID
.StrVal2
))
2437 return Error(ID
.Loc
, "invalid type for inline asm constraint string");
2438 V
= InlineAsm::get(FTy
, ID
.StrVal
, ID
.StrVal2
, ID
.UIntVal
&1, ID
.UIntVal
>>1);
2441 case ValID::t_MDNode
:
2442 if (!Ty
->isMetadataTy())
2443 return Error(ID
.Loc
, "metadata value must have metadata type");
2446 case ValID::t_MDString
:
2447 if (!Ty
->isMetadataTy())
2448 return Error(ID
.Loc
, "metadata value must have metadata type");
2451 case ValID::t_GlobalName
:
2452 V
= GetGlobalVal(ID
.StrVal
, Ty
, ID
.Loc
);
2454 case ValID::t_GlobalID
:
2455 V
= GetGlobalVal(ID
.UIntVal
, Ty
, ID
.Loc
);
2457 case ValID::t_APSInt
:
2458 if (!Ty
->isIntegerTy())
2459 return Error(ID
.Loc
, "integer constant must have integer type");
2460 ID
.APSIntVal
= ID
.APSIntVal
.extOrTrunc(Ty
->getPrimitiveSizeInBits());
2461 V
= ConstantInt::get(Context
, ID
.APSIntVal
);
2463 case ValID::t_APFloat
:
2464 if (!Ty
->isFloatingPointTy() ||
2465 !ConstantFP::isValueValidForType(Ty
, ID
.APFloatVal
))
2466 return Error(ID
.Loc
, "floating point constant invalid for type");
2468 // The lexer has no type info, so builds all float and double FP constants
2469 // as double. Fix this here. Long double does not need this.
2470 if (&ID
.APFloatVal
.getSemantics() == &APFloat::IEEEdouble
&&
2473 ID
.APFloatVal
.convert(APFloat::IEEEsingle
, APFloat::rmNearestTiesToEven
,
2476 V
= ConstantFP::get(Context
, ID
.APFloatVal
);
2478 if (V
->getType() != Ty
)
2479 return Error(ID
.Loc
, "floating point constant does not have type '" +
2480 getTypeString(Ty
) + "'");
2484 if (!Ty
->isPointerTy())
2485 return Error(ID
.Loc
, "null must be a pointer type");
2486 V
= ConstantPointerNull::get(cast
<PointerType
>(Ty
));
2488 case ValID::t_Undef
:
2489 // FIXME: LabelTy should not be a first-class type.
2490 if (!Ty
->isFirstClassType() || Ty
->isLabelTy())
2491 return Error(ID
.Loc
, "invalid type for undef constant");
2492 V
= UndefValue::get(Ty
);
2494 case ValID::t_EmptyArray
:
2495 if (!Ty
->isArrayTy() || cast
<ArrayType
>(Ty
)->getNumElements() != 0)
2496 return Error(ID
.Loc
, "invalid empty array initializer");
2497 V
= UndefValue::get(Ty
);
2500 // FIXME: LabelTy should not be a first-class type.
2501 if (!Ty
->isFirstClassType() || Ty
->isLabelTy())
2502 return Error(ID
.Loc
, "invalid type for null constant");
2503 V
= Constant::getNullValue(Ty
);
2505 case ValID::t_Constant
:
2506 if (ID
.ConstantVal
->getType() != Ty
)
2507 return Error(ID
.Loc
, "constant expression type mismatch");
2511 case ValID::t_ConstantStruct
:
2512 case ValID::t_PackedConstantStruct
:
2513 if (const StructType
*ST
= dyn_cast
<StructType
>(Ty
)) {
2514 if (ST
->getNumElements() != ID
.UIntVal
)
2515 return Error(ID
.Loc
,
2516 "initializer with struct type has wrong # elements");
2517 if (ST
->isPacked() != (ID
.Kind
== ValID::t_PackedConstantStruct
))
2518 return Error(ID
.Loc
, "packed'ness of initializer and type don't match");
2520 // Verify that the elements are compatible with the structtype.
2521 for (unsigned i
= 0, e
= ID
.UIntVal
; i
!= e
; ++i
)
2522 if (ID
.ConstantStructElts
[i
]->getType() != ST
->getElementType(i
))
2523 return Error(ID
.Loc
, "element " + Twine(i
) +
2524 " of struct initializer doesn't match struct element type");
2526 V
= ConstantStruct::get(ST
, ArrayRef
<Constant
*>(ID
.ConstantStructElts
,
2529 return Error(ID
.Loc
, "constant expression type mismatch");
2534 bool LLParser::ParseValue(const Type
*Ty
, Value
*&V
, PerFunctionState
*PFS
) {
2537 return ParseValID(ID
, PFS
) ||
2538 ConvertValIDToValue(Ty
, ID
, V
, PFS
);
2541 bool LLParser::ParseTypeAndValue(Value
*&V
, PerFunctionState
*PFS
) {
2543 return ParseType(Ty
) ||
2544 ParseValue(Ty
, V
, PFS
);
2547 bool LLParser::ParseTypeAndBasicBlock(BasicBlock
*&BB
, LocTy
&Loc
,
2548 PerFunctionState
&PFS
) {
2551 if (ParseTypeAndValue(V
, PFS
)) return true;
2552 if (!isa
<BasicBlock
>(V
))
2553 return Error(Loc
, "expected a basic block");
2554 BB
= cast
<BasicBlock
>(V
);
2560 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2561 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2562 /// OptionalAlign OptGC
2563 bool LLParser::ParseFunctionHeader(Function
*&Fn
, bool isDefine
) {
2564 // Parse the linkage.
2565 LocTy LinkageLoc
= Lex
.getLoc();
2568 unsigned Visibility
, RetAttrs
;
2571 LocTy RetTypeLoc
= Lex
.getLoc();
2572 if (ParseOptionalLinkage(Linkage
) ||
2573 ParseOptionalVisibility(Visibility
) ||
2574 ParseOptionalCallingConv(CC
) ||
2575 ParseOptionalAttrs(RetAttrs
, 1) ||
2576 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/))
2579 // Verify that the linkage is ok.
2580 switch ((GlobalValue::LinkageTypes
)Linkage
) {
2581 case GlobalValue::ExternalLinkage
:
2582 break; // always ok.
2583 case GlobalValue::DLLImportLinkage
:
2584 case GlobalValue::ExternalWeakLinkage
:
2586 return Error(LinkageLoc
, "invalid linkage for function definition");
2588 case GlobalValue::PrivateLinkage
:
2589 case GlobalValue::LinkerPrivateLinkage
:
2590 case GlobalValue::LinkerPrivateWeakLinkage
:
2591 case GlobalValue::LinkerPrivateWeakDefAutoLinkage
:
2592 case GlobalValue::InternalLinkage
:
2593 case GlobalValue::AvailableExternallyLinkage
:
2594 case GlobalValue::LinkOnceAnyLinkage
:
2595 case GlobalValue::LinkOnceODRLinkage
:
2596 case GlobalValue::WeakAnyLinkage
:
2597 case GlobalValue::WeakODRLinkage
:
2598 case GlobalValue::DLLExportLinkage
:
2600 return Error(LinkageLoc
, "invalid linkage for function declaration");
2602 case GlobalValue::AppendingLinkage
:
2603 case GlobalValue::CommonLinkage
:
2604 return Error(LinkageLoc
, "invalid function linkage type");
2607 if (!FunctionType::isValidReturnType(RetType
))
2608 return Error(RetTypeLoc
, "invalid function return type");
2610 LocTy NameLoc
= Lex
.getLoc();
2612 std::string FunctionName
;
2613 if (Lex
.getKind() == lltok::GlobalVar
) {
2614 FunctionName
= Lex
.getStrVal();
2615 } else if (Lex
.getKind() == lltok::GlobalID
) { // @42 is ok.
2616 unsigned NameID
= Lex
.getUIntVal();
2618 if (NameID
!= NumberedVals
.size())
2619 return TokError("function expected to be numbered '%" +
2620 Twine(NumberedVals
.size()) + "'");
2622 return TokError("expected function name");
2627 if (Lex
.getKind() != lltok::lparen
)
2628 return TokError("expected '(' in function argument list");
2630 SmallVector
<ArgInfo
, 8> ArgList
;
2633 std::string Section
;
2637 LocTy UnnamedAddrLoc
;
2639 if (ParseArgumentList(ArgList
, isVarArg
) ||
2640 ParseOptionalToken(lltok::kw_unnamed_addr
, UnnamedAddr
,
2642 ParseOptionalAttrs(FuncAttrs
, 2) ||
2643 (EatIfPresent(lltok::kw_section
) &&
2644 ParseStringConstant(Section
)) ||
2645 ParseOptionalAlignment(Alignment
) ||
2646 (EatIfPresent(lltok::kw_gc
) &&
2647 ParseStringConstant(GC
)))
2650 // If the alignment was parsed as an attribute, move to the alignment field.
2651 if (FuncAttrs
& Attribute::Alignment
) {
2652 Alignment
= Attribute::getAlignmentFromAttrs(FuncAttrs
);
2653 FuncAttrs
&= ~Attribute::Alignment
;
2656 // Okay, if we got here, the function is syntactically valid. Convert types
2657 // and do semantic checks.
2658 std::vector
<const Type
*> ParamTypeList
;
2659 SmallVector
<AttributeWithIndex
, 8> Attrs
;
2661 if (RetAttrs
!= Attribute::None
)
2662 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
2664 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
2665 ParamTypeList
.push_back(ArgList
[i
].Ty
);
2666 if (ArgList
[i
].Attrs
!= Attribute::None
)
2667 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
2670 if (FuncAttrs
!= Attribute::None
)
2671 Attrs
.push_back(AttributeWithIndex::get(~0, FuncAttrs
));
2673 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
2675 if (PAL
.paramHasAttr(1, Attribute::StructRet
) && !RetType
->isVoidTy())
2676 return Error(RetTypeLoc
, "functions with 'sret' argument must return void");
2678 const FunctionType
*FT
=
2679 FunctionType::get(RetType
, ParamTypeList
, isVarArg
);
2680 const PointerType
*PFT
= PointerType::getUnqual(FT
);
2683 if (!FunctionName
.empty()) {
2684 // If this was a definition of a forward reference, remove the definition
2685 // from the forward reference table and fill in the forward ref.
2686 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator FRVI
=
2687 ForwardRefVals
.find(FunctionName
);
2688 if (FRVI
!= ForwardRefVals
.end()) {
2689 Fn
= M
->getFunction(FunctionName
);
2690 if (Fn
->getType() != PFT
)
2691 return Error(FRVI
->second
.second
, "invalid forward reference to "
2692 "function '" + FunctionName
+ "' with wrong type!");
2694 ForwardRefVals
.erase(FRVI
);
2695 } else if ((Fn
= M
->getFunction(FunctionName
))) {
2696 // Reject redefinitions.
2697 return Error(NameLoc
, "invalid redefinition of function '" +
2698 FunctionName
+ "'");
2699 } else if (M
->getNamedValue(FunctionName
)) {
2700 return Error(NameLoc
, "redefinition of function '@" + FunctionName
+ "'");
2704 // If this is a definition of a forward referenced function, make sure the
2706 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator I
2707 = ForwardRefValIDs
.find(NumberedVals
.size());
2708 if (I
!= ForwardRefValIDs
.end()) {
2709 Fn
= cast
<Function
>(I
->second
.first
);
2710 if (Fn
->getType() != PFT
)
2711 return Error(NameLoc
, "type of definition and forward reference of '@" +
2712 Twine(NumberedVals
.size()) + "' disagree");
2713 ForwardRefValIDs
.erase(I
);
2718 Fn
= Function::Create(FT
, GlobalValue::ExternalLinkage
, FunctionName
, M
);
2719 else // Move the forward-reference to the correct spot in the module.
2720 M
->getFunctionList().splice(M
->end(), M
->getFunctionList(), Fn
);
2722 if (FunctionName
.empty())
2723 NumberedVals
.push_back(Fn
);
2725 Fn
->setLinkage((GlobalValue::LinkageTypes
)Linkage
);
2726 Fn
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
2727 Fn
->setCallingConv(CC
);
2728 Fn
->setAttributes(PAL
);
2729 Fn
->setUnnamedAddr(UnnamedAddr
);
2730 Fn
->setAlignment(Alignment
);
2731 Fn
->setSection(Section
);
2732 if (!GC
.empty()) Fn
->setGC(GC
.c_str());
2734 // Add all of the arguments we parsed to the function.
2735 Function::arg_iterator ArgIt
= Fn
->arg_begin();
2736 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
, ++ArgIt
) {
2737 // If the argument has a name, insert it into the argument symbol table.
2738 if (ArgList
[i
].Name
.empty()) continue;
2740 // Set the name, if it conflicted, it will be auto-renamed.
2741 ArgIt
->setName(ArgList
[i
].Name
);
2743 if (ArgIt
->getName() != ArgList
[i
].Name
)
2744 return Error(ArgList
[i
].Loc
, "redefinition of argument '%" +
2745 ArgList
[i
].Name
+ "'");
2752 /// ParseFunctionBody
2753 /// ::= '{' BasicBlock+ '}'
2755 bool LLParser::ParseFunctionBody(Function
&Fn
) {
2756 if (Lex
.getKind() != lltok::lbrace
)
2757 return TokError("expected '{' in function body");
2758 Lex
.Lex(); // eat the {.
2760 int FunctionNumber
= -1;
2761 if (!Fn
.hasName()) FunctionNumber
= NumberedVals
.size()-1;
2763 PerFunctionState
PFS(*this, Fn
, FunctionNumber
);
2765 // We need at least one basic block.
2766 if (Lex
.getKind() == lltok::rbrace
)
2767 return TokError("function body requires at least one basic block");
2769 while (Lex
.getKind() != lltok::rbrace
)
2770 if (ParseBasicBlock(PFS
)) return true;
2775 // Verify function is ok.
2776 return PFS
.FinishFunction();
2780 /// ::= LabelStr? Instruction*
2781 bool LLParser::ParseBasicBlock(PerFunctionState
&PFS
) {
2782 // If this basic block starts out with a name, remember it.
2784 LocTy NameLoc
= Lex
.getLoc();
2785 if (Lex
.getKind() == lltok::LabelStr
) {
2786 Name
= Lex
.getStrVal();
2790 BasicBlock
*BB
= PFS
.DefineBB(Name
, NameLoc
);
2791 if (BB
== 0) return true;
2793 std::string NameStr
;
2795 // Parse the instructions in this block until we get a terminator.
2797 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MetadataOnInst
;
2799 // This instruction may have three possibilities for a name: a) none
2800 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2801 LocTy NameLoc
= Lex
.getLoc();
2805 if (Lex
.getKind() == lltok::LocalVarID
) {
2806 NameID
= Lex
.getUIntVal();
2808 if (ParseToken(lltok::equal
, "expected '=' after instruction id"))
2810 } else if (Lex
.getKind() == lltok::LocalVar
) {
2811 NameStr
= Lex
.getStrVal();
2813 if (ParseToken(lltok::equal
, "expected '=' after instruction name"))
2817 switch (ParseInstruction(Inst
, BB
, PFS
)) {
2818 default: assert(0 && "Unknown ParseInstruction result!");
2819 case InstError
: return true;
2821 BB
->getInstList().push_back(Inst
);
2823 // With a normal result, we check to see if the instruction is followed by
2824 // a comma and metadata.
2825 if (EatIfPresent(lltok::comma
))
2826 if (ParseInstructionMetadata(Inst
, &PFS
))
2829 case InstExtraComma
:
2830 BB
->getInstList().push_back(Inst
);
2832 // If the instruction parser ate an extra comma at the end of it, it
2833 // *must* be followed by metadata.
2834 if (ParseInstructionMetadata(Inst
, &PFS
))
2839 // Set the name on the instruction.
2840 if (PFS
.SetInstName(NameID
, NameStr
, NameLoc
, Inst
)) return true;
2841 } while (!isa
<TerminatorInst
>(Inst
));
2846 //===----------------------------------------------------------------------===//
2847 // Instruction Parsing.
2848 //===----------------------------------------------------------------------===//
2850 /// ParseInstruction - Parse one of the many different instructions.
2852 int LLParser::ParseInstruction(Instruction
*&Inst
, BasicBlock
*BB
,
2853 PerFunctionState
&PFS
) {
2854 lltok::Kind Token
= Lex
.getKind();
2855 if (Token
== lltok::Eof
)
2856 return TokError("found end of file when expecting more instructions");
2857 LocTy Loc
= Lex
.getLoc();
2858 unsigned KeywordVal
= Lex
.getUIntVal();
2859 Lex
.Lex(); // Eat the keyword.
2862 default: return Error(Loc
, "expected instruction opcode");
2863 // Terminator Instructions.
2864 case lltok::kw_unwind
: Inst
= new UnwindInst(Context
); return false;
2865 case lltok::kw_unreachable
: Inst
= new UnreachableInst(Context
); return false;
2866 case lltok::kw_ret
: return ParseRet(Inst
, BB
, PFS
);
2867 case lltok::kw_br
: return ParseBr(Inst
, PFS
);
2868 case lltok::kw_switch
: return ParseSwitch(Inst
, PFS
);
2869 case lltok::kw_indirectbr
: return ParseIndirectBr(Inst
, PFS
);
2870 case lltok::kw_invoke
: return ParseInvoke(Inst
, PFS
);
2871 // Binary Operators.
2875 case lltok::kw_shl
: {
2876 bool NUW
= EatIfPresent(lltok::kw_nuw
);
2877 bool NSW
= EatIfPresent(lltok::kw_nsw
);
2878 if (!NUW
) NUW
= EatIfPresent(lltok::kw_nuw
);
2880 if (ParseArithmetic(Inst
, PFS
, KeywordVal
, 1)) return true;
2882 if (NUW
) cast
<BinaryOperator
>(Inst
)->setHasNoUnsignedWrap(true);
2883 if (NSW
) cast
<BinaryOperator
>(Inst
)->setHasNoSignedWrap(true);
2886 case lltok::kw_fadd
:
2887 case lltok::kw_fsub
:
2888 case lltok::kw_fmul
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 2);
2890 case lltok::kw_sdiv
:
2891 case lltok::kw_udiv
:
2892 case lltok::kw_lshr
:
2893 case lltok::kw_ashr
: {
2894 bool Exact
= EatIfPresent(lltok::kw_exact
);
2896 if (ParseArithmetic(Inst
, PFS
, KeywordVal
, 1)) return true;
2897 if (Exact
) cast
<BinaryOperator
>(Inst
)->setIsExact(true);
2901 case lltok::kw_urem
:
2902 case lltok::kw_srem
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 1);
2903 case lltok::kw_fdiv
:
2904 case lltok::kw_frem
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 2);
2907 case lltok::kw_xor
: return ParseLogical(Inst
, PFS
, KeywordVal
);
2908 case lltok::kw_icmp
:
2909 case lltok::kw_fcmp
: return ParseCompare(Inst
, PFS
, KeywordVal
);
2911 case lltok::kw_trunc
:
2912 case lltok::kw_zext
:
2913 case lltok::kw_sext
:
2914 case lltok::kw_fptrunc
:
2915 case lltok::kw_fpext
:
2916 case lltok::kw_bitcast
:
2917 case lltok::kw_uitofp
:
2918 case lltok::kw_sitofp
:
2919 case lltok::kw_fptoui
:
2920 case lltok::kw_fptosi
:
2921 case lltok::kw_inttoptr
:
2922 case lltok::kw_ptrtoint
: return ParseCast(Inst
, PFS
, KeywordVal
);
2924 case lltok::kw_select
: return ParseSelect(Inst
, PFS
);
2925 case lltok::kw_va_arg
: return ParseVA_Arg(Inst
, PFS
);
2926 case lltok::kw_extractelement
: return ParseExtractElement(Inst
, PFS
);
2927 case lltok::kw_insertelement
: return ParseInsertElement(Inst
, PFS
);
2928 case lltok::kw_shufflevector
: return ParseShuffleVector(Inst
, PFS
);
2929 case lltok::kw_phi
: return ParsePHI(Inst
, PFS
);
2930 case lltok::kw_call
: return ParseCall(Inst
, PFS
, false);
2931 case lltok::kw_tail
: return ParseCall(Inst
, PFS
, true);
2933 case lltok::kw_alloca
: return ParseAlloc(Inst
, PFS
);
2934 case lltok::kw_load
: return ParseLoad(Inst
, PFS
, false);
2935 case lltok::kw_store
: return ParseStore(Inst
, PFS
, false);
2936 case lltok::kw_volatile
:
2937 if (EatIfPresent(lltok::kw_load
))
2938 return ParseLoad(Inst
, PFS
, true);
2939 else if (EatIfPresent(lltok::kw_store
))
2940 return ParseStore(Inst
, PFS
, true);
2942 return TokError("expected 'load' or 'store'");
2943 case lltok::kw_getelementptr
: return ParseGetElementPtr(Inst
, PFS
);
2944 case lltok::kw_extractvalue
: return ParseExtractValue(Inst
, PFS
);
2945 case lltok::kw_insertvalue
: return ParseInsertValue(Inst
, PFS
);
2949 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2950 bool LLParser::ParseCmpPredicate(unsigned &P
, unsigned Opc
) {
2951 if (Opc
== Instruction::FCmp
) {
2952 switch (Lex
.getKind()) {
2953 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2954 case lltok::kw_oeq
: P
= CmpInst::FCMP_OEQ
; break;
2955 case lltok::kw_one
: P
= CmpInst::FCMP_ONE
; break;
2956 case lltok::kw_olt
: P
= CmpInst::FCMP_OLT
; break;
2957 case lltok::kw_ogt
: P
= CmpInst::FCMP_OGT
; break;
2958 case lltok::kw_ole
: P
= CmpInst::FCMP_OLE
; break;
2959 case lltok::kw_oge
: P
= CmpInst::FCMP_OGE
; break;
2960 case lltok::kw_ord
: P
= CmpInst::FCMP_ORD
; break;
2961 case lltok::kw_uno
: P
= CmpInst::FCMP_UNO
; break;
2962 case lltok::kw_ueq
: P
= CmpInst::FCMP_UEQ
; break;
2963 case lltok::kw_une
: P
= CmpInst::FCMP_UNE
; break;
2964 case lltok::kw_ult
: P
= CmpInst::FCMP_ULT
; break;
2965 case lltok::kw_ugt
: P
= CmpInst::FCMP_UGT
; break;
2966 case lltok::kw_ule
: P
= CmpInst::FCMP_ULE
; break;
2967 case lltok::kw_uge
: P
= CmpInst::FCMP_UGE
; break;
2968 case lltok::kw_true
: P
= CmpInst::FCMP_TRUE
; break;
2969 case lltok::kw_false
: P
= CmpInst::FCMP_FALSE
; break;
2972 switch (Lex
.getKind()) {
2973 default: TokError("expected icmp predicate (e.g. 'eq')");
2974 case lltok::kw_eq
: P
= CmpInst::ICMP_EQ
; break;
2975 case lltok::kw_ne
: P
= CmpInst::ICMP_NE
; break;
2976 case lltok::kw_slt
: P
= CmpInst::ICMP_SLT
; break;
2977 case lltok::kw_sgt
: P
= CmpInst::ICMP_SGT
; break;
2978 case lltok::kw_sle
: P
= CmpInst::ICMP_SLE
; break;
2979 case lltok::kw_sge
: P
= CmpInst::ICMP_SGE
; break;
2980 case lltok::kw_ult
: P
= CmpInst::ICMP_ULT
; break;
2981 case lltok::kw_ugt
: P
= CmpInst::ICMP_UGT
; break;
2982 case lltok::kw_ule
: P
= CmpInst::ICMP_ULE
; break;
2983 case lltok::kw_uge
: P
= CmpInst::ICMP_UGE
; break;
2990 //===----------------------------------------------------------------------===//
2991 // Terminator Instructions.
2992 //===----------------------------------------------------------------------===//
2994 /// ParseRet - Parse a return instruction.
2995 /// ::= 'ret' void (',' !dbg, !1)*
2996 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
2997 bool LLParser::ParseRet(Instruction
*&Inst
, BasicBlock
*BB
,
2998 PerFunctionState
&PFS
) {
2999 SMLoc TypeLoc
= Lex
.getLoc();
3001 if (ParseType(Ty
, true /*void allowed*/)) return true;
3003 Type
*ResType
= PFS
.getFunction().getReturnType();
3005 if (Ty
->isVoidTy()) {
3006 if (!ResType
->isVoidTy())
3007 return Error(TypeLoc
, "value doesn't match function result type '" +
3008 getTypeString(ResType
) + "'");
3010 Inst
= ReturnInst::Create(Context
);
3015 if (ParseValue(Ty
, RV
, PFS
)) return true;
3017 if (ResType
!= RV
->getType())
3018 return Error(TypeLoc
, "value doesn't match function result type '" +
3019 getTypeString(ResType
) + "'");
3021 Inst
= ReturnInst::Create(Context
, RV
);
3027 /// ::= 'br' TypeAndValue
3028 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3029 bool LLParser::ParseBr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3032 BasicBlock
*Op1
, *Op2
;
3033 if (ParseTypeAndValue(Op0
, Loc
, PFS
)) return true;
3035 if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(Op0
)) {
3036 Inst
= BranchInst::Create(BB
);
3040 if (Op0
->getType() != Type::getInt1Ty(Context
))
3041 return Error(Loc
, "branch condition must have 'i1' type");
3043 if (ParseToken(lltok::comma
, "expected ',' after branch condition") ||
3044 ParseTypeAndBasicBlock(Op1
, Loc
, PFS
) ||
3045 ParseToken(lltok::comma
, "expected ',' after true destination") ||
3046 ParseTypeAndBasicBlock(Op2
, Loc2
, PFS
))
3049 Inst
= BranchInst::Create(Op1
, Op2
, Op0
);
3055 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3057 /// ::= (TypeAndValue ',' TypeAndValue)*
3058 bool LLParser::ParseSwitch(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3059 LocTy CondLoc
, BBLoc
;
3061 BasicBlock
*DefaultBB
;
3062 if (ParseTypeAndValue(Cond
, CondLoc
, PFS
) ||
3063 ParseToken(lltok::comma
, "expected ',' after switch condition") ||
3064 ParseTypeAndBasicBlock(DefaultBB
, BBLoc
, PFS
) ||
3065 ParseToken(lltok::lsquare
, "expected '[' with switch table"))
3068 if (!Cond
->getType()->isIntegerTy())
3069 return Error(CondLoc
, "switch condition must have integer type");
3071 // Parse the jump table pairs.
3072 SmallPtrSet
<Value
*, 32> SeenCases
;
3073 SmallVector
<std::pair
<ConstantInt
*, BasicBlock
*>, 32> Table
;
3074 while (Lex
.getKind() != lltok::rsquare
) {
3078 if (ParseTypeAndValue(Constant
, CondLoc
, PFS
) ||
3079 ParseToken(lltok::comma
, "expected ',' after case value") ||
3080 ParseTypeAndBasicBlock(DestBB
, PFS
))
3083 if (!SeenCases
.insert(Constant
))
3084 return Error(CondLoc
, "duplicate case value in switch");
3085 if (!isa
<ConstantInt
>(Constant
))
3086 return Error(CondLoc
, "case value is not a constant integer");
3088 Table
.push_back(std::make_pair(cast
<ConstantInt
>(Constant
), DestBB
));
3091 Lex
.Lex(); // Eat the ']'.
3093 SwitchInst
*SI
= SwitchInst::Create(Cond
, DefaultBB
, Table
.size());
3094 for (unsigned i
= 0, e
= Table
.size(); i
!= e
; ++i
)
3095 SI
->addCase(Table
[i
].first
, Table
[i
].second
);
3102 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3103 bool LLParser::ParseIndirectBr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3106 if (ParseTypeAndValue(Address
, AddrLoc
, PFS
) ||
3107 ParseToken(lltok::comma
, "expected ',' after indirectbr address") ||
3108 ParseToken(lltok::lsquare
, "expected '[' with indirectbr"))
3111 if (!Address
->getType()->isPointerTy())
3112 return Error(AddrLoc
, "indirectbr address must have pointer type");
3114 // Parse the destination list.
3115 SmallVector
<BasicBlock
*, 16> DestList
;
3117 if (Lex
.getKind() != lltok::rsquare
) {
3119 if (ParseTypeAndBasicBlock(DestBB
, PFS
))
3121 DestList
.push_back(DestBB
);
3123 while (EatIfPresent(lltok::comma
)) {
3124 if (ParseTypeAndBasicBlock(DestBB
, PFS
))
3126 DestList
.push_back(DestBB
);
3130 if (ParseToken(lltok::rsquare
, "expected ']' at end of block list"))
3133 IndirectBrInst
*IBI
= IndirectBrInst::Create(Address
, DestList
.size());
3134 for (unsigned i
= 0, e
= DestList
.size(); i
!= e
; ++i
)
3135 IBI
->addDestination(DestList
[i
]);
3142 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3143 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3144 bool LLParser::ParseInvoke(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3145 LocTy CallLoc
= Lex
.getLoc();
3146 unsigned RetAttrs
, FnAttrs
;
3151 SmallVector
<ParamInfo
, 16> ArgList
;
3153 BasicBlock
*NormalBB
, *UnwindBB
;
3154 if (ParseOptionalCallingConv(CC
) ||
3155 ParseOptionalAttrs(RetAttrs
, 1) ||
3156 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/) ||
3157 ParseValID(CalleeID
) ||
3158 ParseParameterList(ArgList
, PFS
) ||
3159 ParseOptionalAttrs(FnAttrs
, 2) ||
3160 ParseToken(lltok::kw_to
, "expected 'to' in invoke") ||
3161 ParseTypeAndBasicBlock(NormalBB
, PFS
) ||
3162 ParseToken(lltok::kw_unwind
, "expected 'unwind' in invoke") ||
3163 ParseTypeAndBasicBlock(UnwindBB
, PFS
))
3166 // If RetType is a non-function pointer type, then this is the short syntax
3167 // for the call, which means that RetType is just the return type. Infer the
3168 // rest of the function argument types from the arguments that are present.
3169 const PointerType
*PFTy
= 0;
3170 const FunctionType
*Ty
= 0;
3171 if (!(PFTy
= dyn_cast
<PointerType
>(RetType
)) ||
3172 !(Ty
= dyn_cast
<FunctionType
>(PFTy
->getElementType()))) {
3173 // Pull out the types of all of the arguments...
3174 std::vector
<const Type
*> ParamTypes
;
3175 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
3176 ParamTypes
.push_back(ArgList
[i
].V
->getType());
3178 if (!FunctionType::isValidReturnType(RetType
))
3179 return Error(RetTypeLoc
, "Invalid result type for LLVM function");
3181 Ty
= FunctionType::get(RetType
, ParamTypes
, false);
3182 PFTy
= PointerType::getUnqual(Ty
);
3185 // Look up the callee.
3187 if (ConvertValIDToValue(PFTy
, CalleeID
, Callee
, &PFS
)) return true;
3189 // Set up the Attributes for the function.
3190 SmallVector
<AttributeWithIndex
, 8> Attrs
;
3191 if (RetAttrs
!= Attribute::None
)
3192 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
3194 SmallVector
<Value
*, 8> Args
;
3196 // Loop through FunctionType's arguments and ensure they are specified
3197 // correctly. Also, gather any parameter attributes.
3198 FunctionType::param_iterator I
= Ty
->param_begin();
3199 FunctionType::param_iterator E
= Ty
->param_end();
3200 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
3201 const Type
*ExpectedTy
= 0;
3204 } else if (!Ty
->isVarArg()) {
3205 return Error(ArgList
[i
].Loc
, "too many arguments specified");
3208 if (ExpectedTy
&& ExpectedTy
!= ArgList
[i
].V
->getType())
3209 return Error(ArgList
[i
].Loc
, "argument is not of expected type '" +
3210 getTypeString(ExpectedTy
) + "'");
3211 Args
.push_back(ArgList
[i
].V
);
3212 if (ArgList
[i
].Attrs
!= Attribute::None
)
3213 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
3217 return Error(CallLoc
, "not enough parameters specified for call");
3219 if (FnAttrs
!= Attribute::None
)
3220 Attrs
.push_back(AttributeWithIndex::get(~0, FnAttrs
));
3222 // Finish off the Attributes and check them
3223 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
3225 InvokeInst
*II
= InvokeInst::Create(Callee
, NormalBB
, UnwindBB
,
3226 Args
.begin(), Args
.end());
3227 II
->setCallingConv(CC
);
3228 II
->setAttributes(PAL
);
3235 //===----------------------------------------------------------------------===//
3236 // Binary Operators.
3237 //===----------------------------------------------------------------------===//
3240 /// ::= ArithmeticOps TypeAndValue ',' Value
3242 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
3243 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3244 bool LLParser::ParseArithmetic(Instruction
*&Inst
, PerFunctionState
&PFS
,
3245 unsigned Opc
, unsigned OperandType
) {
3246 LocTy Loc
; Value
*LHS
, *RHS
;
3247 if (ParseTypeAndValue(LHS
, Loc
, PFS
) ||
3248 ParseToken(lltok::comma
, "expected ',' in arithmetic operation") ||
3249 ParseValue(LHS
->getType(), RHS
, PFS
))
3253 switch (OperandType
) {
3254 default: llvm_unreachable("Unknown operand type!");
3255 case 0: // int or FP.
3256 Valid
= LHS
->getType()->isIntOrIntVectorTy() ||
3257 LHS
->getType()->isFPOrFPVectorTy();
3259 case 1: Valid
= LHS
->getType()->isIntOrIntVectorTy(); break;
3260 case 2: Valid
= LHS
->getType()->isFPOrFPVectorTy(); break;
3264 return Error(Loc
, "invalid operand type for instruction");
3266 Inst
= BinaryOperator::Create((Instruction::BinaryOps
)Opc
, LHS
, RHS
);
3271 /// ::= ArithmeticOps TypeAndValue ',' Value {
3272 bool LLParser::ParseLogical(Instruction
*&Inst
, PerFunctionState
&PFS
,
3274 LocTy Loc
; Value
*LHS
, *RHS
;
3275 if (ParseTypeAndValue(LHS
, Loc
, PFS
) ||
3276 ParseToken(lltok::comma
, "expected ',' in logical operation") ||
3277 ParseValue(LHS
->getType(), RHS
, PFS
))
3280 if (!LHS
->getType()->isIntOrIntVectorTy())
3281 return Error(Loc
,"instruction requires integer or integer vector operands");
3283 Inst
= BinaryOperator::Create((Instruction::BinaryOps
)Opc
, LHS
, RHS
);
3289 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
3290 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
3291 bool LLParser::ParseCompare(Instruction
*&Inst
, PerFunctionState
&PFS
,
3293 // Parse the integer/fp comparison predicate.
3297 if (ParseCmpPredicate(Pred
, Opc
) ||
3298 ParseTypeAndValue(LHS
, Loc
, PFS
) ||
3299 ParseToken(lltok::comma
, "expected ',' after compare value") ||
3300 ParseValue(LHS
->getType(), RHS
, PFS
))
3303 if (Opc
== Instruction::FCmp
) {
3304 if (!LHS
->getType()->isFPOrFPVectorTy())
3305 return Error(Loc
, "fcmp requires floating point operands");
3306 Inst
= new FCmpInst(CmpInst::Predicate(Pred
), LHS
, RHS
);
3308 assert(Opc
== Instruction::ICmp
&& "Unknown opcode for CmpInst!");
3309 if (!LHS
->getType()->isIntOrIntVectorTy() &&
3310 !LHS
->getType()->isPointerTy())
3311 return Error(Loc
, "icmp requires integer operands");
3312 Inst
= new ICmpInst(CmpInst::Predicate(Pred
), LHS
, RHS
);
3317 //===----------------------------------------------------------------------===//
3318 // Other Instructions.
3319 //===----------------------------------------------------------------------===//
3323 /// ::= CastOpc TypeAndValue 'to' Type
3324 bool LLParser::ParseCast(Instruction
*&Inst
, PerFunctionState
&PFS
,
3329 if (ParseTypeAndValue(Op
, Loc
, PFS
) ||
3330 ParseToken(lltok::kw_to
, "expected 'to' after cast value") ||
3334 if (!CastInst::castIsValid((Instruction::CastOps
)Opc
, Op
, DestTy
)) {
3335 CastInst::castIsValid((Instruction::CastOps
)Opc
, Op
, DestTy
);
3336 return Error(Loc
, "invalid cast opcode for cast from '" +
3337 getTypeString(Op
->getType()) + "' to '" +
3338 getTypeString(DestTy
) + "'");
3340 Inst
= CastInst::Create((Instruction::CastOps
)Opc
, Op
, DestTy
);
3345 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3346 bool LLParser::ParseSelect(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3348 Value
*Op0
, *Op1
, *Op2
;
3349 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
3350 ParseToken(lltok::comma
, "expected ',' after select condition") ||
3351 ParseTypeAndValue(Op1
, PFS
) ||
3352 ParseToken(lltok::comma
, "expected ',' after select value") ||
3353 ParseTypeAndValue(Op2
, PFS
))
3356 if (const char *Reason
= SelectInst::areInvalidOperands(Op0
, Op1
, Op2
))
3357 return Error(Loc
, Reason
);
3359 Inst
= SelectInst::Create(Op0
, Op1
, Op2
);
3364 /// ::= 'va_arg' TypeAndValue ',' Type
3365 bool LLParser::ParseVA_Arg(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3369 if (ParseTypeAndValue(Op
, PFS
) ||
3370 ParseToken(lltok::comma
, "expected ',' after vaarg operand") ||
3371 ParseType(EltTy
, TypeLoc
))
3374 if (!EltTy
->isFirstClassType())
3375 return Error(TypeLoc
, "va_arg requires operand with first class type");
3377 Inst
= new VAArgInst(Op
, EltTy
);
3381 /// ParseExtractElement
3382 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
3383 bool LLParser::ParseExtractElement(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3386 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
3387 ParseToken(lltok::comma
, "expected ',' after extract value") ||
3388 ParseTypeAndValue(Op1
, PFS
))
3391 if (!ExtractElementInst::isValidOperands(Op0
, Op1
))
3392 return Error(Loc
, "invalid extractelement operands");
3394 Inst
= ExtractElementInst::Create(Op0
, Op1
);
3398 /// ParseInsertElement
3399 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3400 bool LLParser::ParseInsertElement(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3402 Value
*Op0
, *Op1
, *Op2
;
3403 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
3404 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
3405 ParseTypeAndValue(Op1
, PFS
) ||
3406 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
3407 ParseTypeAndValue(Op2
, PFS
))
3410 if (!InsertElementInst::isValidOperands(Op0
, Op1
, Op2
))
3411 return Error(Loc
, "invalid insertelement operands");
3413 Inst
= InsertElementInst::Create(Op0
, Op1
, Op2
);
3417 /// ParseShuffleVector
3418 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3419 bool LLParser::ParseShuffleVector(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3421 Value
*Op0
, *Op1
, *Op2
;
3422 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
3423 ParseToken(lltok::comma
, "expected ',' after shuffle mask") ||
3424 ParseTypeAndValue(Op1
, PFS
) ||
3425 ParseToken(lltok::comma
, "expected ',' after shuffle value") ||
3426 ParseTypeAndValue(Op2
, PFS
))
3429 if (!ShuffleVectorInst::isValidOperands(Op0
, Op1
, Op2
))
3430 return Error(Loc
, "invalid extractelement operands");
3432 Inst
= new ShuffleVectorInst(Op0
, Op1
, Op2
);
3437 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3438 int LLParser::ParsePHI(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3439 Type
*Ty
= 0; LocTy TypeLoc
;
3442 if (ParseType(Ty
, TypeLoc
) ||
3443 ParseToken(lltok::lsquare
, "expected '[' in phi value list") ||
3444 ParseValue(Ty
, Op0
, PFS
) ||
3445 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
3446 ParseValue(Type::getLabelTy(Context
), Op1
, PFS
) ||
3447 ParseToken(lltok::rsquare
, "expected ']' in phi value list"))
3450 bool AteExtraComma
= false;
3451 SmallVector
<std::pair
<Value
*, BasicBlock
*>, 16> PHIVals
;
3453 PHIVals
.push_back(std::make_pair(Op0
, cast
<BasicBlock
>(Op1
)));
3455 if (!EatIfPresent(lltok::comma
))
3458 if (Lex
.getKind() == lltok::MetadataVar
) {
3459 AteExtraComma
= true;
3463 if (ParseToken(lltok::lsquare
, "expected '[' in phi value list") ||
3464 ParseValue(Ty
, Op0
, PFS
) ||
3465 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
3466 ParseValue(Type::getLabelTy(Context
), Op1
, PFS
) ||
3467 ParseToken(lltok::rsquare
, "expected ']' in phi value list"))
3471 if (!Ty
->isFirstClassType())
3472 return Error(TypeLoc
, "phi node must have first class type");
3474 PHINode
*PN
= PHINode::Create(Ty
, PHIVals
.size());
3475 for (unsigned i
= 0, e
= PHIVals
.size(); i
!= e
; ++i
)
3476 PN
->addIncoming(PHIVals
[i
].first
, PHIVals
[i
].second
);
3478 return AteExtraComma
? InstExtraComma
: InstNormal
;
3482 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3483 /// ParameterList OptionalAttrs
3484 bool LLParser::ParseCall(Instruction
*&Inst
, PerFunctionState
&PFS
,
3486 unsigned RetAttrs
, FnAttrs
;
3491 SmallVector
<ParamInfo
, 16> ArgList
;
3492 LocTy CallLoc
= Lex
.getLoc();
3494 if ((isTail
&& ParseToken(lltok::kw_call
, "expected 'tail call'")) ||
3495 ParseOptionalCallingConv(CC
) ||
3496 ParseOptionalAttrs(RetAttrs
, 1) ||
3497 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/) ||
3498 ParseValID(CalleeID
) ||
3499 ParseParameterList(ArgList
, PFS
) ||
3500 ParseOptionalAttrs(FnAttrs
, 2))
3503 // If RetType is a non-function pointer type, then this is the short syntax
3504 // for the call, which means that RetType is just the return type. Infer the
3505 // rest of the function argument types from the arguments that are present.
3506 const PointerType
*PFTy
= 0;
3507 const FunctionType
*Ty
= 0;
3508 if (!(PFTy
= dyn_cast
<PointerType
>(RetType
)) ||
3509 !(Ty
= dyn_cast
<FunctionType
>(PFTy
->getElementType()))) {
3510 // Pull out the types of all of the arguments...
3511 std::vector
<const Type
*> ParamTypes
;
3512 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
3513 ParamTypes
.push_back(ArgList
[i
].V
->getType());
3515 if (!FunctionType::isValidReturnType(RetType
))
3516 return Error(RetTypeLoc
, "Invalid result type for LLVM function");
3518 Ty
= FunctionType::get(RetType
, ParamTypes
, false);
3519 PFTy
= PointerType::getUnqual(Ty
);
3522 // Look up the callee.
3524 if (ConvertValIDToValue(PFTy
, CalleeID
, Callee
, &PFS
)) return true;
3526 // Set up the Attributes for the function.
3527 SmallVector
<AttributeWithIndex
, 8> Attrs
;
3528 if (RetAttrs
!= Attribute::None
)
3529 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
3531 SmallVector
<Value
*, 8> Args
;
3533 // Loop through FunctionType's arguments and ensure they are specified
3534 // correctly. Also, gather any parameter attributes.
3535 FunctionType::param_iterator I
= Ty
->param_begin();
3536 FunctionType::param_iterator E
= Ty
->param_end();
3537 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
3538 const Type
*ExpectedTy
= 0;
3541 } else if (!Ty
->isVarArg()) {
3542 return Error(ArgList
[i
].Loc
, "too many arguments specified");
3545 if (ExpectedTy
&& ExpectedTy
!= ArgList
[i
].V
->getType())
3546 return Error(ArgList
[i
].Loc
, "argument is not of expected type '" +
3547 getTypeString(ExpectedTy
) + "'");
3548 Args
.push_back(ArgList
[i
].V
);
3549 if (ArgList
[i
].Attrs
!= Attribute::None
)
3550 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
3554 return Error(CallLoc
, "not enough parameters specified for call");
3556 if (FnAttrs
!= Attribute::None
)
3557 Attrs
.push_back(AttributeWithIndex::get(~0, FnAttrs
));
3559 // Finish off the Attributes and check them
3560 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
3562 CallInst
*CI
= CallInst::Create(Callee
, Args
.begin(), Args
.end());
3563 CI
->setTailCall(isTail
);
3564 CI
->setCallingConv(CC
);
3565 CI
->setAttributes(PAL
);
3570 //===----------------------------------------------------------------------===//
3571 // Memory Instructions.
3572 //===----------------------------------------------------------------------===//
3575 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3576 int LLParser::ParseAlloc(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3579 unsigned Alignment
= 0;
3581 if (ParseType(Ty
)) return true;
3583 bool AteExtraComma
= false;
3584 if (EatIfPresent(lltok::comma
)) {
3585 if (Lex
.getKind() == lltok::kw_align
) {
3586 if (ParseOptionalAlignment(Alignment
)) return true;
3587 } else if (Lex
.getKind() == lltok::MetadataVar
) {
3588 AteExtraComma
= true;
3590 if (ParseTypeAndValue(Size
, SizeLoc
, PFS
) ||
3591 ParseOptionalCommaAlign(Alignment
, AteExtraComma
))
3596 if (Size
&& !Size
->getType()->isIntegerTy())
3597 return Error(SizeLoc
, "element count must have integer type");
3599 Inst
= new AllocaInst(Ty
, Size
, Alignment
);
3600 return AteExtraComma
? InstExtraComma
: InstNormal
;
3604 /// ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3605 int LLParser::ParseLoad(Instruction
*&Inst
, PerFunctionState
&PFS
,
3607 Value
*Val
; LocTy Loc
;
3608 unsigned Alignment
= 0;
3609 bool AteExtraComma
= false;
3610 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3611 ParseOptionalCommaAlign(Alignment
, AteExtraComma
))
3614 if (!Val
->getType()->isPointerTy() ||
3615 !cast
<PointerType
>(Val
->getType())->getElementType()->isFirstClassType())
3616 return Error(Loc
, "load operand must be a pointer to a first class type");
3618 Inst
= new LoadInst(Val
, "", isVolatile
, Alignment
);
3619 return AteExtraComma
? InstExtraComma
: InstNormal
;
3623 /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3624 int LLParser::ParseStore(Instruction
*&Inst
, PerFunctionState
&PFS
,
3626 Value
*Val
, *Ptr
; LocTy Loc
, PtrLoc
;
3627 unsigned Alignment
= 0;
3628 bool AteExtraComma
= false;
3629 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3630 ParseToken(lltok::comma
, "expected ',' after store operand") ||
3631 ParseTypeAndValue(Ptr
, PtrLoc
, PFS
) ||
3632 ParseOptionalCommaAlign(Alignment
, AteExtraComma
))
3635 if (!Ptr
->getType()->isPointerTy())
3636 return Error(PtrLoc
, "store operand must be a pointer");
3637 if (!Val
->getType()->isFirstClassType())
3638 return Error(Loc
, "store operand must be a first class value");
3639 if (cast
<PointerType
>(Ptr
->getType())->getElementType() != Val
->getType())
3640 return Error(Loc
, "stored value and pointer type do not match");
3642 Inst
= new StoreInst(Val
, Ptr
, isVolatile
, Alignment
);
3643 return AteExtraComma
? InstExtraComma
: InstNormal
;
3646 /// ParseGetElementPtr
3647 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3648 int LLParser::ParseGetElementPtr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3649 Value
*Ptr
, *Val
; LocTy Loc
, EltLoc
;
3651 bool InBounds
= EatIfPresent(lltok::kw_inbounds
);
3653 if (ParseTypeAndValue(Ptr
, Loc
, PFS
)) return true;
3655 if (!Ptr
->getType()->isPointerTy())
3656 return Error(Loc
, "base of getelementptr must be a pointer");
3658 SmallVector
<Value
*, 16> Indices
;
3659 bool AteExtraComma
= false;
3660 while (EatIfPresent(lltok::comma
)) {
3661 if (Lex
.getKind() == lltok::MetadataVar
) {
3662 AteExtraComma
= true;
3665 if (ParseTypeAndValue(Val
, EltLoc
, PFS
)) return true;
3666 if (!Val
->getType()->isIntegerTy())
3667 return Error(EltLoc
, "getelementptr index must be an integer");
3668 Indices
.push_back(Val
);
3671 if (!GetElementPtrInst::getIndexedType(Ptr
->getType(),
3672 Indices
.begin(), Indices
.end()))
3673 return Error(Loc
, "invalid getelementptr indices");
3674 Inst
= GetElementPtrInst::Create(Ptr
, Indices
.begin(), Indices
.end());
3676 cast
<GetElementPtrInst
>(Inst
)->setIsInBounds(true);
3677 return AteExtraComma
? InstExtraComma
: InstNormal
;
3680 /// ParseExtractValue
3681 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
3682 int LLParser::ParseExtractValue(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3683 Value
*Val
; LocTy Loc
;
3684 SmallVector
<unsigned, 4> Indices
;
3686 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3687 ParseIndexList(Indices
, AteExtraComma
))
3690 if (!Val
->getType()->isAggregateType())
3691 return Error(Loc
, "extractvalue operand must be aggregate type");
3693 if (!ExtractValueInst::getIndexedType(Val
->getType(), Indices
.begin(),
3695 return Error(Loc
, "invalid indices for extractvalue");
3696 Inst
= ExtractValueInst::Create(Val
, Indices
.begin(), Indices
.end());
3697 return AteExtraComma
? InstExtraComma
: InstNormal
;
3700 /// ParseInsertValue
3701 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3702 int LLParser::ParseInsertValue(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3703 Value
*Val0
, *Val1
; LocTy Loc0
, Loc1
;
3704 SmallVector
<unsigned, 4> Indices
;
3706 if (ParseTypeAndValue(Val0
, Loc0
, PFS
) ||
3707 ParseToken(lltok::comma
, "expected comma after insertvalue operand") ||
3708 ParseTypeAndValue(Val1
, Loc1
, PFS
) ||
3709 ParseIndexList(Indices
, AteExtraComma
))
3712 if (!Val0
->getType()->isAggregateType())
3713 return Error(Loc0
, "insertvalue operand must be aggregate type");
3715 if (!ExtractValueInst::getIndexedType(Val0
->getType(), Indices
.begin(),
3717 return Error(Loc0
, "invalid indices for insertvalue");
3718 Inst
= InsertValueInst::Create(Val0
, Val1
, Indices
.begin(), Indices
.end());
3719 return AteExtraComma
? InstExtraComma
: InstNormal
;
3722 //===----------------------------------------------------------------------===//
3723 // Embedded metadata.
3724 //===----------------------------------------------------------------------===//
3726 /// ParseMDNodeVector
3727 /// ::= Element (',' Element)*
3729 /// ::= 'null' | TypeAndValue
3730 bool LLParser::ParseMDNodeVector(SmallVectorImpl
<Value
*> &Elts
,
3731 PerFunctionState
*PFS
) {
3732 // Check for an empty list.
3733 if (Lex
.getKind() == lltok::rbrace
)
3737 // Null is a special case since it is typeless.
3738 if (EatIfPresent(lltok::kw_null
)) {
3744 if (ParseTypeAndValue(V
, PFS
)) return true;
3746 } while (EatIfPresent(lltok::comma
));