Revert r131155 for now. It makes VMCore depend on Analysis and Transforms
[llvm/stm8.git] / lib / Bitcode / Writer / ValueEnumerator.cpp
blob21f004a7dc534ef76ca4ca21e5f6aa11f9e042e3
1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ValueEnumerator class.
12 //===----------------------------------------------------------------------===//
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Module.h"
20 #include "llvm/TypeSymbolTable.h"
21 #include "llvm/ValueSymbolTable.h"
22 #include "llvm/Instructions.h"
23 #include <algorithm>
24 using namespace llvm;
26 static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
27 return V.first->getType()->isIntegerTy();
30 /// ValueEnumerator - Enumerate module-level information.
31 ValueEnumerator::ValueEnumerator(const Module *M) {
32 // Enumerate the global variables.
33 for (Module::const_global_iterator I = M->global_begin(),
34 E = M->global_end(); I != E; ++I)
35 EnumerateValue(I);
37 // Enumerate the functions.
38 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
39 EnumerateValue(I);
40 EnumerateAttributes(cast<Function>(I)->getAttributes());
43 // Enumerate the aliases.
44 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
45 I != E; ++I)
46 EnumerateValue(I);
48 // Remember what is the cutoff between globalvalue's and other constants.
49 unsigned FirstConstant = Values.size();
51 // Enumerate the global variable initializers.
52 for (Module::const_global_iterator I = M->global_begin(),
53 E = M->global_end(); I != E; ++I)
54 if (I->hasInitializer())
55 EnumerateValue(I->getInitializer());
57 // Enumerate the aliasees.
58 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
59 I != E; ++I)
60 EnumerateValue(I->getAliasee());
62 // Enumerate types used by the type symbol table.
63 EnumerateTypeSymbolTable(M->getTypeSymbolTable());
65 // Insert constants and metadata that are named at module level into the slot
66 // pool so that the module symbol table can refer to them...
67 EnumerateValueSymbolTable(M->getValueSymbolTable());
68 EnumerateNamedMetadata(M);
70 SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
72 // Enumerate types used by function bodies and argument lists.
73 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
75 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
76 I != E; ++I)
77 EnumerateType(I->getType());
79 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
80 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
81 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
82 OI != E; ++OI) {
83 if (MDNode *MD = dyn_cast<MDNode>(*OI))
84 if (MD->isFunctionLocal() && MD->getFunction())
85 // These will get enumerated during function-incorporation.
86 continue;
87 EnumerateOperandType(*OI);
89 EnumerateType(I->getType());
90 if (const CallInst *CI = dyn_cast<CallInst>(I))
91 EnumerateAttributes(CI->getAttributes());
92 else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
93 EnumerateAttributes(II->getAttributes());
95 // Enumerate metadata attached with this instruction.
96 MDs.clear();
97 I->getAllMetadataOtherThanDebugLoc(MDs);
98 for (unsigned i = 0, e = MDs.size(); i != e; ++i)
99 EnumerateMetadata(MDs[i].second);
101 if (!I->getDebugLoc().isUnknown()) {
102 MDNode *Scope, *IA;
103 I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext());
104 if (Scope) EnumerateMetadata(Scope);
105 if (IA) EnumerateMetadata(IA);
110 // Optimize constant ordering.
111 OptimizeConstants(FirstConstant, Values.size());
113 OptimizeTypes();
115 // Now that we rearranged the type table, rebuild TypeMap.
116 for (unsigned i = 0, e = Types.size(); i != e; ++i)
117 TypeMap[Types[i]] = i+1;
120 struct TypeAndDeps {
121 const Type *Ty;
122 unsigned NumDeps;
125 static int CompareByDeps(const void *a, const void *b) {
126 const TypeAndDeps &ta = *(const TypeAndDeps*) a;
127 const TypeAndDeps &tb = *(const TypeAndDeps*) b;
128 return ta.NumDeps - tb.NumDeps;
131 static void VisitType(const Type *Ty, SmallPtrSet<const Type*, 16> &Visited,
132 std::vector<const Type*> &Out) {
133 if (Visited.count(Ty))
134 return;
136 Visited.insert(Ty);
138 for (Type::subtype_iterator I2 = Ty->subtype_begin(),
139 E2 = Ty->subtype_end(); I2 != E2; ++I2) {
140 const Type *InnerType = I2->get();
141 VisitType(InnerType, Visited, Out);
144 Out.push_back(Ty);
147 void ValueEnumerator::OptimizeTypes(void) {
148 // If the types form a DAG, this will compute a topological sort and
149 // no forward references will be needed when reading them in.
150 // If there are cycles, this is a simple but reasonable heuristic for
151 // the minimum feedback arc set problem.
152 const unsigned NumTypes = Types.size();
153 std::vector<TypeAndDeps> TypeDeps;
154 TypeDeps.resize(NumTypes);
156 for (unsigned I = 0; I < NumTypes; ++I) {
157 const Type *Ty = Types[I];
158 TypeDeps[I].Ty = Ty;
159 TypeDeps[I].NumDeps = 0;
162 for (unsigned I = 0; I < NumTypes; ++I) {
163 const Type *Ty = TypeDeps[I].Ty;
164 for (Type::subtype_iterator I2 = Ty->subtype_begin(),
165 E2 = Ty->subtype_end(); I2 != E2; ++I2) {
166 const Type *InnerType = I2->get();
167 unsigned InnerIndex = TypeMap.lookup(InnerType) - 1;
168 TypeDeps[InnerIndex].NumDeps++;
171 array_pod_sort(TypeDeps.begin(), TypeDeps.end(), CompareByDeps);
173 SmallPtrSet<const Type*, 16> Visited;
174 Types.clear();
175 Types.reserve(NumTypes);
176 for (unsigned I = 0; I < NumTypes; ++I) {
177 VisitType(TypeDeps[I].Ty, Visited, Types);
181 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
182 InstructionMapType::const_iterator I = InstructionMap.find(Inst);
183 assert (I != InstructionMap.end() && "Instruction is not mapped!");
184 return I->second;
187 void ValueEnumerator::setInstructionID(const Instruction *I) {
188 InstructionMap[I] = InstructionCount++;
191 unsigned ValueEnumerator::getValueID(const Value *V) const {
192 if (isa<MDNode>(V) || isa<MDString>(V)) {
193 ValueMapType::const_iterator I = MDValueMap.find(V);
194 assert(I != MDValueMap.end() && "Value not in slotcalculator!");
195 return I->second-1;
198 ValueMapType::const_iterator I = ValueMap.find(V);
199 assert(I != ValueMap.end() && "Value not in slotcalculator!");
200 return I->second-1;
203 // Optimize constant ordering.
204 namespace {
205 struct CstSortPredicate {
206 ValueEnumerator &VE;
207 explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
208 bool operator()(const std::pair<const Value*, unsigned> &LHS,
209 const std::pair<const Value*, unsigned> &RHS) {
210 // Sort by plane.
211 if (LHS.first->getType() != RHS.first->getType())
212 return VE.getTypeID(LHS.first->getType()) <
213 VE.getTypeID(RHS.first->getType());
214 // Then by frequency.
215 return LHS.second > RHS.second;
220 /// OptimizeConstants - Reorder constant pool for denser encoding.
221 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
222 if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
224 CstSortPredicate P(*this);
225 std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
227 // Ensure that integer constants are at the start of the constant pool. This
228 // is important so that GEP structure indices come before gep constant exprs.
229 std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
230 isIntegerValue);
232 // Rebuild the modified portion of ValueMap.
233 for (; CstStart != CstEnd; ++CstStart)
234 ValueMap[Values[CstStart].first] = CstStart+1;
238 /// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
239 /// table.
240 void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
241 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
242 TI != TE; ++TI)
243 EnumerateType(TI->second);
246 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
247 /// table into the values table.
248 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
249 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
250 VI != VE; ++VI)
251 EnumerateValue(VI->getValue());
254 /// EnumerateNamedMetadata - Insert all of the values referenced by
255 /// named metadata in the specified module.
256 void ValueEnumerator::EnumerateNamedMetadata(const Module *M) {
257 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
258 E = M->named_metadata_end(); I != E; ++I)
259 EnumerateNamedMDNode(I);
262 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
263 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
264 EnumerateMetadata(MD->getOperand(i));
267 /// EnumerateMDNodeOperands - Enumerate all non-function-local values
268 /// and types referenced by the given MDNode.
269 void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) {
270 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
271 if (Value *V = N->getOperand(i)) {
272 if (isa<MDNode>(V) || isa<MDString>(V))
273 EnumerateMetadata(V);
274 else if (!isa<Instruction>(V) && !isa<Argument>(V))
275 EnumerateValue(V);
276 } else
277 EnumerateType(Type::getVoidTy(N->getContext()));
281 void ValueEnumerator::EnumerateMetadata(const Value *MD) {
282 assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
284 // Enumerate the type of this value.
285 EnumerateType(MD->getType());
287 const MDNode *N = dyn_cast<MDNode>(MD);
289 // In the module-level pass, skip function-local nodes themselves, but
290 // do walk their operands.
291 if (N && N->isFunctionLocal() && N->getFunction()) {
292 EnumerateMDNodeOperands(N);
293 return;
296 // Check to see if it's already in!
297 unsigned &MDValueID = MDValueMap[MD];
298 if (MDValueID) {
299 // Increment use count.
300 MDValues[MDValueID-1].second++;
301 return;
303 MDValues.push_back(std::make_pair(MD, 1U));
304 MDValueID = MDValues.size();
306 // Enumerate all non-function-local operands.
307 if (N)
308 EnumerateMDNodeOperands(N);
311 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
312 /// information reachable from the given MDNode.
313 void ValueEnumerator::EnumerateFunctionLocalMetadata(const MDNode *N) {
314 assert(N->isFunctionLocal() && N->getFunction() &&
315 "EnumerateFunctionLocalMetadata called on non-function-local mdnode!");
317 // Enumerate the type of this value.
318 EnumerateType(N->getType());
320 // Check to see if it's already in!
321 unsigned &MDValueID = MDValueMap[N];
322 if (MDValueID) {
323 // Increment use count.
324 MDValues[MDValueID-1].second++;
325 return;
327 MDValues.push_back(std::make_pair(N, 1U));
328 MDValueID = MDValues.size();
330 // To incoroporate function-local information visit all function-local
331 // MDNodes and all function-local values they reference.
332 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
333 if (Value *V = N->getOperand(i)) {
334 if (MDNode *O = dyn_cast<MDNode>(V)) {
335 if (O->isFunctionLocal() && O->getFunction())
336 EnumerateFunctionLocalMetadata(O);
337 } else if (isa<Instruction>(V) || isa<Argument>(V))
338 EnumerateValue(V);
341 // Also, collect all function-local MDNodes for easy access.
342 FunctionLocalMDs.push_back(N);
345 void ValueEnumerator::EnumerateValue(const Value *V) {
346 assert(!V->getType()->isVoidTy() && "Can't insert void values!");
347 assert(!isa<MDNode>(V) && !isa<MDString>(V) &&
348 "EnumerateValue doesn't handle Metadata!");
350 // Check to see if it's already in!
351 unsigned &ValueID = ValueMap[V];
352 if (ValueID) {
353 // Increment use count.
354 Values[ValueID-1].second++;
355 return;
358 // Enumerate the type of this value.
359 EnumerateType(V->getType());
361 if (const Constant *C = dyn_cast<Constant>(V)) {
362 if (isa<GlobalValue>(C)) {
363 // Initializers for globals are handled explicitly elsewhere.
364 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
365 // Do not enumerate the initializers for an array of simple characters.
366 // The initializers just pollute the value table, and we emit the strings
367 // specially.
368 } else if (C->getNumOperands()) {
369 // If a constant has operands, enumerate them. This makes sure that if a
370 // constant has uses (for example an array of const ints), that they are
371 // inserted also.
373 // We prefer to enumerate them with values before we enumerate the user
374 // itself. This makes it more likely that we can avoid forward references
375 // in the reader. We know that there can be no cycles in the constants
376 // graph that don't go through a global variable.
377 for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
378 I != E; ++I)
379 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
380 EnumerateValue(*I);
382 // Finally, add the value. Doing this could make the ValueID reference be
383 // dangling, don't reuse it.
384 Values.push_back(std::make_pair(V, 1U));
385 ValueMap[V] = Values.size();
386 return;
390 // Add the value.
391 Values.push_back(std::make_pair(V, 1U));
392 ValueID = Values.size();
396 void ValueEnumerator::EnumerateType(const Type *Ty) {
397 unsigned &TypeID = TypeMap[Ty];
399 // We've already seen this type.
400 if (TypeID)
401 return;
403 // First time we saw this type, add it.
404 Types.push_back(Ty);
405 TypeID = Types.size();
407 // Enumerate subtypes.
408 for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
409 I != E; ++I)
410 EnumerateType(*I);
413 // Enumerate the types for the specified value. If the value is a constant,
414 // walk through it, enumerating the types of the constant.
415 void ValueEnumerator::EnumerateOperandType(const Value *V) {
416 EnumerateType(V->getType());
418 if (const Constant *C = dyn_cast<Constant>(V)) {
419 // If this constant is already enumerated, ignore it, we know its type must
420 // be enumerated.
421 if (ValueMap.count(V)) return;
423 // This constant may have operands, make sure to enumerate the types in
424 // them.
425 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
426 const Value *Op = C->getOperand(i);
428 // Don't enumerate basic blocks here, this happens as operands to
429 // blockaddress.
430 if (isa<BasicBlock>(Op)) continue;
432 EnumerateOperandType(Op);
435 if (const MDNode *N = dyn_cast<MDNode>(V)) {
436 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
437 if (Value *Elem = N->getOperand(i))
438 EnumerateOperandType(Elem);
440 } else if (isa<MDString>(V) || isa<MDNode>(V))
441 EnumerateMetadata(V);
444 void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
445 if (PAL.isEmpty()) return; // null is always 0.
446 // Do a lookup.
447 unsigned &Entry = AttributeMap[PAL.getRawPointer()];
448 if (Entry == 0) {
449 // Never saw this before, add it.
450 Attributes.push_back(PAL);
451 Entry = Attributes.size();
456 void ValueEnumerator::incorporateFunction(const Function &F) {
457 InstructionCount = 0;
458 NumModuleValues = Values.size();
459 NumModuleMDValues = MDValues.size();
461 // Adding function arguments to the value table.
462 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
463 I != E; ++I)
464 EnumerateValue(I);
466 FirstFuncConstantID = Values.size();
468 // Add all function-level constants to the value table.
469 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
470 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
471 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
472 OI != E; ++OI) {
473 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
474 isa<InlineAsm>(*OI))
475 EnumerateValue(*OI);
477 BasicBlocks.push_back(BB);
478 ValueMap[BB] = BasicBlocks.size();
481 // Optimize the constant layout.
482 OptimizeConstants(FirstFuncConstantID, Values.size());
484 // Add the function's parameter attributes so they are available for use in
485 // the function's instruction.
486 EnumerateAttributes(F.getAttributes());
488 FirstInstID = Values.size();
490 SmallVector<MDNode *, 8> FnLocalMDVector;
491 // Add all of the instructions.
492 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
493 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
494 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
495 OI != E; ++OI) {
496 if (MDNode *MD = dyn_cast<MDNode>(*OI))
497 if (MD->isFunctionLocal() && MD->getFunction())
498 // Enumerate metadata after the instructions they might refer to.
499 FnLocalMDVector.push_back(MD);
502 SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
503 I->getAllMetadataOtherThanDebugLoc(MDs);
504 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
505 MDNode *N = MDs[i].second;
506 if (N->isFunctionLocal() && N->getFunction())
507 FnLocalMDVector.push_back(N);
510 if (!I->getType()->isVoidTy())
511 EnumerateValue(I);
515 // Add all of the function-local metadata.
516 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
517 EnumerateFunctionLocalMetadata(FnLocalMDVector[i]);
520 void ValueEnumerator::purgeFunction() {
521 /// Remove purged values from the ValueMap.
522 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
523 ValueMap.erase(Values[i].first);
524 for (unsigned i = NumModuleMDValues, e = MDValues.size(); i != e; ++i)
525 MDValueMap.erase(MDValues[i].first);
526 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
527 ValueMap.erase(BasicBlocks[i]);
529 Values.resize(NumModuleValues);
530 MDValues.resize(NumModuleMDValues);
531 BasicBlocks.clear();
532 FunctionLocalMDs.clear();
535 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
536 DenseMap<const BasicBlock*, unsigned> &IDMap) {
537 unsigned Counter = 0;
538 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
539 IDMap[BB] = ++Counter;
542 /// getGlobalBasicBlockID - This returns the function-specific ID for the
543 /// specified basic block. This is relatively expensive information, so it
544 /// should only be used by rare constructs such as address-of-label.
545 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
546 unsigned &Idx = GlobalBasicBlockIDs[BB];
547 if (Idx != 0)
548 return Idx-1;
550 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
551 return getGlobalBasicBlockID(BB);