1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "LiveDebugVariables.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/Value.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/RegisterCoalescer.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/ADT/OwningPtr.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/STLExtras.h"
43 STATISTIC(numJoins
, "Number of interval joins performed");
44 STATISTIC(numCrossRCs
, "Number of cross class joins performed");
45 STATISTIC(numCommutes
, "Number of instruction commuting performed");
46 STATISTIC(numExtends
, "Number of copies extended");
47 STATISTIC(NumReMats
, "Number of instructions re-materialized");
48 STATISTIC(numPeep
, "Number of identity moves eliminated after coalescing");
49 STATISTIC(numAborts
, "Number of times interval joining aborted");
50 STATISTIC(numDeadValNo
, "Number of valno def marked dead");
52 char SimpleRegisterCoalescing::ID
= 0;
54 EnableJoining("join-liveintervals",
55 cl::desc("Coalesce copies (default=true)"),
59 DisableCrossClassJoin("disable-cross-class-join",
60 cl::desc("Avoid coalescing cross register class copies"),
61 cl::init(false), cl::Hidden
);
64 DisablePhysicalJoin("disable-physical-join",
65 cl::desc("Avoid coalescing physical register copies"),
66 cl::init(false), cl::Hidden
);
69 VerifyCoalescing("verify-coalescing",
70 cl::desc("Verify machine instrs before and after register coalescing"),
73 INITIALIZE_AG_PASS_BEGIN(SimpleRegisterCoalescing
, RegisterCoalescer
,
74 "simple-register-coalescing", "Simple Register Coalescing",
76 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
77 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables
)
78 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
79 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
80 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination
)
81 INITIALIZE_PASS_DEPENDENCY(PHIElimination
)
82 INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass
)
83 INITIALIZE_AG_DEPENDENCY(AliasAnalysis
)
84 INITIALIZE_AG_PASS_END(SimpleRegisterCoalescing
, RegisterCoalescer
,
85 "simple-register-coalescing", "Simple Register Coalescing",
88 char &llvm::SimpleRegisterCoalescingID
= SimpleRegisterCoalescing::ID
;
90 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage
&AU
) const {
92 AU
.addRequired
<AliasAnalysis
>();
93 AU
.addRequired
<LiveIntervals
>();
94 AU
.addPreserved
<LiveIntervals
>();
95 AU
.addRequired
<LiveDebugVariables
>();
96 AU
.addPreserved
<LiveDebugVariables
>();
97 AU
.addPreserved
<SlotIndexes
>();
98 AU
.addRequired
<MachineLoopInfo
>();
99 AU
.addPreserved
<MachineLoopInfo
>();
100 AU
.addPreservedID(MachineDominatorsID
);
101 AU
.addPreservedID(StrongPHIEliminationID
);
102 AU
.addPreservedID(PHIEliminationID
);
103 AU
.addPreservedID(TwoAddressInstructionPassID
);
104 MachineFunctionPass::getAnalysisUsage(AU
);
107 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
108 /// being the source and IntB being the dest, thus this defines a value number
109 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
110 /// see if we can merge these two pieces of B into a single value number,
111 /// eliminating a copy. For example:
115 /// B1 = A3 <- this copy
117 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
118 /// value number to be replaced with B0 (which simplifies the B liveinterval).
120 /// This returns true if an interval was modified.
122 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(const CoalescerPair
&CP
,
123 MachineInstr
*CopyMI
) {
124 // Bail if there is no dst interval - can happen when merging physical subreg
126 if (!li_
->hasInterval(CP
.getDstReg()))
130 li_
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
132 li_
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
133 SlotIndex CopyIdx
= li_
->getInstructionIndex(CopyMI
).getDefIndex();
135 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
136 // the example above.
137 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
138 if (BLR
== IntB
.end()) return false;
139 VNInfo
*BValNo
= BLR
->valno
;
141 // Get the location that B is defined at. Two options: either this value has
142 // an unknown definition point or it is defined at CopyIdx. If unknown, we
144 if (!BValNo
->isDefByCopy()) return false;
145 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
147 // AValNo is the value number in A that defines the copy, A3 in the example.
148 SlotIndex CopyUseIdx
= CopyIdx
.getUseIndex();
149 LiveInterval::iterator ALR
= IntA
.FindLiveRangeContaining(CopyUseIdx
);
150 // The live range might not exist after fun with physreg coalescing.
151 if (ALR
== IntA
.end()) return false;
152 VNInfo
*AValNo
= ALR
->valno
;
153 // If it's re-defined by an early clobber somewhere in the live range, then
154 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
156 // 172 %ECX<def> = MOV32rr %reg1039<kill>
157 // 180 INLINEASM <es:subl $5,$1
158 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
160 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
161 // 188 %EAX<def> = MOV32rr %EAX<kill>
162 // 196 %ECX<def> = MOV32rr %ECX<kill>
163 // 204 %ECX<def> = MOV32rr %ECX<kill>
164 // 212 %EAX<def> = MOV32rr %EAX<kill>
165 // 220 %EAX<def> = MOV32rr %EAX
166 // 228 %reg1039<def> = MOV32rr %ECX<kill>
167 // The early clobber operand ties ECX input to the ECX def.
169 // The live interval of ECX is represented as this:
170 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
171 // The coalescer has no idea there was a def in the middle of [174,230].
172 if (AValNo
->hasRedefByEC())
175 // If AValNo is defined as a copy from IntB, we can potentially process this.
176 // Get the instruction that defines this value number.
177 if (!CP
.isCoalescable(AValNo
->getCopy()))
180 // Get the LiveRange in IntB that this value number starts with.
181 LiveInterval::iterator ValLR
=
182 IntB
.FindLiveRangeContaining(AValNo
->def
.getPrevSlot());
183 if (ValLR
== IntB
.end())
186 // Make sure that the end of the live range is inside the same block as
188 MachineInstr
*ValLREndInst
=
189 li_
->getInstructionFromIndex(ValLR
->end
.getPrevSlot());
190 if (!ValLREndInst
|| ValLREndInst
->getParent() != CopyMI
->getParent())
193 // Okay, we now know that ValLR ends in the same block that the CopyMI
194 // live-range starts. If there are no intervening live ranges between them in
195 // IntB, we can merge them.
196 if (ValLR
+1 != BLR
) return false;
198 // If a live interval is a physical register, conservatively check if any
199 // of its sub-registers is overlapping the live interval of the virtual
200 // register. If so, do not coalesce.
201 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
) &&
202 *tri_
->getSubRegisters(IntB
.reg
)) {
203 for (const unsigned* SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
)
204 if (li_
->hasInterval(*SR
) && IntA
.overlaps(li_
->getInterval(*SR
))) {
206 dbgs() << "\t\tInterfere with sub-register ";
207 li_
->getInterval(*SR
).print(dbgs(), tri_
);
214 dbgs() << "Extending: ";
215 IntB
.print(dbgs(), tri_
);
218 SlotIndex FillerStart
= ValLR
->end
, FillerEnd
= BLR
->start
;
219 // We are about to delete CopyMI, so need to remove it as the 'instruction
220 // that defines this value #'. Update the valnum with the new defining
222 BValNo
->def
= FillerStart
;
225 // Okay, we can merge them. We need to insert a new liverange:
226 // [ValLR.end, BLR.begin) of either value number, then we merge the
227 // two value numbers.
228 IntB
.addRange(LiveRange(FillerStart
, FillerEnd
, BValNo
));
230 // If the IntB live range is assigned to a physical register, and if that
231 // physreg has sub-registers, update their live intervals as well.
232 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
)) {
233 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
234 if (!li_
->hasInterval(*SR
))
236 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
237 SRLI
.addRange(LiveRange(FillerStart
, FillerEnd
,
238 SRLI
.getNextValue(FillerStart
, 0,
239 li_
->getVNInfoAllocator())));
243 // Okay, merge "B1" into the same value number as "B0".
244 if (BValNo
!= ValLR
->valno
) {
245 IntB
.MergeValueNumberInto(BValNo
, ValLR
->valno
);
248 dbgs() << " result = ";
249 IntB
.print(dbgs(), tri_
);
253 // If the source instruction was killing the source register before the
254 // merge, unset the isKill marker given the live range has been extended.
255 int UIdx
= ValLREndInst
->findRegisterUseOperandIdx(IntB
.reg
, true);
257 ValLREndInst
->getOperand(UIdx
).setIsKill(false);
260 // If the copy instruction was killing the destination register before the
261 // merge, find the last use and trim the live range. That will also add the
263 if (ALR
->end
== CopyIdx
)
264 TrimLiveIntervalToLastUse(CopyUseIdx
, CopyMI
->getParent(), IntA
, ALR
);
270 /// HasOtherReachingDefs - Return true if there are definitions of IntB
271 /// other than BValNo val# that can reach uses of AValno val# of IntA.
272 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval
&IntA
,
276 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
278 if (AI
->valno
!= AValNo
) continue;
279 LiveInterval::Ranges::iterator BI
=
280 std::upper_bound(IntB
.ranges
.begin(), IntB
.ranges
.end(), AI
->start
);
281 if (BI
!= IntB
.ranges
.begin())
283 for (; BI
!= IntB
.ranges
.end() && AI
->end
>= BI
->start
; ++BI
) {
284 if (BI
->valno
== BValNo
)
286 if (BI
->start
<= AI
->start
&& BI
->end
> AI
->start
)
288 if (BI
->start
> AI
->start
&& BI
->start
< AI
->end
)
295 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
296 /// IntA being the source and IntB being the dest, thus this defines a value
297 /// number in IntB. If the source value number (in IntA) is defined by a
298 /// commutable instruction and its other operand is coalesced to the copy dest
299 /// register, see if we can transform the copy into a noop by commuting the
300 /// definition. For example,
302 /// A3 = op A2 B0<kill>
304 /// B1 = A3 <- this copy
306 /// = op A3 <- more uses
310 /// B2 = op B0 A2<kill>
312 /// B1 = B2 <- now an identify copy
314 /// = op B2 <- more uses
316 /// This returns true if an interval was modified.
318 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(const CoalescerPair
&CP
,
319 MachineInstr
*CopyMI
) {
320 // FIXME: For now, only eliminate the copy by commuting its def when the
321 // source register is a virtual register. We want to guard against cases
322 // where the copy is a back edge copy and commuting the def lengthen the
323 // live interval of the source register to the entire loop.
324 if (CP
.isPhys() && CP
.isFlipped())
327 // Bail if there is no dst interval.
328 if (!li_
->hasInterval(CP
.getDstReg()))
331 SlotIndex CopyIdx
= li_
->getInstructionIndex(CopyMI
).getDefIndex();
334 li_
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
336 li_
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
338 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
339 // the example above.
340 VNInfo
*BValNo
= IntB
.getVNInfoAt(CopyIdx
);
341 if (!BValNo
|| !BValNo
->isDefByCopy())
344 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
346 // AValNo is the value number in A that defines the copy, A3 in the example.
347 VNInfo
*AValNo
= IntA
.getVNInfoAt(CopyIdx
.getUseIndex());
348 assert(AValNo
&& "COPY source not live");
350 // If other defs can reach uses of this def, then it's not safe to perform
352 if (AValNo
->isPHIDef() || AValNo
->isUnused() || AValNo
->hasPHIKill())
354 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(AValNo
->def
);
357 const TargetInstrDesc
&TID
= DefMI
->getDesc();
358 if (!TID
.isCommutable())
360 // If DefMI is a two-address instruction then commuting it will change the
361 // destination register.
362 int DefIdx
= DefMI
->findRegisterDefOperandIdx(IntA
.reg
);
363 assert(DefIdx
!= -1);
365 if (!DefMI
->isRegTiedToUseOperand(DefIdx
, &UseOpIdx
))
367 unsigned Op1
, Op2
, NewDstIdx
;
368 if (!tii_
->findCommutedOpIndices(DefMI
, Op1
, Op2
))
372 else if (Op2
== UseOpIdx
)
377 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
378 unsigned NewReg
= NewDstMO
.getReg();
379 if (NewReg
!= IntB
.reg
|| !NewDstMO
.isKill())
382 // Make sure there are no other definitions of IntB that would reach the
383 // uses which the new definition can reach.
384 if (HasOtherReachingDefs(IntA
, IntB
, AValNo
, BValNo
))
387 // Abort if the aliases of IntB.reg have values that are not simply the
388 // clobbers from the superreg.
389 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
))
390 for (const unsigned *AS
= tri_
->getAliasSet(IntB
.reg
); *AS
; ++AS
)
391 if (li_
->hasInterval(*AS
) &&
392 HasOtherReachingDefs(IntA
, li_
->getInterval(*AS
), AValNo
, 0))
395 // If some of the uses of IntA.reg is already coalesced away, return false.
396 // It's not possible to determine whether it's safe to perform the coalescing.
397 for (MachineRegisterInfo::use_nodbg_iterator UI
=
398 mri_
->use_nodbg_begin(IntA
.reg
),
399 UE
= mri_
->use_nodbg_end(); UI
!= UE
; ++UI
) {
400 MachineInstr
*UseMI
= &*UI
;
401 SlotIndex UseIdx
= li_
->getInstructionIndex(UseMI
);
402 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
403 if (ULR
== IntA
.end())
405 if (ULR
->valno
== AValNo
&& JoinedCopies
.count(UseMI
))
409 DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo
->def
<< '\t'
412 // At this point we have decided that it is legal to do this
413 // transformation. Start by commuting the instruction.
414 MachineBasicBlock
*MBB
= DefMI
->getParent();
415 MachineInstr
*NewMI
= tii_
->commuteInstruction(DefMI
);
418 if (NewMI
!= DefMI
) {
419 li_
->ReplaceMachineInstrInMaps(DefMI
, NewMI
);
420 MBB
->insert(DefMI
, NewMI
);
423 unsigned OpIdx
= NewMI
->findRegisterUseOperandIdx(IntA
.reg
, false);
424 NewMI
->getOperand(OpIdx
).setIsKill();
426 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
435 // Update uses of IntA of the specific Val# with IntB.
436 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
437 UE
= mri_
->use_end(); UI
!= UE
;) {
438 MachineOperand
&UseMO
= UI
.getOperand();
439 MachineInstr
*UseMI
= &*UI
;
441 if (JoinedCopies
.count(UseMI
))
443 if (UseMI
->isDebugValue()) {
444 // FIXME These don't have an instruction index. Not clear we have enough
445 // info to decide whether to do this replacement or not. For now do it.
446 UseMO
.setReg(NewReg
);
449 SlotIndex UseIdx
= li_
->getInstructionIndex(UseMI
).getUseIndex();
450 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
451 if (ULR
== IntA
.end() || ULR
->valno
!= AValNo
)
453 if (TargetRegisterInfo::isPhysicalRegister(NewReg
))
454 UseMO
.substPhysReg(NewReg
, *tri_
);
456 UseMO
.setReg(NewReg
);
459 if (!UseMI
->isCopy())
461 if (UseMI
->getOperand(0).getReg() != IntB
.reg
||
462 UseMI
->getOperand(0).getSubReg())
465 // This copy will become a noop. If it's defining a new val#, merge it into
467 SlotIndex DefIdx
= UseIdx
.getDefIndex();
468 VNInfo
*DVNI
= IntB
.getVNInfoAt(DefIdx
);
471 DEBUG(dbgs() << "\t\tnoop: " << DefIdx
<< '\t' << *UseMI
);
472 assert(DVNI
->def
== DefIdx
);
473 BValNo
= IntB
.MergeValueNumberInto(BValNo
, DVNI
);
474 JoinedCopies
.insert(UseMI
);
477 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
479 VNInfo
*ValNo
= BValNo
;
480 ValNo
->def
= AValNo
->def
;
482 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
484 if (AI
->valno
!= AValNo
) continue;
485 IntB
.addRange(LiveRange(AI
->start
, AI
->end
, ValNo
));
487 DEBUG(dbgs() << "\t\textended: " << IntB
<< '\n');
489 IntA
.removeValNo(AValNo
);
490 DEBUG(dbgs() << "\t\ttrimmed: " << IntA
<< '\n');
495 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
496 /// fallthoughs to SuccMBB.
497 static bool isSameOrFallThroughBB(MachineBasicBlock
*MBB
,
498 MachineBasicBlock
*SuccMBB
,
499 const TargetInstrInfo
*tii_
) {
502 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
503 SmallVector
<MachineOperand
, 4> Cond
;
504 return !tii_
->AnalyzeBranch(*MBB
, TBB
, FBB
, Cond
) && !TBB
&& !FBB
&&
505 MBB
->isSuccessor(SuccMBB
);
508 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
509 /// from a physical register live interval as well as from the live intervals
510 /// of its sub-registers.
511 static void removeRange(LiveInterval
&li
,
512 SlotIndex Start
, SlotIndex End
,
513 LiveIntervals
*li_
, const TargetRegisterInfo
*tri_
) {
514 li
.removeRange(Start
, End
, true);
515 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
)) {
516 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
517 if (!li_
->hasInterval(*SR
))
519 LiveInterval
&sli
= li_
->getInterval(*SR
);
520 SlotIndex RemoveStart
= Start
;
521 SlotIndex RemoveEnd
= Start
;
523 while (RemoveEnd
!= End
) {
524 LiveInterval::iterator LR
= sli
.FindLiveRangeContaining(RemoveStart
);
527 RemoveEnd
= (LR
->end
< End
) ? LR
->end
: End
;
528 sli
.removeRange(RemoveStart
, RemoveEnd
, true);
529 RemoveStart
= RemoveEnd
;
535 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
536 /// as the copy instruction, trim the live interval to the last use and return
539 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(SlotIndex CopyIdx
,
540 MachineBasicBlock
*CopyMBB
,
542 const LiveRange
*LR
) {
543 SlotIndex MBBStart
= li_
->getMBBStartIdx(CopyMBB
);
544 SlotIndex LastUseIdx
;
545 MachineOperand
*LastUse
=
546 lastRegisterUse(LR
->start
, CopyIdx
.getPrevSlot(), li
.reg
, LastUseIdx
);
548 MachineInstr
*LastUseMI
= LastUse
->getParent();
549 if (!isSameOrFallThroughBB(LastUseMI
->getParent(), CopyMBB
, tii_
)) {
556 // r1025<dead> = r1024<kill>
557 if (MBBStart
< LR
->end
)
558 removeRange(li
, MBBStart
, LR
->end
, li_
, tri_
);
562 // There are uses before the copy, just shorten the live range to the end
564 LastUse
->setIsKill();
565 removeRange(li
, LastUseIdx
.getDefIndex(), LR
->end
, li_
, tri_
);
566 if (LastUseMI
->isCopy()) {
567 MachineOperand
&DefMO
= LastUseMI
->getOperand(0);
568 if (DefMO
.getReg() == li
.reg
&& !DefMO
.getSubReg())
575 if (LR
->start
<= MBBStart
&& LR
->end
> MBBStart
) {
576 if (LR
->start
== li_
->getZeroIndex()) {
577 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
578 // Live-in to the function but dead. Remove it from entry live-in set.
579 mf_
->begin()->removeLiveIn(li
.reg
);
581 // FIXME: Shorten intervals in BBs that reaches this BB.
587 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
588 /// computation, replace the copy by rematerialize the definition.
589 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval
&SrcInt
,
593 MachineInstr
*CopyMI
) {
594 SlotIndex CopyIdx
= li_
->getInstructionIndex(CopyMI
).getUseIndex();
595 LiveInterval::iterator SrcLR
= SrcInt
.FindLiveRangeContaining(CopyIdx
);
596 assert(SrcLR
!= SrcInt
.end() && "Live range not found!");
597 VNInfo
*ValNo
= SrcLR
->valno
;
598 // If other defs can reach uses of this def, then it's not safe to perform
600 if (ValNo
->isPHIDef() || ValNo
->isUnused() || ValNo
->hasPHIKill())
602 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(ValNo
->def
);
605 assert(DefMI
&& "Defining instruction disappeared");
606 const TargetInstrDesc
&TID
= DefMI
->getDesc();
607 if (!TID
.isAsCheapAsAMove())
609 if (!tii_
->isTriviallyReMaterializable(DefMI
, AA
))
611 bool SawStore
= false;
612 if (!DefMI
->isSafeToMove(tii_
, AA
, SawStore
))
614 if (TID
.getNumDefs() != 1)
616 if (!DefMI
->isImplicitDef()) {
617 // Make sure the copy destination register class fits the instruction
618 // definition register class. The mismatch can happen as a result of earlier
619 // extract_subreg, insert_subreg, subreg_to_reg coalescing.
620 const TargetRegisterClass
*RC
= TID
.OpInfo
[0].getRegClass(tri_
);
621 if (TargetRegisterInfo::isVirtualRegister(DstReg
)) {
622 if (mri_
->getRegClass(DstReg
) != RC
)
624 } else if (!RC
->contains(DstReg
))
628 // If destination register has a sub-register index on it, make sure it
629 // matches the instruction register class.
631 const TargetInstrDesc
&TID
= DefMI
->getDesc();
632 if (TID
.getNumDefs() != 1)
634 const TargetRegisterClass
*DstRC
= mri_
->getRegClass(DstReg
);
635 const TargetRegisterClass
*DstSubRC
=
636 DstRC
->getSubRegisterRegClass(DstSubIdx
);
637 const TargetRegisterClass
*DefRC
= TID
.OpInfo
[0].getRegClass(tri_
);
640 else if (DefRC
!= DstSubRC
)
644 RemoveCopyFlag(DstReg
, CopyMI
);
646 MachineBasicBlock
*MBB
= CopyMI
->getParent();
647 MachineBasicBlock::iterator MII
=
648 llvm::next(MachineBasicBlock::iterator(CopyMI
));
649 tii_
->reMaterialize(*MBB
, MII
, DstReg
, DstSubIdx
, DefMI
, *tri_
);
650 MachineInstr
*NewMI
= prior(MII
);
652 // CopyMI may have implicit operands, transfer them over to the newly
653 // rematerialized instruction. And update implicit def interval valnos.
654 for (unsigned i
= CopyMI
->getDesc().getNumOperands(),
655 e
= CopyMI
->getNumOperands(); i
!= e
; ++i
) {
656 MachineOperand
&MO
= CopyMI
->getOperand(i
);
657 if (MO
.isReg() && MO
.isImplicit())
658 NewMI
->addOperand(MO
);
660 RemoveCopyFlag(MO
.getReg(), CopyMI
);
663 NewMI
->copyImplicitOps(CopyMI
);
664 li_
->ReplaceMachineInstrInMaps(CopyMI
, NewMI
);
665 CopyMI
->eraseFromParent();
666 ReMatCopies
.insert(CopyMI
);
667 ReMatDefs
.insert(DefMI
);
668 DEBUG(dbgs() << "Remat: " << *NewMI
);
671 // The source interval can become smaller because we removed a use.
673 li_
->shrinkToUses(&SrcInt
);
678 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
679 /// update the subregister number if it is not zero. If DstReg is a
680 /// physical register and the existing subregister number of the def / use
681 /// being updated is not zero, make sure to set it to the correct physical
684 SimpleRegisterCoalescing::UpdateRegDefsUses(const CoalescerPair
&CP
) {
685 bool DstIsPhys
= CP
.isPhys();
686 unsigned SrcReg
= CP
.getSrcReg();
687 unsigned DstReg
= CP
.getDstReg();
688 unsigned SubIdx
= CP
.getSubIdx();
690 // Update LiveDebugVariables.
691 ldv_
->renameRegister(SrcReg
, DstReg
, SubIdx
);
693 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(SrcReg
);
694 MachineInstr
*UseMI
= I
.skipInstruction();) {
695 // A PhysReg copy that won't be coalesced can perhaps be rematerialized
698 if (UseMI
->isCopy() &&
699 !UseMI
->getOperand(1).getSubReg() &&
700 !UseMI
->getOperand(0).getSubReg() &&
701 UseMI
->getOperand(1).getReg() == SrcReg
&&
702 UseMI
->getOperand(0).getReg() != SrcReg
&&
703 UseMI
->getOperand(0).getReg() != DstReg
&&
704 !JoinedCopies
.count(UseMI
) &&
705 ReMaterializeTrivialDef(li_
->getInterval(SrcReg
), false,
706 UseMI
->getOperand(0).getReg(), 0, UseMI
))
710 SmallVector
<unsigned,8> Ops
;
712 tie(Reads
, Writes
) = UseMI
->readsWritesVirtualRegister(SrcReg
, &Ops
);
713 bool Kills
= false, Deads
= false;
715 // Replace SrcReg with DstReg in all UseMI operands.
716 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
717 MachineOperand
&MO
= UseMI
->getOperand(Ops
[i
]);
718 Kills
|= MO
.isKill();
719 Deads
|= MO
.isDead();
722 MO
.substPhysReg(DstReg
, *tri_
);
724 MO
.substVirtReg(DstReg
, SubIdx
, *tri_
);
727 // This instruction is a copy that will be removed.
728 if (JoinedCopies
.count(UseMI
))
732 // If UseMI was a simple SrcReg def, make sure we didn't turn it into a
733 // read-modify-write of DstReg.
735 UseMI
->addRegisterDead(DstReg
, tri_
);
736 else if (!Reads
&& Writes
)
737 UseMI
->addRegisterDefined(DstReg
, tri_
);
739 // Kill flags apply to the whole physical register.
740 if (DstIsPhys
&& Kills
)
741 UseMI
->addRegisterKilled(DstReg
, tri_
);
745 dbgs() << "\t\tupdated: ";
746 if (!UseMI
->isDebugValue())
747 dbgs() << li_
->getInstructionIndex(UseMI
) << "\t";
753 /// removeIntervalIfEmpty - Check if the live interval of a physical register
754 /// is empty, if so remove it and also remove the empty intervals of its
755 /// sub-registers. Return true if live interval is removed.
756 static bool removeIntervalIfEmpty(LiveInterval
&li
, LiveIntervals
*li_
,
757 const TargetRegisterInfo
*tri_
) {
759 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
))
760 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
761 if (!li_
->hasInterval(*SR
))
763 LiveInterval
&sli
= li_
->getInterval(*SR
);
765 li_
->removeInterval(*SR
);
767 li_
->removeInterval(li
.reg
);
773 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
774 /// Return true if live interval is removed.
775 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval
&li
,
776 MachineInstr
*CopyMI
) {
777 SlotIndex CopyIdx
= li_
->getInstructionIndex(CopyMI
);
778 LiveInterval::iterator MLR
=
779 li
.FindLiveRangeContaining(CopyIdx
.getDefIndex());
781 return false; // Already removed by ShortenDeadCopySrcLiveRange.
782 SlotIndex RemoveStart
= MLR
->start
;
783 SlotIndex RemoveEnd
= MLR
->end
;
784 SlotIndex DefIdx
= CopyIdx
.getDefIndex();
785 // Remove the liverange that's defined by this.
786 if (RemoveStart
== DefIdx
&& RemoveEnd
== DefIdx
.getStoreIndex()) {
787 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
788 return removeIntervalIfEmpty(li
, li_
, tri_
);
793 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
794 /// the val# it defines. If the live interval becomes empty, remove it as well.
795 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval
&li
,
796 MachineInstr
*DefMI
) {
797 SlotIndex DefIdx
= li_
->getInstructionIndex(DefMI
).getDefIndex();
798 LiveInterval::iterator MLR
= li
.FindLiveRangeContaining(DefIdx
);
799 if (DefIdx
!= MLR
->valno
->def
)
801 li
.removeValNo(MLR
->valno
);
802 return removeIntervalIfEmpty(li
, li_
, tri_
);
805 void SimpleRegisterCoalescing::RemoveCopyFlag(unsigned DstReg
,
806 const MachineInstr
*CopyMI
) {
807 SlotIndex DefIdx
= li_
->getInstructionIndex(CopyMI
).getDefIndex();
808 if (li_
->hasInterval(DstReg
)) {
809 LiveInterval
&LI
= li_
->getInterval(DstReg
);
810 if (const LiveRange
*LR
= LI
.getLiveRangeContaining(DefIdx
))
811 if (LR
->valno
->def
== DefIdx
)
812 LR
->valno
->setCopy(0);
814 if (!TargetRegisterInfo::isPhysicalRegister(DstReg
))
816 for (const unsigned* AS
= tri_
->getAliasSet(DstReg
); *AS
; ++AS
) {
817 if (!li_
->hasInterval(*AS
))
819 LiveInterval
&LI
= li_
->getInterval(*AS
);
820 if (const LiveRange
*LR
= LI
.getLiveRangeContaining(DefIdx
))
821 if (LR
->valno
->def
== DefIdx
)
822 LR
->valno
->setCopy(0);
826 /// PropagateDeadness - Propagate the dead marker to the instruction which
827 /// defines the val#.
828 static void PropagateDeadness(LiveInterval
&li
, MachineInstr
*CopyMI
,
829 SlotIndex
&LRStart
, LiveIntervals
*li_
,
830 const TargetRegisterInfo
* tri_
) {
831 MachineInstr
*DefMI
=
832 li_
->getInstructionFromIndex(LRStart
.getDefIndex());
833 if (DefMI
&& DefMI
!= CopyMI
) {
834 int DeadIdx
= DefMI
->findRegisterDefOperandIdx(li
.reg
);
836 DefMI
->getOperand(DeadIdx
).setIsDead();
838 DefMI
->addOperand(MachineOperand::CreateReg(li
.reg
,
839 /*def*/true, /*implicit*/true, /*kill*/false, /*dead*/true));
840 LRStart
= LRStart
.getNextSlot();
844 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
845 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
846 /// ends the live range there. If there isn't another use, then this live range
847 /// is dead. Return true if live interval is removed.
849 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval
&li
,
850 MachineInstr
*CopyMI
) {
851 SlotIndex CopyIdx
= li_
->getInstructionIndex(CopyMI
);
852 if (CopyIdx
== SlotIndex()) {
853 // FIXME: special case: function live in. It can be a general case if the
854 // first instruction index starts at > 0 value.
855 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
856 // Live-in to the function but dead. Remove it from entry live-in set.
857 if (mf_
->begin()->isLiveIn(li
.reg
))
858 mf_
->begin()->removeLiveIn(li
.reg
);
859 if (const LiveRange
*LR
= li
.getLiveRangeContaining(CopyIdx
))
860 removeRange(li
, LR
->start
, LR
->end
, li_
, tri_
);
861 return removeIntervalIfEmpty(li
, li_
, tri_
);
864 LiveInterval::iterator LR
=
865 li
.FindLiveRangeContaining(CopyIdx
.getPrevIndex().getStoreIndex());
867 // Livein but defined by a phi.
870 SlotIndex RemoveStart
= LR
->start
;
871 SlotIndex RemoveEnd
= CopyIdx
.getStoreIndex();
872 if (LR
->end
> RemoveEnd
)
873 // More uses past this copy? Nothing to do.
876 // If there is a last use in the same bb, we can't remove the live range.
877 // Shorten the live interval and return.
878 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
879 if (TrimLiveIntervalToLastUse(CopyIdx
, CopyMBB
, li
, LR
))
882 // There are other kills of the val#. Nothing to do.
883 if (!li
.isOnlyLROfValNo(LR
))
886 MachineBasicBlock
*StartMBB
= li_
->getMBBFromIndex(RemoveStart
);
887 if (!isSameOrFallThroughBB(StartMBB
, CopyMBB
, tii_
))
888 // If the live range starts in another mbb and the copy mbb is not a fall
889 // through mbb, then we can only cut the range from the beginning of the
891 RemoveStart
= li_
->getMBBStartIdx(CopyMBB
).getNextIndex().getBaseIndex();
893 if (LR
->valno
->def
== RemoveStart
) {
894 // If the def MI defines the val# and this copy is the only kill of the
895 // val#, then propagate the dead marker.
896 PropagateDeadness(li
, CopyMI
, RemoveStart
, li_
, tri_
);
900 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
901 return removeIntervalIfEmpty(li
, li_
, tri_
);
905 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
906 /// two virtual registers from different register classes.
908 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned SrcReg
,
910 const TargetRegisterClass
*SrcRC
,
911 const TargetRegisterClass
*DstRC
,
912 const TargetRegisterClass
*NewRC
) {
913 unsigned NewRCCount
= allocatableRCRegs_
[NewRC
].count();
914 // This heuristics is good enough in practice, but it's obviously not *right*.
915 // 4 is a magic number that works well enough for x86, ARM, etc. It filter
916 // out all but the most restrictive register classes.
917 if (NewRCCount
> 4 ||
918 // Early exit if the function is fairly small, coalesce aggressively if
919 // that's the case. For really special register classes with 3 or
920 // fewer registers, be a bit more careful.
921 (li_
->getFuncInstructionCount() / NewRCCount
) < 8)
923 LiveInterval
&SrcInt
= li_
->getInterval(SrcReg
);
924 LiveInterval
&DstInt
= li_
->getInterval(DstReg
);
925 unsigned SrcSize
= li_
->getApproximateInstructionCount(SrcInt
);
926 unsigned DstSize
= li_
->getApproximateInstructionCount(DstInt
);
927 if (SrcSize
<= NewRCCount
&& DstSize
<= NewRCCount
)
929 // Estimate *register use density*. If it doubles or more, abort.
930 unsigned SrcUses
= std::distance(mri_
->use_nodbg_begin(SrcReg
),
931 mri_
->use_nodbg_end());
932 unsigned DstUses
= std::distance(mri_
->use_nodbg_begin(DstReg
),
933 mri_
->use_nodbg_end());
934 unsigned NewUses
= SrcUses
+ DstUses
;
935 unsigned NewSize
= SrcSize
+ DstSize
;
936 if (SrcRC
!= NewRC
&& SrcSize
> NewRCCount
) {
937 unsigned SrcRCCount
= allocatableRCRegs_
[SrcRC
].count();
938 if (NewUses
*SrcSize
*SrcRCCount
> 2*SrcUses
*NewSize
*NewRCCount
)
941 if (DstRC
!= NewRC
&& DstSize
> NewRCCount
) {
942 unsigned DstRCCount
= allocatableRCRegs_
[DstRC
].count();
943 if (NewUses
*DstSize
*DstRCCount
> 2*DstUses
*NewSize
*NewRCCount
)
950 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
951 /// which are the src/dst of the copy instruction CopyMI. This returns true
952 /// if the copy was successfully coalesced away. If it is not currently
953 /// possible to coalesce this interval, but it may be possible if other
954 /// things get coalesced, then it returns true by reference in 'Again'.
955 bool SimpleRegisterCoalescing::JoinCopy(CopyRec
&TheCopy
, bool &Again
) {
956 MachineInstr
*CopyMI
= TheCopy
.MI
;
959 if (JoinedCopies
.count(CopyMI
) || ReMatCopies
.count(CopyMI
))
960 return false; // Already done.
962 DEBUG(dbgs() << li_
->getInstructionIndex(CopyMI
) << '\t' << *CopyMI
);
964 CoalescerPair
CP(*tii_
, *tri_
);
965 if (!CP
.setRegisters(CopyMI
)) {
966 DEBUG(dbgs() << "\tNot coalescable.\n");
970 // If they are already joined we continue.
971 if (CP
.getSrcReg() == CP
.getDstReg()) {
972 DEBUG(dbgs() << "\tCopy already coalesced.\n");
973 return false; // Not coalescable.
976 if (DisablePhysicalJoin
&& CP
.isPhys()) {
977 DEBUG(dbgs() << "\tPhysical joins disabled.\n");
981 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP
.getSrcReg(), tri_
));
985 DEBUG(dbgs() <<" with physreg " << PrintReg(CP
.getDstReg(), tri_
) << "\n");
986 // Only coalesce to allocatable physreg.
987 if (!li_
->isAllocatable(CP
.getDstReg())) {
988 DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
989 return false; // Not coalescable.
992 DEBUG(dbgs() << " with " << PrintReg(CP
.getDstReg(), tri_
, CP
.getSubIdx())
993 << " to " << CP
.getNewRC()->getName() << "\n");
995 // Avoid constraining virtual register regclass too much.
996 if (CP
.isCrossClass()) {
997 if (DisableCrossClassJoin
) {
998 DEBUG(dbgs() << "\tCross-class joins disabled.\n");
1001 if (!isWinToJoinCrossClass(CP
.getSrcReg(), CP
.getDstReg(),
1002 mri_
->getRegClass(CP
.getSrcReg()),
1003 mri_
->getRegClass(CP
.getDstReg()),
1005 DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: "
1006 << CP
.getNewRC()->getName() << ".\n");
1007 Again
= true; // May be possible to coalesce later.
1012 // When possible, let DstReg be the larger interval.
1013 if (!CP
.getSubIdx() && li_
->getInterval(CP
.getSrcReg()).ranges
.size() >
1014 li_
->getInterval(CP
.getDstReg()).ranges
.size())
1018 // We need to be careful about coalescing a source physical register with a
1019 // virtual register. Once the coalescing is done, it cannot be broken and
1020 // these are not spillable! If the destination interval uses are far away,
1021 // think twice about coalescing them!
1022 // FIXME: Why are we skipping this test for partial copies?
1023 // CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
1024 if (!CP
.isPartial() && CP
.isPhys()) {
1025 LiveInterval
&JoinVInt
= li_
->getInterval(CP
.getSrcReg());
1027 // Don't join with physregs that have a ridiculous number of live
1028 // ranges. The data structure performance is really bad when that
1030 if (li_
->hasInterval(CP
.getDstReg()) &&
1031 li_
->getInterval(CP
.getDstReg()).ranges
.size() > 1000) {
1034 << "\tPhysical register live interval too complicated, abort!\n");
1038 const TargetRegisterClass
*RC
= mri_
->getRegClass(CP
.getSrcReg());
1039 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1040 unsigned Length
= li_
->getApproximateInstructionCount(JoinVInt
);
1041 if (Length
> Threshold
) {
1042 // Before giving up coalescing, if definition of source is defined by
1043 // trivial computation, try rematerializing it.
1044 if (!CP
.isFlipped() &&
1045 ReMaterializeTrivialDef(JoinVInt
, true, CP
.getDstReg(), 0, CopyMI
))
1049 DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
1050 Again
= true; // May be possible to coalesce later.
1055 // Okay, attempt to join these two intervals. On failure, this returns false.
1056 // Otherwise, if one of the intervals being joined is a physreg, this method
1057 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1058 // been modified, so we can use this information below to update aliases.
1059 if (!JoinIntervals(CP
)) {
1060 // Coalescing failed.
1062 // If definition of source is defined by trivial computation, try
1063 // rematerializing it.
1064 if (!CP
.isFlipped() &&
1065 ReMaterializeTrivialDef(li_
->getInterval(CP
.getSrcReg()), true,
1066 CP
.getDstReg(), 0, CopyMI
))
1069 // If we can eliminate the copy without merging the live ranges, do so now.
1070 if (!CP
.isPartial()) {
1071 if (AdjustCopiesBackFrom(CP
, CopyMI
) ||
1072 RemoveCopyByCommutingDef(CP
, CopyMI
)) {
1073 JoinedCopies
.insert(CopyMI
);
1074 DEBUG(dbgs() << "\tTrivial!\n");
1079 // Otherwise, we are unable to join the intervals.
1080 DEBUG(dbgs() << "\tInterference!\n");
1081 Again
= true; // May be possible to coalesce later.
1085 // Coalescing to a virtual register that is of a sub-register class of the
1086 // other. Make sure the resulting register is set to the right register class.
1087 if (CP
.isCrossClass()) {
1089 mri_
->setRegClass(CP
.getDstReg(), CP
.getNewRC());
1092 // Remember to delete the copy instruction.
1093 JoinedCopies
.insert(CopyMI
);
1095 UpdateRegDefsUses(CP
);
1097 // If we have extended the live range of a physical register, make sure we
1098 // update live-in lists as well.
1100 SmallVector
<MachineBasicBlock
*, 16> BlockSeq
;
1101 // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
1102 // ranges for this, and they are preserved.
1103 LiveInterval
&SrcInt
= li_
->getInterval(CP
.getSrcReg());
1104 for (LiveInterval::const_iterator I
= SrcInt
.begin(), E
= SrcInt
.end();
1106 li_
->findLiveInMBBs(I
->start
, I
->end
, BlockSeq
);
1107 for (unsigned idx
= 0, size
= BlockSeq
.size(); idx
!= size
; ++idx
) {
1108 MachineBasicBlock
&block
= *BlockSeq
[idx
];
1109 if (!block
.isLiveIn(CP
.getDstReg()))
1110 block
.addLiveIn(CP
.getDstReg());
1116 // SrcReg is guarateed to be the register whose live interval that is
1118 li_
->removeInterval(CP
.getSrcReg());
1120 // Update regalloc hint.
1121 tri_
->UpdateRegAllocHint(CP
.getSrcReg(), CP
.getDstReg(), *mf_
);
1124 LiveInterval
&DstInt
= li_
->getInterval(CP
.getDstReg());
1125 dbgs() << "\tJoined. Result = ";
1126 DstInt
.print(dbgs(), tri_
);
1134 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1135 /// compute what the resultant value numbers for each value in the input two
1136 /// ranges will be. This is complicated by copies between the two which can
1137 /// and will commonly cause multiple value numbers to be merged into one.
1139 /// VN is the value number that we're trying to resolve. InstDefiningValue
1140 /// keeps track of the new InstDefiningValue assignment for the result
1141 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1142 /// whether a value in this or other is a copy from the opposite set.
1143 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1144 /// already been assigned.
1146 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1147 /// contains the value number the copy is from.
1149 static unsigned ComputeUltimateVN(VNInfo
*VNI
,
1150 SmallVector
<VNInfo
*, 16> &NewVNInfo
,
1151 DenseMap
<VNInfo
*, VNInfo
*> &ThisFromOther
,
1152 DenseMap
<VNInfo
*, VNInfo
*> &OtherFromThis
,
1153 SmallVector
<int, 16> &ThisValNoAssignments
,
1154 SmallVector
<int, 16> &OtherValNoAssignments
) {
1155 unsigned VN
= VNI
->id
;
1157 // If the VN has already been computed, just return it.
1158 if (ThisValNoAssignments
[VN
] >= 0)
1159 return ThisValNoAssignments
[VN
];
1160 assert(ThisValNoAssignments
[VN
] != -2 && "Cyclic value numbers");
1162 // If this val is not a copy from the other val, then it must be a new value
1163 // number in the destination.
1164 DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= ThisFromOther
.find(VNI
);
1165 if (I
== ThisFromOther
.end()) {
1166 NewVNInfo
.push_back(VNI
);
1167 return ThisValNoAssignments
[VN
] = NewVNInfo
.size()-1;
1169 VNInfo
*OtherValNo
= I
->second
;
1171 // Otherwise, this *is* a copy from the RHS. If the other side has already
1172 // been computed, return it.
1173 if (OtherValNoAssignments
[OtherValNo
->id
] >= 0)
1174 return ThisValNoAssignments
[VN
] = OtherValNoAssignments
[OtherValNo
->id
];
1176 // Mark this value number as currently being computed, then ask what the
1177 // ultimate value # of the other value is.
1178 ThisValNoAssignments
[VN
] = -2;
1179 unsigned UltimateVN
=
1180 ComputeUltimateVN(OtherValNo
, NewVNInfo
, OtherFromThis
, ThisFromOther
,
1181 OtherValNoAssignments
, ThisValNoAssignments
);
1182 return ThisValNoAssignments
[VN
] = UltimateVN
;
1185 /// JoinIntervals - Attempt to join these two intervals. On failure, this
1187 bool SimpleRegisterCoalescing::JoinIntervals(CoalescerPair
&CP
) {
1188 LiveInterval
&RHS
= li_
->getInterval(CP
.getSrcReg());
1189 DEBUG({ dbgs() << "\t\tRHS = "; RHS
.print(dbgs(), tri_
); dbgs() << "\n"; });
1191 // If a live interval is a physical register, check for interference with any
1192 // aliases. The interference check implemented here is a bit more conservative
1193 // than the full interfeence check below. We allow overlapping live ranges
1194 // only when one is a copy of the other.
1196 for (const unsigned *AS
= tri_
->getAliasSet(CP
.getDstReg()); *AS
; ++AS
){
1197 if (!li_
->hasInterval(*AS
))
1199 const LiveInterval
&LHS
= li_
->getInterval(*AS
);
1200 LiveInterval::const_iterator LI
= LHS
.begin();
1201 for (LiveInterval::const_iterator RI
= RHS
.begin(), RE
= RHS
.end();
1203 LI
= std::lower_bound(LI
, LHS
.end(), RI
->start
);
1204 // Does LHS have an overlapping live range starting before RI?
1205 if ((LI
!= LHS
.begin() && LI
[-1].end
> RI
->start
) &&
1206 (RI
->start
!= RI
->valno
->def
||
1207 !CP
.isCoalescable(li_
->getInstructionFromIndex(RI
->start
)))) {
1209 dbgs() << "\t\tInterference from alias: ";
1210 LHS
.print(dbgs(), tri_
);
1211 dbgs() << "\n\t\tOverlap at " << RI
->start
<< " and no copy.\n";
1216 // Check that LHS ranges beginning in this range are copies.
1217 for (; LI
!= LHS
.end() && LI
->start
< RI
->end
; ++LI
) {
1218 if (LI
->start
!= LI
->valno
->def
||
1219 !CP
.isCoalescable(li_
->getInstructionFromIndex(LI
->start
))) {
1221 dbgs() << "\t\tInterference from alias: ";
1222 LHS
.print(dbgs(), tri_
);
1223 dbgs() << "\n\t\tDef at " << LI
->start
<< " is not a copy.\n";
1232 // Compute the final value assignment, assuming that the live ranges can be
1234 SmallVector
<int, 16> LHSValNoAssignments
;
1235 SmallVector
<int, 16> RHSValNoAssignments
;
1236 DenseMap
<VNInfo
*, VNInfo
*> LHSValsDefinedFromRHS
;
1237 DenseMap
<VNInfo
*, VNInfo
*> RHSValsDefinedFromLHS
;
1238 SmallVector
<VNInfo
*, 16> NewVNInfo
;
1240 LiveInterval
&LHS
= li_
->getOrCreateInterval(CP
.getDstReg());
1241 DEBUG({ dbgs() << "\t\tLHS = "; LHS
.print(dbgs(), tri_
); dbgs() << "\n"; });
1243 // Loop over the value numbers of the LHS, seeing if any are defined from
1245 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
1248 if (VNI
->isUnused() || !VNI
->isDefByCopy()) // Src not defined by a copy?
1251 // Never join with a register that has EarlyClobber redefs.
1252 if (VNI
->hasRedefByEC())
1255 // DstReg is known to be a register in the LHS interval. If the src is
1256 // from the RHS interval, we can use its value #.
1257 if (!CP
.isCoalescable(VNI
->getCopy()))
1260 // Figure out the value # from the RHS.
1261 LiveRange
*lr
= RHS
.getLiveRangeContaining(VNI
->def
.getPrevSlot());
1262 // The copy could be to an aliased physreg.
1264 LHSValsDefinedFromRHS
[VNI
] = lr
->valno
;
1267 // Loop over the value numbers of the RHS, seeing if any are defined from
1269 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
1272 if (VNI
->isUnused() || !VNI
->isDefByCopy()) // Src not defined by a copy?
1275 // Never join with a register that has EarlyClobber redefs.
1276 if (VNI
->hasRedefByEC())
1279 // DstReg is known to be a register in the RHS interval. If the src is
1280 // from the LHS interval, we can use its value #.
1281 if (!CP
.isCoalescable(VNI
->getCopy()))
1284 // Figure out the value # from the LHS.
1285 LiveRange
*lr
= LHS
.getLiveRangeContaining(VNI
->def
.getPrevSlot());
1286 // The copy could be to an aliased physreg.
1288 RHSValsDefinedFromLHS
[VNI
] = lr
->valno
;
1291 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
1292 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
1293 NewVNInfo
.reserve(LHS
.getNumValNums() + RHS
.getNumValNums());
1295 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
1298 unsigned VN
= VNI
->id
;
1299 if (LHSValNoAssignments
[VN
] >= 0 || VNI
->isUnused())
1301 ComputeUltimateVN(VNI
, NewVNInfo
,
1302 LHSValsDefinedFromRHS
, RHSValsDefinedFromLHS
,
1303 LHSValNoAssignments
, RHSValNoAssignments
);
1305 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
1308 unsigned VN
= VNI
->id
;
1309 if (RHSValNoAssignments
[VN
] >= 0 || VNI
->isUnused())
1311 // If this value number isn't a copy from the LHS, it's a new number.
1312 if (RHSValsDefinedFromLHS
.find(VNI
) == RHSValsDefinedFromLHS
.end()) {
1313 NewVNInfo
.push_back(VNI
);
1314 RHSValNoAssignments
[VN
] = NewVNInfo
.size()-1;
1318 ComputeUltimateVN(VNI
, NewVNInfo
,
1319 RHSValsDefinedFromLHS
, LHSValsDefinedFromRHS
,
1320 RHSValNoAssignments
, LHSValNoAssignments
);
1323 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1324 // interval lists to see if these intervals are coalescable.
1325 LiveInterval::const_iterator I
= LHS
.begin();
1326 LiveInterval::const_iterator IE
= LHS
.end();
1327 LiveInterval::const_iterator J
= RHS
.begin();
1328 LiveInterval::const_iterator JE
= RHS
.end();
1330 // Skip ahead until the first place of potential sharing.
1331 if (I
!= IE
&& J
!= JE
) {
1332 if (I
->start
< J
->start
) {
1333 I
= std::upper_bound(I
, IE
, J
->start
);
1334 if (I
!= LHS
.begin()) --I
;
1335 } else if (J
->start
< I
->start
) {
1336 J
= std::upper_bound(J
, JE
, I
->start
);
1337 if (J
!= RHS
.begin()) --J
;
1341 while (I
!= IE
&& J
!= JE
) {
1342 // Determine if these two live ranges overlap.
1344 if (I
->start
< J
->start
) {
1345 Overlaps
= I
->end
> J
->start
;
1347 Overlaps
= J
->end
> I
->start
;
1350 // If so, check value # info to determine if they are really different.
1352 // If the live range overlap will map to the same value number in the
1353 // result liverange, we can still coalesce them. If not, we can't.
1354 if (LHSValNoAssignments
[I
->valno
->id
] !=
1355 RHSValNoAssignments
[J
->valno
->id
])
1357 // If it's re-defined by an early clobber somewhere in the live range,
1358 // then conservatively abort coalescing.
1359 if (NewVNInfo
[LHSValNoAssignments
[I
->valno
->id
]]->hasRedefByEC())
1363 if (I
->end
< J
->end
)
1369 // Update kill info. Some live ranges are extended due to copy coalescing.
1370 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= LHSValsDefinedFromRHS
.begin(),
1371 E
= LHSValsDefinedFromRHS
.end(); I
!= E
; ++I
) {
1372 VNInfo
*VNI
= I
->first
;
1373 unsigned LHSValID
= LHSValNoAssignments
[VNI
->id
];
1374 if (VNI
->hasPHIKill())
1375 NewVNInfo
[LHSValID
]->setHasPHIKill(true);
1378 // Update kill info. Some live ranges are extended due to copy coalescing.
1379 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= RHSValsDefinedFromLHS
.begin(),
1380 E
= RHSValsDefinedFromLHS
.end(); I
!= E
; ++I
) {
1381 VNInfo
*VNI
= I
->first
;
1382 unsigned RHSValID
= RHSValNoAssignments
[VNI
->id
];
1383 if (VNI
->hasPHIKill())
1384 NewVNInfo
[RHSValID
]->setHasPHIKill(true);
1387 if (LHSValNoAssignments
.empty())
1388 LHSValNoAssignments
.push_back(-1);
1389 if (RHSValNoAssignments
.empty())
1390 RHSValNoAssignments
.push_back(-1);
1392 // If we get here, we know that we can coalesce the live ranges. Ask the
1393 // intervals to coalesce themselves now.
1394 LHS
.join(RHS
, &LHSValNoAssignments
[0], &RHSValNoAssignments
[0], NewVNInfo
,
1400 // DepthMBBCompare - Comparison predicate that sort first based on the loop
1401 // depth of the basic block (the unsigned), and then on the MBB number.
1402 struct DepthMBBCompare
{
1403 typedef std::pair
<unsigned, MachineBasicBlock
*> DepthMBBPair
;
1404 bool operator()(const DepthMBBPair
&LHS
, const DepthMBBPair
&RHS
) const {
1405 // Deeper loops first
1406 if (LHS
.first
!= RHS
.first
)
1407 return LHS
.first
> RHS
.first
;
1409 // Prefer blocks that are more connected in the CFG. This takes care of
1410 // the most difficult copies first while intervals are short.
1411 unsigned cl
= LHS
.second
->pred_size() + LHS
.second
->succ_size();
1412 unsigned cr
= RHS
.second
->pred_size() + RHS
.second
->succ_size();
1416 // As a last resort, sort by block number.
1417 return LHS
.second
->getNumber() < RHS
.second
->getNumber();
1422 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock
*MBB
,
1423 std::vector
<CopyRec
> &TryAgain
) {
1424 DEBUG(dbgs() << MBB
->getName() << ":\n");
1426 SmallVector
<CopyRec
, 8> VirtCopies
;
1427 SmallVector
<CopyRec
, 8> PhysCopies
;
1428 SmallVector
<CopyRec
, 8> ImpDefCopies
;
1429 for (MachineBasicBlock::iterator MII
= MBB
->begin(), E
= MBB
->end();
1431 MachineInstr
*Inst
= MII
++;
1433 // If this isn't a copy nor a extract_subreg, we can't join intervals.
1434 unsigned SrcReg
, DstReg
;
1435 if (Inst
->isCopy()) {
1436 DstReg
= Inst
->getOperand(0).getReg();
1437 SrcReg
= Inst
->getOperand(1).getReg();
1438 } else if (Inst
->isSubregToReg()) {
1439 DstReg
= Inst
->getOperand(0).getReg();
1440 SrcReg
= Inst
->getOperand(2).getReg();
1444 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
1445 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
1446 if (li_
->hasInterval(SrcReg
) && li_
->getInterval(SrcReg
).empty())
1447 ImpDefCopies
.push_back(CopyRec(Inst
, 0));
1448 else if (SrcIsPhys
|| DstIsPhys
)
1449 PhysCopies
.push_back(CopyRec(Inst
, 0));
1451 VirtCopies
.push_back(CopyRec(Inst
, 0));
1454 // Try coalescing implicit copies and insert_subreg <undef> first,
1455 // followed by copies to / from physical registers, then finally copies
1456 // from virtual registers to virtual registers.
1457 for (unsigned i
= 0, e
= ImpDefCopies
.size(); i
!= e
; ++i
) {
1458 CopyRec
&TheCopy
= ImpDefCopies
[i
];
1460 if (!JoinCopy(TheCopy
, Again
))
1462 TryAgain
.push_back(TheCopy
);
1464 for (unsigned i
= 0, e
= PhysCopies
.size(); i
!= e
; ++i
) {
1465 CopyRec
&TheCopy
= PhysCopies
[i
];
1467 if (!JoinCopy(TheCopy
, Again
))
1469 TryAgain
.push_back(TheCopy
);
1471 for (unsigned i
= 0, e
= VirtCopies
.size(); i
!= e
; ++i
) {
1472 CopyRec
&TheCopy
= VirtCopies
[i
];
1474 if (!JoinCopy(TheCopy
, Again
))
1476 TryAgain
.push_back(TheCopy
);
1480 void SimpleRegisterCoalescing::joinIntervals() {
1481 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
1483 std::vector
<CopyRec
> TryAgainList
;
1484 if (loopInfo
->empty()) {
1485 // If there are no loops in the function, join intervals in function order.
1486 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();
1488 CopyCoalesceInMBB(I
, TryAgainList
);
1490 // Otherwise, join intervals in inner loops before other intervals.
1491 // Unfortunately we can't just iterate over loop hierarchy here because
1492 // there may be more MBB's than BB's. Collect MBB's for sorting.
1494 // Join intervals in the function prolog first. We want to join physical
1495 // registers with virtual registers before the intervals got too long.
1496 std::vector
<std::pair
<unsigned, MachineBasicBlock
*> > MBBs
;
1497 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();I
!= E
;++I
){
1498 MachineBasicBlock
*MBB
= I
;
1499 MBBs
.push_back(std::make_pair(loopInfo
->getLoopDepth(MBB
), I
));
1502 // Sort by loop depth.
1503 std::sort(MBBs
.begin(), MBBs
.end(), DepthMBBCompare());
1505 // Finally, join intervals in loop nest order.
1506 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
)
1507 CopyCoalesceInMBB(MBBs
[i
].second
, TryAgainList
);
1510 // Joining intervals can allow other intervals to be joined. Iteratively join
1511 // until we make no progress.
1512 bool ProgressMade
= true;
1513 while (ProgressMade
) {
1514 ProgressMade
= false;
1516 for (unsigned i
= 0, e
= TryAgainList
.size(); i
!= e
; ++i
) {
1517 CopyRec
&TheCopy
= TryAgainList
[i
];
1522 bool Success
= JoinCopy(TheCopy
, Again
);
1523 if (Success
|| !Again
) {
1524 TheCopy
.MI
= 0; // Mark this one as done.
1525 ProgressMade
= true;
1531 /// Return true if the two specified registers belong to different register
1532 /// classes. The registers may be either phys or virt regs.
1534 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA
,
1535 unsigned RegB
) const {
1536 // Get the register classes for the first reg.
1537 if (TargetRegisterInfo::isPhysicalRegister(RegA
)) {
1538 assert(TargetRegisterInfo::isVirtualRegister(RegB
) &&
1539 "Shouldn't consider two physregs!");
1540 return !mri_
->getRegClass(RegB
)->contains(RegA
);
1543 // Compare against the regclass for the second reg.
1544 const TargetRegisterClass
*RegClassA
= mri_
->getRegClass(RegA
);
1545 if (TargetRegisterInfo::isVirtualRegister(RegB
)) {
1546 const TargetRegisterClass
*RegClassB
= mri_
->getRegClass(RegB
);
1547 return RegClassA
!= RegClassB
;
1549 return !RegClassA
->contains(RegB
);
1552 /// lastRegisterUse - Returns the last (non-debug) use of the specific register
1553 /// between cycles Start and End or NULL if there are no uses.
1555 SimpleRegisterCoalescing::lastRegisterUse(SlotIndex Start
,
1558 SlotIndex
&UseIdx
) const{
1559 UseIdx
= SlotIndex();
1560 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
1561 MachineOperand
*LastUse
= NULL
;
1562 for (MachineRegisterInfo::use_nodbg_iterator I
= mri_
->use_nodbg_begin(Reg
),
1563 E
= mri_
->use_nodbg_end(); I
!= E
; ++I
) {
1564 MachineOperand
&Use
= I
.getOperand();
1565 MachineInstr
*UseMI
= Use
.getParent();
1566 if (UseMI
->isIdentityCopy())
1568 SlotIndex Idx
= li_
->getInstructionIndex(UseMI
);
1569 if (Idx
>= Start
&& Idx
< End
&& (!UseIdx
.isValid() || Idx
>= UseIdx
)) {
1571 UseIdx
= Idx
.getUseIndex();
1577 SlotIndex s
= Start
;
1578 SlotIndex e
= End
.getPrevSlot().getBaseIndex();
1580 // Skip deleted instructions
1581 MachineInstr
*MI
= li_
->getInstructionFromIndex(e
);
1582 while (e
!= SlotIndex() && e
.getPrevIndex() >= s
&& !MI
) {
1583 e
= e
.getPrevIndex();
1584 MI
= li_
->getInstructionFromIndex(e
);
1586 if (e
< s
|| MI
== NULL
)
1589 // Ignore identity copies.
1590 if (!MI
->isIdentityCopy())
1591 for (unsigned i
= 0, NumOps
= MI
->getNumOperands(); i
!= NumOps
; ++i
) {
1592 MachineOperand
&Use
= MI
->getOperand(i
);
1593 if (Use
.isReg() && Use
.isUse() && Use
.getReg() &&
1594 tri_
->regsOverlap(Use
.getReg(), Reg
)) {
1595 UseIdx
= e
.getUseIndex();
1600 e
= e
.getPrevIndex();
1606 void SimpleRegisterCoalescing::releaseMemory() {
1607 JoinedCopies
.clear();
1608 ReMatCopies
.clear();
1612 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction
&fn
) {
1614 mri_
= &fn
.getRegInfo();
1615 tm_
= &fn
.getTarget();
1616 tri_
= tm_
->getRegisterInfo();
1617 tii_
= tm_
->getInstrInfo();
1618 li_
= &getAnalysis
<LiveIntervals
>();
1619 ldv_
= &getAnalysis
<LiveDebugVariables
>();
1620 AA
= &getAnalysis
<AliasAnalysis
>();
1621 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
1623 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
1624 << "********** Function: "
1625 << ((Value
*)mf_
->getFunction())->getName() << '\n');
1627 if (VerifyCoalescing
)
1628 mf_
->verify(this, "Before register coalescing");
1630 for (TargetRegisterInfo::regclass_iterator I
= tri_
->regclass_begin(),
1631 E
= tri_
->regclass_end(); I
!= E
; ++I
)
1632 allocatableRCRegs_
.insert(std::make_pair(*I
,
1633 tri_
->getAllocatableSet(fn
, *I
)));
1635 // Join (coalesce) intervals if requested.
1636 if (EnableJoining
) {
1639 dbgs() << "********** INTERVALS POST JOINING **********\n";
1640 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end();
1642 I
->second
->print(dbgs(), tri_
);
1648 // Perform a final pass over the instructions and compute spill weights
1649 // and remove identity moves.
1650 SmallVector
<unsigned, 4> DeadDefs
;
1651 for (MachineFunction::iterator mbbi
= mf_
->begin(), mbbe
= mf_
->end();
1652 mbbi
!= mbbe
; ++mbbi
) {
1653 MachineBasicBlock
* mbb
= mbbi
;
1654 for (MachineBasicBlock::iterator mii
= mbb
->begin(), mie
= mbb
->end();
1656 MachineInstr
*MI
= mii
;
1657 if (JoinedCopies
.count(MI
)) {
1658 // Delete all coalesced copies.
1659 bool DoDelete
= true;
1660 assert(MI
->isCopyLike() && "Unrecognized copy instruction");
1661 unsigned SrcReg
= MI
->getOperand(MI
->isSubregToReg() ? 2 : 1).getReg();
1662 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
) &&
1663 MI
->getNumOperands() > 2)
1664 // Do not delete extract_subreg, insert_subreg of physical
1665 // registers unless the definition is dead. e.g.
1666 // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
1667 // or else the scavenger may complain. LowerSubregs will
1668 // delete them later.
1671 if (MI
->allDefsAreDead()) {
1672 if (li_
->hasInterval(SrcReg
)) {
1673 LiveInterval
&li
= li_
->getInterval(SrcReg
);
1674 if (!ShortenDeadCopySrcLiveRange(li
, MI
))
1675 ShortenDeadCopyLiveRange(li
, MI
);
1680 // We need the instruction to adjust liveness, so make it a KILL.
1681 if (MI
->isSubregToReg()) {
1682 MI
->RemoveOperand(3);
1683 MI
->RemoveOperand(1);
1685 MI
->setDesc(tii_
->get(TargetOpcode::KILL
));
1686 mii
= llvm::next(mii
);
1688 li_
->RemoveMachineInstrFromMaps(MI
);
1689 mii
= mbbi
->erase(mii
);
1695 // Now check if this is a remat'ed def instruction which is now dead.
1696 if (ReMatDefs
.count(MI
)) {
1698 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1699 const MachineOperand
&MO
= MI
->getOperand(i
);
1702 unsigned Reg
= MO
.getReg();
1705 if (TargetRegisterInfo::isVirtualRegister(Reg
))
1706 DeadDefs
.push_back(Reg
);
1709 if (TargetRegisterInfo::isPhysicalRegister(Reg
) ||
1710 !mri_
->use_nodbg_empty(Reg
)) {
1716 while (!DeadDefs
.empty()) {
1717 unsigned DeadDef
= DeadDefs
.back();
1718 DeadDefs
.pop_back();
1719 RemoveDeadDef(li_
->getInterval(DeadDef
), MI
);
1721 li_
->RemoveMachineInstrFromMaps(mii
);
1722 mii
= mbbi
->erase(mii
);
1728 // If the move will be an identity move delete it
1729 if (MI
->isIdentityCopy()) {
1730 unsigned SrcReg
= MI
->getOperand(1).getReg();
1731 if (li_
->hasInterval(SrcReg
)) {
1732 LiveInterval
&RegInt
= li_
->getInterval(SrcReg
);
1733 // If def of this move instruction is dead, remove its live range
1734 // from the destination register's live interval.
1735 if (MI
->allDefsAreDead()) {
1736 if (!ShortenDeadCopySrcLiveRange(RegInt
, MI
))
1737 ShortenDeadCopyLiveRange(RegInt
, MI
);
1740 li_
->RemoveMachineInstrFromMaps(MI
);
1741 mii
= mbbi
->erase(mii
);
1748 // Check for now unnecessary kill flags.
1749 if (li_
->isNotInMIMap(MI
)) continue;
1750 SlotIndex DefIdx
= li_
->getInstructionIndex(MI
).getDefIndex();
1751 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1752 MachineOperand
&MO
= MI
->getOperand(i
);
1753 if (!MO
.isReg() || !MO
.isKill()) continue;
1754 unsigned reg
= MO
.getReg();
1755 if (!reg
|| !li_
->hasInterval(reg
)) continue;
1756 if (!li_
->getInterval(reg
).killedAt(DefIdx
)) {
1757 MO
.setIsKill(false);
1760 // When leaving a kill flag on a physreg, check if any subregs should
1762 if (!TargetRegisterInfo::isPhysicalRegister(reg
))
1764 for (const unsigned *SR
= tri_
->getSubRegisters(reg
);
1765 unsigned S
= *SR
; ++SR
)
1766 if (li_
->hasInterval(S
) && li_
->getInterval(S
).liveAt(DefIdx
))
1767 MI
->addRegisterDefined(S
, tri_
);
1773 DEBUG(ldv_
->dump());
1774 if (VerifyCoalescing
)
1775 mf_
->verify(this, "After register coalescing");
1779 /// print - Implement the dump method.
1780 void SimpleRegisterCoalescing::print(raw_ostream
&O
, const Module
* m
) const {
1784 RegisterCoalescer
* llvm::createSimpleRegisterCoalescer() {
1785 return new SimpleRegisterCoalescing();
1788 // Make sure that anything that uses RegisterCoalescer pulls in this file...
1789 DEFINING_FILE_FOR(SimpleRegisterCoalescing
)