1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LLVM module linker.
12 // Specifically, this:
13 // * Merges global variables between the two modules
14 // * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15 // * Merges functions between two modules
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Linker.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Module.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Assembly/Writer.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Support/Path.h"
32 #include "llvm/Transforms/Utils/ValueMapper.h"
33 #include "llvm/ADT/DenseMap.h"
36 // Error - Simple wrapper function to conditionally assign to E and return true.
37 // This just makes error return conditions a little bit simpler...
38 static inline bool Error(std::string
*E
, const Twine
&Message
) {
39 if (E
) *E
= Message
.str();
43 // Function: ResolveTypes()
46 // Attempt to link the two specified types together.
49 // DestTy - The type to which we wish to resolve.
50 // SrcTy - The original type which we want to resolve.
53 // DestST - The symbol table in which the new type should be placed.
56 // true - There is an error and the types cannot yet be linked.
59 static bool ResolveTypes(const Type
*DestTy
, const Type
*SrcTy
) {
60 if (DestTy
== SrcTy
) return false; // If already equal, noop
61 assert(DestTy
&& SrcTy
&& "Can't handle null types");
63 if (const OpaqueType
*OT
= dyn_cast
<OpaqueType
>(DestTy
)) {
64 // Type _is_ in module, just opaque...
65 const_cast<OpaqueType
*>(OT
)->refineAbstractTypeTo(SrcTy
);
66 } else if (const OpaqueType
*OT
= dyn_cast
<OpaqueType
>(SrcTy
)) {
67 const_cast<OpaqueType
*>(OT
)->refineAbstractTypeTo(DestTy
);
69 return true; // Cannot link types... not-equal and neither is opaque.
74 /// LinkerTypeMap - This implements a map of types that is stable
75 /// even if types are resolved/refined to other types. This is not a general
76 /// purpose map, it is specific to the linker's use.
78 class LinkerTypeMap
: public AbstractTypeUser
{
79 typedef DenseMap
<const Type
*, PATypeHolder
> TheMapTy
;
82 LinkerTypeMap(const LinkerTypeMap
&); // DO NOT IMPLEMENT
83 void operator=(const LinkerTypeMap
&); // DO NOT IMPLEMENT
87 for (DenseMap
<const Type
*, PATypeHolder
>::iterator I
= TheMap
.begin(),
88 E
= TheMap
.end(); I
!= E
; ++I
)
89 I
->first
->removeAbstractTypeUser(this);
92 /// lookup - Return the value for the specified type or null if it doesn't
94 const Type
*lookup(const Type
*Ty
) const {
95 TheMapTy::const_iterator I
= TheMap
.find(Ty
);
96 if (I
!= TheMap
.end()) return I
->second
;
100 /// insert - This returns true if the pointer was new to the set, false if it
101 /// was already in the set.
102 bool insert(const Type
*Src
, const Type
*Dst
) {
103 if (!TheMap
.insert(std::make_pair(Src
, PATypeHolder(Dst
))).second
)
104 return false; // Already in map.
105 if (Src
->isAbstract())
106 Src
->addAbstractTypeUser(this);
111 /// refineAbstractType - The callback method invoked when an abstract type is
112 /// resolved to another type. An object must override this method to update
113 /// its internal state to reference NewType instead of OldType.
115 virtual void refineAbstractType(const DerivedType
*OldTy
,
117 TheMapTy::iterator I
= TheMap
.find(OldTy
);
118 const Type
*DstTy
= I
->second
;
121 if (OldTy
->isAbstract())
122 OldTy
->removeAbstractTypeUser(this);
124 // Don't reinsert into the map if the key is concrete now.
125 if (NewTy
->isAbstract())
126 insert(NewTy
, DstTy
);
129 /// The other case which AbstractTypeUsers must be aware of is when a type
130 /// makes the transition from being abstract (where it has clients on it's
131 /// AbstractTypeUsers list) to concrete (where it does not). This method
132 /// notifies ATU's when this occurs for a type.
133 virtual void typeBecameConcrete(const DerivedType
*AbsTy
) {
135 AbsTy
->removeAbstractTypeUser(this);
139 virtual void dump() const {
140 dbgs() << "AbstractTypeSet!\n";
146 // RecursiveResolveTypes - This is just like ResolveTypes, except that it
147 // recurses down into derived types, merging the used types if the parent types
149 static bool RecursiveResolveTypesI(const Type
*DstTy
, const Type
*SrcTy
,
150 LinkerTypeMap
&Pointers
) {
151 if (DstTy
== SrcTy
) return false; // If already equal, noop
153 // If we found our opaque type, resolve it now!
154 if (DstTy
->isOpaqueTy() || SrcTy
->isOpaqueTy())
155 return ResolveTypes(DstTy
, SrcTy
);
157 // Two types cannot be resolved together if they are of different primitive
158 // type. For example, we cannot resolve an int to a float.
159 if (DstTy
->getTypeID() != SrcTy
->getTypeID()) return true;
161 // If neither type is abstract, then they really are just different types.
162 if (!DstTy
->isAbstract() && !SrcTy
->isAbstract())
165 // Otherwise, resolve the used type used by this derived type...
166 switch (DstTy
->getTypeID()) {
169 case Type::FunctionTyID
: {
170 const FunctionType
*DstFT
= cast
<FunctionType
>(DstTy
);
171 const FunctionType
*SrcFT
= cast
<FunctionType
>(SrcTy
);
172 if (DstFT
->isVarArg() != SrcFT
->isVarArg() ||
173 DstFT
->getNumContainedTypes() != SrcFT
->getNumContainedTypes())
176 // Use TypeHolder's so recursive resolution won't break us.
177 PATypeHolder
ST(SrcFT
), DT(DstFT
);
178 for (unsigned i
= 0, e
= DstFT
->getNumContainedTypes(); i
!= e
; ++i
) {
179 const Type
*SE
= ST
->getContainedType(i
), *DE
= DT
->getContainedType(i
);
180 if (SE
!= DE
&& RecursiveResolveTypesI(DE
, SE
, Pointers
))
185 case Type::StructTyID
: {
186 const StructType
*DstST
= cast
<StructType
>(DstTy
);
187 const StructType
*SrcST
= cast
<StructType
>(SrcTy
);
188 if (DstST
->getNumContainedTypes() != SrcST
->getNumContainedTypes())
191 PATypeHolder
ST(SrcST
), DT(DstST
);
192 for (unsigned i
= 0, e
= DstST
->getNumContainedTypes(); i
!= e
; ++i
) {
193 const Type
*SE
= ST
->getContainedType(i
), *DE
= DT
->getContainedType(i
);
194 if (SE
!= DE
&& RecursiveResolveTypesI(DE
, SE
, Pointers
))
199 case Type::ArrayTyID
: {
200 const ArrayType
*DAT
= cast
<ArrayType
>(DstTy
);
201 const ArrayType
*SAT
= cast
<ArrayType
>(SrcTy
);
202 if (DAT
->getNumElements() != SAT
->getNumElements()) return true;
203 return RecursiveResolveTypesI(DAT
->getElementType(), SAT
->getElementType(),
206 case Type::VectorTyID
: {
207 const VectorType
*DVT
= cast
<VectorType
>(DstTy
);
208 const VectorType
*SVT
= cast
<VectorType
>(SrcTy
);
209 if (DVT
->getNumElements() != SVT
->getNumElements()) return true;
210 return RecursiveResolveTypesI(DVT
->getElementType(), SVT
->getElementType(),
213 case Type::PointerTyID
: {
214 const PointerType
*DstPT
= cast
<PointerType
>(DstTy
);
215 const PointerType
*SrcPT
= cast
<PointerType
>(SrcTy
);
217 if (DstPT
->getAddressSpace() != SrcPT
->getAddressSpace())
220 // If this is a pointer type, check to see if we have already seen it. If
221 // so, we are in a recursive branch. Cut off the search now. We cannot use
222 // an associative container for this search, because the type pointers (keys
223 // in the container) change whenever types get resolved.
224 if (SrcPT
->isAbstract())
225 if (const Type
*ExistingDestTy
= Pointers
.lookup(SrcPT
))
226 return ExistingDestTy
!= DstPT
;
228 if (DstPT
->isAbstract())
229 if (const Type
*ExistingSrcTy
= Pointers
.lookup(DstPT
))
230 return ExistingSrcTy
!= SrcPT
;
231 // Otherwise, add the current pointers to the vector to stop recursion on
233 if (DstPT
->isAbstract())
234 Pointers
.insert(DstPT
, SrcPT
);
235 if (SrcPT
->isAbstract())
236 Pointers
.insert(SrcPT
, DstPT
);
238 return RecursiveResolveTypesI(DstPT
->getElementType(),
239 SrcPT
->getElementType(), Pointers
);
244 static bool RecursiveResolveTypes(const Type
*DestTy
, const Type
*SrcTy
) {
245 LinkerTypeMap PointerTypes
;
246 return RecursiveResolveTypesI(DestTy
, SrcTy
, PointerTypes
);
250 // LinkTypes - Go through the symbol table of the Src module and see if any
251 // types are named in the src module that are not named in the Dst module.
252 // Make sure there are no type name conflicts.
253 static bool LinkTypes(Module
*Dest
, const Module
*Src
, std::string
*Err
) {
254 TypeSymbolTable
*DestST
= &Dest
->getTypeSymbolTable();
255 const TypeSymbolTable
*SrcST
= &Src
->getTypeSymbolTable();
257 // Look for a type plane for Type's...
258 TypeSymbolTable::const_iterator TI
= SrcST
->begin();
259 TypeSymbolTable::const_iterator TE
= SrcST
->end();
260 if (TI
== TE
) return false; // No named types, do nothing.
262 // Some types cannot be resolved immediately because they depend on other
263 // types being resolved to each other first. This contains a list of types we
264 // are waiting to recheck.
265 std::vector
<std::string
> DelayedTypesToResolve
;
267 for ( ; TI
!= TE
; ++TI
) {
268 const std::string
&Name
= TI
->first
;
269 const Type
*RHS
= TI
->second
;
271 // Check to see if this type name is already in the dest module.
272 Type
*Entry
= DestST
->lookup(Name
);
274 // If the name is just in the source module, bring it over to the dest.
277 DestST
->insert(Name
, const_cast<Type
*>(RHS
));
278 } else if (ResolveTypes(Entry
, RHS
)) {
279 // They look different, save the types 'till later to resolve.
280 DelayedTypesToResolve
.push_back(Name
);
284 // Iteratively resolve types while we can...
285 while (!DelayedTypesToResolve
.empty()) {
286 // Loop over all of the types, attempting to resolve them if possible...
287 unsigned OldSize
= DelayedTypesToResolve
.size();
289 // Try direct resolution by name...
290 for (unsigned i
= 0; i
!= DelayedTypesToResolve
.size(); ++i
) {
291 const std::string
&Name
= DelayedTypesToResolve
[i
];
292 Type
*T1
= SrcST
->lookup(Name
);
293 Type
*T2
= DestST
->lookup(Name
);
294 if (!ResolveTypes(T2
, T1
)) {
295 // We are making progress!
296 DelayedTypesToResolve
.erase(DelayedTypesToResolve
.begin()+i
);
301 // Did we not eliminate any types?
302 if (DelayedTypesToResolve
.size() == OldSize
) {
303 // Attempt to resolve subelements of types. This allows us to merge these
304 // two types: { int* } and { opaque* }
305 for (unsigned i
= 0, e
= DelayedTypesToResolve
.size(); i
!= e
; ++i
) {
306 const std::string
&Name
= DelayedTypesToResolve
[i
];
307 if (!RecursiveResolveTypes(SrcST
->lookup(Name
), DestST
->lookup(Name
))) {
308 // We are making progress!
309 DelayedTypesToResolve
.erase(DelayedTypesToResolve
.begin()+i
);
311 // Go back to the main loop, perhaps we can resolve directly by name
317 // If we STILL cannot resolve the types, then there is something wrong.
318 if (DelayedTypesToResolve
.size() == OldSize
) {
319 // Remove the symbol name from the destination.
320 DelayedTypesToResolve
.pop_back();
329 /// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
330 /// in the symbol table. This is good for all clients except for us. Go
331 /// through the trouble to force this back.
332 static void ForceRenaming(GlobalValue
*GV
, const std::string
&Name
) {
333 assert(GV
->getName() != Name
&& "Can't force rename to self");
334 ValueSymbolTable
&ST
= GV
->getParent()->getValueSymbolTable();
336 // If there is a conflict, rename the conflict.
337 if (GlobalValue
*ConflictGV
= cast_or_null
<GlobalValue
>(ST
.lookup(Name
))) {
338 assert(ConflictGV
->hasLocalLinkage() &&
339 "Not conflicting with a static global, should link instead!");
340 GV
->takeName(ConflictGV
);
341 ConflictGV
->setName(Name
); // This will cause ConflictGV to get renamed
342 assert(ConflictGV
->getName() != Name
&& "ForceRenaming didn't work");
344 GV
->setName(Name
); // Force the name back
348 /// CopyGVAttributes - copy additional attributes (those not needed to construct
349 /// a GlobalValue) from the SrcGV to the DestGV.
350 static void CopyGVAttributes(GlobalValue
*DestGV
, const GlobalValue
*SrcGV
) {
351 // Use the maximum alignment, rather than just copying the alignment of SrcGV.
352 unsigned Alignment
= std::max(DestGV
->getAlignment(), SrcGV
->getAlignment());
353 DestGV
->copyAttributesFrom(SrcGV
);
354 DestGV
->setAlignment(Alignment
);
357 /// GetLinkageResult - This analyzes the two global values and determines what
358 /// the result will look like in the destination module. In particular, it
359 /// computes the resultant linkage type, computes whether the global in the
360 /// source should be copied over to the destination (replacing the existing
361 /// one), and computes whether this linkage is an error or not. It also performs
362 /// visibility checks: we cannot link together two symbols with different
364 static bool GetLinkageResult(GlobalValue
*Dest
, const GlobalValue
*Src
,
365 GlobalValue::LinkageTypes
<
, bool &LinkFromSrc
,
367 assert((!Dest
|| !Src
->hasLocalLinkage()) &&
368 "If Src has internal linkage, Dest shouldn't be set!");
370 // Linking something to nothing.
372 LT
= Src
->getLinkage();
373 } else if (Src
->isDeclaration()) {
374 // If Src is external or if both Src & Dest are external.. Just link the
375 // external globals, we aren't adding anything.
376 if (Src
->hasDLLImportLinkage()) {
377 // If one of GVs has DLLImport linkage, result should be dllimport'ed.
378 if (Dest
->isDeclaration()) {
380 LT
= Src
->getLinkage();
382 } else if (Dest
->hasExternalWeakLinkage()) {
383 // If the Dest is weak, use the source linkage.
385 LT
= Src
->getLinkage();
388 LT
= Dest
->getLinkage();
390 } else if (Dest
->isDeclaration() && !Dest
->hasDLLImportLinkage()) {
391 // If Dest is external but Src is not:
393 LT
= Src
->getLinkage();
394 } else if (Src
->hasAppendingLinkage() || Dest
->hasAppendingLinkage()) {
395 if (Src
->getLinkage() != Dest
->getLinkage())
396 return Error(Err
, "Linking globals named '" + Src
->getName() +
397 "': can only link appending global with another appending global!");
398 LinkFromSrc
= true; // Special cased.
399 LT
= Src
->getLinkage();
400 } else if (Src
->isWeakForLinker()) {
401 // At this point we know that Dest has LinkOnce, External*, Weak, Common,
403 if (Dest
->hasExternalWeakLinkage() ||
404 Dest
->hasAvailableExternallyLinkage() ||
405 (Dest
->hasLinkOnceLinkage() &&
406 (Src
->hasWeakLinkage() || Src
->hasCommonLinkage()))) {
408 LT
= Src
->getLinkage();
411 LT
= Dest
->getLinkage();
413 } else if (Dest
->isWeakForLinker()) {
414 // At this point we know that Src has External* or DLL* linkage.
415 if (Src
->hasExternalWeakLinkage()) {
417 LT
= Dest
->getLinkage();
420 LT
= GlobalValue::ExternalLinkage
;
423 assert((Dest
->hasExternalLinkage() ||
424 Dest
->hasDLLImportLinkage() ||
425 Dest
->hasDLLExportLinkage() ||
426 Dest
->hasExternalWeakLinkage()) &&
427 (Src
->hasExternalLinkage() ||
428 Src
->hasDLLImportLinkage() ||
429 Src
->hasDLLExportLinkage() ||
430 Src
->hasExternalWeakLinkage()) &&
431 "Unexpected linkage type!");
432 return Error(Err
, "Linking globals named '" + Src
->getName() +
433 "': symbol multiply defined!");
437 if (Dest
&& Src
->getVisibility() != Dest
->getVisibility() &&
438 !Src
->isDeclaration() && !Dest
->isDeclaration() &&
439 !Src
->hasAvailableExternallyLinkage() &&
440 !Dest
->hasAvailableExternallyLinkage())
441 return Error(Err
, "Linking globals named '" + Src
->getName() +
442 "': symbols have different visibilities!");
446 // Insert all of the named mdnoes in Src into the Dest module.
447 static void LinkNamedMDNodes(Module
*Dest
, Module
*Src
,
448 ValueToValueMapTy
&ValueMap
) {
449 for (Module::const_named_metadata_iterator I
= Src
->named_metadata_begin(),
450 E
= Src
->named_metadata_end(); I
!= E
; ++I
) {
451 const NamedMDNode
*SrcNMD
= I
;
452 NamedMDNode
*DestNMD
= Dest
->getOrInsertNamedMetadata(SrcNMD
->getName());
453 // Add Src elements into Dest node.
454 for (unsigned i
= 0, e
= SrcNMD
->getNumOperands(); i
!= e
; ++i
)
455 DestNMD
->addOperand(cast
<MDNode
>(MapValue(SrcNMD
->getOperand(i
),
460 // LinkGlobals - Loop through the global variables in the src module and merge
461 // them into the dest module.
462 static bool LinkGlobals(Module
*Dest
, const Module
*Src
,
463 ValueToValueMapTy
&ValueMap
,
464 std::multimap
<std::string
, GlobalVariable
*> &AppendingVars
,
466 ValueSymbolTable
&DestSymTab
= Dest
->getValueSymbolTable();
468 // Loop over all of the globals in the src module, mapping them over as we go
469 for (Module::const_global_iterator I
= Src
->global_begin(),
470 E
= Src
->global_end(); I
!= E
; ++I
) {
471 const GlobalVariable
*SGV
= I
;
472 GlobalValue
*DGV
= 0;
474 // Check to see if may have to link the global with the global, alias or
476 if (SGV
->hasName() && !SGV
->hasLocalLinkage())
477 DGV
= cast_or_null
<GlobalValue
>(DestSymTab
.lookup(SGV
->getName()));
479 // If we found a global with the same name in the dest module, but it has
480 // internal linkage, we are really not doing any linkage here.
481 if (DGV
&& DGV
->hasLocalLinkage())
484 // If types don't agree due to opaque types, try to resolve them.
485 if (DGV
&& DGV
->getType() != SGV
->getType())
486 RecursiveResolveTypes(SGV
->getType(), DGV
->getType());
488 assert((SGV
->hasInitializer() || SGV
->hasExternalWeakLinkage() ||
489 SGV
->hasExternalLinkage() || SGV
->hasDLLImportLinkage()) &&
490 "Global must either be external or have an initializer!");
492 GlobalValue::LinkageTypes NewLinkage
= GlobalValue::InternalLinkage
;
493 bool LinkFromSrc
= false;
494 if (GetLinkageResult(DGV
, SGV
, NewLinkage
, LinkFromSrc
, Err
))
498 // No linking to be performed, simply create an identical version of the
499 // symbol over in the dest module... the initializer will be filled in
500 // later by LinkGlobalInits.
501 GlobalVariable
*NewDGV
=
502 new GlobalVariable(*Dest
, SGV
->getType()->getElementType(),
503 SGV
->isConstant(), SGV
->getLinkage(), /*init*/0,
504 SGV
->getName(), 0, false,
505 SGV
->getType()->getAddressSpace());
506 // Propagate alignment, visibility and section info.
507 CopyGVAttributes(NewDGV
, SGV
);
508 NewDGV
->setUnnamedAddr(SGV
->hasUnnamedAddr());
510 // If the LLVM runtime renamed the global, but it is an externally visible
511 // symbol, DGV must be an existing global with internal linkage. Rename
513 if (!NewDGV
->hasLocalLinkage() && NewDGV
->getName() != SGV
->getName())
514 ForceRenaming(NewDGV
, SGV
->getName());
516 // Make sure to remember this mapping.
517 ValueMap
[SGV
] = NewDGV
;
519 // Keep track that this is an appending variable.
520 if (SGV
->hasAppendingLinkage())
521 AppendingVars
.insert(std::make_pair(SGV
->getName(), NewDGV
));
525 bool HasUnnamedAddr
= SGV
->hasUnnamedAddr() && DGV
->hasUnnamedAddr();
527 // If the visibilities of the symbols disagree and the destination is a
528 // prototype, take the visibility of its input.
529 if (DGV
->isDeclaration())
530 DGV
->setVisibility(SGV
->getVisibility());
532 if (DGV
->hasAppendingLinkage()) {
533 // No linking is performed yet. Just insert a new copy of the global, and
534 // keep track of the fact that it is an appending variable in the
535 // AppendingVars map. The name is cleared out so that no linkage is
537 GlobalVariable
*NewDGV
=
538 new GlobalVariable(*Dest
, SGV
->getType()->getElementType(),
539 SGV
->isConstant(), SGV
->getLinkage(), /*init*/0,
541 SGV
->getType()->getAddressSpace());
543 // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
544 NewDGV
->setAlignment(DGV
->getAlignment());
545 // Propagate alignment, section and visibility info.
546 CopyGVAttributes(NewDGV
, SGV
);
548 // Make sure to remember this mapping...
549 ValueMap
[SGV
] = NewDGV
;
551 // Keep track that this is an appending variable...
552 AppendingVars
.insert(std::make_pair(SGV
->getName(), NewDGV
));
557 if (isa
<GlobalAlias
>(DGV
))
558 return Error(Err
, "Global-Alias Collision on '" + SGV
->getName() +
559 "': symbol multiple defined");
561 // If the types don't match, and if we are to link from the source, nuke
562 // DGV and create a new one of the appropriate type. Note that the thing
563 // we are replacing may be a function (if a prototype, weak, etc) or a
565 GlobalVariable
*NewDGV
=
566 new GlobalVariable(*Dest
, SGV
->getType()->getElementType(),
567 SGV
->isConstant(), NewLinkage
, /*init*/0,
568 DGV
->getName(), 0, false,
569 SGV
->getType()->getAddressSpace());
571 // Set the unnamed_addr.
572 NewDGV
->setUnnamedAddr(HasUnnamedAddr
);
574 // Propagate alignment, section, and visibility info.
575 CopyGVAttributes(NewDGV
, SGV
);
576 DGV
->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV
,
579 // DGV will conflict with NewDGV because they both had the same
580 // name. We must erase this now so ForceRenaming doesn't assert
581 // because DGV might not have internal linkage.
582 if (GlobalVariable
*Var
= dyn_cast
<GlobalVariable
>(DGV
))
583 Var
->eraseFromParent();
585 cast
<Function
>(DGV
)->eraseFromParent();
587 // If the symbol table renamed the global, but it is an externally visible
588 // symbol, DGV must be an existing global with internal linkage. Rename.
589 if (NewDGV
->getName() != SGV
->getName() && !NewDGV
->hasLocalLinkage())
590 ForceRenaming(NewDGV
, SGV
->getName());
592 // Inherit const as appropriate.
593 NewDGV
->setConstant(SGV
->isConstant());
595 // Make sure to remember this mapping.
596 ValueMap
[SGV
] = NewDGV
;
600 // Not "link from source", keep the one in the DestModule and remap the
603 // Special case for const propagation.
604 if (GlobalVariable
*DGVar
= dyn_cast
<GlobalVariable
>(DGV
))
605 if (DGVar
->isDeclaration() && SGV
->isConstant() && !DGVar
->isConstant())
606 DGVar
->setConstant(true);
608 // SGV is global, but DGV is alias.
609 if (isa
<GlobalAlias
>(DGV
)) {
610 // The only valid mappings are:
611 // - SGV is external declaration, which is effectively a no-op.
612 // - SGV is weak, when we just need to throw SGV out.
613 if (!SGV
->isDeclaration() && !SGV
->isWeakForLinker())
614 return Error(Err
, "Global-Alias Collision on '" + SGV
->getName() +
615 "': symbol multiple defined");
618 // Set calculated linkage and unnamed_addr
619 DGV
->setLinkage(NewLinkage
);
620 DGV
->setUnnamedAddr(HasUnnamedAddr
);
622 // Make sure to remember this mapping...
623 ValueMap
[SGV
] = ConstantExpr::getBitCast(DGV
, SGV
->getType());
628 static GlobalValue::LinkageTypes
629 CalculateAliasLinkage(const GlobalValue
*SGV
, const GlobalValue
*DGV
) {
630 GlobalValue::LinkageTypes SL
= SGV
->getLinkage();
631 GlobalValue::LinkageTypes DL
= DGV
->getLinkage();
632 if (SL
== GlobalValue::ExternalLinkage
|| DL
== GlobalValue::ExternalLinkage
)
633 return GlobalValue::ExternalLinkage
;
634 else if (SL
== GlobalValue::WeakAnyLinkage
||
635 DL
== GlobalValue::WeakAnyLinkage
)
636 return GlobalValue::WeakAnyLinkage
;
637 else if (SL
== GlobalValue::WeakODRLinkage
||
638 DL
== GlobalValue::WeakODRLinkage
)
639 return GlobalValue::WeakODRLinkage
;
640 else if (SL
== GlobalValue::InternalLinkage
&&
641 DL
== GlobalValue::InternalLinkage
)
642 return GlobalValue::InternalLinkage
;
643 else if (SL
== GlobalValue::LinkerPrivateLinkage
&&
644 DL
== GlobalValue::LinkerPrivateLinkage
)
645 return GlobalValue::LinkerPrivateLinkage
;
646 else if (SL
== GlobalValue::LinkerPrivateWeakLinkage
&&
647 DL
== GlobalValue::LinkerPrivateWeakLinkage
)
648 return GlobalValue::LinkerPrivateWeakLinkage
;
649 else if (SL
== GlobalValue::LinkerPrivateWeakDefAutoLinkage
&&
650 DL
== GlobalValue::LinkerPrivateWeakDefAutoLinkage
)
651 return GlobalValue::LinkerPrivateWeakDefAutoLinkage
;
653 assert (SL
== GlobalValue::PrivateLinkage
&&
654 DL
== GlobalValue::PrivateLinkage
&& "Unexpected linkage type");
655 return GlobalValue::PrivateLinkage
;
659 // LinkAlias - Loop through the alias in the src module and link them into the
660 // dest module. We're assuming, that all functions/global variables were already
662 static bool LinkAlias(Module
*Dest
, const Module
*Src
,
663 ValueToValueMapTy
&ValueMap
,
665 // Loop over all alias in the src module
666 for (Module::const_alias_iterator I
= Src
->alias_begin(),
667 E
= Src
->alias_end(); I
!= E
; ++I
) {
668 const GlobalAlias
*SGA
= I
;
669 const GlobalValue
*SAliasee
= SGA
->getAliasedGlobal();
670 GlobalAlias
*NewGA
= NULL
;
672 // Globals were already linked, thus we can just query ValueMap for variant
673 // of SAliasee in Dest.
674 ValueToValueMapTy::const_iterator VMI
= ValueMap
.find(SAliasee
);
675 assert(VMI
!= ValueMap
.end() && "Aliasee not linked");
676 GlobalValue
* DAliasee
= cast
<GlobalValue
>(VMI
->second
);
677 GlobalValue
* DGV
= NULL
;
679 // Fixup aliases to bitcasts. Note that aliases to GEPs are still broken
680 // by this, but aliases to GEPs are broken to a lot of other things, so
681 // it's less important.
682 Constant
*DAliaseeConst
= DAliasee
;
683 if (SGA
->getType() != DAliasee
->getType())
684 DAliaseeConst
= ConstantExpr::getBitCast(DAliasee
, SGA
->getType());
686 // Try to find something 'similar' to SGA in destination module.
687 if (!DGV
&& !SGA
->hasLocalLinkage()) {
688 DGV
= Dest
->getNamedAlias(SGA
->getName());
690 // If types don't agree due to opaque types, try to resolve them.
691 if (DGV
&& DGV
->getType() != SGA
->getType())
692 RecursiveResolveTypes(SGA
->getType(), DGV
->getType());
695 if (!DGV
&& !SGA
->hasLocalLinkage()) {
696 DGV
= Dest
->getGlobalVariable(SGA
->getName());
698 // If types don't agree due to opaque types, try to resolve them.
699 if (DGV
&& DGV
->getType() != SGA
->getType())
700 RecursiveResolveTypes(SGA
->getType(), DGV
->getType());
703 if (!DGV
&& !SGA
->hasLocalLinkage()) {
704 DGV
= Dest
->getFunction(SGA
->getName());
706 // If types don't agree due to opaque types, try to resolve them.
707 if (DGV
&& DGV
->getType() != SGA
->getType())
708 RecursiveResolveTypes(SGA
->getType(), DGV
->getType());
711 // No linking to be performed on internal stuff.
712 if (DGV
&& DGV
->hasLocalLinkage())
715 if (GlobalAlias
*DGA
= dyn_cast_or_null
<GlobalAlias
>(DGV
)) {
716 // Types are known to be the same, check whether aliasees equal. As
717 // globals are already linked we just need query ValueMap to find the
719 if (DAliasee
== DGA
->getAliasedGlobal()) {
720 // This is just two copies of the same alias. Propagate linkage, if
722 DGA
->setLinkage(CalculateAliasLinkage(SGA
, DGA
));
725 // Proceed to 'common' steps
727 return Error(Err
, "Alias Collision on '" + SGA
->getName()+
728 "': aliases have different aliasees");
729 } else if (GlobalVariable
*DGVar
= dyn_cast_or_null
<GlobalVariable
>(DGV
)) {
730 // The only allowed way is to link alias with external declaration or weak
732 if (DGVar
->isDeclaration() || DGVar
->isWeakForLinker()) {
733 // But only if aliasee is global too...
734 if (!isa
<GlobalVariable
>(DAliasee
))
735 return Error(Err
, "Global-Alias Collision on '" + SGA
->getName() +
736 "': aliasee is not global variable");
738 NewGA
= new GlobalAlias(SGA
->getType(), SGA
->getLinkage(),
739 SGA
->getName(), DAliaseeConst
, Dest
);
740 CopyGVAttributes(NewGA
, SGA
);
742 // Any uses of DGV need to change to NewGA, with cast, if needed.
743 if (SGA
->getType() != DGVar
->getType())
744 DGVar
->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA
,
747 DGVar
->replaceAllUsesWith(NewGA
);
749 // DGVar will conflict with NewGA because they both had the same
750 // name. We must erase this now so ForceRenaming doesn't assert
751 // because DGV might not have internal linkage.
752 DGVar
->eraseFromParent();
754 // Proceed to 'common' steps
756 return Error(Err
, "Global-Alias Collision on '" + SGA
->getName() +
757 "': symbol multiple defined");
758 } else if (Function
*DF
= dyn_cast_or_null
<Function
>(DGV
)) {
759 // The only allowed way is to link alias with external declaration or weak
761 if (DF
->isDeclaration() || DF
->isWeakForLinker()) {
762 // But only if aliasee is function too...
763 if (!isa
<Function
>(DAliasee
))
764 return Error(Err
, "Function-Alias Collision on '" + SGA
->getName() +
765 "': aliasee is not function");
767 NewGA
= new GlobalAlias(SGA
->getType(), SGA
->getLinkage(),
768 SGA
->getName(), DAliaseeConst
, Dest
);
769 CopyGVAttributes(NewGA
, SGA
);
771 // Any uses of DF need to change to NewGA, with cast, if needed.
772 if (SGA
->getType() != DF
->getType())
773 DF
->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA
,
776 DF
->replaceAllUsesWith(NewGA
);
778 // DF will conflict with NewGA because they both had the same
779 // name. We must erase this now so ForceRenaming doesn't assert
780 // because DF might not have internal linkage.
781 DF
->eraseFromParent();
783 // Proceed to 'common' steps
785 return Error(Err
, "Function-Alias Collision on '" + SGA
->getName() +
786 "': symbol multiple defined");
788 // No linking to be performed, simply create an identical version of the
789 // alias over in the dest module...
790 NewGA
= new GlobalAlias(SGA
->getType(), SGA
->getLinkage(),
791 SGA
->getName(), DAliaseeConst
, Dest
);
792 CopyGVAttributes(NewGA
, SGA
);
794 // Proceed to 'common' steps
797 assert(NewGA
&& "No alias was created in destination module!");
799 // If the symbol table renamed the alias, but it is an externally visible
800 // symbol, DGA must be an global value with internal linkage. Rename it.
801 if (NewGA
->getName() != SGA
->getName() &&
802 !NewGA
->hasLocalLinkage())
803 ForceRenaming(NewGA
, SGA
->getName());
805 // Remember this mapping so uses in the source module get remapped
806 // later by MapValue.
807 ValueMap
[SGA
] = NewGA
;
814 // LinkGlobalInits - Update the initializers in the Dest module now that all
815 // globals that may be referenced are in Dest.
816 static bool LinkGlobalInits(Module
*Dest
, const Module
*Src
,
817 ValueToValueMapTy
&ValueMap
,
819 // Loop over all of the globals in the src module, mapping them over as we go
820 for (Module::const_global_iterator I
= Src
->global_begin(),
821 E
= Src
->global_end(); I
!= E
; ++I
) {
822 const GlobalVariable
*SGV
= I
;
824 if (SGV
->hasInitializer()) { // Only process initialized GV's
825 // Figure out what the initializer looks like in the dest module.
827 cast
<Constant
>(MapValue(SGV
->getInitializer(), ValueMap
));
828 // Grab destination global variable or alias.
829 GlobalValue
*DGV
= cast
<GlobalValue
>(ValueMap
[SGV
]->stripPointerCasts());
831 // If dest if global variable, check that initializers match.
832 if (GlobalVariable
*DGVar
= dyn_cast
<GlobalVariable
>(DGV
)) {
833 if (DGVar
->hasInitializer()) {
834 if (SGV
->hasExternalLinkage()) {
835 if (DGVar
->getInitializer() != SInit
)
836 return Error(Err
, "Global Variable Collision on '" +
838 "': global variables have different initializers");
839 } else if (DGVar
->isWeakForLinker()) {
840 // Nothing is required, mapped values will take the new global
842 } else if (SGV
->isWeakForLinker()) {
843 // Nothing is required, mapped values will take the new global
845 } else if (DGVar
->hasAppendingLinkage()) {
846 llvm_unreachable("Appending linkage unimplemented!");
848 llvm_unreachable("Unknown linkage!");
851 // Copy the initializer over now...
852 DGVar
->setInitializer(SInit
);
855 // Destination is alias, the only valid situation is when source is
856 // weak. Also, note, that we already checked linkage in LinkGlobals(),
857 // thus we assert here.
858 // FIXME: Should we weaken this assumption, 'dereference' alias and
859 // check for initializer of aliasee?
860 assert(SGV
->isWeakForLinker());
867 // LinkFunctionProtos - Link the functions together between the two modules,
868 // without doing function bodies... this just adds external function prototypes
869 // to the Dest function...
871 static bool LinkFunctionProtos(Module
*Dest
, const Module
*Src
,
872 ValueToValueMapTy
&ValueMap
,
874 ValueSymbolTable
&DestSymTab
= Dest
->getValueSymbolTable();
876 // Loop over all of the functions in the src module, mapping them over
877 for (Module::const_iterator I
= Src
->begin(), E
= Src
->end(); I
!= E
; ++I
) {
878 const Function
*SF
= I
; // SrcFunction
879 GlobalValue
*DGV
= 0;
881 // Check to see if may have to link the function with the global, alias or
883 if (SF
->hasName() && !SF
->hasLocalLinkage())
884 DGV
= cast_or_null
<GlobalValue
>(DestSymTab
.lookup(SF
->getName()));
886 // If we found a global with the same name in the dest module, but it has
887 // internal linkage, we are really not doing any linkage here.
888 if (DGV
&& DGV
->hasLocalLinkage())
891 // If types don't agree due to opaque types, try to resolve them.
892 if (DGV
&& DGV
->getType() != SF
->getType())
893 RecursiveResolveTypes(SF
->getType(), DGV
->getType());
895 GlobalValue::LinkageTypes NewLinkage
= GlobalValue::InternalLinkage
;
896 bool LinkFromSrc
= false;
897 if (GetLinkageResult(DGV
, SF
, NewLinkage
, LinkFromSrc
, Err
))
900 // If there is no linkage to be performed, just bring over SF without
903 // Function does not already exist, simply insert an function signature
904 // identical to SF into the dest module.
905 Function
*NewDF
= Function::Create(SF
->getFunctionType(),
907 SF
->getName(), Dest
);
908 CopyGVAttributes(NewDF
, SF
);
910 // If the LLVM runtime renamed the function, but it is an externally
911 // visible symbol, DF must be an existing function with internal linkage.
913 if (!NewDF
->hasLocalLinkage() && NewDF
->getName() != SF
->getName())
914 ForceRenaming(NewDF
, SF
->getName());
916 // ... and remember this mapping...
917 ValueMap
[SF
] = NewDF
;
921 // If the visibilities of the symbols disagree and the destination is a
922 // prototype, take the visibility of its input.
923 if (DGV
->isDeclaration())
924 DGV
->setVisibility(SF
->getVisibility());
927 if (isa
<GlobalAlias
>(DGV
))
928 return Error(Err
, "Function-Alias Collision on '" + SF
->getName() +
929 "': symbol multiple defined");
931 // We have a definition of the same name but different type in the
932 // source module. Copy the prototype to the destination and replace
933 // uses of the destination's prototype with the new prototype.
934 Function
*NewDF
= Function::Create(SF
->getFunctionType(), NewLinkage
,
935 SF
->getName(), Dest
);
936 CopyGVAttributes(NewDF
, SF
);
938 // Any uses of DF need to change to NewDF, with cast
939 DGV
->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF
,
942 // DF will conflict with NewDF because they both had the same. We must
943 // erase this now so ForceRenaming doesn't assert because DF might
944 // not have internal linkage.
945 if (GlobalVariable
*Var
= dyn_cast
<GlobalVariable
>(DGV
))
946 Var
->eraseFromParent();
948 cast
<Function
>(DGV
)->eraseFromParent();
950 // If the symbol table renamed the function, but it is an externally
951 // visible symbol, DF must be an existing function with internal
952 // linkage. Rename it.
953 if (NewDF
->getName() != SF
->getName() && !NewDF
->hasLocalLinkage())
954 ForceRenaming(NewDF
, SF
->getName());
956 // Remember this mapping so uses in the source module get remapped
957 // later by MapValue.
958 ValueMap
[SF
] = NewDF
;
962 // Not "link from source", keep the one in the DestModule and remap the
965 if (isa
<GlobalAlias
>(DGV
)) {
966 // The only valid mappings are:
967 // - SF is external declaration, which is effectively a no-op.
968 // - SF is weak, when we just need to throw SF out.
969 if (!SF
->isDeclaration() && !SF
->isWeakForLinker())
970 return Error(Err
, "Function-Alias Collision on '" + SF
->getName() +
971 "': symbol multiple defined");
974 // Set calculated linkage
975 DGV
->setLinkage(NewLinkage
);
977 // Make sure to remember this mapping.
978 ValueMap
[SF
] = ConstantExpr::getBitCast(DGV
, SF
->getType());
983 // LinkFunctionBody - Copy the source function over into the dest function and
984 // fix up references to values. At this point we know that Dest is an external
985 // function, and that Src is not.
986 static bool LinkFunctionBody(Function
*Dest
, Function
*Src
,
987 ValueToValueMapTy
&ValueMap
,
989 assert(Src
&& Dest
&& Dest
->isDeclaration() && !Src
->isDeclaration());
991 // Go through and convert function arguments over, remembering the mapping.
992 Function::arg_iterator DI
= Dest
->arg_begin();
993 for (Function::arg_iterator I
= Src
->arg_begin(), E
= Src
->arg_end();
995 DI
->setName(I
->getName()); // Copy the name information over...
997 // Add a mapping to our local map
1001 // Splice the body of the source function into the dest function.
1002 Dest
->getBasicBlockList().splice(Dest
->end(), Src
->getBasicBlockList());
1004 // At this point, all of the instructions and values of the function are now
1005 // copied over. The only problem is that they are still referencing values in
1006 // the Source function as operands. Loop through all of the operands of the
1007 // functions and patch them up to point to the local versions.
1008 for (Function::iterator BB
= Dest
->begin(), BE
= Dest
->end(); BB
!= BE
; ++BB
)
1009 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
1010 RemapInstruction(I
, ValueMap
, RF_IgnoreMissingEntries
);
1012 // There is no need to map the arguments anymore.
1013 for (Function::arg_iterator I
= Src
->arg_begin(), E
= Src
->arg_end();
1021 // LinkFunctionBodies - Link in the function bodies that are defined in the
1022 // source module into the DestModule. This consists basically of copying the
1023 // function over and fixing up references to values.
1024 static bool LinkFunctionBodies(Module
*Dest
, Module
*Src
,
1025 ValueToValueMapTy
&ValueMap
,
1028 // Loop over all of the functions in the src module, mapping them over as we
1030 for (Module::iterator SF
= Src
->begin(), E
= Src
->end(); SF
!= E
; ++SF
) {
1031 if (!SF
->isDeclaration()) { // No body if function is external
1032 Function
*DF
= dyn_cast
<Function
>(ValueMap
[SF
]); // Destination function
1034 // DF not external SF external?
1035 if (DF
&& DF
->isDeclaration())
1036 // Only provide the function body if there isn't one already.
1037 if (LinkFunctionBody(DF
, SF
, ValueMap
, Err
))
1044 // LinkAppendingVars - If there were any appending global variables, link them
1045 // together now. Return true on error.
1046 static bool LinkAppendingVars(Module
*M
,
1047 std::multimap
<std::string
, GlobalVariable
*> &AppendingVars
,
1048 std::string
*ErrorMsg
) {
1049 if (AppendingVars
.empty()) return false; // Nothing to do.
1051 // Loop over the multimap of appending vars, processing any variables with the
1052 // same name, forming a new appending global variable with both of the
1053 // initializers merged together, then rewrite references to the old variables
1055 std::vector
<Constant
*> Inits
;
1056 while (AppendingVars
.size() > 1) {
1057 // Get the first two elements in the map...
1058 std::multimap
<std::string
,
1059 GlobalVariable
*>::iterator Second
= AppendingVars
.begin(), First
=Second
++;
1061 // If the first two elements are for different names, there is no pair...
1062 // Otherwise there is a pair, so link them together...
1063 if (First
->first
== Second
->first
) {
1064 GlobalVariable
*G1
= First
->second
, *G2
= Second
->second
;
1065 const ArrayType
*T1
= cast
<ArrayType
>(G1
->getType()->getElementType());
1066 const ArrayType
*T2
= cast
<ArrayType
>(G2
->getType()->getElementType());
1068 // Check to see that they two arrays agree on type...
1069 if (T1
->getElementType() != T2
->getElementType())
1070 return Error(ErrorMsg
,
1071 "Appending variables with different element types need to be linked!");
1072 if (G1
->isConstant() != G2
->isConstant())
1073 return Error(ErrorMsg
,
1074 "Appending variables linked with different const'ness!");
1076 if (G1
->getAlignment() != G2
->getAlignment())
1077 return Error(ErrorMsg
,
1078 "Appending variables with different alignment need to be linked!");
1080 if (G1
->getVisibility() != G2
->getVisibility())
1081 return Error(ErrorMsg
,
1082 "Appending variables with different visibility need to be linked!");
1084 if (G1
->getSection() != G2
->getSection())
1085 return Error(ErrorMsg
,
1086 "Appending variables with different section name need to be linked!");
1088 unsigned NewSize
= T1
->getNumElements() + T2
->getNumElements();
1089 ArrayType
*NewType
= ArrayType::get(T1
->getElementType(),
1092 G1
->setName(""); // Clear G1's name in case of a conflict!
1094 // Create the new global variable...
1095 GlobalVariable
*NG
=
1096 new GlobalVariable(*M
, NewType
, G1
->isConstant(), G1
->getLinkage(),
1097 /*init*/0, First
->first
, 0, G1
->isThreadLocal(),
1098 G1
->getType()->getAddressSpace());
1100 // Propagate alignment, visibility and section info.
1101 CopyGVAttributes(NG
, G1
);
1103 // Merge the initializer...
1104 Inits
.reserve(NewSize
);
1105 if (ConstantArray
*I
= dyn_cast
<ConstantArray
>(G1
->getInitializer())) {
1106 for (unsigned i
= 0, e
= T1
->getNumElements(); i
!= e
; ++i
)
1107 Inits
.push_back(I
->getOperand(i
));
1109 assert(isa
<ConstantAggregateZero
>(G1
->getInitializer()));
1110 Constant
*CV
= Constant::getNullValue(T1
->getElementType());
1111 for (unsigned i
= 0, e
= T1
->getNumElements(); i
!= e
; ++i
)
1112 Inits
.push_back(CV
);
1114 if (ConstantArray
*I
= dyn_cast
<ConstantArray
>(G2
->getInitializer())) {
1115 for (unsigned i
= 0, e
= T2
->getNumElements(); i
!= e
; ++i
)
1116 Inits
.push_back(I
->getOperand(i
));
1118 assert(isa
<ConstantAggregateZero
>(G2
->getInitializer()));
1119 Constant
*CV
= Constant::getNullValue(T2
->getElementType());
1120 for (unsigned i
= 0, e
= T2
->getNumElements(); i
!= e
; ++i
)
1121 Inits
.push_back(CV
);
1123 NG
->setInitializer(ConstantArray::get(NewType
, Inits
));
1126 // Replace any uses of the two global variables with uses of the new
1129 // FIXME: This should rewrite simple/straight-forward uses such as
1130 // getelementptr instructions to not use the Cast!
1131 G1
->replaceAllUsesWith(ConstantExpr::getBitCast(NG
,
1133 G2
->replaceAllUsesWith(ConstantExpr::getBitCast(NG
,
1136 // Remove the two globals from the module now...
1137 M
->getGlobalList().erase(G1
);
1138 M
->getGlobalList().erase(G2
);
1140 // Put the new global into the AppendingVars map so that we can handle
1141 // linking of more than two vars...
1142 Second
->second
= NG
;
1144 AppendingVars
.erase(First
);
1150 static bool ResolveAliases(Module
*Dest
) {
1151 for (Module::alias_iterator I
= Dest
->alias_begin(), E
= Dest
->alias_end();
1153 // We can't sue resolveGlobalAlias here because we need to preserve
1154 // bitcasts and GEPs.
1155 if (const Constant
*C
= I
->getAliasee()) {
1156 while (dyn_cast
<GlobalAlias
>(C
))
1157 C
= cast
<GlobalAlias
>(C
)->getAliasee();
1158 const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
);
1159 if (C
!= I
&& !(GV
&& GV
->isDeclaration()))
1160 I
->replaceAllUsesWith(const_cast<Constant
*>(C
));
1166 // LinkModules - This function links two modules together, with the resulting
1167 // left module modified to be the composite of the two input modules. If an
1168 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1169 // the problem. Upon failure, the Dest module could be in a modified state, and
1170 // shouldn't be relied on to be consistent.
1172 Linker::LinkModules(Module
*Dest
, Module
*Src
, std::string
*ErrorMsg
) {
1173 assert(Dest
!= 0 && "Invalid Destination module");
1174 assert(Src
!= 0 && "Invalid Source Module");
1176 if (Dest
->getDataLayout().empty()) {
1177 if (!Src
->getDataLayout().empty()) {
1178 Dest
->setDataLayout(Src
->getDataLayout());
1180 std::string DataLayout
;
1182 if (Dest
->getEndianness() == Module::AnyEndianness
) {
1183 if (Src
->getEndianness() == Module::BigEndian
)
1184 DataLayout
.append("E");
1185 else if (Src
->getEndianness() == Module::LittleEndian
)
1186 DataLayout
.append("e");
1189 if (Dest
->getPointerSize() == Module::AnyPointerSize
) {
1190 if (Src
->getPointerSize() == Module::Pointer64
)
1191 DataLayout
.append(DataLayout
.length() == 0 ? "p:64:64" : "-p:64:64");
1192 else if (Src
->getPointerSize() == Module::Pointer32
)
1193 DataLayout
.append(DataLayout
.length() == 0 ? "p:32:32" : "-p:32:32");
1195 Dest
->setDataLayout(DataLayout
);
1199 // Copy the target triple from the source to dest if the dest's is empty.
1200 if (Dest
->getTargetTriple().empty() && !Src
->getTargetTriple().empty())
1201 Dest
->setTargetTriple(Src
->getTargetTriple());
1203 if (!Src
->getDataLayout().empty() && !Dest
->getDataLayout().empty() &&
1204 Src
->getDataLayout() != Dest
->getDataLayout())
1205 errs() << "WARNING: Linking two modules of different data layouts!\n";
1206 if (!Src
->getTargetTriple().empty() &&
1207 Dest
->getTargetTriple() != Src
->getTargetTriple()) {
1208 errs() << "WARNING: Linking two modules of different target triples: ";
1209 if (!Src
->getModuleIdentifier().empty())
1210 errs() << Src
->getModuleIdentifier() << ": ";
1211 errs() << "'" << Src
->getTargetTriple() << "' and '"
1212 << Dest
->getTargetTriple() << "'\n";
1215 // Append the module inline asm string.
1216 if (!Src
->getModuleInlineAsm().empty()) {
1217 if (Dest
->getModuleInlineAsm().empty())
1218 Dest
->setModuleInlineAsm(Src
->getModuleInlineAsm());
1220 Dest
->setModuleInlineAsm(Dest
->getModuleInlineAsm()+"\n"+
1221 Src
->getModuleInlineAsm());
1224 // Update the destination module's dependent libraries list with the libraries
1225 // from the source module. There's no opportunity for duplicates here as the
1226 // Module ensures that duplicate insertions are discarded.
1227 for (Module::lib_iterator SI
= Src
->lib_begin(), SE
= Src
->lib_end();
1229 Dest
->addLibrary(*SI
);
1231 // LinkTypes - Go through the symbol table of the Src module and see if any
1232 // types are named in the src module that are not named in the Dst module.
1233 // Make sure there are no type name conflicts.
1234 if (LinkTypes(Dest
, Src
, ErrorMsg
))
1237 // ValueMap - Mapping of values from what they used to be in Src, to what they
1238 // are now in Dest. ValueToValueMapTy is a ValueMap, which involves some
1239 // overhead due to the use of Value handles which the Linker doesn't actually
1240 // need, but this allows us to reuse the ValueMapper code.
1241 ValueToValueMapTy ValueMap
;
1243 // AppendingVars - Keep track of global variables in the destination module
1244 // with appending linkage. After the module is linked together, they are
1245 // appended and the module is rewritten.
1246 std::multimap
<std::string
, GlobalVariable
*> AppendingVars
;
1247 for (Module::global_iterator I
= Dest
->global_begin(), E
= Dest
->global_end();
1249 // Add all of the appending globals already in the Dest module to
1251 if (I
->hasAppendingLinkage())
1252 AppendingVars
.insert(std::make_pair(I
->getName(), I
));
1255 // Insert all of the globals in src into the Dest module... without linking
1256 // initializers (which could refer to functions not yet mapped over).
1257 if (LinkGlobals(Dest
, Src
, ValueMap
, AppendingVars
, ErrorMsg
))
1260 // Link the functions together between the two modules, without doing function
1261 // bodies... this just adds external function prototypes to the Dest
1262 // function... We do this so that when we begin processing function bodies,
1263 // all of the global values that may be referenced are available in our
1265 if (LinkFunctionProtos(Dest
, Src
, ValueMap
, ErrorMsg
))
1268 // If there were any alias, link them now. We really need to do this now,
1269 // because all of the aliases that may be referenced need to be available in
1271 if (LinkAlias(Dest
, Src
, ValueMap
, ErrorMsg
)) return true;
1273 // Update the initializers in the Dest module now that all globals that may
1274 // be referenced are in Dest.
1275 if (LinkGlobalInits(Dest
, Src
, ValueMap
, ErrorMsg
)) return true;
1277 // Link in the function bodies that are defined in the source module into the
1278 // DestModule. This consists basically of copying the function over and
1279 // fixing up references to values.
1280 if (LinkFunctionBodies(Dest
, Src
, ValueMap
, ErrorMsg
)) return true;
1282 // If there were any appending global variables, link them together now.
1283 if (LinkAppendingVars(Dest
, AppendingVars
, ErrorMsg
)) return true;
1285 // Resolve all uses of aliases with aliasees
1286 if (ResolveAliases(Dest
)) return true;
1288 // Remap all of the named mdnoes in Src into the Dest module. We do this
1289 // after linking GlobalValues so that MDNodes that reference GlobalValues
1290 // are properly remapped.
1291 LinkNamedMDNodes(Dest
, Src
, ValueMap
);
1293 // If the source library's module id is in the dependent library list of the
1294 // destination library, remove it since that module is now linked in.
1295 const std::string
&modId
= Src
->getModuleIdentifier();
1297 Dest
->removeLibrary(sys::path::stem(modId
));