No functionality change. Fix up some whitespace and switch out "" for '' when
[llvm/stm8.git] / lib / CodeGen / SpillPlacement.cpp
blob57951ed80689c2a1fd51d7b9aa028cbdf07f28b6
1 //===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the spill code placement analysis.
12 // Each edge bundle corresponds to a node in a Hopfield network. Constraints on
13 // basic blocks are weighted by the block frequency and added to become the node
14 // bias.
16 // Transparent basic blocks have the variable live through, but don't care if it
17 // is spilled or in a register. These blocks become connections in the Hopfield
18 // network, again weighted by block frequency.
20 // The Hopfield network minimizes (possibly locally) its energy function:
22 // E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
24 // The energy function represents the expected spill code execution frequency,
25 // or the cost of spilling. This is a Lyapunov function which never increases
26 // when a node is updated. It is guaranteed to converge to a local minimum.
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "spillplacement"
31 #include "SpillPlacement.h"
32 #include "llvm/CodeGen/EdgeBundles.h"
33 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/Format.h"
41 using namespace llvm;
43 char SpillPlacement::ID = 0;
44 INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
45 "Spill Code Placement Analysis", true, true)
46 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
47 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
48 INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
49 "Spill Code Placement Analysis", true, true)
51 char &llvm::SpillPlacementID = SpillPlacement::ID;
53 void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
54 AU.setPreservesAll();
55 AU.addRequiredTransitive<EdgeBundles>();
56 AU.addRequiredTransitive<MachineLoopInfo>();
57 MachineFunctionPass::getAnalysisUsage(AU);
60 /// Node - Each edge bundle corresponds to a Hopfield node.
61 ///
62 /// The node contains precomputed frequency data that only depends on the CFG,
63 /// but Bias and Links are computed each time placeSpills is called.
64 ///
65 /// The node Value is positive when the variable should be in a register. The
66 /// value can change when linked nodes change, but convergence is very fast
67 /// because all weights are positive.
68 ///
69 struct SpillPlacement::Node {
70 /// Frequency - Total block frequency feeding into[0] or out of[1] the bundle.
71 /// Ideally, these two numbers should be identical, but inaccuracies in the
72 /// block frequency estimates means that we need to normalize ingoing and
73 /// outgoing frequencies separately so they are commensurate.
74 float Frequency[2];
76 /// Bias - Normalized contributions from non-transparent blocks.
77 /// A bundle connected to a MustSpill block has a huge negative bias,
78 /// otherwise it is a number in the range [-2;2].
79 float Bias;
81 /// Value - Output value of this node computed from the Bias and links.
82 /// This is always in the range [-1;1]. A positive number means the variable
83 /// should go in a register through this bundle.
84 float Value;
86 typedef SmallVector<std::pair<float, unsigned>, 4> LinkVector;
88 /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
89 /// bundles. The weights are all positive and add up to at most 2, weights
90 /// from ingoing and outgoing nodes separately add up to a most 1. The weight
91 /// sum can be less than 2 when the variable is not live into / out of some
92 /// connected basic blocks.
93 LinkVector Links;
95 /// preferReg - Return true when this node prefers to be in a register.
96 bool preferReg() const {
97 // Undecided nodes (Value==0) go on the stack.
98 return Value > 0;
101 /// mustSpill - Return True if this node is so biased that it must spill.
102 bool mustSpill() const {
103 // Actually, we must spill if Bias < sum(weights).
104 // It may be worth it to compute the weight sum here?
105 return Bias < -2.0f;
108 /// Node - Create a blank Node.
109 Node() {
110 Frequency[0] = Frequency[1] = 0;
113 /// clear - Reset per-query data, but preserve frequencies that only depend on
114 // the CFG.
115 void clear() {
116 Bias = Value = 0;
117 Links.clear();
120 /// addLink - Add a link to bundle b with weight w.
121 /// out=0 for an ingoing link, and 1 for an outgoing link.
122 void addLink(unsigned b, float w, bool out) {
123 // Normalize w relative to all connected blocks from that direction.
124 w /= Frequency[out];
126 // There can be multiple links to the same bundle, add them up.
127 for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
128 if (I->second == b) {
129 I->first += w;
130 return;
132 // This must be the first link to b.
133 Links.push_back(std::make_pair(w, b));
136 /// addBias - Bias this node from an ingoing[0] or outgoing[1] link.
137 void addBias(float w, bool out) {
138 // Normalize w relative to all connected blocks from that direction.
139 w /= Frequency[out];
140 Bias += w;
143 /// update - Recompute Value from Bias and Links. Return true when node
144 /// preference changes.
145 bool update(const Node nodes[]) {
146 // Compute the weighted sum of inputs.
147 float Sum = Bias;
148 for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
149 Sum += I->first * nodes[I->second].Value;
151 // The weighted sum is going to be in the range [-2;2]. Ideally, we should
152 // simply set Value = sign(Sum), but we will add a dead zone around 0 for
153 // two reasons:
154 // 1. It avoids arbitrary bias when all links are 0 as is possible during
155 // initial iterations.
156 // 2. It helps tame rounding errors when the links nominally sum to 0.
157 const float Thres = 1e-4f;
158 bool Before = preferReg();
159 if (Sum < -Thres)
160 Value = -1;
161 else if (Sum > Thres)
162 Value = 1;
163 else
164 Value = 0;
165 return Before != preferReg();
169 bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
170 MF = &mf;
171 bundles = &getAnalysis<EdgeBundles>();
172 loops = &getAnalysis<MachineLoopInfo>();
174 assert(!nodes && "Leaking node array");
175 nodes = new Node[bundles->getNumBundles()];
177 // Compute total ingoing and outgoing block frequencies for all bundles.
178 BlockFrequency.resize(mf.getNumBlockIDs());
179 for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
180 float Freq = LiveIntervals::getSpillWeight(true, false,
181 loops->getLoopDepth(I));
182 unsigned Num = I->getNumber();
183 BlockFrequency[Num] = Freq;
184 nodes[bundles->getBundle(Num, 1)].Frequency[0] += Freq;
185 nodes[bundles->getBundle(Num, 0)].Frequency[1] += Freq;
188 // We never change the function.
189 return false;
192 void SpillPlacement::releaseMemory() {
193 delete[] nodes;
194 nodes = 0;
197 /// activate - mark node n as active if it wasn't already.
198 void SpillPlacement::activate(unsigned n) {
199 if (ActiveNodes->test(n))
200 return;
201 ActiveNodes->set(n);
202 nodes[n].clear();
206 /// prepareNodes - Compute node biases and weights from a set of constraints.
207 /// Set a bit in NodeMask for each active node.
208 void SpillPlacement::
209 prepareNodes(const SmallVectorImpl<BlockConstraint> &LiveBlocks) {
210 for (SmallVectorImpl<BlockConstraint>::const_iterator I = LiveBlocks.begin(),
211 E = LiveBlocks.end(); I != E; ++I) {
212 float Freq = getBlockFrequency(I->Number);
214 // Is this a transparent block? Link ingoing and outgoing bundles.
215 if (I->Entry == DontCare && I->Exit == DontCare) {
216 unsigned ib = bundles->getBundle(I->Number, 0);
217 unsigned ob = bundles->getBundle(I->Number, 1);
219 // Ignore self-loops.
220 if (ib == ob)
221 continue;
222 activate(ib);
223 activate(ob);
224 nodes[ib].addLink(ob, Freq, 1);
225 nodes[ob].addLink(ib, Freq, 0);
226 continue;
229 // This block is not transparent, but it can still add bias.
230 const float Bias[] = {
231 0, // DontCare,
232 1, // PrefReg,
233 -1, // PrefSpill
234 -HUGE_VALF // MustSpill
237 // Live-in to block?
238 if (I->Entry != DontCare) {
239 unsigned ib = bundles->getBundle(I->Number, 0);
240 activate(ib);
241 nodes[ib].addBias(Freq * Bias[I->Entry], 1);
244 // Live-out from block?
245 if (I->Exit != DontCare) {
246 unsigned ob = bundles->getBundle(I->Number, 1);
247 activate(ob);
248 nodes[ob].addBias(Freq * Bias[I->Exit], 0);
253 /// iterate - Repeatedly update the Hopfield nodes until stability or the
254 /// maximum number of iterations is reached.
255 /// @param Linked - Numbers of linked nodes that need updating.
256 void SpillPlacement::iterate(const SmallVectorImpl<unsigned> &Linked) {
257 if (Linked.empty())
258 return;
260 // Run up to 10 iterations. The edge bundle numbering is closely related to
261 // basic block numbering, so there is a strong tendency towards chains of
262 // linked nodes with sequential numbers. By scanning the linked nodes
263 // backwards and forwards, we make it very likely that a single node can
264 // affect the entire network in a single iteration. That means very fast
265 // convergence, usually in a single iteration.
266 for (unsigned iteration = 0; iteration != 10; ++iteration) {
267 // Scan backwards, skipping the last node which was just updated.
268 bool Changed = false;
269 for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
270 llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) {
271 unsigned n = *I;
272 bool C = nodes[n].update(nodes);
273 Changed |= C;
275 if (!Changed)
276 return;
278 // Scan forwards, skipping the first node which was just updated.
279 Changed = false;
280 for (SmallVectorImpl<unsigned>::const_iterator I =
281 llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
282 unsigned n = *I;
283 bool C = nodes[n].update(nodes);
284 Changed |= C;
286 if (!Changed)
287 return;
291 bool
292 SpillPlacement::placeSpills(const SmallVectorImpl<BlockConstraint> &LiveBlocks,
293 BitVector &RegBundles) {
294 // Reuse RegBundles as our ActiveNodes vector.
295 ActiveNodes = &RegBundles;
296 ActiveNodes->clear();
297 ActiveNodes->resize(bundles->getNumBundles());
299 // Compute active nodes, links and biases.
300 prepareNodes(LiveBlocks);
302 // Update all active nodes, and find the ones that are actually linked to
303 // something so their value may change when iterating.
304 SmallVector<unsigned, 8> Linked;
305 for (int n = RegBundles.find_first(); n>=0; n = RegBundles.find_next(n)) {
306 nodes[n].update(nodes);
307 // A node that must spill, or a node without any links is not going to
308 // change its value ever again, so exclude it from iterations.
309 if (!nodes[n].Links.empty() && !nodes[n].mustSpill())
310 Linked.push_back(n);
313 // Iterate the network to convergence.
314 iterate(Linked);
316 // Write preferences back to RegBundles.
317 bool Perfect = true;
318 for (int n = RegBundles.find_first(); n>=0; n = RegBundles.find_next(n))
319 if (!nodes[n].preferReg()) {
320 RegBundles.reset(n);
321 Perfect = false;
323 return Perfect;