don't load element before checking to see if it is valid.
[llvm/stm8.git] / lib / Support / Allocator.cpp
blob215b0f249d96f82cda56763998be5326fae3569e
1 //===--- Allocator.cpp - Simple memory allocation abstraction -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BumpPtrAllocator interface.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Support/Allocator.h"
15 #include "llvm/Support/DataTypes.h"
16 #include "llvm/Support/Recycler.h"
17 #include "llvm/Support/raw_ostream.h"
18 #include "llvm/Support/Memory.h"
19 #include <cstring>
21 namespace llvm {
23 BumpPtrAllocator::BumpPtrAllocator(size_t size, size_t threshold,
24 SlabAllocator &allocator)
25 : SlabSize(size), SizeThreshold(threshold), Allocator(allocator),
26 CurSlab(0), BytesAllocated(0) { }
28 BumpPtrAllocator::~BumpPtrAllocator() {
29 DeallocateSlabs(CurSlab);
32 /// AlignPtr - Align Ptr to Alignment bytes, rounding up. Alignment should
33 /// be a power of two. This method rounds up, so AlignPtr(7, 4) == 8 and
34 /// AlignPtr(8, 4) == 8.
35 char *BumpPtrAllocator::AlignPtr(char *Ptr, size_t Alignment) {
36 assert(Alignment && (Alignment & (Alignment - 1)) == 0 &&
37 "Alignment is not a power of two!");
39 // Do the alignment.
40 return (char*)(((uintptr_t)Ptr + Alignment - 1) &
41 ~(uintptr_t)(Alignment - 1));
44 /// StartNewSlab - Allocate a new slab and move the bump pointers over into
45 /// the new slab. Modifies CurPtr and End.
46 void BumpPtrAllocator::StartNewSlab() {
47 // If we allocated a big number of slabs already it's likely that we're going
48 // to allocate more. Increase slab size to reduce mallocs and possibly memory
49 // overhead. The factors are chosen conservatively to avoid overallocation.
50 if (BytesAllocated >= SlabSize * 128)
51 SlabSize *= 2;
53 MemSlab *NewSlab = Allocator.Allocate(SlabSize);
54 NewSlab->NextPtr = CurSlab;
55 CurSlab = NewSlab;
56 CurPtr = (char*)(CurSlab + 1);
57 End = ((char*)CurSlab) + CurSlab->Size;
60 /// DeallocateSlabs - Deallocate all memory slabs after and including this
61 /// one.
62 void BumpPtrAllocator::DeallocateSlabs(MemSlab *Slab) {
63 while (Slab) {
64 MemSlab *NextSlab = Slab->NextPtr;
65 #ifndef NDEBUG
66 // Poison the memory so stale pointers crash sooner. Note we must
67 // preserve the Size and NextPtr fields at the beginning.
68 sys::Memory::setRangeWritable(Slab + 1, Slab->Size - sizeof(MemSlab));
69 memset(Slab + 1, 0xCD, Slab->Size - sizeof(MemSlab));
70 #endif
71 Allocator.Deallocate(Slab);
72 Slab = NextSlab;
76 /// Reset - Deallocate all but the current slab and reset the current pointer
77 /// to the beginning of it, freeing all memory allocated so far.
78 void BumpPtrAllocator::Reset() {
79 if (!CurSlab)
80 return;
81 DeallocateSlabs(CurSlab->NextPtr);
82 CurSlab->NextPtr = 0;
83 CurPtr = (char*)(CurSlab + 1);
84 End = ((char*)CurSlab) + CurSlab->Size;
87 /// Allocate - Allocate space at the specified alignment.
88 ///
89 void *BumpPtrAllocator::Allocate(size_t Size, size_t Alignment) {
90 if (!CurSlab) // Start a new slab if we haven't allocated one already.
91 StartNewSlab();
93 // Keep track of how many bytes we've allocated.
94 BytesAllocated += Size;
96 // 0-byte alignment means 1-byte alignment.
97 if (Alignment == 0) Alignment = 1;
99 // Allocate the aligned space, going forwards from CurPtr.
100 char *Ptr = AlignPtr(CurPtr, Alignment);
102 // Check if we can hold it.
103 if (Ptr + Size <= End) {
104 CurPtr = Ptr + Size;
105 return Ptr;
108 // If Size is really big, allocate a separate slab for it.
109 size_t PaddedSize = Size + sizeof(MemSlab) + Alignment - 1;
110 if (PaddedSize > SizeThreshold) {
111 MemSlab *NewSlab = Allocator.Allocate(PaddedSize);
113 // Put the new slab after the current slab, since we are not allocating
114 // into it.
115 NewSlab->NextPtr = CurSlab->NextPtr;
116 CurSlab->NextPtr = NewSlab;
118 Ptr = AlignPtr((char*)(NewSlab + 1), Alignment);
119 assert((uintptr_t)Ptr + Size <= (uintptr_t)NewSlab + NewSlab->Size);
120 return Ptr;
123 // Otherwise, start a new slab and try again.
124 StartNewSlab();
125 Ptr = AlignPtr(CurPtr, Alignment);
126 CurPtr = Ptr + Size;
127 assert(CurPtr <= End && "Unable to allocate memory!");
128 return Ptr;
131 unsigned BumpPtrAllocator::GetNumSlabs() const {
132 unsigned NumSlabs = 0;
133 for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
134 ++NumSlabs;
136 return NumSlabs;
139 size_t BumpPtrAllocator::getTotalMemory() const {
140 size_t TotalMemory = 0;
141 for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
142 TotalMemory += Slab->Size;
144 return TotalMemory;
147 void BumpPtrAllocator::PrintStats() const {
148 unsigned NumSlabs = 0;
149 size_t TotalMemory = 0;
150 for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
151 TotalMemory += Slab->Size;
152 ++NumSlabs;
155 errs() << "\nNumber of memory regions: " << NumSlabs << '\n'
156 << "Bytes used: " << BytesAllocated << '\n'
157 << "Bytes allocated: " << TotalMemory << '\n'
158 << "Bytes wasted: " << (TotalMemory - BytesAllocated)
159 << " (includes alignment, etc)\n";
162 MallocSlabAllocator BumpPtrAllocator::DefaultSlabAllocator =
163 MallocSlabAllocator();
165 SlabAllocator::~SlabAllocator() { }
167 MallocSlabAllocator::~MallocSlabAllocator() { }
169 MemSlab *MallocSlabAllocator::Allocate(size_t Size) {
170 MemSlab *Slab = (MemSlab*)Allocator.Allocate(Size, 0);
171 Slab->Size = Size;
172 Slab->NextPtr = 0;
173 return Slab;
176 void MallocSlabAllocator::Deallocate(MemSlab *Slab) {
177 Allocator.Deallocate(Slab);
180 void PrintRecyclerStats(size_t Size,
181 size_t Align,
182 size_t FreeListSize) {
183 errs() << "Recycler element size: " << Size << '\n'
184 << "Recycler element alignment: " << Align << '\n'
185 << "Number of elements free for recycling: " << FreeListSize << '\n';