rip out llvm 2.8 release notes to make room for llvm 2.9 notes.
[llvm/stm8.git] / lib / VMCore / AsmWriter.cpp
blobffd367a7ada216decf255f353c9aad9cc94cb0d4
1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/Assembly/PrintModulePass.h"
19 #include "llvm/Assembly/AssemblyAnnotationWriter.h"
20 #include "llvm/LLVMContext.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/Constants.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/InlineAsm.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Module.h"
28 #include "llvm/ValueSymbolTable.h"
29 #include "llvm/TypeSymbolTable.h"
30 #include "llvm/ADT/DenseSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/Support/CFG.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/Dwarf.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/FormattedStream.h"
40 #include <algorithm>
41 #include <cctype>
42 #include <map>
43 using namespace llvm;
45 // Make virtual table appear in this compilation unit.
46 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
48 //===----------------------------------------------------------------------===//
49 // Helper Functions
50 //===----------------------------------------------------------------------===//
52 static const Module *getModuleFromVal(const Value *V) {
53 if (const Argument *MA = dyn_cast<Argument>(V))
54 return MA->getParent() ? MA->getParent()->getParent() : 0;
56 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
57 return BB->getParent() ? BB->getParent()->getParent() : 0;
59 if (const Instruction *I = dyn_cast<Instruction>(V)) {
60 const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
61 return M ? M->getParent() : 0;
64 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
65 return GV->getParent();
66 return 0;
69 // PrintEscapedString - Print each character of the specified string, escaping
70 // it if it is not printable or if it is an escape char.
71 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
72 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
73 unsigned char C = Name[i];
74 if (isprint(C) && C != '\\' && C != '"')
75 Out << C;
76 else
77 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
81 enum PrefixType {
82 GlobalPrefix,
83 LabelPrefix,
84 LocalPrefix,
85 NoPrefix
88 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
89 /// prefixed with % (if the string only contains simple characters) or is
90 /// surrounded with ""'s (if it has special chars in it). Print it out.
91 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
92 assert(Name.data() && "Cannot get empty name!");
93 switch (Prefix) {
94 default: llvm_unreachable("Bad prefix!");
95 case NoPrefix: break;
96 case GlobalPrefix: OS << '@'; break;
97 case LabelPrefix: break;
98 case LocalPrefix: OS << '%'; break;
101 // Scan the name to see if it needs quotes first.
102 bool NeedsQuotes = isdigit(Name[0]);
103 if (!NeedsQuotes) {
104 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
105 char C = Name[i];
106 if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
107 NeedsQuotes = true;
108 break;
113 // If we didn't need any quotes, just write out the name in one blast.
114 if (!NeedsQuotes) {
115 OS << Name;
116 return;
119 // Okay, we need quotes. Output the quotes and escape any scary characters as
120 // needed.
121 OS << '"';
122 PrintEscapedString(Name, OS);
123 OS << '"';
126 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
127 /// prefixed with % (if the string only contains simple characters) or is
128 /// surrounded with ""'s (if it has special chars in it). Print it out.
129 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
130 PrintLLVMName(OS, V->getName(),
131 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
134 //===----------------------------------------------------------------------===//
135 // TypePrinting Class: Type printing machinery
136 //===----------------------------------------------------------------------===//
138 static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
139 return *static_cast<DenseMap<const Type *, std::string>*>(M);
142 void TypePrinting::clear() {
143 getTypeNamesMap(TypeNames).clear();
146 bool TypePrinting::hasTypeName(const Type *Ty) const {
147 return getTypeNamesMap(TypeNames).count(Ty);
150 void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
151 getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
155 TypePrinting::TypePrinting() {
156 TypeNames = new DenseMap<const Type *, std::string>();
159 TypePrinting::~TypePrinting() {
160 delete &getTypeNamesMap(TypeNames);
163 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
164 /// use of type names or up references to shorten the type name where possible.
165 void TypePrinting::CalcTypeName(const Type *Ty,
166 SmallVectorImpl<const Type *> &TypeStack,
167 raw_ostream &OS, bool IgnoreTopLevelName) {
168 // Check to see if the type is named.
169 if (!IgnoreTopLevelName) {
170 DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
171 DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
172 if (I != TM.end()) {
173 OS << I->second;
174 return;
178 // Check to see if the Type is already on the stack...
179 unsigned Slot = 0, CurSize = TypeStack.size();
180 while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
182 // This is another base case for the recursion. In this case, we know
183 // that we have looped back to a type that we have previously visited.
184 // Generate the appropriate upreference to handle this.
185 if (Slot < CurSize) {
186 OS << '\\' << unsigned(CurSize-Slot); // Here's the upreference
187 return;
190 TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
192 switch (Ty->getTypeID()) {
193 case Type::VoidTyID: OS << "void"; break;
194 case Type::FloatTyID: OS << "float"; break;
195 case Type::DoubleTyID: OS << "double"; break;
196 case Type::X86_FP80TyID: OS << "x86_fp80"; break;
197 case Type::FP128TyID: OS << "fp128"; break;
198 case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
199 case Type::LabelTyID: OS << "label"; break;
200 case Type::MetadataTyID: OS << "metadata"; break;
201 case Type::X86_MMXTyID: OS << "x86_mmx"; break;
202 case Type::IntegerTyID:
203 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
204 break;
206 case Type::FunctionTyID: {
207 const FunctionType *FTy = cast<FunctionType>(Ty);
208 CalcTypeName(FTy->getReturnType(), TypeStack, OS);
209 OS << " (";
210 for (FunctionType::param_iterator I = FTy->param_begin(),
211 E = FTy->param_end(); I != E; ++I) {
212 if (I != FTy->param_begin())
213 OS << ", ";
214 CalcTypeName(*I, TypeStack, OS);
216 if (FTy->isVarArg()) {
217 if (FTy->getNumParams()) OS << ", ";
218 OS << "...";
220 OS << ')';
221 break;
223 case Type::StructTyID: {
224 const StructType *STy = cast<StructType>(Ty);
225 if (STy->isPacked())
226 OS << '<';
227 OS << '{';
228 for (StructType::element_iterator I = STy->element_begin(),
229 E = STy->element_end(); I != E; ++I) {
230 OS << ' ';
231 CalcTypeName(*I, TypeStack, OS);
232 if (llvm::next(I) == STy->element_end())
233 OS << ' ';
234 else
235 OS << ',';
237 OS << '}';
238 if (STy->isPacked())
239 OS << '>';
240 break;
242 case Type::PointerTyID: {
243 const PointerType *PTy = cast<PointerType>(Ty);
244 CalcTypeName(PTy->getElementType(), TypeStack, OS);
245 if (unsigned AddressSpace = PTy->getAddressSpace())
246 OS << " addrspace(" << AddressSpace << ')';
247 OS << '*';
248 break;
250 case Type::ArrayTyID: {
251 const ArrayType *ATy = cast<ArrayType>(Ty);
252 OS << '[' << ATy->getNumElements() << " x ";
253 CalcTypeName(ATy->getElementType(), TypeStack, OS);
254 OS << ']';
255 break;
257 case Type::VectorTyID: {
258 const VectorType *PTy = cast<VectorType>(Ty);
259 OS << "<" << PTy->getNumElements() << " x ";
260 CalcTypeName(PTy->getElementType(), TypeStack, OS);
261 OS << '>';
262 break;
264 case Type::OpaqueTyID:
265 OS << "opaque";
266 break;
267 default:
268 OS << "<unrecognized-type>";
269 break;
272 TypeStack.pop_back(); // Remove self from stack.
275 /// printTypeInt - The internal guts of printing out a type that has a
276 /// potentially named portion.
278 void TypePrinting::print(const Type *Ty, raw_ostream &OS,
279 bool IgnoreTopLevelName) {
280 // Check to see if the type is named.
281 DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
282 if (!IgnoreTopLevelName) {
283 DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
284 if (I != TM.end()) {
285 OS << I->second;
286 return;
290 // Otherwise we have a type that has not been named but is a derived type.
291 // Carefully recurse the type hierarchy to print out any contained symbolic
292 // names.
293 SmallVector<const Type *, 16> TypeStack;
294 std::string TypeName;
296 raw_string_ostream TypeOS(TypeName);
297 CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
298 OS << TypeOS.str();
300 // Cache type name for later use.
301 if (!IgnoreTopLevelName)
302 TM.insert(std::make_pair(Ty, TypeOS.str()));
305 namespace {
306 class TypeFinder {
307 // To avoid walking constant expressions multiple times and other IR
308 // objects, we keep several helper maps.
309 DenseSet<const Value*> VisitedConstants;
310 DenseSet<const Type*> VisitedTypes;
312 TypePrinting &TP;
313 std::vector<const Type*> &NumberedTypes;
314 public:
315 TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
316 : TP(tp), NumberedTypes(numberedTypes) {}
318 void Run(const Module &M) {
319 // Get types from the type symbol table. This gets opaque types referened
320 // only through derived named types.
321 const TypeSymbolTable &ST = M.getTypeSymbolTable();
322 for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
323 TI != E; ++TI)
324 IncorporateType(TI->second);
326 // Get types from global variables.
327 for (Module::const_global_iterator I = M.global_begin(),
328 E = M.global_end(); I != E; ++I) {
329 IncorporateType(I->getType());
330 if (I->hasInitializer())
331 IncorporateValue(I->getInitializer());
334 // Get types from aliases.
335 for (Module::const_alias_iterator I = M.alias_begin(),
336 E = M.alias_end(); I != E; ++I) {
337 IncorporateType(I->getType());
338 IncorporateValue(I->getAliasee());
341 // Get types from functions.
342 for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
343 IncorporateType(FI->getType());
345 for (Function::const_iterator BB = FI->begin(), E = FI->end();
346 BB != E;++BB)
347 for (BasicBlock::const_iterator II = BB->begin(),
348 E = BB->end(); II != E; ++II) {
349 const Instruction &I = *II;
350 // Incorporate the type of the instruction and all its operands.
351 IncorporateType(I.getType());
352 for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
353 OI != OE; ++OI)
354 IncorporateValue(*OI);
359 private:
360 void IncorporateType(const Type *Ty) {
361 // Check to see if we're already visited this type.
362 if (!VisitedTypes.insert(Ty).second)
363 return;
365 // If this is a structure or opaque type, add a name for the type.
366 if (((Ty->isStructTy() && cast<StructType>(Ty)->getNumElements())
367 || Ty->isOpaqueTy()) && !TP.hasTypeName(Ty)) {
368 TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
369 NumberedTypes.push_back(Ty);
372 // Recursively walk all contained types.
373 for (Type::subtype_iterator I = Ty->subtype_begin(),
374 E = Ty->subtype_end(); I != E; ++I)
375 IncorporateType(*I);
378 /// IncorporateValue - This method is used to walk operand lists finding
379 /// types hiding in constant expressions and other operands that won't be
380 /// walked in other ways. GlobalValues, basic blocks, instructions, and
381 /// inst operands are all explicitly enumerated.
382 void IncorporateValue(const Value *V) {
383 if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
385 // Already visited?
386 if (!VisitedConstants.insert(V).second)
387 return;
389 // Check this type.
390 IncorporateType(V->getType());
392 // Look in operands for types.
393 const Constant *C = cast<Constant>(V);
394 for (Constant::const_op_iterator I = C->op_begin(),
395 E = C->op_end(); I != E;++I)
396 IncorporateValue(*I);
399 } // end anonymous namespace
402 /// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
403 /// the specified module to the TypePrinter and all numbered types to it and the
404 /// NumberedTypes table.
405 static void AddModuleTypesToPrinter(TypePrinting &TP,
406 std::vector<const Type*> &NumberedTypes,
407 const Module *M) {
408 if (M == 0) return;
410 // If the module has a symbol table, take all global types and stuff their
411 // names into the TypeNames map.
412 const TypeSymbolTable &ST = M->getTypeSymbolTable();
413 for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
414 TI != E; ++TI) {
415 const Type *Ty = cast<Type>(TI->second);
417 // As a heuristic, don't insert pointer to primitive types, because
418 // they are used too often to have a single useful name.
419 if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
420 const Type *PETy = PTy->getElementType();
421 if ((PETy->isPrimitiveType() || PETy->isIntegerTy()) &&
422 !PETy->isOpaqueTy())
423 continue;
426 // Likewise don't insert primitives either.
427 if (Ty->isIntegerTy() || Ty->isPrimitiveType())
428 continue;
430 // Get the name as a string and insert it into TypeNames.
431 std::string NameStr;
432 raw_string_ostream NameROS(NameStr);
433 formatted_raw_ostream NameOS(NameROS);
434 PrintLLVMName(NameOS, TI->first, LocalPrefix);
435 NameOS.flush();
436 TP.addTypeName(Ty, NameStr);
439 // Walk the entire module to find references to unnamed structure and opaque
440 // types. This is required for correctness by opaque types (because multiple
441 // uses of an unnamed opaque type needs to be referred to by the same ID) and
442 // it shrinks complex recursive structure types substantially in some cases.
443 TypeFinder(TP, NumberedTypes).Run(*M);
447 /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
448 /// type, iff there is an entry in the modules symbol table for the specified
449 /// type or one of it's component types.
451 void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
452 TypePrinting Printer;
453 std::vector<const Type*> NumberedTypes;
454 AddModuleTypesToPrinter(Printer, NumberedTypes, M);
455 Printer.print(Ty, OS);
458 //===----------------------------------------------------------------------===//
459 // SlotTracker Class: Enumerate slot numbers for unnamed values
460 //===----------------------------------------------------------------------===//
462 namespace {
464 /// This class provides computation of slot numbers for LLVM Assembly writing.
466 class SlotTracker {
467 public:
468 /// ValueMap - A mapping of Values to slot numbers.
469 typedef DenseMap<const Value*, unsigned> ValueMap;
471 private:
472 /// TheModule - The module for which we are holding slot numbers.
473 const Module* TheModule;
475 /// TheFunction - The function for which we are holding slot numbers.
476 const Function* TheFunction;
477 bool FunctionProcessed;
479 /// mMap - The TypePlanes map for the module level data.
480 ValueMap mMap;
481 unsigned mNext;
483 /// fMap - The TypePlanes map for the function level data.
484 ValueMap fMap;
485 unsigned fNext;
487 /// mdnMap - Map for MDNodes.
488 DenseMap<const MDNode*, unsigned> mdnMap;
489 unsigned mdnNext;
490 public:
491 /// Construct from a module
492 explicit SlotTracker(const Module *M);
493 /// Construct from a function, starting out in incorp state.
494 explicit SlotTracker(const Function *F);
496 /// Return the slot number of the specified value in it's type
497 /// plane. If something is not in the SlotTracker, return -1.
498 int getLocalSlot(const Value *V);
499 int getGlobalSlot(const GlobalValue *V);
500 int getMetadataSlot(const MDNode *N);
502 /// If you'd like to deal with a function instead of just a module, use
503 /// this method to get its data into the SlotTracker.
504 void incorporateFunction(const Function *F) {
505 TheFunction = F;
506 FunctionProcessed = false;
509 /// After calling incorporateFunction, use this method to remove the
510 /// most recently incorporated function from the SlotTracker. This
511 /// will reset the state of the machine back to just the module contents.
512 void purgeFunction();
514 /// MDNode map iterators.
515 typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
516 mdn_iterator mdn_begin() { return mdnMap.begin(); }
517 mdn_iterator mdn_end() { return mdnMap.end(); }
518 unsigned mdn_size() const { return mdnMap.size(); }
519 bool mdn_empty() const { return mdnMap.empty(); }
521 /// This function does the actual initialization.
522 inline void initialize();
524 // Implementation Details
525 private:
526 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
527 void CreateModuleSlot(const GlobalValue *V);
529 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
530 void CreateMetadataSlot(const MDNode *N);
532 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
533 void CreateFunctionSlot(const Value *V);
535 /// Add all of the module level global variables (and their initializers)
536 /// and function declarations, but not the contents of those functions.
537 void processModule();
539 /// Add all of the functions arguments, basic blocks, and instructions.
540 void processFunction();
542 SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT
543 void operator=(const SlotTracker &); // DO NOT IMPLEMENT
546 } // end anonymous namespace
549 static SlotTracker *createSlotTracker(const Value *V) {
550 if (const Argument *FA = dyn_cast<Argument>(V))
551 return new SlotTracker(FA->getParent());
553 if (const Instruction *I = dyn_cast<Instruction>(V))
554 return new SlotTracker(I->getParent()->getParent());
556 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
557 return new SlotTracker(BB->getParent());
559 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
560 return new SlotTracker(GV->getParent());
562 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
563 return new SlotTracker(GA->getParent());
565 if (const Function *Func = dyn_cast<Function>(V))
566 return new SlotTracker(Func);
568 if (const MDNode *MD = dyn_cast<MDNode>(V)) {
569 if (!MD->isFunctionLocal())
570 return new SlotTracker(MD->getFunction());
572 return new SlotTracker((Function *)0);
575 return 0;
578 #if 0
579 #define ST_DEBUG(X) dbgs() << X
580 #else
581 #define ST_DEBUG(X)
582 #endif
584 // Module level constructor. Causes the contents of the Module (sans functions)
585 // to be added to the slot table.
586 SlotTracker::SlotTracker(const Module *M)
587 : TheModule(M), TheFunction(0), FunctionProcessed(false),
588 mNext(0), fNext(0), mdnNext(0) {
591 // Function level constructor. Causes the contents of the Module and the one
592 // function provided to be added to the slot table.
593 SlotTracker::SlotTracker(const Function *F)
594 : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
595 mNext(0), fNext(0), mdnNext(0) {
598 inline void SlotTracker::initialize() {
599 if (TheModule) {
600 processModule();
601 TheModule = 0; ///< Prevent re-processing next time we're called.
604 if (TheFunction && !FunctionProcessed)
605 processFunction();
608 // Iterate through all the global variables, functions, and global
609 // variable initializers and create slots for them.
610 void SlotTracker::processModule() {
611 ST_DEBUG("begin processModule!\n");
613 // Add all of the unnamed global variables to the value table.
614 for (Module::const_global_iterator I = TheModule->global_begin(),
615 E = TheModule->global_end(); I != E; ++I) {
616 if (!I->hasName())
617 CreateModuleSlot(I);
620 // Add metadata used by named metadata.
621 for (Module::const_named_metadata_iterator
622 I = TheModule->named_metadata_begin(),
623 E = TheModule->named_metadata_end(); I != E; ++I) {
624 const NamedMDNode *NMD = I;
625 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
626 CreateMetadataSlot(NMD->getOperand(i));
629 // Add all the unnamed functions to the table.
630 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
631 I != E; ++I)
632 if (!I->hasName())
633 CreateModuleSlot(I);
635 ST_DEBUG("end processModule!\n");
638 // Process the arguments, basic blocks, and instructions of a function.
639 void SlotTracker::processFunction() {
640 ST_DEBUG("begin processFunction!\n");
641 fNext = 0;
643 // Add all the function arguments with no names.
644 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
645 AE = TheFunction->arg_end(); AI != AE; ++AI)
646 if (!AI->hasName())
647 CreateFunctionSlot(AI);
649 ST_DEBUG("Inserting Instructions:\n");
651 SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
653 // Add all of the basic blocks and instructions with no names.
654 for (Function::const_iterator BB = TheFunction->begin(),
655 E = TheFunction->end(); BB != E; ++BB) {
656 if (!BB->hasName())
657 CreateFunctionSlot(BB);
659 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
660 ++I) {
661 if (!I->getType()->isVoidTy() && !I->hasName())
662 CreateFunctionSlot(I);
664 // Intrinsics can directly use metadata. We allow direct calls to any
665 // llvm.foo function here, because the target may not be linked into the
666 // optimizer.
667 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
668 if (Function *F = CI->getCalledFunction())
669 if (F->getName().startswith("llvm."))
670 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
671 if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
672 CreateMetadataSlot(N);
675 // Process metadata attached with this instruction.
676 I->getAllMetadata(MDForInst);
677 for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
678 CreateMetadataSlot(MDForInst[i].second);
679 MDForInst.clear();
683 FunctionProcessed = true;
685 ST_DEBUG("end processFunction!\n");
688 /// Clean up after incorporating a function. This is the only way to get out of
689 /// the function incorporation state that affects get*Slot/Create*Slot. Function
690 /// incorporation state is indicated by TheFunction != 0.
691 void SlotTracker::purgeFunction() {
692 ST_DEBUG("begin purgeFunction!\n");
693 fMap.clear(); // Simply discard the function level map
694 TheFunction = 0;
695 FunctionProcessed = false;
696 ST_DEBUG("end purgeFunction!\n");
699 /// getGlobalSlot - Get the slot number of a global value.
700 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
701 // Check for uninitialized state and do lazy initialization.
702 initialize();
704 // Find the type plane in the module map
705 ValueMap::iterator MI = mMap.find(V);
706 return MI == mMap.end() ? -1 : (int)MI->second;
709 /// getMetadataSlot - Get the slot number of a MDNode.
710 int SlotTracker::getMetadataSlot(const MDNode *N) {
711 // Check for uninitialized state and do lazy initialization.
712 initialize();
714 // Find the type plane in the module map
715 mdn_iterator MI = mdnMap.find(N);
716 return MI == mdnMap.end() ? -1 : (int)MI->second;
720 /// getLocalSlot - Get the slot number for a value that is local to a function.
721 int SlotTracker::getLocalSlot(const Value *V) {
722 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
724 // Check for uninitialized state and do lazy initialization.
725 initialize();
727 ValueMap::iterator FI = fMap.find(V);
728 return FI == fMap.end() ? -1 : (int)FI->second;
732 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
733 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
734 assert(V && "Can't insert a null Value into SlotTracker!");
735 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
736 assert(!V->hasName() && "Doesn't need a slot!");
738 unsigned DestSlot = mNext++;
739 mMap[V] = DestSlot;
741 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
742 DestSlot << " [");
743 // G = Global, F = Function, A = Alias, o = other
744 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
745 (isa<Function>(V) ? 'F' :
746 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
749 /// CreateSlot - Create a new slot for the specified value if it has no name.
750 void SlotTracker::CreateFunctionSlot(const Value *V) {
751 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
753 unsigned DestSlot = fNext++;
754 fMap[V] = DestSlot;
756 // G = Global, F = Function, o = other
757 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
758 DestSlot << " [o]\n");
761 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
762 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
763 assert(N && "Can't insert a null Value into SlotTracker!");
765 // Don't insert if N is a function-local metadata, these are always printed
766 // inline.
767 if (!N->isFunctionLocal()) {
768 mdn_iterator I = mdnMap.find(N);
769 if (I != mdnMap.end())
770 return;
772 unsigned DestSlot = mdnNext++;
773 mdnMap[N] = DestSlot;
776 // Recursively add any MDNodes referenced by operands.
777 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
778 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
779 CreateMetadataSlot(Op);
782 //===----------------------------------------------------------------------===//
783 // AsmWriter Implementation
784 //===----------------------------------------------------------------------===//
786 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
787 TypePrinting *TypePrinter,
788 SlotTracker *Machine,
789 const Module *Context);
793 static const char *getPredicateText(unsigned predicate) {
794 const char * pred = "unknown";
795 switch (predicate) {
796 case FCmpInst::FCMP_FALSE: pred = "false"; break;
797 case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
798 case FCmpInst::FCMP_OGT: pred = "ogt"; break;
799 case FCmpInst::FCMP_OGE: pred = "oge"; break;
800 case FCmpInst::FCMP_OLT: pred = "olt"; break;
801 case FCmpInst::FCMP_OLE: pred = "ole"; break;
802 case FCmpInst::FCMP_ONE: pred = "one"; break;
803 case FCmpInst::FCMP_ORD: pred = "ord"; break;
804 case FCmpInst::FCMP_UNO: pred = "uno"; break;
805 case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
806 case FCmpInst::FCMP_UGT: pred = "ugt"; break;
807 case FCmpInst::FCMP_UGE: pred = "uge"; break;
808 case FCmpInst::FCMP_ULT: pred = "ult"; break;
809 case FCmpInst::FCMP_ULE: pred = "ule"; break;
810 case FCmpInst::FCMP_UNE: pred = "une"; break;
811 case FCmpInst::FCMP_TRUE: pred = "true"; break;
812 case ICmpInst::ICMP_EQ: pred = "eq"; break;
813 case ICmpInst::ICMP_NE: pred = "ne"; break;
814 case ICmpInst::ICMP_SGT: pred = "sgt"; break;
815 case ICmpInst::ICMP_SGE: pred = "sge"; break;
816 case ICmpInst::ICMP_SLT: pred = "slt"; break;
817 case ICmpInst::ICMP_SLE: pred = "sle"; break;
818 case ICmpInst::ICMP_UGT: pred = "ugt"; break;
819 case ICmpInst::ICMP_UGE: pred = "uge"; break;
820 case ICmpInst::ICMP_ULT: pred = "ult"; break;
821 case ICmpInst::ICMP_ULE: pred = "ule"; break;
823 return pred;
827 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
828 if (const OverflowingBinaryOperator *OBO =
829 dyn_cast<OverflowingBinaryOperator>(U)) {
830 if (OBO->hasNoUnsignedWrap())
831 Out << " nuw";
832 if (OBO->hasNoSignedWrap())
833 Out << " nsw";
834 } else if (const PossiblyExactOperator *Div =
835 dyn_cast<PossiblyExactOperator>(U)) {
836 if (Div->isExact())
837 Out << " exact";
838 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
839 if (GEP->isInBounds())
840 Out << " inbounds";
844 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
845 TypePrinting &TypePrinter,
846 SlotTracker *Machine,
847 const Module *Context) {
848 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
849 if (CI->getType()->isIntegerTy(1)) {
850 Out << (CI->getZExtValue() ? "true" : "false");
851 return;
853 Out << CI->getValue();
854 return;
857 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
858 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
859 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
860 // We would like to output the FP constant value in exponential notation,
861 // but we cannot do this if doing so will lose precision. Check here to
862 // make sure that we only output it in exponential format if we can parse
863 // the value back and get the same value.
865 bool ignored;
866 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
867 double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
868 CFP->getValueAPF().convertToFloat();
869 SmallString<128> StrVal;
870 raw_svector_ostream(StrVal) << Val;
872 // Check to make sure that the stringized number is not some string like
873 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
874 // that the string matches the "[-+]?[0-9]" regex.
876 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
877 ((StrVal[0] == '-' || StrVal[0] == '+') &&
878 (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
879 // Reparse stringized version!
880 if (atof(StrVal.c_str()) == Val) {
881 Out << StrVal.str();
882 return;
885 // Otherwise we could not reparse it to exactly the same value, so we must
886 // output the string in hexadecimal format! Note that loading and storing
887 // floating point types changes the bits of NaNs on some hosts, notably
888 // x86, so we must not use these types.
889 assert(sizeof(double) == sizeof(uint64_t) &&
890 "assuming that double is 64 bits!");
891 char Buffer[40];
892 APFloat apf = CFP->getValueAPF();
893 // Floats are represented in ASCII IR as double, convert.
894 if (!isDouble)
895 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
896 &ignored);
897 Out << "0x" <<
898 utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
899 Buffer+40);
900 return;
903 // Some form of long double. These appear as a magic letter identifying
904 // the type, then a fixed number of hex digits.
905 Out << "0x";
906 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
907 Out << 'K';
908 // api needed to prevent premature destruction
909 APInt api = CFP->getValueAPF().bitcastToAPInt();
910 const uint64_t* p = api.getRawData();
911 uint64_t word = p[1];
912 int shiftcount=12;
913 int width = api.getBitWidth();
914 for (int j=0; j<width; j+=4, shiftcount-=4) {
915 unsigned int nibble = (word>>shiftcount) & 15;
916 if (nibble < 10)
917 Out << (unsigned char)(nibble + '0');
918 else
919 Out << (unsigned char)(nibble - 10 + 'A');
920 if (shiftcount == 0 && j+4 < width) {
921 word = *p;
922 shiftcount = 64;
923 if (width-j-4 < 64)
924 shiftcount = width-j-4;
927 return;
928 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
929 Out << 'L';
930 else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
931 Out << 'M';
932 else
933 llvm_unreachable("Unsupported floating point type");
934 // api needed to prevent premature destruction
935 APInt api = CFP->getValueAPF().bitcastToAPInt();
936 const uint64_t* p = api.getRawData();
937 uint64_t word = *p;
938 int shiftcount=60;
939 int width = api.getBitWidth();
940 for (int j=0; j<width; j+=4, shiftcount-=4) {
941 unsigned int nibble = (word>>shiftcount) & 15;
942 if (nibble < 10)
943 Out << (unsigned char)(nibble + '0');
944 else
945 Out << (unsigned char)(nibble - 10 + 'A');
946 if (shiftcount == 0 && j+4 < width) {
947 word = *(++p);
948 shiftcount = 64;
949 if (width-j-4 < 64)
950 shiftcount = width-j-4;
953 return;
956 if (isa<ConstantAggregateZero>(CV)) {
957 Out << "zeroinitializer";
958 return;
961 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
962 Out << "blockaddress(";
963 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
964 Context);
965 Out << ", ";
966 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
967 Context);
968 Out << ")";
969 return;
972 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
973 // As a special case, print the array as a string if it is an array of
974 // i8 with ConstantInt values.
976 const Type *ETy = CA->getType()->getElementType();
977 if (CA->isString()) {
978 Out << "c\"";
979 PrintEscapedString(CA->getAsString(), Out);
980 Out << '"';
981 } else { // Cannot output in string format...
982 Out << '[';
983 if (CA->getNumOperands()) {
984 TypePrinter.print(ETy, Out);
985 Out << ' ';
986 WriteAsOperandInternal(Out, CA->getOperand(0),
987 &TypePrinter, Machine,
988 Context);
989 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
990 Out << ", ";
991 TypePrinter.print(ETy, Out);
992 Out << ' ';
993 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
994 Context);
997 Out << ']';
999 return;
1002 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1003 if (CS->getType()->isPacked())
1004 Out << '<';
1005 Out << '{';
1006 unsigned N = CS->getNumOperands();
1007 if (N) {
1008 Out << ' ';
1009 TypePrinter.print(CS->getOperand(0)->getType(), Out);
1010 Out << ' ';
1012 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1013 Context);
1015 for (unsigned i = 1; i < N; i++) {
1016 Out << ", ";
1017 TypePrinter.print(CS->getOperand(i)->getType(), Out);
1018 Out << ' ';
1020 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1021 Context);
1023 Out << ' ';
1026 Out << '}';
1027 if (CS->getType()->isPacked())
1028 Out << '>';
1029 return;
1032 if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1033 const Type *ETy = CP->getType()->getElementType();
1034 assert(CP->getNumOperands() > 0 &&
1035 "Number of operands for a PackedConst must be > 0");
1036 Out << '<';
1037 TypePrinter.print(ETy, Out);
1038 Out << ' ';
1039 WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine,
1040 Context);
1041 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
1042 Out << ", ";
1043 TypePrinter.print(ETy, Out);
1044 Out << ' ';
1045 WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine,
1046 Context);
1048 Out << '>';
1049 return;
1052 if (isa<ConstantPointerNull>(CV)) {
1053 Out << "null";
1054 return;
1057 if (isa<UndefValue>(CV)) {
1058 Out << "undef";
1059 return;
1062 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1063 Out << CE->getOpcodeName();
1064 WriteOptimizationInfo(Out, CE);
1065 if (CE->isCompare())
1066 Out << ' ' << getPredicateText(CE->getPredicate());
1067 Out << " (";
1069 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1070 TypePrinter.print((*OI)->getType(), Out);
1071 Out << ' ';
1072 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1073 if (OI+1 != CE->op_end())
1074 Out << ", ";
1077 if (CE->hasIndices()) {
1078 const SmallVector<unsigned, 4> &Indices = CE->getIndices();
1079 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1080 Out << ", " << Indices[i];
1083 if (CE->isCast()) {
1084 Out << " to ";
1085 TypePrinter.print(CE->getType(), Out);
1088 Out << ')';
1089 return;
1092 Out << "<placeholder or erroneous Constant>";
1095 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1096 TypePrinting *TypePrinter,
1097 SlotTracker *Machine,
1098 const Module *Context) {
1099 Out << "!{";
1100 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1101 const Value *V = Node->getOperand(mi);
1102 if (V == 0)
1103 Out << "null";
1104 else {
1105 TypePrinter->print(V->getType(), Out);
1106 Out << ' ';
1107 WriteAsOperandInternal(Out, Node->getOperand(mi),
1108 TypePrinter, Machine, Context);
1110 if (mi + 1 != me)
1111 Out << ", ";
1114 Out << "}";
1118 /// WriteAsOperand - Write the name of the specified value out to the specified
1119 /// ostream. This can be useful when you just want to print int %reg126, not
1120 /// the whole instruction that generated it.
1122 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1123 TypePrinting *TypePrinter,
1124 SlotTracker *Machine,
1125 const Module *Context) {
1126 if (V->hasName()) {
1127 PrintLLVMName(Out, V);
1128 return;
1131 const Constant *CV = dyn_cast<Constant>(V);
1132 if (CV && !isa<GlobalValue>(CV)) {
1133 assert(TypePrinter && "Constants require TypePrinting!");
1134 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1135 return;
1138 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1139 Out << "asm ";
1140 if (IA->hasSideEffects())
1141 Out << "sideeffect ";
1142 if (IA->isAlignStack())
1143 Out << "alignstack ";
1144 Out << '"';
1145 PrintEscapedString(IA->getAsmString(), Out);
1146 Out << "\", \"";
1147 PrintEscapedString(IA->getConstraintString(), Out);
1148 Out << '"';
1149 return;
1152 if (const MDNode *N = dyn_cast<MDNode>(V)) {
1153 if (N->isFunctionLocal()) {
1154 // Print metadata inline, not via slot reference number.
1155 WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
1156 return;
1159 if (!Machine) {
1160 if (N->isFunctionLocal())
1161 Machine = new SlotTracker(N->getFunction());
1162 else
1163 Machine = new SlotTracker(Context);
1165 int Slot = Machine->getMetadataSlot(N);
1166 if (Slot == -1)
1167 Out << "<badref>";
1168 else
1169 Out << '!' << Slot;
1170 return;
1173 if (const MDString *MDS = dyn_cast<MDString>(V)) {
1174 Out << "!\"";
1175 PrintEscapedString(MDS->getString(), Out);
1176 Out << '"';
1177 return;
1180 if (V->getValueID() == Value::PseudoSourceValueVal ||
1181 V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1182 V->print(Out);
1183 return;
1186 char Prefix = '%';
1187 int Slot;
1188 if (Machine) {
1189 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1190 Slot = Machine->getGlobalSlot(GV);
1191 Prefix = '@';
1192 } else {
1193 Slot = Machine->getLocalSlot(V);
1195 } else {
1196 Machine = createSlotTracker(V);
1197 if (Machine) {
1198 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1199 Slot = Machine->getGlobalSlot(GV);
1200 Prefix = '@';
1201 } else {
1202 Slot = Machine->getLocalSlot(V);
1204 delete Machine;
1205 } else {
1206 Slot = -1;
1210 if (Slot != -1)
1211 Out << Prefix << Slot;
1212 else
1213 Out << "<badref>";
1216 void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1217 bool PrintType, const Module *Context) {
1219 // Fast path: Don't construct and populate a TypePrinting object if we
1220 // won't be needing any types printed.
1221 if (!PrintType &&
1222 ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
1223 V->hasName() || isa<GlobalValue>(V))) {
1224 WriteAsOperandInternal(Out, V, 0, 0, Context);
1225 return;
1228 if (Context == 0) Context = getModuleFromVal(V);
1230 TypePrinting TypePrinter;
1231 std::vector<const Type*> NumberedTypes;
1232 AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1233 if (PrintType) {
1234 TypePrinter.print(V->getType(), Out);
1235 Out << ' ';
1238 WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
1241 namespace {
1243 class AssemblyWriter {
1244 formatted_raw_ostream &Out;
1245 SlotTracker &Machine;
1246 const Module *TheModule;
1247 TypePrinting TypePrinter;
1248 AssemblyAnnotationWriter *AnnotationWriter;
1249 std::vector<const Type*> NumberedTypes;
1251 public:
1252 inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1253 const Module *M,
1254 AssemblyAnnotationWriter *AAW)
1255 : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1256 AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1259 void printMDNodeBody(const MDNode *MD);
1260 void printNamedMDNode(const NamedMDNode *NMD);
1262 void printModule(const Module *M);
1264 void writeOperand(const Value *Op, bool PrintType);
1265 void writeParamOperand(const Value *Operand, Attributes Attrs);
1267 void writeAllMDNodes();
1269 void printTypeSymbolTable(const TypeSymbolTable &ST);
1270 void printGlobal(const GlobalVariable *GV);
1271 void printAlias(const GlobalAlias *GV);
1272 void printFunction(const Function *F);
1273 void printArgument(const Argument *FA, Attributes Attrs);
1274 void printBasicBlock(const BasicBlock *BB);
1275 void printInstruction(const Instruction &I);
1277 private:
1278 // printInfoComment - Print a little comment after the instruction indicating
1279 // which slot it occupies.
1280 void printInfoComment(const Value &V);
1282 } // end of anonymous namespace
1284 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1285 if (Operand == 0) {
1286 Out << "<null operand!>";
1287 return;
1289 if (PrintType) {
1290 TypePrinter.print(Operand->getType(), Out);
1291 Out << ' ';
1293 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1296 void AssemblyWriter::writeParamOperand(const Value *Operand,
1297 Attributes Attrs) {
1298 if (Operand == 0) {
1299 Out << "<null operand!>";
1300 return;
1303 // Print the type
1304 TypePrinter.print(Operand->getType(), Out);
1305 // Print parameter attributes list
1306 if (Attrs != Attribute::None)
1307 Out << ' ' << Attribute::getAsString(Attrs);
1308 Out << ' ';
1309 // Print the operand
1310 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1313 void AssemblyWriter::printModule(const Module *M) {
1314 if (!M->getModuleIdentifier().empty() &&
1315 // Don't print the ID if it will start a new line (which would
1316 // require a comment char before it).
1317 M->getModuleIdentifier().find('\n') == std::string::npos)
1318 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1320 if (!M->getDataLayout().empty())
1321 Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1322 if (!M->getTargetTriple().empty())
1323 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1325 if (!M->getModuleInlineAsm().empty()) {
1326 // Split the string into lines, to make it easier to read the .ll file.
1327 std::string Asm = M->getModuleInlineAsm();
1328 size_t CurPos = 0;
1329 size_t NewLine = Asm.find_first_of('\n', CurPos);
1330 Out << '\n';
1331 while (NewLine != std::string::npos) {
1332 // We found a newline, print the portion of the asm string from the
1333 // last newline up to this newline.
1334 Out << "module asm \"";
1335 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1336 Out);
1337 Out << "\"\n";
1338 CurPos = NewLine+1;
1339 NewLine = Asm.find_first_of('\n', CurPos);
1341 std::string rest(Asm.begin()+CurPos, Asm.end());
1342 if (!rest.empty()) {
1343 Out << "module asm \"";
1344 PrintEscapedString(rest, Out);
1345 Out << "\"\n";
1349 // Loop over the dependent libraries and emit them.
1350 Module::lib_iterator LI = M->lib_begin();
1351 Module::lib_iterator LE = M->lib_end();
1352 if (LI != LE) {
1353 Out << '\n';
1354 Out << "deplibs = [ ";
1355 while (LI != LE) {
1356 Out << '"' << *LI << '"';
1357 ++LI;
1358 if (LI != LE)
1359 Out << ", ";
1361 Out << " ]";
1364 // Loop over the symbol table, emitting all id'd types.
1365 if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n';
1366 printTypeSymbolTable(M->getTypeSymbolTable());
1368 // Output all globals.
1369 if (!M->global_empty()) Out << '\n';
1370 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1371 I != E; ++I)
1372 printGlobal(I);
1374 // Output all aliases.
1375 if (!M->alias_empty()) Out << "\n";
1376 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1377 I != E; ++I)
1378 printAlias(I);
1380 // Output all of the functions.
1381 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1382 printFunction(I);
1384 // Output named metadata.
1385 if (!M->named_metadata_empty()) Out << '\n';
1387 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1388 E = M->named_metadata_end(); I != E; ++I)
1389 printNamedMDNode(I);
1391 // Output metadata.
1392 if (!Machine.mdn_empty()) {
1393 Out << '\n';
1394 writeAllMDNodes();
1398 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1399 Out << "!" << NMD->getName() << " = !{";
1400 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1401 if (i) Out << ", ";
1402 int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
1403 if (Slot == -1)
1404 Out << "<badref>";
1405 else
1406 Out << '!' << Slot;
1408 Out << "}\n";
1412 static void PrintLinkage(GlobalValue::LinkageTypes LT,
1413 formatted_raw_ostream &Out) {
1414 switch (LT) {
1415 case GlobalValue::ExternalLinkage: break;
1416 case GlobalValue::PrivateLinkage: Out << "private "; break;
1417 case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1418 case GlobalValue::LinkerPrivateWeakLinkage:
1419 Out << "linker_private_weak ";
1420 break;
1421 case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
1422 Out << "linker_private_weak_def_auto ";
1423 break;
1424 case GlobalValue::InternalLinkage: Out << "internal "; break;
1425 case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
1426 case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
1427 case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
1428 case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
1429 case GlobalValue::CommonLinkage: Out << "common "; break;
1430 case GlobalValue::AppendingLinkage: Out << "appending "; break;
1431 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
1432 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
1433 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1434 case GlobalValue::AvailableExternallyLinkage:
1435 Out << "available_externally ";
1436 break;
1441 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1442 formatted_raw_ostream &Out) {
1443 switch (Vis) {
1444 case GlobalValue::DefaultVisibility: break;
1445 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1446 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1450 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1451 if (GV->isMaterializable())
1452 Out << "; Materializable\n";
1454 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
1455 Out << " = ";
1457 if (!GV->hasInitializer() && GV->hasExternalLinkage())
1458 Out << "external ";
1460 PrintLinkage(GV->getLinkage(), Out);
1461 PrintVisibility(GV->getVisibility(), Out);
1463 if (GV->isThreadLocal()) Out << "thread_local ";
1464 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1465 Out << "addrspace(" << AddressSpace << ") ";
1466 if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
1467 Out << (GV->isConstant() ? "constant " : "global ");
1468 TypePrinter.print(GV->getType()->getElementType(), Out);
1470 if (GV->hasInitializer()) {
1471 Out << ' ';
1472 writeOperand(GV->getInitializer(), false);
1475 if (GV->hasSection()) {
1476 Out << ", section \"";
1477 PrintEscapedString(GV->getSection(), Out);
1478 Out << '"';
1480 if (GV->getAlignment())
1481 Out << ", align " << GV->getAlignment();
1483 printInfoComment(*GV);
1484 Out << '\n';
1487 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1488 if (GA->isMaterializable())
1489 Out << "; Materializable\n";
1491 // Don't crash when dumping partially built GA
1492 if (!GA->hasName())
1493 Out << "<<nameless>> = ";
1494 else {
1495 PrintLLVMName(Out, GA);
1496 Out << " = ";
1498 PrintVisibility(GA->getVisibility(), Out);
1500 Out << "alias ";
1502 PrintLinkage(GA->getLinkage(), Out);
1504 const Constant *Aliasee = GA->getAliasee();
1506 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1507 TypePrinter.print(GV->getType(), Out);
1508 Out << ' ';
1509 PrintLLVMName(Out, GV);
1510 } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1511 TypePrinter.print(F->getFunctionType(), Out);
1512 Out << "* ";
1514 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1515 } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1516 TypePrinter.print(GA->getType(), Out);
1517 Out << ' ';
1518 PrintLLVMName(Out, GA);
1519 } else {
1520 const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1521 // The only valid GEP is an all zero GEP.
1522 assert((CE->getOpcode() == Instruction::BitCast ||
1523 CE->getOpcode() == Instruction::GetElementPtr) &&
1524 "Unsupported aliasee");
1525 writeOperand(CE, false);
1528 printInfoComment(*GA);
1529 Out << '\n';
1532 void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1533 // Emit all numbered types.
1534 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1535 Out << '%' << i << " = type ";
1537 // Make sure we print out at least one level of the type structure, so
1538 // that we do not get %2 = type %2
1539 TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1540 Out << '\n';
1543 // Print the named types.
1544 for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1545 TI != TE; ++TI) {
1546 PrintLLVMName(Out, TI->first, LocalPrefix);
1547 Out << " = type ";
1549 // Make sure we print out at least one level of the type structure, so
1550 // that we do not get %FILE = type %FILE
1551 TypePrinter.printAtLeastOneLevel(TI->second, Out);
1552 Out << '\n';
1556 /// printFunction - Print all aspects of a function.
1558 void AssemblyWriter::printFunction(const Function *F) {
1559 // Print out the return type and name.
1560 Out << '\n';
1562 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1564 if (F->isMaterializable())
1565 Out << "; Materializable\n";
1567 if (F->isDeclaration())
1568 Out << "declare ";
1569 else
1570 Out << "define ";
1572 PrintLinkage(F->getLinkage(), Out);
1573 PrintVisibility(F->getVisibility(), Out);
1575 // Print the calling convention.
1576 switch (F->getCallingConv()) {
1577 case CallingConv::C: break; // default
1578 case CallingConv::Fast: Out << "fastcc "; break;
1579 case CallingConv::Cold: Out << "coldcc "; break;
1580 case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
1581 case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1582 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc "; break;
1583 case CallingConv::ARM_APCS: Out << "arm_apcscc "; break;
1584 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc "; break;
1585 case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1586 case CallingConv::MSP430_INTR: Out << "msp430_intrcc "; break;
1587 case CallingConv::PTX_Kernel: Out << "ptx_kernel "; break;
1588 case CallingConv::PTX_Device: Out << "ptx_device "; break;
1589 default: Out << "cc" << F->getCallingConv() << " "; break;
1592 const FunctionType *FT = F->getFunctionType();
1593 const AttrListPtr &Attrs = F->getAttributes();
1594 Attributes RetAttrs = Attrs.getRetAttributes();
1595 if (RetAttrs != Attribute::None)
1596 Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1597 TypePrinter.print(F->getReturnType(), Out);
1598 Out << ' ';
1599 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1600 Out << '(';
1601 Machine.incorporateFunction(F);
1603 // Loop over the arguments, printing them...
1605 unsigned Idx = 1;
1606 if (!F->isDeclaration()) {
1607 // If this isn't a declaration, print the argument names as well.
1608 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1609 I != E; ++I) {
1610 // Insert commas as we go... the first arg doesn't get a comma
1611 if (I != F->arg_begin()) Out << ", ";
1612 printArgument(I, Attrs.getParamAttributes(Idx));
1613 Idx++;
1615 } else {
1616 // Otherwise, print the types from the function type.
1617 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1618 // Insert commas as we go... the first arg doesn't get a comma
1619 if (i) Out << ", ";
1621 // Output type...
1622 TypePrinter.print(FT->getParamType(i), Out);
1624 Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1625 if (ArgAttrs != Attribute::None)
1626 Out << ' ' << Attribute::getAsString(ArgAttrs);
1630 // Finish printing arguments...
1631 if (FT->isVarArg()) {
1632 if (FT->getNumParams()) Out << ", ";
1633 Out << "..."; // Output varargs portion of signature!
1635 Out << ')';
1636 if (F->hasUnnamedAddr())
1637 Out << " unnamed_addr";
1638 Attributes FnAttrs = Attrs.getFnAttributes();
1639 if (FnAttrs != Attribute::None)
1640 Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1641 if (F->hasSection()) {
1642 Out << " section \"";
1643 PrintEscapedString(F->getSection(), Out);
1644 Out << '"';
1646 if (F->getAlignment())
1647 Out << " align " << F->getAlignment();
1648 if (F->hasGC())
1649 Out << " gc \"" << F->getGC() << '"';
1650 if (F->isDeclaration()) {
1651 Out << '\n';
1652 } else {
1653 Out << " {";
1654 // Output all of the function's basic blocks.
1655 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1656 printBasicBlock(I);
1658 Out << "}\n";
1661 Machine.purgeFunction();
1664 /// printArgument - This member is called for every argument that is passed into
1665 /// the function. Simply print it out
1667 void AssemblyWriter::printArgument(const Argument *Arg,
1668 Attributes Attrs) {
1669 // Output type...
1670 TypePrinter.print(Arg->getType(), Out);
1672 // Output parameter attributes list
1673 if (Attrs != Attribute::None)
1674 Out << ' ' << Attribute::getAsString(Attrs);
1676 // Output name, if available...
1677 if (Arg->hasName()) {
1678 Out << ' ';
1679 PrintLLVMName(Out, Arg);
1683 /// printBasicBlock - This member is called for each basic block in a method.
1685 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1686 if (BB->hasName()) { // Print out the label if it exists...
1687 Out << "\n";
1688 PrintLLVMName(Out, BB->getName(), LabelPrefix);
1689 Out << ':';
1690 } else if (!BB->use_empty()) { // Don't print block # of no uses...
1691 Out << "\n; <label>:";
1692 int Slot = Machine.getLocalSlot(BB);
1693 if (Slot != -1)
1694 Out << Slot;
1695 else
1696 Out << "<badref>";
1699 if (BB->getParent() == 0) {
1700 Out.PadToColumn(50);
1701 Out << "; Error: Block without parent!";
1702 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
1703 // Output predecessors for the block.
1704 Out.PadToColumn(50);
1705 Out << ";";
1706 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1708 if (PI == PE) {
1709 Out << " No predecessors!";
1710 } else {
1711 Out << " preds = ";
1712 writeOperand(*PI, false);
1713 for (++PI; PI != PE; ++PI) {
1714 Out << ", ";
1715 writeOperand(*PI, false);
1720 Out << "\n";
1722 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1724 // Output all of the instructions in the basic block...
1725 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1726 printInstruction(*I);
1727 Out << '\n';
1730 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1733 /// printInfoComment - Print a little comment after the instruction indicating
1734 /// which slot it occupies.
1736 void AssemblyWriter::printInfoComment(const Value &V) {
1737 if (AnnotationWriter) {
1738 AnnotationWriter->printInfoComment(V, Out);
1739 return;
1743 // This member is called for each Instruction in a function..
1744 void AssemblyWriter::printInstruction(const Instruction &I) {
1745 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1747 // Print out indentation for an instruction.
1748 Out << " ";
1750 // Print out name if it exists...
1751 if (I.hasName()) {
1752 PrintLLVMName(Out, &I);
1753 Out << " = ";
1754 } else if (!I.getType()->isVoidTy()) {
1755 // Print out the def slot taken.
1756 int SlotNum = Machine.getLocalSlot(&I);
1757 if (SlotNum == -1)
1758 Out << "<badref> = ";
1759 else
1760 Out << '%' << SlotNum << " = ";
1763 // If this is a volatile load or store, print out the volatile marker.
1764 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
1765 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1766 Out << "volatile ";
1767 } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1768 // If this is a call, check if it's a tail call.
1769 Out << "tail ";
1772 // Print out the opcode...
1773 Out << I.getOpcodeName();
1775 // Print out optimization information.
1776 WriteOptimizationInfo(Out, &I);
1778 // Print out the compare instruction predicates
1779 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1780 Out << ' ' << getPredicateText(CI->getPredicate());
1782 // Print out the type of the operands...
1783 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1785 // Special case conditional branches to swizzle the condition out to the front
1786 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1787 BranchInst &BI(cast<BranchInst>(I));
1788 Out << ' ';
1789 writeOperand(BI.getCondition(), true);
1790 Out << ", ";
1791 writeOperand(BI.getSuccessor(0), true);
1792 Out << ", ";
1793 writeOperand(BI.getSuccessor(1), true);
1795 } else if (isa<SwitchInst>(I)) {
1796 // Special case switch instruction to get formatting nice and correct.
1797 Out << ' ';
1798 writeOperand(Operand , true);
1799 Out << ", ";
1800 writeOperand(I.getOperand(1), true);
1801 Out << " [";
1803 for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1804 Out << "\n ";
1805 writeOperand(I.getOperand(op ), true);
1806 Out << ", ";
1807 writeOperand(I.getOperand(op+1), true);
1809 Out << "\n ]";
1810 } else if (isa<IndirectBrInst>(I)) {
1811 // Special case indirectbr instruction to get formatting nice and correct.
1812 Out << ' ';
1813 writeOperand(Operand, true);
1814 Out << ", [";
1816 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1817 if (i != 1)
1818 Out << ", ";
1819 writeOperand(I.getOperand(i), true);
1821 Out << ']';
1822 } else if (isa<PHINode>(I)) {
1823 Out << ' ';
1824 TypePrinter.print(I.getType(), Out);
1825 Out << ' ';
1827 for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1828 if (op) Out << ", ";
1829 Out << "[ ";
1830 writeOperand(I.getOperand(op ), false); Out << ", ";
1831 writeOperand(I.getOperand(op+1), false); Out << " ]";
1833 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1834 Out << ' ';
1835 writeOperand(I.getOperand(0), true);
1836 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1837 Out << ", " << *i;
1838 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1839 Out << ' ';
1840 writeOperand(I.getOperand(0), true); Out << ", ";
1841 writeOperand(I.getOperand(1), true);
1842 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1843 Out << ", " << *i;
1844 } else if (isa<ReturnInst>(I) && !Operand) {
1845 Out << " void";
1846 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1847 // Print the calling convention being used.
1848 switch (CI->getCallingConv()) {
1849 case CallingConv::C: break; // default
1850 case CallingConv::Fast: Out << " fastcc"; break;
1851 case CallingConv::Cold: Out << " coldcc"; break;
1852 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
1853 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1854 case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break;
1855 case CallingConv::ARM_APCS: Out << " arm_apcscc "; break;
1856 case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break;
1857 case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1858 case CallingConv::MSP430_INTR: Out << " msp430_intrcc "; break;
1859 case CallingConv::PTX_Kernel: Out << " ptx_kernel"; break;
1860 case CallingConv::PTX_Device: Out << " ptx_device"; break;
1861 default: Out << " cc" << CI->getCallingConv(); break;
1864 Operand = CI->getCalledValue();
1865 const PointerType *PTy = cast<PointerType>(Operand->getType());
1866 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1867 const Type *RetTy = FTy->getReturnType();
1868 const AttrListPtr &PAL = CI->getAttributes();
1870 if (PAL.getRetAttributes() != Attribute::None)
1871 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1873 // If possible, print out the short form of the call instruction. We can
1874 // only do this if the first argument is a pointer to a nonvararg function,
1875 // and if the return type is not a pointer to a function.
1877 Out << ' ';
1878 if (!FTy->isVarArg() &&
1879 (!RetTy->isPointerTy() ||
1880 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1881 TypePrinter.print(RetTy, Out);
1882 Out << ' ';
1883 writeOperand(Operand, false);
1884 } else {
1885 writeOperand(Operand, true);
1887 Out << '(';
1888 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
1889 if (op > 0)
1890 Out << ", ";
1891 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op + 1));
1893 Out << ')';
1894 if (PAL.getFnAttributes() != Attribute::None)
1895 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1896 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1897 Operand = II->getCalledValue();
1898 const PointerType *PTy = cast<PointerType>(Operand->getType());
1899 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1900 const Type *RetTy = FTy->getReturnType();
1901 const AttrListPtr &PAL = II->getAttributes();
1903 // Print the calling convention being used.
1904 switch (II->getCallingConv()) {
1905 case CallingConv::C: break; // default
1906 case CallingConv::Fast: Out << " fastcc"; break;
1907 case CallingConv::Cold: Out << " coldcc"; break;
1908 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
1909 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1910 case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break;
1911 case CallingConv::ARM_APCS: Out << " arm_apcscc "; break;
1912 case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break;
1913 case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1914 case CallingConv::MSP430_INTR: Out << " msp430_intrcc "; break;
1915 case CallingConv::PTX_Kernel: Out << " ptx_kernel"; break;
1916 case CallingConv::PTX_Device: Out << " ptx_device"; break;
1917 default: Out << " cc" << II->getCallingConv(); break;
1920 if (PAL.getRetAttributes() != Attribute::None)
1921 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1923 // If possible, print out the short form of the invoke instruction. We can
1924 // only do this if the first argument is a pointer to a nonvararg function,
1925 // and if the return type is not a pointer to a function.
1927 Out << ' ';
1928 if (!FTy->isVarArg() &&
1929 (!RetTy->isPointerTy() ||
1930 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1931 TypePrinter.print(RetTy, Out);
1932 Out << ' ';
1933 writeOperand(Operand, false);
1934 } else {
1935 writeOperand(Operand, true);
1937 Out << '(';
1938 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
1939 if (op)
1940 Out << ", ";
1941 writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op + 1));
1944 Out << ')';
1945 if (PAL.getFnAttributes() != Attribute::None)
1946 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1948 Out << "\n to ";
1949 writeOperand(II->getNormalDest(), true);
1950 Out << " unwind ";
1951 writeOperand(II->getUnwindDest(), true);
1953 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1954 Out << ' ';
1955 TypePrinter.print(AI->getType()->getElementType(), Out);
1956 if (!AI->getArraySize() || AI->isArrayAllocation()) {
1957 Out << ", ";
1958 writeOperand(AI->getArraySize(), true);
1960 if (AI->getAlignment()) {
1961 Out << ", align " << AI->getAlignment();
1963 } else if (isa<CastInst>(I)) {
1964 if (Operand) {
1965 Out << ' ';
1966 writeOperand(Operand, true); // Work with broken code
1968 Out << " to ";
1969 TypePrinter.print(I.getType(), Out);
1970 } else if (isa<VAArgInst>(I)) {
1971 if (Operand) {
1972 Out << ' ';
1973 writeOperand(Operand, true); // Work with broken code
1975 Out << ", ";
1976 TypePrinter.print(I.getType(), Out);
1977 } else if (Operand) { // Print the normal way.
1979 // PrintAllTypes - Instructions who have operands of all the same type
1980 // omit the type from all but the first operand. If the instruction has
1981 // different type operands (for example br), then they are all printed.
1982 bool PrintAllTypes = false;
1983 const Type *TheType = Operand->getType();
1985 // Select, Store and ShuffleVector always print all types.
1986 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1987 || isa<ReturnInst>(I)) {
1988 PrintAllTypes = true;
1989 } else {
1990 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1991 Operand = I.getOperand(i);
1992 // note that Operand shouldn't be null, but the test helps make dump()
1993 // more tolerant of malformed IR
1994 if (Operand && Operand->getType() != TheType) {
1995 PrintAllTypes = true; // We have differing types! Print them all!
1996 break;
2001 if (!PrintAllTypes) {
2002 Out << ' ';
2003 TypePrinter.print(TheType, Out);
2006 Out << ' ';
2007 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
2008 if (i) Out << ", ";
2009 writeOperand(I.getOperand(i), PrintAllTypes);
2013 // Print post operand alignment for load/store.
2014 if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
2015 Out << ", align " << cast<LoadInst>(I).getAlignment();
2016 } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
2017 Out << ", align " << cast<StoreInst>(I).getAlignment();
2020 // Print Metadata info.
2021 SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
2022 I.getAllMetadata(InstMD);
2023 if (!InstMD.empty()) {
2024 SmallVector<StringRef, 8> MDNames;
2025 I.getType()->getContext().getMDKindNames(MDNames);
2026 for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
2027 unsigned Kind = InstMD[i].first;
2028 if (Kind < MDNames.size()) {
2029 Out << ", !" << MDNames[Kind];
2030 } else {
2031 Out << ", !<unknown kind #" << Kind << ">";
2033 Out << ' ';
2034 WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
2035 TheModule);
2038 printInfoComment(I);
2041 static void WriteMDNodeComment(const MDNode *Node,
2042 formatted_raw_ostream &Out) {
2043 if (Node->getNumOperands() < 1)
2044 return;
2045 ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0));
2046 if (!CI) return;
2047 APInt Val = CI->getValue();
2048 APInt Tag = Val & ~APInt(Val.getBitWidth(), LLVMDebugVersionMask);
2049 if (Val.ult(LLVMDebugVersion))
2050 return;
2052 Out.PadToColumn(50);
2053 if (Tag == dwarf::DW_TAG_user_base)
2054 Out << "; [ DW_TAG_user_base ]";
2055 else if (Tag.isIntN(32)) {
2056 if (const char *TagName = dwarf::TagString(Tag.getZExtValue()))
2057 Out << "; [ " << TagName << " ]";
2061 void AssemblyWriter::writeAllMDNodes() {
2062 SmallVector<const MDNode *, 16> Nodes;
2063 Nodes.resize(Machine.mdn_size());
2064 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2065 I != E; ++I)
2066 Nodes[I->second] = cast<MDNode>(I->first);
2068 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2069 Out << '!' << i << " = metadata ";
2070 printMDNodeBody(Nodes[i]);
2074 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2075 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
2076 WriteMDNodeComment(Node, Out);
2077 Out << "\n";
2080 //===----------------------------------------------------------------------===//
2081 // External Interface declarations
2082 //===----------------------------------------------------------------------===//
2084 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2085 SlotTracker SlotTable(this);
2086 formatted_raw_ostream OS(ROS);
2087 AssemblyWriter W(OS, SlotTable, this, AAW);
2088 W.printModule(this);
2091 void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2092 SlotTracker SlotTable(getParent());
2093 formatted_raw_ostream OS(ROS);
2094 AssemblyWriter W(OS, SlotTable, getParent(), AAW);
2095 W.printNamedMDNode(this);
2098 void Type::print(raw_ostream &OS) const {
2099 if (this == 0) {
2100 OS << "<null Type>";
2101 return;
2103 TypePrinting().print(this, OS);
2106 void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2107 if (this == 0) {
2108 ROS << "printing a <null> value\n";
2109 return;
2111 formatted_raw_ostream OS(ROS);
2112 if (const Instruction *I = dyn_cast<Instruction>(this)) {
2113 const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2114 SlotTracker SlotTable(F);
2115 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2116 W.printInstruction(*I);
2117 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2118 SlotTracker SlotTable(BB->getParent());
2119 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2120 W.printBasicBlock(BB);
2121 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2122 SlotTracker SlotTable(GV->getParent());
2123 AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2124 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2125 W.printGlobal(V);
2126 else if (const Function *F = dyn_cast<Function>(GV))
2127 W.printFunction(F);
2128 else
2129 W.printAlias(cast<GlobalAlias>(GV));
2130 } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2131 const Function *F = N->getFunction();
2132 SlotTracker SlotTable(F);
2133 AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2134 W.printMDNodeBody(N);
2135 } else if (const Constant *C = dyn_cast<Constant>(this)) {
2136 TypePrinting TypePrinter;
2137 TypePrinter.print(C->getType(), OS);
2138 OS << ' ';
2139 WriteConstantInternal(OS, C, TypePrinter, 0, 0);
2140 } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2141 isa<Argument>(this)) {
2142 WriteAsOperand(OS, this, true, 0);
2143 } else {
2144 // Otherwise we don't know what it is. Call the virtual function to
2145 // allow a subclass to print itself.
2146 printCustom(OS);
2150 // Value::printCustom - subclasses should override this to implement printing.
2151 void Value::printCustom(raw_ostream &OS) const {
2152 llvm_unreachable("Unknown value to print out!");
2155 // Value::dump - allow easy printing of Values from the debugger.
2156 void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2158 // Type::dump - allow easy printing of Types from the debugger.
2159 // This one uses type names from the given context module
2160 void Type::dump(const Module *Context) const {
2161 WriteTypeSymbolic(dbgs(), this, Context);
2162 dbgs() << '\n';
2165 // Type::dump - allow easy printing of Types from the debugger.
2166 void Type::dump() const { dump(0); }
2168 // Module::dump() - Allow printing of Modules from the debugger.
2169 void Module::dump() const { print(dbgs(), 0); }