don't load element before checking to see if it is valid.
[llvm/stm8.git] / lib / Support / APInt.cpp
blob76265d445f4536c2096d40555f4fb801704fac94
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integer
11 // constant values and provide a variety of arithmetic operations on them.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "apint"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <cmath>
25 #include <limits>
26 #include <cstring>
27 #include <cstdlib>
28 using namespace llvm;
30 /// A utility function for allocating memory, checking for allocation failures,
31 /// and ensuring the contents are zeroed.
32 inline static uint64_t* getClearedMemory(unsigned numWords) {
33 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
39 /// A utility function for allocating memory and checking for allocation
40 /// failure. The content is not zeroed.
41 inline static uint64_t* getMemory(unsigned numWords) {
42 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
47 /// A utility function that converts a character to a digit.
48 inline static unsigned getDigit(char cdigit, uint8_t radix) {
49 unsigned r;
51 if (radix == 16) {
52 r = cdigit - '0';
53 if (r <= 9)
54 return r;
56 r = cdigit - 'A';
57 if (r <= 5)
58 return r + 10;
60 r = cdigit - 'a';
61 if (r <= 5)
62 return r + 10;
65 r = cdigit - '0';
66 if (r < radix)
67 return r;
69 return -1U;
73 void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
74 pVal = getClearedMemory(getNumWords());
75 pVal[0] = val;
76 if (isSigned && int64_t(val) < 0)
77 for (unsigned i = 1; i < getNumWords(); ++i)
78 pVal[i] = -1ULL;
81 void APInt::initSlowCase(const APInt& that) {
82 pVal = getMemory(getNumWords());
83 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
87 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
88 : BitWidth(numBits), VAL(0) {
89 assert(BitWidth && "Bitwidth too small");
90 assert(bigVal && "Null pointer detected!");
91 if (isSingleWord())
92 VAL = bigVal[0];
93 else {
94 // Get memory, cleared to 0
95 pVal = getClearedMemory(getNumWords());
96 // Calculate the number of words to copy
97 unsigned words = std::min<unsigned>(numWords, getNumWords());
98 // Copy the words from bigVal to pVal
99 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
101 // Make sure unused high bits are cleared
102 clearUnusedBits();
105 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
106 : BitWidth(numbits), VAL(0) {
107 assert(BitWidth && "Bitwidth too small");
108 fromString(numbits, Str, radix);
111 APInt& APInt::AssignSlowCase(const APInt& RHS) {
112 // Don't do anything for X = X
113 if (this == &RHS)
114 return *this;
116 if (BitWidth == RHS.getBitWidth()) {
117 // assume same bit-width single-word case is already handled
118 assert(!isSingleWord());
119 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
120 return *this;
123 if (isSingleWord()) {
124 // assume case where both are single words is already handled
125 assert(!RHS.isSingleWord());
126 VAL = 0;
127 pVal = getMemory(RHS.getNumWords());
128 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
129 } else if (getNumWords() == RHS.getNumWords())
130 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
131 else if (RHS.isSingleWord()) {
132 delete [] pVal;
133 VAL = RHS.VAL;
134 } else {
135 delete [] pVal;
136 pVal = getMemory(RHS.getNumWords());
137 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
139 BitWidth = RHS.BitWidth;
140 return clearUnusedBits();
143 APInt& APInt::operator=(uint64_t RHS) {
144 if (isSingleWord())
145 VAL = RHS;
146 else {
147 pVal[0] = RHS;
148 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
150 return clearUnusedBits();
153 /// Profile - This method 'profiles' an APInt for use with FoldingSet.
154 void APInt::Profile(FoldingSetNodeID& ID) const {
155 ID.AddInteger(BitWidth);
157 if (isSingleWord()) {
158 ID.AddInteger(VAL);
159 return;
162 unsigned NumWords = getNumWords();
163 for (unsigned i = 0; i < NumWords; ++i)
164 ID.AddInteger(pVal[i]);
167 /// add_1 - This function adds a single "digit" integer, y, to the multiple
168 /// "digit" integer array, x[]. x[] is modified to reflect the addition and
169 /// 1 is returned if there is a carry out, otherwise 0 is returned.
170 /// @returns the carry of the addition.
171 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
172 for (unsigned i = 0; i < len; ++i) {
173 dest[i] = y + x[i];
174 if (dest[i] < y)
175 y = 1; // Carry one to next digit.
176 else {
177 y = 0; // No need to carry so exit early
178 break;
181 return y;
184 /// @brief Prefix increment operator. Increments the APInt by one.
185 APInt& APInt::operator++() {
186 if (isSingleWord())
187 ++VAL;
188 else
189 add_1(pVal, pVal, getNumWords(), 1);
190 return clearUnusedBits();
193 /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
194 /// the multi-digit integer array, x[], propagating the borrowed 1 value until
195 /// no further borrowing is neeeded or it runs out of "digits" in x. The result
196 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
197 /// In other words, if y > x then this function returns 1, otherwise 0.
198 /// @returns the borrow out of the subtraction
199 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
200 for (unsigned i = 0; i < len; ++i) {
201 uint64_t X = x[i];
202 x[i] -= y;
203 if (y > X)
204 y = 1; // We have to "borrow 1" from next "digit"
205 else {
206 y = 0; // No need to borrow
207 break; // Remaining digits are unchanged so exit early
210 return bool(y);
213 /// @brief Prefix decrement operator. Decrements the APInt by one.
214 APInt& APInt::operator--() {
215 if (isSingleWord())
216 --VAL;
217 else
218 sub_1(pVal, getNumWords(), 1);
219 return clearUnusedBits();
222 /// add - This function adds the integer array x to the integer array Y and
223 /// places the result in dest.
224 /// @returns the carry out from the addition
225 /// @brief General addition of 64-bit integer arrays
226 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
227 unsigned len) {
228 bool carry = false;
229 for (unsigned i = 0; i< len; ++i) {
230 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
231 dest[i] = x[i] + y[i] + carry;
232 carry = dest[i] < limit || (carry && dest[i] == limit);
234 return carry;
237 /// Adds the RHS APint to this APInt.
238 /// @returns this, after addition of RHS.
239 /// @brief Addition assignment operator.
240 APInt& APInt::operator+=(const APInt& RHS) {
241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
242 if (isSingleWord())
243 VAL += RHS.VAL;
244 else {
245 add(pVal, pVal, RHS.pVal, getNumWords());
247 return clearUnusedBits();
250 /// Subtracts the integer array y from the integer array x
251 /// @returns returns the borrow out.
252 /// @brief Generalized subtraction of 64-bit integer arrays.
253 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
254 unsigned len) {
255 bool borrow = false;
256 for (unsigned i = 0; i < len; ++i) {
257 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
258 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
259 dest[i] = x_tmp - y[i];
261 return borrow;
264 /// Subtracts the RHS APInt from this APInt
265 /// @returns this, after subtraction
266 /// @brief Subtraction assignment operator.
267 APInt& APInt::operator-=(const APInt& RHS) {
268 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
269 if (isSingleWord())
270 VAL -= RHS.VAL;
271 else
272 sub(pVal, pVal, RHS.pVal, getNumWords());
273 return clearUnusedBits();
276 /// Multiplies an integer array, x, by a uint64_t integer and places the result
277 /// into dest.
278 /// @returns the carry out of the multiplication.
279 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
280 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
281 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
282 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
283 uint64_t carry = 0;
285 // For each digit of x.
286 for (unsigned i = 0; i < len; ++i) {
287 // Split x into high and low words
288 uint64_t lx = x[i] & 0xffffffffULL;
289 uint64_t hx = x[i] >> 32;
290 // hasCarry - A flag to indicate if there is a carry to the next digit.
291 // hasCarry == 0, no carry
292 // hasCarry == 1, has carry
293 // hasCarry == 2, no carry and the calculation result == 0.
294 uint8_t hasCarry = 0;
295 dest[i] = carry + lx * ly;
296 // Determine if the add above introduces carry.
297 hasCarry = (dest[i] < carry) ? 1 : 0;
298 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
299 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
300 // (2^32 - 1) + 2^32 = 2^64.
301 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
303 carry += (lx * hy) & 0xffffffffULL;
304 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
305 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
306 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
308 return carry;
311 /// Multiplies integer array x by integer array y and stores the result into
312 /// the integer array dest. Note that dest's size must be >= xlen + ylen.
313 /// @brief Generalized multiplicate of integer arrays.
314 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
315 unsigned ylen) {
316 dest[xlen] = mul_1(dest, x, xlen, y[0]);
317 for (unsigned i = 1; i < ylen; ++i) {
318 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
319 uint64_t carry = 0, lx = 0, hx = 0;
320 for (unsigned j = 0; j < xlen; ++j) {
321 lx = x[j] & 0xffffffffULL;
322 hx = x[j] >> 32;
323 // hasCarry - A flag to indicate if has carry.
324 // hasCarry == 0, no carry
325 // hasCarry == 1, has carry
326 // hasCarry == 2, no carry and the calculation result == 0.
327 uint8_t hasCarry = 0;
328 uint64_t resul = carry + lx * ly;
329 hasCarry = (resul < carry) ? 1 : 0;
330 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
331 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
333 carry += (lx * hy) & 0xffffffffULL;
334 resul = (carry << 32) | (resul & 0xffffffffULL);
335 dest[i+j] += resul;
336 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
337 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
338 ((lx * hy) >> 32) + hx * hy;
340 dest[i+xlen] = carry;
344 APInt& APInt::operator*=(const APInt& RHS) {
345 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
346 if (isSingleWord()) {
347 VAL *= RHS.VAL;
348 clearUnusedBits();
349 return *this;
352 // Get some bit facts about LHS and check for zero
353 unsigned lhsBits = getActiveBits();
354 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
355 if (!lhsWords)
356 // 0 * X ===> 0
357 return *this;
359 // Get some bit facts about RHS and check for zero
360 unsigned rhsBits = RHS.getActiveBits();
361 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
362 if (!rhsWords) {
363 // X * 0 ===> 0
364 clearAllBits();
365 return *this;
368 // Allocate space for the result
369 unsigned destWords = rhsWords + lhsWords;
370 uint64_t *dest = getMemory(destWords);
372 // Perform the long multiply
373 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
375 // Copy result back into *this
376 clearAllBits();
377 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
378 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
380 // delete dest array and return
381 delete[] dest;
382 return *this;
385 APInt& APInt::operator&=(const APInt& RHS) {
386 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
387 if (isSingleWord()) {
388 VAL &= RHS.VAL;
389 return *this;
391 unsigned numWords = getNumWords();
392 for (unsigned i = 0; i < numWords; ++i)
393 pVal[i] &= RHS.pVal[i];
394 return *this;
397 APInt& APInt::operator|=(const APInt& RHS) {
398 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
399 if (isSingleWord()) {
400 VAL |= RHS.VAL;
401 return *this;
403 unsigned numWords = getNumWords();
404 for (unsigned i = 0; i < numWords; ++i)
405 pVal[i] |= RHS.pVal[i];
406 return *this;
409 APInt& APInt::operator^=(const APInt& RHS) {
410 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
411 if (isSingleWord()) {
412 VAL ^= RHS.VAL;
413 this->clearUnusedBits();
414 return *this;
416 unsigned numWords = getNumWords();
417 for (unsigned i = 0; i < numWords; ++i)
418 pVal[i] ^= RHS.pVal[i];
419 return clearUnusedBits();
422 APInt APInt::AndSlowCase(const APInt& RHS) const {
423 unsigned numWords = getNumWords();
424 uint64_t* val = getMemory(numWords);
425 for (unsigned i = 0; i < numWords; ++i)
426 val[i] = pVal[i] & RHS.pVal[i];
427 return APInt(val, getBitWidth());
430 APInt APInt::OrSlowCase(const APInt& RHS) const {
431 unsigned numWords = getNumWords();
432 uint64_t *val = getMemory(numWords);
433 for (unsigned i = 0; i < numWords; ++i)
434 val[i] = pVal[i] | RHS.pVal[i];
435 return APInt(val, getBitWidth());
438 APInt APInt::XorSlowCase(const APInt& RHS) const {
439 unsigned numWords = getNumWords();
440 uint64_t *val = getMemory(numWords);
441 for (unsigned i = 0; i < numWords; ++i)
442 val[i] = pVal[i] ^ RHS.pVal[i];
444 // 0^0==1 so clear the high bits in case they got set.
445 return APInt(val, getBitWidth()).clearUnusedBits();
448 bool APInt::operator !() const {
449 if (isSingleWord())
450 return !VAL;
452 for (unsigned i = 0; i < getNumWords(); ++i)
453 if (pVal[i])
454 return false;
455 return true;
458 APInt APInt::operator*(const APInt& RHS) const {
459 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
460 if (isSingleWord())
461 return APInt(BitWidth, VAL * RHS.VAL);
462 APInt Result(*this);
463 Result *= RHS;
464 return Result.clearUnusedBits();
467 APInt APInt::operator+(const APInt& RHS) const {
468 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
469 if (isSingleWord())
470 return APInt(BitWidth, VAL + RHS.VAL);
471 APInt Result(BitWidth, 0);
472 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
473 return Result.clearUnusedBits();
476 APInt APInt::operator-(const APInt& RHS) const {
477 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
478 if (isSingleWord())
479 return APInt(BitWidth, VAL - RHS.VAL);
480 APInt Result(BitWidth, 0);
481 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
482 return Result.clearUnusedBits();
485 bool APInt::operator[](unsigned bitPosition) const {
486 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
487 return (maskBit(bitPosition) &
488 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
491 bool APInt::EqualSlowCase(const APInt& RHS) const {
492 // Get some facts about the number of bits used in the two operands.
493 unsigned n1 = getActiveBits();
494 unsigned n2 = RHS.getActiveBits();
496 // If the number of bits isn't the same, they aren't equal
497 if (n1 != n2)
498 return false;
500 // If the number of bits fits in a word, we only need to compare the low word.
501 if (n1 <= APINT_BITS_PER_WORD)
502 return pVal[0] == RHS.pVal[0];
504 // Otherwise, compare everything
505 for (int i = whichWord(n1 - 1); i >= 0; --i)
506 if (pVal[i] != RHS.pVal[i])
507 return false;
508 return true;
511 bool APInt::EqualSlowCase(uint64_t Val) const {
512 unsigned n = getActiveBits();
513 if (n <= APINT_BITS_PER_WORD)
514 return pVal[0] == Val;
515 else
516 return false;
519 bool APInt::ult(const APInt& RHS) const {
520 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
521 if (isSingleWord())
522 return VAL < RHS.VAL;
524 // Get active bit length of both operands
525 unsigned n1 = getActiveBits();
526 unsigned n2 = RHS.getActiveBits();
528 // If magnitude of LHS is less than RHS, return true.
529 if (n1 < n2)
530 return true;
532 // If magnitude of RHS is greather than LHS, return false.
533 if (n2 < n1)
534 return false;
536 // If they bot fit in a word, just compare the low order word
537 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
538 return pVal[0] < RHS.pVal[0];
540 // Otherwise, compare all words
541 unsigned topWord = whichWord(std::max(n1,n2)-1);
542 for (int i = topWord; i >= 0; --i) {
543 if (pVal[i] > RHS.pVal[i])
544 return false;
545 if (pVal[i] < RHS.pVal[i])
546 return true;
548 return false;
551 bool APInt::slt(const APInt& RHS) const {
552 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
553 if (isSingleWord()) {
554 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
555 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
556 return lhsSext < rhsSext;
559 APInt lhs(*this);
560 APInt rhs(RHS);
561 bool lhsNeg = isNegative();
562 bool rhsNeg = rhs.isNegative();
563 if (lhsNeg) {
564 // Sign bit is set so perform two's complement to make it positive
565 lhs.flipAllBits();
566 lhs++;
568 if (rhsNeg) {
569 // Sign bit is set so perform two's complement to make it positive
570 rhs.flipAllBits();
571 rhs++;
574 // Now we have unsigned values to compare so do the comparison if necessary
575 // based on the negativeness of the values.
576 if (lhsNeg)
577 if (rhsNeg)
578 return lhs.ugt(rhs);
579 else
580 return true;
581 else if (rhsNeg)
582 return false;
583 else
584 return lhs.ult(rhs);
587 void APInt::setBit(unsigned bitPosition) {
588 if (isSingleWord())
589 VAL |= maskBit(bitPosition);
590 else
591 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
594 /// Set the given bit to 0 whose position is given as "bitPosition".
595 /// @brief Set a given bit to 0.
596 void APInt::clearBit(unsigned bitPosition) {
597 if (isSingleWord())
598 VAL &= ~maskBit(bitPosition);
599 else
600 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
603 /// @brief Toggle every bit to its opposite value.
605 /// Toggle a given bit to its opposite value whose position is given
606 /// as "bitPosition".
607 /// @brief Toggles a given bit to its opposite value.
608 void APInt::flipBit(unsigned bitPosition) {
609 assert(bitPosition < BitWidth && "Out of the bit-width range!");
610 if ((*this)[bitPosition]) clearBit(bitPosition);
611 else setBit(bitPosition);
614 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
615 assert(!str.empty() && "Invalid string length");
616 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
617 "Radix should be 2, 8, 10, or 16!");
619 size_t slen = str.size();
621 // Each computation below needs to know if it's negative.
622 StringRef::iterator p = str.begin();
623 unsigned isNegative = *p == '-';
624 if (*p == '-' || *p == '+') {
625 p++;
626 slen--;
627 assert(slen && "String is only a sign, needs a value.");
630 // For radixes of power-of-two values, the bits required is accurately and
631 // easily computed
632 if (radix == 2)
633 return slen + isNegative;
634 if (radix == 8)
635 return slen * 3 + isNegative;
636 if (radix == 16)
637 return slen * 4 + isNegative;
639 // This is grossly inefficient but accurate. We could probably do something
640 // with a computation of roughly slen*64/20 and then adjust by the value of
641 // the first few digits. But, I'm not sure how accurate that could be.
643 // Compute a sufficient number of bits that is always large enough but might
644 // be too large. This avoids the assertion in the constructor. This
645 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
646 // bits in that case.
647 unsigned sufficient = slen == 1 ? 4 : slen * 64/18;
649 // Convert to the actual binary value.
650 APInt tmp(sufficient, StringRef(p, slen), radix);
652 // Compute how many bits are required. If the log is infinite, assume we need
653 // just bit.
654 unsigned log = tmp.logBase2();
655 if (log == (unsigned)-1) {
656 return isNegative + 1;
657 } else {
658 return isNegative + log + 1;
662 // From http://www.burtleburtle.net, byBob Jenkins.
663 // When targeting x86, both GCC and LLVM seem to recognize this as a
664 // rotate instruction.
665 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
667 // From http://www.burtleburtle.net, by Bob Jenkins.
668 #define mix(a,b,c) \
670 a -= c; a ^= rot(c, 4); c += b; \
671 b -= a; b ^= rot(a, 6); a += c; \
672 c -= b; c ^= rot(b, 8); b += a; \
673 a -= c; a ^= rot(c,16); c += b; \
674 b -= a; b ^= rot(a,19); a += c; \
675 c -= b; c ^= rot(b, 4); b += a; \
678 // From http://www.burtleburtle.net, by Bob Jenkins.
679 #define final(a,b,c) \
681 c ^= b; c -= rot(b,14); \
682 a ^= c; a -= rot(c,11); \
683 b ^= a; b -= rot(a,25); \
684 c ^= b; c -= rot(b,16); \
685 a ^= c; a -= rot(c,4); \
686 b ^= a; b -= rot(a,14); \
687 c ^= b; c -= rot(b,24); \
690 // hashword() was adapted from http://www.burtleburtle.net, by Bob
691 // Jenkins. k is a pointer to an array of uint32_t values; length is
692 // the length of the key, in 32-bit chunks. This version only handles
693 // keys that are a multiple of 32 bits in size.
694 static inline uint32_t hashword(const uint64_t *k64, size_t length)
696 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
697 uint32_t a,b,c;
699 /* Set up the internal state */
700 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
702 /*------------------------------------------------- handle most of the key */
703 while (length > 3) {
704 a += k[0];
705 b += k[1];
706 c += k[2];
707 mix(a,b,c);
708 length -= 3;
709 k += 3;
712 /*------------------------------------------- handle the last 3 uint32_t's */
713 switch (length) { /* all the case statements fall through */
714 case 3 : c+=k[2];
715 case 2 : b+=k[1];
716 case 1 : a+=k[0];
717 final(a,b,c);
718 case 0: /* case 0: nothing left to add */
719 break;
721 /*------------------------------------------------------ report the result */
722 return c;
725 // hashword8() was adapted from http://www.burtleburtle.net, by Bob
726 // Jenkins. This computes a 32-bit hash from one 64-bit word. When
727 // targeting x86 (32 or 64 bit), both LLVM and GCC compile this
728 // function into about 35 instructions when inlined.
729 static inline uint32_t hashword8(const uint64_t k64)
731 uint32_t a,b,c;
732 a = b = c = 0xdeadbeef + 4;
733 b += k64 >> 32;
734 a += k64 & 0xffffffff;
735 final(a,b,c);
736 return c;
738 #undef final
739 #undef mix
740 #undef rot
742 uint64_t APInt::getHashValue() const {
743 uint64_t hash;
744 if (isSingleWord())
745 hash = hashword8(VAL);
746 else
747 hash = hashword(pVal, getNumWords()*2);
748 return hash;
751 /// HiBits - This function returns the high "numBits" bits of this APInt.
752 APInt APInt::getHiBits(unsigned numBits) const {
753 return APIntOps::lshr(*this, BitWidth - numBits);
756 /// LoBits - This function returns the low "numBits" bits of this APInt.
757 APInt APInt::getLoBits(unsigned numBits) const {
758 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
759 BitWidth - numBits);
762 unsigned APInt::countLeadingZerosSlowCase() const {
763 // Treat the most significand word differently because it might have
764 // meaningless bits set beyond the precision.
765 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
766 integerPart MSWMask;
767 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
768 else {
769 MSWMask = ~integerPart(0);
770 BitsInMSW = APINT_BITS_PER_WORD;
773 unsigned i = getNumWords();
774 integerPart MSW = pVal[i-1] & MSWMask;
775 if (MSW)
776 return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
778 unsigned Count = BitsInMSW;
779 for (--i; i > 0u; --i) {
780 if (pVal[i-1] == 0)
781 Count += APINT_BITS_PER_WORD;
782 else {
783 Count += CountLeadingZeros_64(pVal[i-1]);
784 break;
787 return Count;
790 static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
791 unsigned Count = 0;
792 if (skip)
793 V <<= skip;
794 while (V && (V & (1ULL << 63))) {
795 Count++;
796 V <<= 1;
798 return Count;
801 unsigned APInt::countLeadingOnes() const {
802 if (isSingleWord())
803 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
805 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
806 unsigned shift;
807 if (!highWordBits) {
808 highWordBits = APINT_BITS_PER_WORD;
809 shift = 0;
810 } else {
811 shift = APINT_BITS_PER_WORD - highWordBits;
813 int i = getNumWords() - 1;
814 unsigned Count = countLeadingOnes_64(pVal[i], shift);
815 if (Count == highWordBits) {
816 for (i--; i >= 0; --i) {
817 if (pVal[i] == -1ULL)
818 Count += APINT_BITS_PER_WORD;
819 else {
820 Count += countLeadingOnes_64(pVal[i], 0);
821 break;
825 return Count;
828 unsigned APInt::countTrailingZeros() const {
829 if (isSingleWord())
830 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
831 unsigned Count = 0;
832 unsigned i = 0;
833 for (; i < getNumWords() && pVal[i] == 0; ++i)
834 Count += APINT_BITS_PER_WORD;
835 if (i < getNumWords())
836 Count += CountTrailingZeros_64(pVal[i]);
837 return std::min(Count, BitWidth);
840 unsigned APInt::countTrailingOnesSlowCase() const {
841 unsigned Count = 0;
842 unsigned i = 0;
843 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
844 Count += APINT_BITS_PER_WORD;
845 if (i < getNumWords())
846 Count += CountTrailingOnes_64(pVal[i]);
847 return std::min(Count, BitWidth);
850 unsigned APInt::countPopulationSlowCase() const {
851 unsigned Count = 0;
852 for (unsigned i = 0; i < getNumWords(); ++i)
853 Count += CountPopulation_64(pVal[i]);
854 return Count;
857 APInt APInt::byteSwap() const {
858 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
859 if (BitWidth == 16)
860 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
861 else if (BitWidth == 32)
862 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
863 else if (BitWidth == 48) {
864 unsigned Tmp1 = unsigned(VAL >> 16);
865 Tmp1 = ByteSwap_32(Tmp1);
866 uint16_t Tmp2 = uint16_t(VAL);
867 Tmp2 = ByteSwap_16(Tmp2);
868 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
869 } else if (BitWidth == 64)
870 return APInt(BitWidth, ByteSwap_64(VAL));
871 else {
872 APInt Result(BitWidth, 0);
873 char *pByte = (char*)Result.pVal;
874 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
875 char Tmp = pByte[i];
876 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
877 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
879 return Result;
883 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
884 const APInt& API2) {
885 APInt A = API1, B = API2;
886 while (!!B) {
887 APInt T = B;
888 B = APIntOps::urem(A, B);
889 A = T;
891 return A;
894 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
895 union {
896 double D;
897 uint64_t I;
898 } T;
899 T.D = Double;
901 // Get the sign bit from the highest order bit
902 bool isNeg = T.I >> 63;
904 // Get the 11-bit exponent and adjust for the 1023 bit bias
905 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
907 // If the exponent is negative, the value is < 0 so just return 0.
908 if (exp < 0)
909 return APInt(width, 0u);
911 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
912 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
914 // If the exponent doesn't shift all bits out of the mantissa
915 if (exp < 52)
916 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
917 APInt(width, mantissa >> (52 - exp));
919 // If the client didn't provide enough bits for us to shift the mantissa into
920 // then the result is undefined, just return 0
921 if (width <= exp - 52)
922 return APInt(width, 0);
924 // Otherwise, we have to shift the mantissa bits up to the right location
925 APInt Tmp(width, mantissa);
926 Tmp = Tmp.shl((unsigned)exp - 52);
927 return isNeg ? -Tmp : Tmp;
930 /// RoundToDouble - This function converts this APInt to a double.
931 /// The layout for double is as following (IEEE Standard 754):
932 /// --------------------------------------
933 /// | Sign Exponent Fraction Bias |
934 /// |-------------------------------------- |
935 /// | 1[63] 11[62-52] 52[51-00] 1023 |
936 /// --------------------------------------
937 double APInt::roundToDouble(bool isSigned) const {
939 // Handle the simple case where the value is contained in one uint64_t.
940 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
941 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
942 if (isSigned) {
943 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
944 return double(sext);
945 } else
946 return double(getWord(0));
949 // Determine if the value is negative.
950 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
952 // Construct the absolute value if we're negative.
953 APInt Tmp(isNeg ? -(*this) : (*this));
955 // Figure out how many bits we're using.
956 unsigned n = Tmp.getActiveBits();
958 // The exponent (without bias normalization) is just the number of bits
959 // we are using. Note that the sign bit is gone since we constructed the
960 // absolute value.
961 uint64_t exp = n;
963 // Return infinity for exponent overflow
964 if (exp > 1023) {
965 if (!isSigned || !isNeg)
966 return std::numeric_limits<double>::infinity();
967 else
968 return -std::numeric_limits<double>::infinity();
970 exp += 1023; // Increment for 1023 bias
972 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
973 // extract the high 52 bits from the correct words in pVal.
974 uint64_t mantissa;
975 unsigned hiWord = whichWord(n-1);
976 if (hiWord == 0) {
977 mantissa = Tmp.pVal[0];
978 if (n > 52)
979 mantissa >>= n - 52; // shift down, we want the top 52 bits.
980 } else {
981 assert(hiWord > 0 && "huh?");
982 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
983 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
984 mantissa = hibits | lobits;
987 // The leading bit of mantissa is implicit, so get rid of it.
988 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
989 union {
990 double D;
991 uint64_t I;
992 } T;
993 T.I = sign | (exp << 52) | mantissa;
994 return T.D;
997 // Truncate to new width.
998 APInt APInt::trunc(unsigned width) const {
999 assert(width < BitWidth && "Invalid APInt Truncate request");
1000 assert(width && "Can't truncate to 0 bits");
1002 if (width <= APINT_BITS_PER_WORD)
1003 return APInt(width, getRawData()[0]);
1005 APInt Result(getMemory(getNumWords(width)), width);
1007 // Copy full words.
1008 unsigned i;
1009 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
1010 Result.pVal[i] = pVal[i];
1012 // Truncate and copy any partial word.
1013 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
1014 if (bits != 0)
1015 Result.pVal[i] = pVal[i] << bits >> bits;
1017 return Result;
1020 // Sign extend to a new width.
1021 APInt APInt::sext(unsigned width) const {
1022 assert(width > BitWidth && "Invalid APInt SignExtend request");
1024 if (width <= APINT_BITS_PER_WORD) {
1025 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth);
1026 val = (int64_t)val >> (width - BitWidth);
1027 return APInt(width, val >> (APINT_BITS_PER_WORD - width));
1030 APInt Result(getMemory(getNumWords(width)), width);
1032 // Copy full words.
1033 unsigned i;
1034 uint64_t word = 0;
1035 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) {
1036 word = getRawData()[i];
1037 Result.pVal[i] = word;
1040 // Read and sign-extend any partial word.
1041 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD;
1042 if (bits != 0)
1043 word = (int64_t)getRawData()[i] << bits >> bits;
1044 else
1045 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
1047 // Write remaining full words.
1048 for (; i != width / APINT_BITS_PER_WORD; i++) {
1049 Result.pVal[i] = word;
1050 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
1053 // Write any partial word.
1054 bits = (0 - width) % APINT_BITS_PER_WORD;
1055 if (bits != 0)
1056 Result.pVal[i] = word << bits >> bits;
1058 return Result;
1061 // Zero extend to a new width.
1062 APInt APInt::zext(unsigned width) const {
1063 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
1065 if (width <= APINT_BITS_PER_WORD)
1066 return APInt(width, VAL);
1068 APInt Result(getMemory(getNumWords(width)), width);
1070 // Copy words.
1071 unsigned i;
1072 for (i = 0; i != getNumWords(); i++)
1073 Result.pVal[i] = getRawData()[i];
1075 // Zero remaining words.
1076 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE);
1078 return Result;
1081 APInt APInt::zextOrTrunc(unsigned width) const {
1082 if (BitWidth < width)
1083 return zext(width);
1084 if (BitWidth > width)
1085 return trunc(width);
1086 return *this;
1089 APInt APInt::sextOrTrunc(unsigned width) const {
1090 if (BitWidth < width)
1091 return sext(width);
1092 if (BitWidth > width)
1093 return trunc(width);
1094 return *this;
1097 /// Arithmetic right-shift this APInt by shiftAmt.
1098 /// @brief Arithmetic right-shift function.
1099 APInt APInt::ashr(const APInt &shiftAmt) const {
1100 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1103 /// Arithmetic right-shift this APInt by shiftAmt.
1104 /// @brief Arithmetic right-shift function.
1105 APInt APInt::ashr(unsigned shiftAmt) const {
1106 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1107 // Handle a degenerate case
1108 if (shiftAmt == 0)
1109 return *this;
1111 // Handle single word shifts with built-in ashr
1112 if (isSingleWord()) {
1113 if (shiftAmt == BitWidth)
1114 return APInt(BitWidth, 0); // undefined
1115 else {
1116 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
1117 return APInt(BitWidth,
1118 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1122 // If all the bits were shifted out, the result is, technically, undefined.
1123 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1124 // issues in the algorithm below.
1125 if (shiftAmt == BitWidth) {
1126 if (isNegative())
1127 return APInt(BitWidth, -1ULL, true);
1128 else
1129 return APInt(BitWidth, 0);
1132 // Create some space for the result.
1133 uint64_t * val = new uint64_t[getNumWords()];
1135 // Compute some values needed by the following shift algorithms
1136 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1137 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1138 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1139 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
1140 if (bitsInWord == 0)
1141 bitsInWord = APINT_BITS_PER_WORD;
1143 // If we are shifting whole words, just move whole words
1144 if (wordShift == 0) {
1145 // Move the words containing significant bits
1146 for (unsigned i = 0; i <= breakWord; ++i)
1147 val[i] = pVal[i+offset]; // move whole word
1149 // Adjust the top significant word for sign bit fill, if negative
1150 if (isNegative())
1151 if (bitsInWord < APINT_BITS_PER_WORD)
1152 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1153 } else {
1154 // Shift the low order words
1155 for (unsigned i = 0; i < breakWord; ++i) {
1156 // This combines the shifted corresponding word with the low bits from
1157 // the next word (shifted into this word's high bits).
1158 val[i] = (pVal[i+offset] >> wordShift) |
1159 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1162 // Shift the break word. In this case there are no bits from the next word
1163 // to include in this word.
1164 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1166 // Deal with sign extenstion in the break word, and possibly the word before
1167 // it.
1168 if (isNegative()) {
1169 if (wordShift > bitsInWord) {
1170 if (breakWord > 0)
1171 val[breakWord-1] |=
1172 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1173 val[breakWord] |= ~0ULL;
1174 } else
1175 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1179 // Remaining words are 0 or -1, just assign them.
1180 uint64_t fillValue = (isNegative() ? -1ULL : 0);
1181 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1182 val[i] = fillValue;
1183 return APInt(val, BitWidth).clearUnusedBits();
1186 /// Logical right-shift this APInt by shiftAmt.
1187 /// @brief Logical right-shift function.
1188 APInt APInt::lshr(const APInt &shiftAmt) const {
1189 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1192 /// Logical right-shift this APInt by shiftAmt.
1193 /// @brief Logical right-shift function.
1194 APInt APInt::lshr(unsigned shiftAmt) const {
1195 if (isSingleWord()) {
1196 if (shiftAmt == BitWidth)
1197 return APInt(BitWidth, 0);
1198 else
1199 return APInt(BitWidth, this->VAL >> shiftAmt);
1202 // If all the bits were shifted out, the result is 0. This avoids issues
1203 // with shifting by the size of the integer type, which produces undefined
1204 // results. We define these "undefined results" to always be 0.
1205 if (shiftAmt == BitWidth)
1206 return APInt(BitWidth, 0);
1208 // If none of the bits are shifted out, the result is *this. This avoids
1209 // issues with shifting by the size of the integer type, which produces
1210 // undefined results in the code below. This is also an optimization.
1211 if (shiftAmt == 0)
1212 return *this;
1214 // Create some space for the result.
1215 uint64_t * val = new uint64_t[getNumWords()];
1217 // If we are shifting less than a word, compute the shift with a simple carry
1218 if (shiftAmt < APINT_BITS_PER_WORD) {
1219 uint64_t carry = 0;
1220 for (int i = getNumWords()-1; i >= 0; --i) {
1221 val[i] = (pVal[i] >> shiftAmt) | carry;
1222 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1224 return APInt(val, BitWidth).clearUnusedBits();
1227 // Compute some values needed by the remaining shift algorithms
1228 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1229 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1231 // If we are shifting whole words, just move whole words
1232 if (wordShift == 0) {
1233 for (unsigned i = 0; i < getNumWords() - offset; ++i)
1234 val[i] = pVal[i+offset];
1235 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
1236 val[i] = 0;
1237 return APInt(val,BitWidth).clearUnusedBits();
1240 // Shift the low order words
1241 unsigned breakWord = getNumWords() - offset -1;
1242 for (unsigned i = 0; i < breakWord; ++i)
1243 val[i] = (pVal[i+offset] >> wordShift) |
1244 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1245 // Shift the break word.
1246 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1248 // Remaining words are 0
1249 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1250 val[i] = 0;
1251 return APInt(val, BitWidth).clearUnusedBits();
1254 /// Left-shift this APInt by shiftAmt.
1255 /// @brief Left-shift function.
1256 APInt APInt::shl(const APInt &shiftAmt) const {
1257 // It's undefined behavior in C to shift by BitWidth or greater.
1258 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
1261 APInt APInt::shlSlowCase(unsigned shiftAmt) const {
1262 // If all the bits were shifted out, the result is 0. This avoids issues
1263 // with shifting by the size of the integer type, which produces undefined
1264 // results. We define these "undefined results" to always be 0.
1265 if (shiftAmt == BitWidth)
1266 return APInt(BitWidth, 0);
1268 // If none of the bits are shifted out, the result is *this. This avoids a
1269 // lshr by the words size in the loop below which can produce incorrect
1270 // results. It also avoids the expensive computation below for a common case.
1271 if (shiftAmt == 0)
1272 return *this;
1274 // Create some space for the result.
1275 uint64_t * val = new uint64_t[getNumWords()];
1277 // If we are shifting less than a word, do it the easy way
1278 if (shiftAmt < APINT_BITS_PER_WORD) {
1279 uint64_t carry = 0;
1280 for (unsigned i = 0; i < getNumWords(); i++) {
1281 val[i] = pVal[i] << shiftAmt | carry;
1282 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1284 return APInt(val, BitWidth).clearUnusedBits();
1287 // Compute some values needed by the remaining shift algorithms
1288 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1289 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1291 // If we are shifting whole words, just move whole words
1292 if (wordShift == 0) {
1293 for (unsigned i = 0; i < offset; i++)
1294 val[i] = 0;
1295 for (unsigned i = offset; i < getNumWords(); i++)
1296 val[i] = pVal[i-offset];
1297 return APInt(val,BitWidth).clearUnusedBits();
1300 // Copy whole words from this to Result.
1301 unsigned i = getNumWords() - 1;
1302 for (; i > offset; --i)
1303 val[i] = pVal[i-offset] << wordShift |
1304 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1305 val[offset] = pVal[0] << wordShift;
1306 for (i = 0; i < offset; ++i)
1307 val[i] = 0;
1308 return APInt(val, BitWidth).clearUnusedBits();
1311 APInt APInt::rotl(const APInt &rotateAmt) const {
1312 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
1315 APInt APInt::rotl(unsigned rotateAmt) const {
1316 if (rotateAmt == 0)
1317 return *this;
1318 // Don't get too fancy, just use existing shift/or facilities
1319 APInt hi(*this);
1320 APInt lo(*this);
1321 hi.shl(rotateAmt);
1322 lo.lshr(BitWidth - rotateAmt);
1323 return hi | lo;
1326 APInt APInt::rotr(const APInt &rotateAmt) const {
1327 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
1330 APInt APInt::rotr(unsigned rotateAmt) const {
1331 if (rotateAmt == 0)
1332 return *this;
1333 // Don't get too fancy, just use existing shift/or facilities
1334 APInt hi(*this);
1335 APInt lo(*this);
1336 lo.lshr(rotateAmt);
1337 hi.shl(BitWidth - rotateAmt);
1338 return hi | lo;
1341 // Square Root - this method computes and returns the square root of "this".
1342 // Three mechanisms are used for computation. For small values (<= 5 bits),
1343 // a table lookup is done. This gets some performance for common cases. For
1344 // values using less than 52 bits, the value is converted to double and then
1345 // the libc sqrt function is called. The result is rounded and then converted
1346 // back to a uint64_t which is then used to construct the result. Finally,
1347 // the Babylonian method for computing square roots is used.
1348 APInt APInt::sqrt() const {
1350 // Determine the magnitude of the value.
1351 unsigned magnitude = getActiveBits();
1353 // Use a fast table for some small values. This also gets rid of some
1354 // rounding errors in libc sqrt for small values.
1355 if (magnitude <= 5) {
1356 static const uint8_t results[32] = {
1357 /* 0 */ 0,
1358 /* 1- 2 */ 1, 1,
1359 /* 3- 6 */ 2, 2, 2, 2,
1360 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1361 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1362 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1363 /* 31 */ 6
1365 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1368 // If the magnitude of the value fits in less than 52 bits (the precision of
1369 // an IEEE double precision floating point value), then we can use the
1370 // libc sqrt function which will probably use a hardware sqrt computation.
1371 // This should be faster than the algorithm below.
1372 if (magnitude < 52) {
1373 #if HAVE_ROUND
1374 return APInt(BitWidth,
1375 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1376 #else
1377 return APInt(BitWidth,
1378 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0])) + 0.5));
1379 #endif
1382 // Okay, all the short cuts are exhausted. We must compute it. The following
1383 // is a classical Babylonian method for computing the square root. This code
1384 // was adapted to APINt from a wikipedia article on such computations.
1385 // See http://www.wikipedia.org/ and go to the page named
1386 // Calculate_an_integer_square_root.
1387 unsigned nbits = BitWidth, i = 4;
1388 APInt testy(BitWidth, 16);
1389 APInt x_old(BitWidth, 1);
1390 APInt x_new(BitWidth, 0);
1391 APInt two(BitWidth, 2);
1393 // Select a good starting value using binary logarithms.
1394 for (;; i += 2, testy = testy.shl(2))
1395 if (i >= nbits || this->ule(testy)) {
1396 x_old = x_old.shl(i / 2);
1397 break;
1400 // Use the Babylonian method to arrive at the integer square root:
1401 for (;;) {
1402 x_new = (this->udiv(x_old) + x_old).udiv(two);
1403 if (x_old.ule(x_new))
1404 break;
1405 x_old = x_new;
1408 // Make sure we return the closest approximation
1409 // NOTE: The rounding calculation below is correct. It will produce an
1410 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1411 // determined to be a rounding issue with pari/gp as it begins to use a
1412 // floating point representation after 192 bits. There are no discrepancies
1413 // between this algorithm and pari/gp for bit widths < 192 bits.
1414 APInt square(x_old * x_old);
1415 APInt nextSquare((x_old + 1) * (x_old +1));
1416 if (this->ult(square))
1417 return x_old;
1418 else if (this->ule(nextSquare)) {
1419 APInt midpoint((nextSquare - square).udiv(two));
1420 APInt offset(*this - square);
1421 if (offset.ult(midpoint))
1422 return x_old;
1423 else
1424 return x_old + 1;
1425 } else
1426 llvm_unreachable("Error in APInt::sqrt computation");
1427 return x_old + 1;
1430 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1431 /// iterative extended Euclidean algorithm is used to solve for this value,
1432 /// however we simplify it to speed up calculating only the inverse, and take
1433 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1434 /// (potentially large) APInts around.
1435 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1436 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1438 // Using the properties listed at the following web page (accessed 06/21/08):
1439 // http://www.numbertheory.org/php/euclid.html
1440 // (especially the properties numbered 3, 4 and 9) it can be proved that
1441 // BitWidth bits suffice for all the computations in the algorithm implemented
1442 // below. More precisely, this number of bits suffice if the multiplicative
1443 // inverse exists, but may not suffice for the general extended Euclidean
1444 // algorithm.
1446 APInt r[2] = { modulo, *this };
1447 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1448 APInt q(BitWidth, 0);
1450 unsigned i;
1451 for (i = 0; r[i^1] != 0; i ^= 1) {
1452 // An overview of the math without the confusing bit-flipping:
1453 // q = r[i-2] / r[i-1]
1454 // r[i] = r[i-2] % r[i-1]
1455 // t[i] = t[i-2] - t[i-1] * q
1456 udivrem(r[i], r[i^1], q, r[i]);
1457 t[i] -= t[i^1] * q;
1460 // If this APInt and the modulo are not coprime, there is no multiplicative
1461 // inverse, so return 0. We check this by looking at the next-to-last
1462 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1463 // algorithm.
1464 if (r[i] != 1)
1465 return APInt(BitWidth, 0);
1467 // The next-to-last t is the multiplicative inverse. However, we are
1468 // interested in a positive inverse. Calcuate a positive one from a negative
1469 // one if necessary. A simple addition of the modulo suffices because
1470 // abs(t[i]) is known to be less than *this/2 (see the link above).
1471 return t[i].isNegative() ? t[i] + modulo : t[i];
1474 /// Calculate the magic numbers required to implement a signed integer division
1475 /// by a constant as a sequence of multiplies, adds and shifts. Requires that
1476 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1477 /// Warren, Jr., chapter 10.
1478 APInt::ms APInt::magic() const {
1479 const APInt& d = *this;
1480 unsigned p;
1481 APInt ad, anc, delta, q1, r1, q2, r2, t;
1482 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1483 struct ms mag;
1485 ad = d.abs();
1486 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1487 anc = t - 1 - t.urem(ad); // absolute value of nc
1488 p = d.getBitWidth() - 1; // initialize p
1489 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1490 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1491 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1492 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1493 do {
1494 p = p + 1;
1495 q1 = q1<<1; // update q1 = 2p/abs(nc)
1496 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1497 if (r1.uge(anc)) { // must be unsigned comparison
1498 q1 = q1 + 1;
1499 r1 = r1 - anc;
1501 q2 = q2<<1; // update q2 = 2p/abs(d)
1502 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1503 if (r2.uge(ad)) { // must be unsigned comparison
1504 q2 = q2 + 1;
1505 r2 = r2 - ad;
1507 delta = ad - r2;
1508 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
1510 mag.m = q2 + 1;
1511 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1512 mag.s = p - d.getBitWidth(); // resulting shift
1513 return mag;
1516 /// Calculate the magic numbers required to implement an unsigned integer
1517 /// division by a constant as a sequence of multiplies, adds and shifts.
1518 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1519 /// S. Warren, Jr., chapter 10.
1520 /// LeadingZeros can be used to simplify the calculation if the upper bits
1521 /// of the divided value are known zero.
1522 APInt::mu APInt::magicu(unsigned LeadingZeros) const {
1523 const APInt& d = *this;
1524 unsigned p;
1525 APInt nc, delta, q1, r1, q2, r2;
1526 struct mu magu;
1527 magu.a = 0; // initialize "add" indicator
1528 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
1529 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1530 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1532 nc = allOnes - (-d).urem(d);
1533 p = d.getBitWidth() - 1; // initialize p
1534 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1535 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1536 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1537 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1538 do {
1539 p = p + 1;
1540 if (r1.uge(nc - r1)) {
1541 q1 = q1 + q1 + 1; // update q1
1542 r1 = r1 + r1 - nc; // update r1
1544 else {
1545 q1 = q1+q1; // update q1
1546 r1 = r1+r1; // update r1
1548 if ((r2 + 1).uge(d - r2)) {
1549 if (q2.uge(signedMax)) magu.a = 1;
1550 q2 = q2+q2 + 1; // update q2
1551 r2 = r2+r2 + 1 - d; // update r2
1553 else {
1554 if (q2.uge(signedMin)) magu.a = 1;
1555 q2 = q2+q2; // update q2
1556 r2 = r2+r2 + 1; // update r2
1558 delta = d - 1 - r2;
1559 } while (p < d.getBitWidth()*2 &&
1560 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1561 magu.m = q2 + 1; // resulting magic number
1562 magu.s = p - d.getBitWidth(); // resulting shift
1563 return magu;
1566 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1567 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1568 /// variables here have the same names as in the algorithm. Comments explain
1569 /// the algorithm and any deviation from it.
1570 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1571 unsigned m, unsigned n) {
1572 assert(u && "Must provide dividend");
1573 assert(v && "Must provide divisor");
1574 assert(q && "Must provide quotient");
1575 assert(u != v && u != q && v != q && "Must us different memory");
1576 assert(n>1 && "n must be > 1");
1578 // Knuth uses the value b as the base of the number system. In our case b
1579 // is 2^31 so we just set it to -1u.
1580 uint64_t b = uint64_t(1) << 32;
1582 #if 0
1583 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1584 DEBUG(dbgs() << "KnuthDiv: original:");
1585 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1586 DEBUG(dbgs() << " by");
1587 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1588 DEBUG(dbgs() << '\n');
1589 #endif
1590 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1591 // u and v by d. Note that we have taken Knuth's advice here to use a power
1592 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1593 // 2 allows us to shift instead of multiply and it is easy to determine the
1594 // shift amount from the leading zeros. We are basically normalizing the u
1595 // and v so that its high bits are shifted to the top of v's range without
1596 // overflow. Note that this can require an extra word in u so that u must
1597 // be of length m+n+1.
1598 unsigned shift = CountLeadingZeros_32(v[n-1]);
1599 unsigned v_carry = 0;
1600 unsigned u_carry = 0;
1601 if (shift) {
1602 for (unsigned i = 0; i < m+n; ++i) {
1603 unsigned u_tmp = u[i] >> (32 - shift);
1604 u[i] = (u[i] << shift) | u_carry;
1605 u_carry = u_tmp;
1607 for (unsigned i = 0; i < n; ++i) {
1608 unsigned v_tmp = v[i] >> (32 - shift);
1609 v[i] = (v[i] << shift) | v_carry;
1610 v_carry = v_tmp;
1613 u[m+n] = u_carry;
1614 #if 0
1615 DEBUG(dbgs() << "KnuthDiv: normal:");
1616 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1617 DEBUG(dbgs() << " by");
1618 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1619 DEBUG(dbgs() << '\n');
1620 #endif
1622 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1623 int j = m;
1624 do {
1625 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1626 // D3. [Calculate q'.].
1627 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1628 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1629 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1630 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1631 // on v[n-2] determines at high speed most of the cases in which the trial
1632 // value qp is one too large, and it eliminates all cases where qp is two
1633 // too large.
1634 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1635 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1636 uint64_t qp = dividend / v[n-1];
1637 uint64_t rp = dividend % v[n-1];
1638 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1639 qp--;
1640 rp += v[n-1];
1641 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1642 qp--;
1644 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1646 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1647 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1648 // consists of a simple multiplication by a one-place number, combined with
1649 // a subtraction.
1650 bool isNeg = false;
1651 for (unsigned i = 0; i < n; ++i) {
1652 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1653 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1654 bool borrow = subtrahend > u_tmp;
1655 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
1656 << ", subtrahend == " << subtrahend
1657 << ", borrow = " << borrow << '\n');
1659 uint64_t result = u_tmp - subtrahend;
1660 unsigned k = j + i;
1661 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1662 u[k++] = (unsigned)(result >> 32); // subtract high word
1663 while (borrow && k <= m+n) { // deal with borrow to the left
1664 borrow = u[k] == 0;
1665 u[k]--;
1666 k++;
1668 isNeg |= borrow;
1669 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1670 u[j+i+1] << '\n');
1672 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1673 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1674 DEBUG(dbgs() << '\n');
1675 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1676 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1677 // true value plus b**(n+1), namely as the b's complement of
1678 // the true value, and a "borrow" to the left should be remembered.
1680 if (isNeg) {
1681 bool carry = true; // true because b's complement is "complement + 1"
1682 for (unsigned i = 0; i <= m+n; ++i) {
1683 u[i] = ~u[i] + carry; // b's complement
1684 carry = carry && u[i] == 0;
1687 DEBUG(dbgs() << "KnuthDiv: after complement:");
1688 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1689 DEBUG(dbgs() << '\n');
1691 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1692 // negative, go to step D6; otherwise go on to step D7.
1693 q[j] = (unsigned)qp;
1694 if (isNeg) {
1695 // D6. [Add back]. The probability that this step is necessary is very
1696 // small, on the order of only 2/b. Make sure that test data accounts for
1697 // this possibility. Decrease q[j] by 1
1698 q[j]--;
1699 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1700 // A carry will occur to the left of u[j+n], and it should be ignored
1701 // since it cancels with the borrow that occurred in D4.
1702 bool carry = false;
1703 for (unsigned i = 0; i < n; i++) {
1704 unsigned limit = std::min(u[j+i],v[i]);
1705 u[j+i] += v[i] + carry;
1706 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1708 u[j+n] += carry;
1710 DEBUG(dbgs() << "KnuthDiv: after correction:");
1711 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
1712 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1714 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1715 } while (--j >= 0);
1717 DEBUG(dbgs() << "KnuthDiv: quotient:");
1718 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1719 DEBUG(dbgs() << '\n');
1721 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1722 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1723 // compute the remainder (urem uses this).
1724 if (r) {
1725 // The value d is expressed by the "shift" value above since we avoided
1726 // multiplication by d by using a shift left. So, all we have to do is
1727 // shift right here. In order to mak
1728 if (shift) {
1729 unsigned carry = 0;
1730 DEBUG(dbgs() << "KnuthDiv: remainder:");
1731 for (int i = n-1; i >= 0; i--) {
1732 r[i] = (u[i] >> shift) | carry;
1733 carry = u[i] << (32 - shift);
1734 DEBUG(dbgs() << " " << r[i]);
1736 } else {
1737 for (int i = n-1; i >= 0; i--) {
1738 r[i] = u[i];
1739 DEBUG(dbgs() << " " << r[i]);
1742 DEBUG(dbgs() << '\n');
1744 #if 0
1745 DEBUG(dbgs() << '\n');
1746 #endif
1749 void APInt::divide(const APInt LHS, unsigned lhsWords,
1750 const APInt &RHS, unsigned rhsWords,
1751 APInt *Quotient, APInt *Remainder)
1753 assert(lhsWords >= rhsWords && "Fractional result");
1755 // First, compose the values into an array of 32-bit words instead of
1756 // 64-bit words. This is a necessity of both the "short division" algorithm
1757 // and the Knuth "classical algorithm" which requires there to be native
1758 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1759 // can't use 64-bit operands here because we don't have native results of
1760 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1761 // work on large-endian machines.
1762 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
1763 unsigned n = rhsWords * 2;
1764 unsigned m = (lhsWords * 2) - n;
1766 // Allocate space for the temporary values we need either on the stack, if
1767 // it will fit, or on the heap if it won't.
1768 unsigned SPACE[128];
1769 unsigned *U = 0;
1770 unsigned *V = 0;
1771 unsigned *Q = 0;
1772 unsigned *R = 0;
1773 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1774 U = &SPACE[0];
1775 V = &SPACE[m+n+1];
1776 Q = &SPACE[(m+n+1) + n];
1777 if (Remainder)
1778 R = &SPACE[(m+n+1) + n + (m+n)];
1779 } else {
1780 U = new unsigned[m + n + 1];
1781 V = new unsigned[n];
1782 Q = new unsigned[m+n];
1783 if (Remainder)
1784 R = new unsigned[n];
1787 // Initialize the dividend
1788 memset(U, 0, (m+n+1)*sizeof(unsigned));
1789 for (unsigned i = 0; i < lhsWords; ++i) {
1790 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1791 U[i * 2] = (unsigned)(tmp & mask);
1792 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1794 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1796 // Initialize the divisor
1797 memset(V, 0, (n)*sizeof(unsigned));
1798 for (unsigned i = 0; i < rhsWords; ++i) {
1799 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1800 V[i * 2] = (unsigned)(tmp & mask);
1801 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1804 // initialize the quotient and remainder
1805 memset(Q, 0, (m+n) * sizeof(unsigned));
1806 if (Remainder)
1807 memset(R, 0, n * sizeof(unsigned));
1809 // Now, adjust m and n for the Knuth division. n is the number of words in
1810 // the divisor. m is the number of words by which the dividend exceeds the
1811 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1812 // contain any zero words or the Knuth algorithm fails.
1813 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1814 n--;
1815 m++;
1817 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1818 m--;
1820 // If we're left with only a single word for the divisor, Knuth doesn't work
1821 // so we implement the short division algorithm here. This is much simpler
1822 // and faster because we are certain that we can divide a 64-bit quantity
1823 // by a 32-bit quantity at hardware speed and short division is simply a
1824 // series of such operations. This is just like doing short division but we
1825 // are using base 2^32 instead of base 10.
1826 assert(n != 0 && "Divide by zero?");
1827 if (n == 1) {
1828 unsigned divisor = V[0];
1829 unsigned remainder = 0;
1830 for (int i = m+n-1; i >= 0; i--) {
1831 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1832 if (partial_dividend == 0) {
1833 Q[i] = 0;
1834 remainder = 0;
1835 } else if (partial_dividend < divisor) {
1836 Q[i] = 0;
1837 remainder = (unsigned)partial_dividend;
1838 } else if (partial_dividend == divisor) {
1839 Q[i] = 1;
1840 remainder = 0;
1841 } else {
1842 Q[i] = (unsigned)(partial_dividend / divisor);
1843 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
1846 if (R)
1847 R[0] = remainder;
1848 } else {
1849 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1850 // case n > 1.
1851 KnuthDiv(U, V, Q, R, m, n);
1854 // If the caller wants the quotient
1855 if (Quotient) {
1856 // Set up the Quotient value's memory.
1857 if (Quotient->BitWidth != LHS.BitWidth) {
1858 if (Quotient->isSingleWord())
1859 Quotient->VAL = 0;
1860 else
1861 delete [] Quotient->pVal;
1862 Quotient->BitWidth = LHS.BitWidth;
1863 if (!Quotient->isSingleWord())
1864 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1865 } else
1866 Quotient->clearAllBits();
1868 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1869 // order words.
1870 if (lhsWords == 1) {
1871 uint64_t tmp =
1872 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1873 if (Quotient->isSingleWord())
1874 Quotient->VAL = tmp;
1875 else
1876 Quotient->pVal[0] = tmp;
1877 } else {
1878 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1879 for (unsigned i = 0; i < lhsWords; ++i)
1880 Quotient->pVal[i] =
1881 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1885 // If the caller wants the remainder
1886 if (Remainder) {
1887 // Set up the Remainder value's memory.
1888 if (Remainder->BitWidth != RHS.BitWidth) {
1889 if (Remainder->isSingleWord())
1890 Remainder->VAL = 0;
1891 else
1892 delete [] Remainder->pVal;
1893 Remainder->BitWidth = RHS.BitWidth;
1894 if (!Remainder->isSingleWord())
1895 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1896 } else
1897 Remainder->clearAllBits();
1899 // The remainder is in R. Reconstitute the remainder into Remainder's low
1900 // order words.
1901 if (rhsWords == 1) {
1902 uint64_t tmp =
1903 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1904 if (Remainder->isSingleWord())
1905 Remainder->VAL = tmp;
1906 else
1907 Remainder->pVal[0] = tmp;
1908 } else {
1909 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1910 for (unsigned i = 0; i < rhsWords; ++i)
1911 Remainder->pVal[i] =
1912 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1916 // Clean up the memory we allocated.
1917 if (U != &SPACE[0]) {
1918 delete [] U;
1919 delete [] V;
1920 delete [] Q;
1921 delete [] R;
1925 APInt APInt::udiv(const APInt& RHS) const {
1926 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1928 // First, deal with the easy case
1929 if (isSingleWord()) {
1930 assert(RHS.VAL != 0 && "Divide by zero?");
1931 return APInt(BitWidth, VAL / RHS.VAL);
1934 // Get some facts about the LHS and RHS number of bits and words
1935 unsigned rhsBits = RHS.getActiveBits();
1936 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1937 assert(rhsWords && "Divided by zero???");
1938 unsigned lhsBits = this->getActiveBits();
1939 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1941 // Deal with some degenerate cases
1942 if (!lhsWords)
1943 // 0 / X ===> 0
1944 return APInt(BitWidth, 0);
1945 else if (lhsWords < rhsWords || this->ult(RHS)) {
1946 // X / Y ===> 0, iff X < Y
1947 return APInt(BitWidth, 0);
1948 } else if (*this == RHS) {
1949 // X / X ===> 1
1950 return APInt(BitWidth, 1);
1951 } else if (lhsWords == 1 && rhsWords == 1) {
1952 // All high words are zero, just use native divide
1953 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1956 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1957 APInt Quotient(1,0); // to hold result.
1958 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1959 return Quotient;
1962 APInt APInt::urem(const APInt& RHS) const {
1963 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1964 if (isSingleWord()) {
1965 assert(RHS.VAL != 0 && "Remainder by zero?");
1966 return APInt(BitWidth, VAL % RHS.VAL);
1969 // Get some facts about the LHS
1970 unsigned lhsBits = getActiveBits();
1971 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1973 // Get some facts about the RHS
1974 unsigned rhsBits = RHS.getActiveBits();
1975 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1976 assert(rhsWords && "Performing remainder operation by zero ???");
1978 // Check the degenerate cases
1979 if (lhsWords == 0) {
1980 // 0 % Y ===> 0
1981 return APInt(BitWidth, 0);
1982 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1983 // X % Y ===> X, iff X < Y
1984 return *this;
1985 } else if (*this == RHS) {
1986 // X % X == 0;
1987 return APInt(BitWidth, 0);
1988 } else if (lhsWords == 1) {
1989 // All high words are zero, just use native remainder
1990 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1993 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1994 APInt Remainder(1,0);
1995 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1996 return Remainder;
1999 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
2000 APInt &Quotient, APInt &Remainder) {
2001 // Get some size facts about the dividend and divisor
2002 unsigned lhsBits = LHS.getActiveBits();
2003 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
2004 unsigned rhsBits = RHS.getActiveBits();
2005 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
2007 // Check the degenerate cases
2008 if (lhsWords == 0) {
2009 Quotient = 0; // 0 / Y ===> 0
2010 Remainder = 0; // 0 % Y ===> 0
2011 return;
2014 if (lhsWords < rhsWords || LHS.ult(RHS)) {
2015 Remainder = LHS; // X % Y ===> X, iff X < Y
2016 Quotient = 0; // X / Y ===> 0, iff X < Y
2017 return;
2020 if (LHS == RHS) {
2021 Quotient = 1; // X / X ===> 1
2022 Remainder = 0; // X % X ===> 0;
2023 return;
2026 if (lhsWords == 1 && rhsWords == 1) {
2027 // There is only one word to consider so use the native versions.
2028 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
2029 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
2030 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
2031 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
2032 return;
2035 // Okay, lets do it the long way
2036 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2039 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
2040 APInt Res = *this+RHS;
2041 Overflow = isNonNegative() == RHS.isNonNegative() &&
2042 Res.isNonNegative() != isNonNegative();
2043 return Res;
2046 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
2047 APInt Res = *this+RHS;
2048 Overflow = Res.ult(RHS);
2049 return Res;
2052 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
2053 APInt Res = *this - RHS;
2054 Overflow = isNonNegative() != RHS.isNonNegative() &&
2055 Res.isNonNegative() != isNonNegative();
2056 return Res;
2059 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
2060 APInt Res = *this-RHS;
2061 Overflow = Res.ugt(*this);
2062 return Res;
2065 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
2066 // MININT/-1 --> overflow.
2067 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
2068 return sdiv(RHS);
2071 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
2072 APInt Res = *this * RHS;
2074 if (*this != 0 && RHS != 0)
2075 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
2076 else
2077 Overflow = false;
2078 return Res;
2081 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
2082 APInt Res = *this * RHS;
2084 if (*this != 0 && RHS != 0)
2085 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
2086 else
2087 Overflow = false;
2088 return Res;
2091 APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
2092 Overflow = ShAmt >= getBitWidth();
2093 if (Overflow)
2094 ShAmt = getBitWidth()-1;
2096 if (isNonNegative()) // Don't allow sign change.
2097 Overflow = ShAmt >= countLeadingZeros();
2098 else
2099 Overflow = ShAmt >= countLeadingOnes();
2101 return *this << ShAmt;
2107 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2108 // Check our assumptions here
2109 assert(!str.empty() && "Invalid string length");
2110 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2111 "Radix should be 2, 8, 10, or 16!");
2113 StringRef::iterator p = str.begin();
2114 size_t slen = str.size();
2115 bool isNeg = *p == '-';
2116 if (*p == '-' || *p == '+') {
2117 p++;
2118 slen--;
2119 assert(slen && "String is only a sign, needs a value.");
2121 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2122 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2123 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2124 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2125 "Insufficient bit width");
2127 // Allocate memory
2128 if (!isSingleWord())
2129 pVal = getClearedMemory(getNumWords());
2131 // Figure out if we can shift instead of multiply
2132 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2134 // Set up an APInt for the digit to add outside the loop so we don't
2135 // constantly construct/destruct it.
2136 APInt apdigit(getBitWidth(), 0);
2137 APInt apradix(getBitWidth(), radix);
2139 // Enter digit traversal loop
2140 for (StringRef::iterator e = str.end(); p != e; ++p) {
2141 unsigned digit = getDigit(*p, radix);
2142 assert(digit < radix && "Invalid character in digit string");
2144 // Shift or multiply the value by the radix
2145 if (slen > 1) {
2146 if (shift)
2147 *this <<= shift;
2148 else
2149 *this *= apradix;
2152 // Add in the digit we just interpreted
2153 if (apdigit.isSingleWord())
2154 apdigit.VAL = digit;
2155 else
2156 apdigit.pVal[0] = digit;
2157 *this += apdigit;
2159 // If its negative, put it in two's complement form
2160 if (isNeg) {
2161 (*this)--;
2162 this->flipAllBits();
2166 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2167 bool Signed, bool formatAsCLiteral) const {
2168 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
2169 "Radix should be 2, 8, 10, or 16!");
2171 const char *Prefix = "";
2172 if (formatAsCLiteral) {
2173 switch (Radix) {
2174 case 2:
2175 // Binary literals are a non-standard extension added in gcc 4.3:
2176 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2177 Prefix = "0b";
2178 break;
2179 case 8:
2180 Prefix = "0";
2181 break;
2182 case 16:
2183 Prefix = "0x";
2184 break;
2188 // First, check for a zero value and just short circuit the logic below.
2189 if (*this == 0) {
2190 while (*Prefix) {
2191 Str.push_back(*Prefix);
2192 ++Prefix;
2194 Str.push_back('0');
2195 return;
2198 static const char Digits[] = "0123456789ABCDEF";
2200 if (isSingleWord()) {
2201 char Buffer[65];
2202 char *BufPtr = Buffer+65;
2204 uint64_t N;
2205 if (!Signed) {
2206 N = getZExtValue();
2207 } else {
2208 int64_t I = getSExtValue();
2209 if (I >= 0) {
2210 N = I;
2211 } else {
2212 Str.push_back('-');
2213 N = -(uint64_t)I;
2217 while (*Prefix) {
2218 Str.push_back(*Prefix);
2219 ++Prefix;
2222 while (N) {
2223 *--BufPtr = Digits[N % Radix];
2224 N /= Radix;
2226 Str.append(BufPtr, Buffer+65);
2227 return;
2230 APInt Tmp(*this);
2232 if (Signed && isNegative()) {
2233 // They want to print the signed version and it is a negative value
2234 // Flip the bits and add one to turn it into the equivalent positive
2235 // value and put a '-' in the result.
2236 Tmp.flipAllBits();
2237 Tmp++;
2238 Str.push_back('-');
2241 while (*Prefix) {
2242 Str.push_back(*Prefix);
2243 ++Prefix;
2246 // We insert the digits backward, then reverse them to get the right order.
2247 unsigned StartDig = Str.size();
2249 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2250 // because the number of bits per digit (1, 3 and 4 respectively) divides
2251 // equaly. We just shift until the value is zero.
2252 if (Radix != 10) {
2253 // Just shift tmp right for each digit width until it becomes zero
2254 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2255 unsigned MaskAmt = Radix - 1;
2257 while (Tmp != 0) {
2258 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2259 Str.push_back(Digits[Digit]);
2260 Tmp = Tmp.lshr(ShiftAmt);
2262 } else {
2263 APInt divisor(4, 10);
2264 while (Tmp != 0) {
2265 APInt APdigit(1, 0);
2266 APInt tmp2(Tmp.getBitWidth(), 0);
2267 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2268 &APdigit);
2269 unsigned Digit = (unsigned)APdigit.getZExtValue();
2270 assert(Digit < Radix && "divide failed");
2271 Str.push_back(Digits[Digit]);
2272 Tmp = tmp2;
2276 // Reverse the digits before returning.
2277 std::reverse(Str.begin()+StartDig, Str.end());
2280 /// toString - This returns the APInt as a std::string. Note that this is an
2281 /// inefficient method. It is better to pass in a SmallVector/SmallString
2282 /// to the methods above.
2283 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2284 SmallString<40> S;
2285 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
2286 return S.str();
2290 void APInt::dump() const {
2291 SmallString<40> S, U;
2292 this->toStringUnsigned(U);
2293 this->toStringSigned(S);
2294 dbgs() << "APInt(" << BitWidth << "b, "
2295 << U.str() << "u " << S.str() << "s)";
2298 void APInt::print(raw_ostream &OS, bool isSigned) const {
2299 SmallString<40> S;
2300 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2301 OS << S.str();
2304 // This implements a variety of operations on a representation of
2305 // arbitrary precision, two's-complement, bignum integer values.
2307 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2308 // and unrestricting assumption.
2309 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
2310 COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
2312 /* Some handy functions local to this file. */
2313 namespace {
2315 /* Returns the integer part with the least significant BITS set.
2316 BITS cannot be zero. */
2317 static inline integerPart
2318 lowBitMask(unsigned int bits)
2320 assert(bits != 0 && bits <= integerPartWidth);
2322 return ~(integerPart) 0 >> (integerPartWidth - bits);
2325 /* Returns the value of the lower half of PART. */
2326 static inline integerPart
2327 lowHalf(integerPart part)
2329 return part & lowBitMask(integerPartWidth / 2);
2332 /* Returns the value of the upper half of PART. */
2333 static inline integerPart
2334 highHalf(integerPart part)
2336 return part >> (integerPartWidth / 2);
2339 /* Returns the bit number of the most significant set bit of a part.
2340 If the input number has no bits set -1U is returned. */
2341 static unsigned int
2342 partMSB(integerPart value)
2344 unsigned int n, msb;
2346 if (value == 0)
2347 return -1U;
2349 n = integerPartWidth / 2;
2351 msb = 0;
2352 do {
2353 if (value >> n) {
2354 value >>= n;
2355 msb += n;
2358 n >>= 1;
2359 } while (n);
2361 return msb;
2364 /* Returns the bit number of the least significant set bit of a
2365 part. If the input number has no bits set -1U is returned. */
2366 static unsigned int
2367 partLSB(integerPart value)
2369 unsigned int n, lsb;
2371 if (value == 0)
2372 return -1U;
2374 lsb = integerPartWidth - 1;
2375 n = integerPartWidth / 2;
2377 do {
2378 if (value << n) {
2379 value <<= n;
2380 lsb -= n;
2383 n >>= 1;
2384 } while (n);
2386 return lsb;
2390 /* Sets the least significant part of a bignum to the input value, and
2391 zeroes out higher parts. */
2392 void
2393 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2395 unsigned int i;
2397 assert(parts > 0);
2399 dst[0] = part;
2400 for (i = 1; i < parts; i++)
2401 dst[i] = 0;
2404 /* Assign one bignum to another. */
2405 void
2406 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2408 unsigned int i;
2410 for (i = 0; i < parts; i++)
2411 dst[i] = src[i];
2414 /* Returns true if a bignum is zero, false otherwise. */
2415 bool
2416 APInt::tcIsZero(const integerPart *src, unsigned int parts)
2418 unsigned int i;
2420 for (i = 0; i < parts; i++)
2421 if (src[i])
2422 return false;
2424 return true;
2427 /* Extract the given bit of a bignum; returns 0 or 1. */
2429 APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2431 return (parts[bit / integerPartWidth] &
2432 ((integerPart) 1 << bit % integerPartWidth)) != 0;
2435 /* Set the given bit of a bignum. */
2436 void
2437 APInt::tcSetBit(integerPart *parts, unsigned int bit)
2439 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2442 /* Clears the given bit of a bignum. */
2443 void
2444 APInt::tcClearBit(integerPart *parts, unsigned int bit)
2446 parts[bit / integerPartWidth] &=
2447 ~((integerPart) 1 << (bit % integerPartWidth));
2450 /* Returns the bit number of the least significant set bit of a
2451 number. If the input number has no bits set -1U is returned. */
2452 unsigned int
2453 APInt::tcLSB(const integerPart *parts, unsigned int n)
2455 unsigned int i, lsb;
2457 for (i = 0; i < n; i++) {
2458 if (parts[i] != 0) {
2459 lsb = partLSB(parts[i]);
2461 return lsb + i * integerPartWidth;
2465 return -1U;
2468 /* Returns the bit number of the most significant set bit of a number.
2469 If the input number has no bits set -1U is returned. */
2470 unsigned int
2471 APInt::tcMSB(const integerPart *parts, unsigned int n)
2473 unsigned int msb;
2475 do {
2476 --n;
2478 if (parts[n] != 0) {
2479 msb = partMSB(parts[n]);
2481 return msb + n * integerPartWidth;
2483 } while (n);
2485 return -1U;
2488 /* Copy the bit vector of width srcBITS from SRC, starting at bit
2489 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2490 the least significant bit of DST. All high bits above srcBITS in
2491 DST are zero-filled. */
2492 void
2493 APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
2494 unsigned int srcBits, unsigned int srcLSB)
2496 unsigned int firstSrcPart, dstParts, shift, n;
2498 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2499 assert(dstParts <= dstCount);
2501 firstSrcPart = srcLSB / integerPartWidth;
2502 tcAssign (dst, src + firstSrcPart, dstParts);
2504 shift = srcLSB % integerPartWidth;
2505 tcShiftRight (dst, dstParts, shift);
2507 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2508 in DST. If this is less that srcBits, append the rest, else
2509 clear the high bits. */
2510 n = dstParts * integerPartWidth - shift;
2511 if (n < srcBits) {
2512 integerPart mask = lowBitMask (srcBits - n);
2513 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2514 << n % integerPartWidth);
2515 } else if (n > srcBits) {
2516 if (srcBits % integerPartWidth)
2517 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
2520 /* Clear high parts. */
2521 while (dstParts < dstCount)
2522 dst[dstParts++] = 0;
2525 /* DST += RHS + C where C is zero or one. Returns the carry flag. */
2526 integerPart
2527 APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2528 integerPart c, unsigned int parts)
2530 unsigned int i;
2532 assert(c <= 1);
2534 for (i = 0; i < parts; i++) {
2535 integerPart l;
2537 l = dst[i];
2538 if (c) {
2539 dst[i] += rhs[i] + 1;
2540 c = (dst[i] <= l);
2541 } else {
2542 dst[i] += rhs[i];
2543 c = (dst[i] < l);
2547 return c;
2550 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2551 integerPart
2552 APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2553 integerPart c, unsigned int parts)
2555 unsigned int i;
2557 assert(c <= 1);
2559 for (i = 0; i < parts; i++) {
2560 integerPart l;
2562 l = dst[i];
2563 if (c) {
2564 dst[i] -= rhs[i] + 1;
2565 c = (dst[i] >= l);
2566 } else {
2567 dst[i] -= rhs[i];
2568 c = (dst[i] > l);
2572 return c;
2575 /* Negate a bignum in-place. */
2576 void
2577 APInt::tcNegate(integerPart *dst, unsigned int parts)
2579 tcComplement(dst, parts);
2580 tcIncrement(dst, parts);
2583 /* DST += SRC * MULTIPLIER + CARRY if add is true
2584 DST = SRC * MULTIPLIER + CARRY if add is false
2586 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2587 they must start at the same point, i.e. DST == SRC.
2589 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2590 returned. Otherwise DST is filled with the least significant
2591 DSTPARTS parts of the result, and if all of the omitted higher
2592 parts were zero return zero, otherwise overflow occurred and
2593 return one. */
2595 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2596 integerPart multiplier, integerPart carry,
2597 unsigned int srcParts, unsigned int dstParts,
2598 bool add)
2600 unsigned int i, n;
2602 /* Otherwise our writes of DST kill our later reads of SRC. */
2603 assert(dst <= src || dst >= src + srcParts);
2604 assert(dstParts <= srcParts + 1);
2606 /* N loops; minimum of dstParts and srcParts. */
2607 n = dstParts < srcParts ? dstParts: srcParts;
2609 for (i = 0; i < n; i++) {
2610 integerPart low, mid, high, srcPart;
2612 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2614 This cannot overflow, because
2616 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2618 which is less than n^2. */
2620 srcPart = src[i];
2622 if (multiplier == 0 || srcPart == 0) {
2623 low = carry;
2624 high = 0;
2625 } else {
2626 low = lowHalf(srcPart) * lowHalf(multiplier);
2627 high = highHalf(srcPart) * highHalf(multiplier);
2629 mid = lowHalf(srcPart) * highHalf(multiplier);
2630 high += highHalf(mid);
2631 mid <<= integerPartWidth / 2;
2632 if (low + mid < low)
2633 high++;
2634 low += mid;
2636 mid = highHalf(srcPart) * lowHalf(multiplier);
2637 high += highHalf(mid);
2638 mid <<= integerPartWidth / 2;
2639 if (low + mid < low)
2640 high++;
2641 low += mid;
2643 /* Now add carry. */
2644 if (low + carry < low)
2645 high++;
2646 low += carry;
2649 if (add) {
2650 /* And now DST[i], and store the new low part there. */
2651 if (low + dst[i] < low)
2652 high++;
2653 dst[i] += low;
2654 } else
2655 dst[i] = low;
2657 carry = high;
2660 if (i < dstParts) {
2661 /* Full multiplication, there is no overflow. */
2662 assert(i + 1 == dstParts);
2663 dst[i] = carry;
2664 return 0;
2665 } else {
2666 /* We overflowed if there is carry. */
2667 if (carry)
2668 return 1;
2670 /* We would overflow if any significant unwritten parts would be
2671 non-zero. This is true if any remaining src parts are non-zero
2672 and the multiplier is non-zero. */
2673 if (multiplier)
2674 for (; i < srcParts; i++)
2675 if (src[i])
2676 return 1;
2678 /* We fitted in the narrow destination. */
2679 return 0;
2683 /* DST = LHS * RHS, where DST has the same width as the operands and
2684 is filled with the least significant parts of the result. Returns
2685 one if overflow occurred, otherwise zero. DST must be disjoint
2686 from both operands. */
2688 APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2689 const integerPart *rhs, unsigned int parts)
2691 unsigned int i;
2692 int overflow;
2694 assert(dst != lhs && dst != rhs);
2696 overflow = 0;
2697 tcSet(dst, 0, parts);
2699 for (i = 0; i < parts; i++)
2700 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2701 parts - i, true);
2703 return overflow;
2706 /* DST = LHS * RHS, where DST has width the sum of the widths of the
2707 operands. No overflow occurs. DST must be disjoint from both
2708 operands. Returns the number of parts required to hold the
2709 result. */
2710 unsigned int
2711 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
2712 const integerPart *rhs, unsigned int lhsParts,
2713 unsigned int rhsParts)
2715 /* Put the narrower number on the LHS for less loops below. */
2716 if (lhsParts > rhsParts) {
2717 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2718 } else {
2719 unsigned int n;
2721 assert(dst != lhs && dst != rhs);
2723 tcSet(dst, 0, rhsParts);
2725 for (n = 0; n < lhsParts; n++)
2726 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
2728 n = lhsParts + rhsParts;
2730 return n - (dst[n - 1] == 0);
2734 /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2735 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2736 set REMAINDER to the remainder, return zero. i.e.
2738 OLD_LHS = RHS * LHS + REMAINDER
2740 SCRATCH is a bignum of the same size as the operands and result for
2741 use by the routine; its contents need not be initialized and are
2742 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2745 APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2746 integerPart *remainder, integerPart *srhs,
2747 unsigned int parts)
2749 unsigned int n, shiftCount;
2750 integerPart mask;
2752 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2754 shiftCount = tcMSB(rhs, parts) + 1;
2755 if (shiftCount == 0)
2756 return true;
2758 shiftCount = parts * integerPartWidth - shiftCount;
2759 n = shiftCount / integerPartWidth;
2760 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2762 tcAssign(srhs, rhs, parts);
2763 tcShiftLeft(srhs, parts, shiftCount);
2764 tcAssign(remainder, lhs, parts);
2765 tcSet(lhs, 0, parts);
2767 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2768 the total. */
2769 for (;;) {
2770 int compare;
2772 compare = tcCompare(remainder, srhs, parts);
2773 if (compare >= 0) {
2774 tcSubtract(remainder, srhs, 0, parts);
2775 lhs[n] |= mask;
2778 if (shiftCount == 0)
2779 break;
2780 shiftCount--;
2781 tcShiftRight(srhs, parts, 1);
2782 if ((mask >>= 1) == 0)
2783 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2786 return false;
2789 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2790 There are no restrictions on COUNT. */
2791 void
2792 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2794 if (count) {
2795 unsigned int jump, shift;
2797 /* Jump is the inter-part jump; shift is is intra-part shift. */
2798 jump = count / integerPartWidth;
2799 shift = count % integerPartWidth;
2801 while (parts > jump) {
2802 integerPart part;
2804 parts--;
2806 /* dst[i] comes from the two parts src[i - jump] and, if we have
2807 an intra-part shift, src[i - jump - 1]. */
2808 part = dst[parts - jump];
2809 if (shift) {
2810 part <<= shift;
2811 if (parts >= jump + 1)
2812 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2815 dst[parts] = part;
2818 while (parts > 0)
2819 dst[--parts] = 0;
2823 /* Shift a bignum right COUNT bits in-place. Shifted in bits are
2824 zero. There are no restrictions on COUNT. */
2825 void
2826 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2828 if (count) {
2829 unsigned int i, jump, shift;
2831 /* Jump is the inter-part jump; shift is is intra-part shift. */
2832 jump = count / integerPartWidth;
2833 shift = count % integerPartWidth;
2835 /* Perform the shift. This leaves the most significant COUNT bits
2836 of the result at zero. */
2837 for (i = 0; i < parts; i++) {
2838 integerPart part;
2840 if (i + jump >= parts) {
2841 part = 0;
2842 } else {
2843 part = dst[i + jump];
2844 if (shift) {
2845 part >>= shift;
2846 if (i + jump + 1 < parts)
2847 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2851 dst[i] = part;
2856 /* Bitwise and of two bignums. */
2857 void
2858 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2860 unsigned int i;
2862 for (i = 0; i < parts; i++)
2863 dst[i] &= rhs[i];
2866 /* Bitwise inclusive or of two bignums. */
2867 void
2868 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2870 unsigned int i;
2872 for (i = 0; i < parts; i++)
2873 dst[i] |= rhs[i];
2876 /* Bitwise exclusive or of two bignums. */
2877 void
2878 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2880 unsigned int i;
2882 for (i = 0; i < parts; i++)
2883 dst[i] ^= rhs[i];
2886 /* Complement a bignum in-place. */
2887 void
2888 APInt::tcComplement(integerPart *dst, unsigned int parts)
2890 unsigned int i;
2892 for (i = 0; i < parts; i++)
2893 dst[i] = ~dst[i];
2896 /* Comparison (unsigned) of two bignums. */
2898 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2899 unsigned int parts)
2901 while (parts) {
2902 parts--;
2903 if (lhs[parts] == rhs[parts])
2904 continue;
2906 if (lhs[parts] > rhs[parts])
2907 return 1;
2908 else
2909 return -1;
2912 return 0;
2915 /* Increment a bignum in-place, return the carry flag. */
2916 integerPart
2917 APInt::tcIncrement(integerPart *dst, unsigned int parts)
2919 unsigned int i;
2921 for (i = 0; i < parts; i++)
2922 if (++dst[i] != 0)
2923 break;
2925 return i == parts;
2928 /* Set the least significant BITS bits of a bignum, clear the
2929 rest. */
2930 void
2931 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2932 unsigned int bits)
2934 unsigned int i;
2936 i = 0;
2937 while (bits > integerPartWidth) {
2938 dst[i++] = ~(integerPart) 0;
2939 bits -= integerPartWidth;
2942 if (bits)
2943 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2945 while (i < parts)
2946 dst[i++] = 0;