1 //===- InstCombineAddSub.cpp ----------------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the visit functions for add, fadd, sub, and fsub.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombine.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/Support/GetElementPtrTypeIterator.h"
18 #include "llvm/Support/PatternMatch.h"
20 using namespace PatternMatch
;
22 /// AddOne - Add one to a ConstantInt.
23 static Constant
*AddOne(Constant
*C
) {
24 return ConstantExpr::getAdd(C
, ConstantInt::get(C
->getType(), 1));
26 /// SubOne - Subtract one from a ConstantInt.
27 static Constant
*SubOne(ConstantInt
*C
) {
28 return ConstantInt::get(C
->getContext(), C
->getValue()-1);
32 // dyn_castFoldableMul - If this value is a multiply that can be folded into
33 // other computations (because it has a constant operand), return the
34 // non-constant operand of the multiply, and set CST to point to the multiplier.
35 // Otherwise, return null.
37 static inline Value
*dyn_castFoldableMul(Value
*V
, ConstantInt
*&CST
) {
38 if (!V
->hasOneUse() || !V
->getType()->isIntegerTy())
41 Instruction
*I
= dyn_cast
<Instruction
>(V
);
44 if (I
->getOpcode() == Instruction::Mul
)
45 if ((CST
= dyn_cast
<ConstantInt
>(I
->getOperand(1))))
46 return I
->getOperand(0);
47 if (I
->getOpcode() == Instruction::Shl
)
48 if ((CST
= dyn_cast
<ConstantInt
>(I
->getOperand(1)))) {
49 // The multiplier is really 1 << CST.
50 uint32_t BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
51 uint32_t CSTVal
= CST
->getLimitedValue(BitWidth
);
52 CST
= ConstantInt::get(V
->getType()->getContext(),
53 APInt(BitWidth
, 1).shl(CSTVal
));
54 return I
->getOperand(0);
60 /// WillNotOverflowSignedAdd - Return true if we can prove that:
61 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
62 /// This basically requires proving that the add in the original type would not
63 /// overflow to change the sign bit or have a carry out.
64 bool InstCombiner::WillNotOverflowSignedAdd(Value
*LHS
, Value
*RHS
) {
65 // There are different heuristics we can use for this. Here are some simple
68 // Add has the property that adding any two 2's complement numbers can only
69 // have one carry bit which can change a sign. As such, if LHS and RHS each
70 // have at least two sign bits, we know that the addition of the two values
71 // will sign extend fine.
72 if (ComputeNumSignBits(LHS
) > 1 && ComputeNumSignBits(RHS
) > 1)
76 // If one of the operands only has one non-zero bit, and if the other operand
77 // has a known-zero bit in a more significant place than it (not including the
78 // sign bit) the ripple may go up to and fill the zero, but won't change the
79 // sign. For example, (X & ~4) + 1.
86 Instruction
*InstCombiner::visitAdd(BinaryOperator
&I
) {
87 bool Changed
= SimplifyAssociativeOrCommutative(I
);
88 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
90 if (Value
*V
= SimplifyAddInst(LHS
, RHS
, I
.hasNoSignedWrap(),
91 I
.hasNoUnsignedWrap(), TD
))
92 return ReplaceInstUsesWith(I
, V
);
94 // (A*B)+(A*C) -> A*(B+C) etc
95 if (Value
*V
= SimplifyUsingDistributiveLaws(I
))
96 return ReplaceInstUsesWith(I
, V
);
98 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
)) {
99 // X + (signbit) --> X ^ signbit
100 const APInt
&Val
= CI
->getValue();
102 return BinaryOperator::CreateXor(LHS
, RHS
);
104 // See if SimplifyDemandedBits can simplify this. This handles stuff like
105 // (X & 254)+1 -> (X&254)|1
106 if (SimplifyDemandedInstructionBits(I
))
109 // zext(bool) + C -> bool ? C + 1 : C
110 if (ZExtInst
*ZI
= dyn_cast
<ZExtInst
>(LHS
))
111 if (ZI
->getSrcTy()->isIntegerTy(1))
112 return SelectInst::Create(ZI
->getOperand(0), AddOne(CI
), CI
);
114 Value
*XorLHS
= 0; ConstantInt
*XorRHS
= 0;
115 if (match(LHS
, m_Xor(m_Value(XorLHS
), m_ConstantInt(XorRHS
)))) {
116 uint32_t TySizeBits
= I
.getType()->getScalarSizeInBits();
117 const APInt
&RHSVal
= CI
->getValue();
118 unsigned ExtendAmt
= 0;
119 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
120 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
121 if (XorRHS
->getValue() == -RHSVal
) {
122 if (RHSVal
.isPowerOf2())
123 ExtendAmt
= TySizeBits
- RHSVal
.logBase2() - 1;
124 else if (XorRHS
->getValue().isPowerOf2())
125 ExtendAmt
= TySizeBits
- XorRHS
->getValue().logBase2() - 1;
129 APInt Mask
= APInt::getHighBitsSet(TySizeBits
, ExtendAmt
);
130 if (!MaskedValueIsZero(XorLHS
, Mask
))
135 Constant
*ShAmt
= ConstantInt::get(I
.getType(), ExtendAmt
);
136 Value
*NewShl
= Builder
->CreateShl(XorLHS
, ShAmt
, "sext");
137 return BinaryOperator::CreateAShr(NewShl
, ShAmt
);
142 if (isa
<Constant
>(RHS
) && isa
<PHINode
>(LHS
))
143 if (Instruction
*NV
= FoldOpIntoPhi(I
))
146 if (I
.getType()->isIntegerTy(1))
147 return BinaryOperator::CreateXor(LHS
, RHS
);
151 BinaryOperator
*New
=
152 BinaryOperator::CreateShl(LHS
, ConstantInt::get(I
.getType(), 1));
153 New
->setHasNoSignedWrap(I
.hasNoSignedWrap());
154 New
->setHasNoUnsignedWrap(I
.hasNoUnsignedWrap());
159 // -A + -B --> -(A + B)
160 if (Value
*LHSV
= dyn_castNegVal(LHS
)) {
161 if (Value
*RHSV
= dyn_castNegVal(RHS
)) {
162 Value
*NewAdd
= Builder
->CreateAdd(LHSV
, RHSV
, "sum");
163 return BinaryOperator::CreateNeg(NewAdd
);
166 return BinaryOperator::CreateSub(RHS
, LHSV
);
170 if (!isa
<Constant
>(RHS
))
171 if (Value
*V
= dyn_castNegVal(RHS
))
172 return BinaryOperator::CreateSub(LHS
, V
);
176 if (Value
*X
= dyn_castFoldableMul(LHS
, C2
)) {
177 if (X
== RHS
) // X*C + X --> X * (C+1)
178 return BinaryOperator::CreateMul(RHS
, AddOne(C2
));
180 // X*C1 + X*C2 --> X * (C1+C2)
182 if (X
== dyn_castFoldableMul(RHS
, C1
))
183 return BinaryOperator::CreateMul(X
, ConstantExpr::getAdd(C1
, C2
));
186 // X + X*C --> X * (C+1)
187 if (dyn_castFoldableMul(RHS
, C2
) == LHS
)
188 return BinaryOperator::CreateMul(LHS
, AddOne(C2
));
190 // A+B --> A|B iff A and B have no bits set in common.
191 if (const IntegerType
*IT
= dyn_cast
<IntegerType
>(I
.getType())) {
192 APInt Mask
= APInt::getAllOnesValue(IT
->getBitWidth());
193 APInt
LHSKnownOne(IT
->getBitWidth(), 0);
194 APInt
LHSKnownZero(IT
->getBitWidth(), 0);
195 ComputeMaskedBits(LHS
, Mask
, LHSKnownZero
, LHSKnownOne
);
196 if (LHSKnownZero
!= 0) {
197 APInt
RHSKnownOne(IT
->getBitWidth(), 0);
198 APInt
RHSKnownZero(IT
->getBitWidth(), 0);
199 ComputeMaskedBits(RHS
, Mask
, RHSKnownZero
, RHSKnownOne
);
201 // No bits in common -> bitwise or.
202 if ((LHSKnownZero
|RHSKnownZero
).isAllOnesValue())
203 return BinaryOperator::CreateOr(LHS
, RHS
);
207 // W*X + Y*Z --> W * (X+Z) iff W == Y
209 Value
*W
, *X
, *Y
, *Z
;
210 if (match(LHS
, m_Mul(m_Value(W
), m_Value(X
))) &&
211 match(RHS
, m_Mul(m_Value(Y
), m_Value(Z
)))) {
224 Value
*NewAdd
= Builder
->CreateAdd(X
, Z
, LHS
->getName());
225 return BinaryOperator::CreateMul(W
, NewAdd
);
230 if (ConstantInt
*CRHS
= dyn_cast
<ConstantInt
>(RHS
)) {
232 if (match(LHS
, m_Not(m_Value(X
)))) // ~X + C --> (C-1) - X
233 return BinaryOperator::CreateSub(SubOne(CRHS
), X
);
235 // (X & FF00) + xx00 -> (X+xx00) & FF00
236 if (LHS
->hasOneUse() &&
237 match(LHS
, m_And(m_Value(X
), m_ConstantInt(C2
))) &&
238 CRHS
->getValue() == (CRHS
->getValue() & C2
->getValue())) {
239 // See if all bits from the first bit set in the Add RHS up are included
240 // in the mask. First, get the rightmost bit.
241 const APInt
&AddRHSV
= CRHS
->getValue();
243 // Form a mask of all bits from the lowest bit added through the top.
244 APInt
AddRHSHighBits(~((AddRHSV
& -AddRHSV
)-1));
246 // See if the and mask includes all of these bits.
247 APInt
AddRHSHighBitsAnd(AddRHSHighBits
& C2
->getValue());
249 if (AddRHSHighBits
== AddRHSHighBitsAnd
) {
250 // Okay, the xform is safe. Insert the new add pronto.
251 Value
*NewAdd
= Builder
->CreateAdd(X
, CRHS
, LHS
->getName());
252 return BinaryOperator::CreateAnd(NewAdd
, C2
);
256 // Try to fold constant add into select arguments.
257 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(LHS
))
258 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
262 // add (select X 0 (sub n A)) A --> select X A n
264 SelectInst
*SI
= dyn_cast
<SelectInst
>(LHS
);
267 SI
= dyn_cast
<SelectInst
>(RHS
);
270 if (SI
&& SI
->hasOneUse()) {
271 Value
*TV
= SI
->getTrueValue();
272 Value
*FV
= SI
->getFalseValue();
275 // Can we fold the add into the argument of the select?
276 // We check both true and false select arguments for a matching subtract.
277 if (match(FV
, m_Zero()) && match(TV
, m_Sub(m_Value(N
), m_Specific(A
))))
278 // Fold the add into the true select value.
279 return SelectInst::Create(SI
->getCondition(), N
, A
);
281 if (match(TV
, m_Zero()) && match(FV
, m_Sub(m_Value(N
), m_Specific(A
))))
282 // Fold the add into the false select value.
283 return SelectInst::Create(SI
->getCondition(), A
, N
);
287 // Check for (add (sext x), y), see if we can merge this into an
288 // integer add followed by a sext.
289 if (SExtInst
*LHSConv
= dyn_cast
<SExtInst
>(LHS
)) {
290 // (add (sext x), cst) --> (sext (add x, cst'))
291 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
)) {
293 ConstantExpr::getTrunc(RHSC
, LHSConv
->getOperand(0)->getType());
294 if (LHSConv
->hasOneUse() &&
295 ConstantExpr::getSExt(CI
, I
.getType()) == RHSC
&&
296 WillNotOverflowSignedAdd(LHSConv
->getOperand(0), CI
)) {
297 // Insert the new, smaller add.
298 Value
*NewAdd
= Builder
->CreateNSWAdd(LHSConv
->getOperand(0),
300 return new SExtInst(NewAdd
, I
.getType());
304 // (add (sext x), (sext y)) --> (sext (add int x, y))
305 if (SExtInst
*RHSConv
= dyn_cast
<SExtInst
>(RHS
)) {
306 // Only do this if x/y have the same type, if at last one of them has a
307 // single use (so we don't increase the number of sexts), and if the
308 // integer add will not overflow.
309 if (LHSConv
->getOperand(0)->getType()==RHSConv
->getOperand(0)->getType()&&
310 (LHSConv
->hasOneUse() || RHSConv
->hasOneUse()) &&
311 WillNotOverflowSignedAdd(LHSConv
->getOperand(0),
312 RHSConv
->getOperand(0))) {
313 // Insert the new integer add.
314 Value
*NewAdd
= Builder
->CreateNSWAdd(LHSConv
->getOperand(0),
315 RHSConv
->getOperand(0), "addconv");
316 return new SExtInst(NewAdd
, I
.getType());
321 return Changed
? &I
: 0;
324 Instruction
*InstCombiner::visitFAdd(BinaryOperator
&I
) {
325 bool Changed
= SimplifyAssociativeOrCommutative(I
);
326 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
328 if (Constant
*RHSC
= dyn_cast
<Constant
>(RHS
)) {
330 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(RHSC
)) {
331 if (CFP
->isExactlyValue(ConstantFP::getNegativeZero
332 (I
.getType())->getValueAPF()))
333 return ReplaceInstUsesWith(I
, LHS
);
336 if (isa
<PHINode
>(LHS
))
337 if (Instruction
*NV
= FoldOpIntoPhi(I
))
342 // -A + -B --> -(A + B)
343 if (Value
*LHSV
= dyn_castFNegVal(LHS
))
344 return BinaryOperator::CreateFSub(RHS
, LHSV
);
347 if (!isa
<Constant
>(RHS
))
348 if (Value
*V
= dyn_castFNegVal(RHS
))
349 return BinaryOperator::CreateFSub(LHS
, V
);
351 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
352 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(RHS
))
353 if (CFP
->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS
))
354 return ReplaceInstUsesWith(I
, LHS
);
356 // Check for (fadd double (sitofp x), y), see if we can merge this into an
357 // integer add followed by a promotion.
358 if (SIToFPInst
*LHSConv
= dyn_cast
<SIToFPInst
>(LHS
)) {
359 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
360 // ... if the constant fits in the integer value. This is useful for things
361 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
362 // requires a constant pool load, and generally allows the add to be better
364 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(RHS
)) {
366 ConstantExpr::getFPToSI(CFP
, LHSConv
->getOperand(0)->getType());
367 if (LHSConv
->hasOneUse() &&
368 ConstantExpr::getSIToFP(CI
, I
.getType()) == CFP
&&
369 WillNotOverflowSignedAdd(LHSConv
->getOperand(0), CI
)) {
370 // Insert the new integer add.
371 Value
*NewAdd
= Builder
->CreateNSWAdd(LHSConv
->getOperand(0),
373 return new SIToFPInst(NewAdd
, I
.getType());
377 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
378 if (SIToFPInst
*RHSConv
= dyn_cast
<SIToFPInst
>(RHS
)) {
379 // Only do this if x/y have the same type, if at last one of them has a
380 // single use (so we don't increase the number of int->fp conversions),
381 // and if the integer add will not overflow.
382 if (LHSConv
->getOperand(0)->getType()==RHSConv
->getOperand(0)->getType()&&
383 (LHSConv
->hasOneUse() || RHSConv
->hasOneUse()) &&
384 WillNotOverflowSignedAdd(LHSConv
->getOperand(0),
385 RHSConv
->getOperand(0))) {
386 // Insert the new integer add.
387 Value
*NewAdd
= Builder
->CreateNSWAdd(LHSConv
->getOperand(0),
388 RHSConv
->getOperand(0),"addconv");
389 return new SIToFPInst(NewAdd
, I
.getType());
394 return Changed
? &I
: 0;
398 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
399 /// code necessary to compute the offset from the base pointer (without adding
400 /// in the base pointer). Return the result as a signed integer of intptr size.
401 Value
*InstCombiner::EmitGEPOffset(User
*GEP
) {
402 TargetData
&TD
= *getTargetData();
403 gep_type_iterator GTI
= gep_type_begin(GEP
);
404 const Type
*IntPtrTy
= TD
.getIntPtrType(GEP
->getContext());
405 Value
*Result
= Constant::getNullValue(IntPtrTy
);
407 // If the GEP is inbounds, we know that none of the addressing operations will
408 // overflow in an unsigned sense.
409 bool isInBounds
= cast
<GEPOperator
>(GEP
)->isInBounds();
411 // Build a mask for high order bits.
412 unsigned IntPtrWidth
= TD
.getPointerSizeInBits();
413 uint64_t PtrSizeMask
= ~0ULL >> (64-IntPtrWidth
);
415 for (User::op_iterator i
= GEP
->op_begin() + 1, e
= GEP
->op_end(); i
!= e
;
418 uint64_t Size
= TD
.getTypeAllocSize(GTI
.getIndexedType()) & PtrSizeMask
;
419 if (ConstantInt
*OpC
= dyn_cast
<ConstantInt
>(Op
)) {
420 if (OpC
->isZero()) continue;
422 // Handle a struct index, which adds its field offset to the pointer.
423 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
424 Size
= TD
.getStructLayout(STy
)->getElementOffset(OpC
->getZExtValue());
427 Result
= Builder
->CreateAdd(Result
, ConstantInt::get(IntPtrTy
, Size
),
428 GEP
->getName()+".offs");
432 Constant
*Scale
= ConstantInt::get(IntPtrTy
, Size
);
434 ConstantExpr::getIntegerCast(OpC
, IntPtrTy
, true /*SExt*/);
435 Scale
= ConstantExpr::getMul(OC
, Scale
, isInBounds
/*NUW*/);
436 // Emit an add instruction.
437 Result
= Builder
->CreateAdd(Result
, Scale
, GEP
->getName()+".offs");
440 // Convert to correct type.
441 if (Op
->getType() != IntPtrTy
)
442 Op
= Builder
->CreateIntCast(Op
, IntPtrTy
, true, Op
->getName()+".c");
444 // We'll let instcombine(mul) convert this to a shl if possible.
445 Op
= Builder
->CreateMul(Op
, ConstantInt::get(IntPtrTy
, Size
),
446 GEP
->getName()+".idx", isInBounds
/*NUW*/);
449 // Emit an add instruction.
450 Result
= Builder
->CreateAdd(Op
, Result
, GEP
->getName()+".offs");
458 /// Optimize pointer differences into the same array into a size. Consider:
459 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
460 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
462 Value
*InstCombiner::OptimizePointerDifference(Value
*LHS
, Value
*RHS
,
464 assert(TD
&& "Must have target data info for this");
466 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
468 bool Swapped
= false;
469 GetElementPtrInst
*GEP
= 0;
470 ConstantExpr
*CstGEP
= 0;
472 // TODO: Could also optimize &A[i] - &A[j] -> "i-j", and "&A.foo[i] - &A.foo".
473 // For now we require one side to be the base pointer "A" or a constant
474 // expression derived from it.
475 if (GetElementPtrInst
*LHSGEP
= dyn_cast
<GetElementPtrInst
>(LHS
)) {
477 if (LHSGEP
->getOperand(0) == RHS
) {
480 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(RHS
)) {
481 // (gep X, ...) - (ce_gep X, ...)
482 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
483 LHSGEP
->getOperand(0) == CE
->getOperand(0)) {
491 if (GetElementPtrInst
*RHSGEP
= dyn_cast
<GetElementPtrInst
>(RHS
)) {
493 if (RHSGEP
->getOperand(0) == LHS
) {
496 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(LHS
)) {
497 // (ce_gep X, ...) - (gep X, ...)
498 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
499 RHSGEP
->getOperand(0) == CE
->getOperand(0)) {
510 // Emit the offset of the GEP and an intptr_t.
511 Value
*Result
= EmitGEPOffset(GEP
);
513 // If we had a constant expression GEP on the other side offsetting the
514 // pointer, subtract it from the offset we have.
516 Value
*CstOffset
= EmitGEPOffset(CstGEP
);
517 Result
= Builder
->CreateSub(Result
, CstOffset
);
521 // If we have p - gep(p, ...) then we have to negate the result.
523 Result
= Builder
->CreateNeg(Result
, "diff.neg");
525 return Builder
->CreateIntCast(Result
, Ty
, true);
529 Instruction
*InstCombiner::visitSub(BinaryOperator
&I
) {
530 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
532 if (Value
*V
= SimplifySubInst(Op0
, Op1
, I
.hasNoSignedWrap(),
533 I
.hasNoUnsignedWrap(), TD
))
534 return ReplaceInstUsesWith(I
, V
);
536 // (A*B)-(A*C) -> A*(B-C) etc
537 if (Value
*V
= SimplifyUsingDistributiveLaws(I
))
538 return ReplaceInstUsesWith(I
, V
);
540 // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW.
541 if (Value
*V
= dyn_castNegVal(Op1
)) {
542 BinaryOperator
*Res
= BinaryOperator::CreateAdd(Op0
, V
);
543 Res
->setHasNoSignedWrap(I
.hasNoSignedWrap());
544 Res
->setHasNoUnsignedWrap(I
.hasNoUnsignedWrap());
548 if (I
.getType()->isIntegerTy(1))
549 return BinaryOperator::CreateXor(Op0
, Op1
);
551 // Replace (-1 - A) with (~A).
552 if (match(Op0
, m_AllOnes()))
553 return BinaryOperator::CreateNot(Op1
);
555 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Op0
)) {
556 // C - ~X == X + (1+C)
558 if (match(Op1
, m_Not(m_Value(X
))))
559 return BinaryOperator::CreateAdd(X
, AddOne(C
));
561 // -(X >>u 31) -> (X >>s 31)
562 // -(X >>s 31) -> (X >>u 31)
564 Value
*X
; ConstantInt
*CI
;
565 if (match(Op1
, m_LShr(m_Value(X
), m_ConstantInt(CI
))) &&
566 // Verify we are shifting out everything but the sign bit.
567 CI
->getValue() == I
.getType()->getPrimitiveSizeInBits()-1)
568 return BinaryOperator::CreateAShr(X
, CI
);
570 if (match(Op1
, m_AShr(m_Value(X
), m_ConstantInt(CI
))) &&
571 // Verify we are shifting out everything but the sign bit.
572 CI
->getValue() == I
.getType()->getPrimitiveSizeInBits()-1)
573 return BinaryOperator::CreateLShr(X
, CI
);
576 // Try to fold constant sub into select arguments.
577 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
578 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
581 // C - zext(bool) -> bool ? C - 1 : C
582 if (ZExtInst
*ZI
= dyn_cast
<ZExtInst
>(Op1
))
583 if (ZI
->getSrcTy()->isIntegerTy(1))
584 return SelectInst::Create(ZI
->getOperand(0), SubOne(C
), C
);
586 // C-(X+C2) --> (C-C2)-X
588 if (match(Op1
, m_Add(m_Value(X
), m_ConstantInt(C2
))))
589 return BinaryOperator::CreateSub(ConstantExpr::getSub(C
, C2
), X
);
594 // X-(X+Y) == -Y X-(Y+X) == -Y
595 if (match(Op1
, m_Add(m_Specific(Op0
), m_Value(Y
))) ||
596 match(Op1
, m_Add(m_Value(Y
), m_Specific(Op0
))))
597 return BinaryOperator::CreateNeg(Y
);
600 if (match(Op0
, m_Sub(m_Specific(Op1
), m_Value(Y
))))
601 return BinaryOperator::CreateNeg(Y
);
604 if (Op1
->hasOneUse()) {
605 Value
*X
= 0, *Y
= 0, *Z
= 0;
609 // (X - (Y - Z)) --> (X + (Z - Y)).
610 if (match(Op1
, m_Sub(m_Value(Y
), m_Value(Z
))))
611 return BinaryOperator::CreateAdd(Op0
,
612 Builder
->CreateSub(Z
, Y
, Op1
->getName()));
614 // (X - (X & Y)) --> (X & ~Y)
616 if (match(Op1
, m_And(m_Value(Y
), m_Specific(Op0
))) ||
617 match(Op1
, m_And(m_Specific(Op0
), m_Value(Y
))))
618 return BinaryOperator::CreateAnd(Op0
,
619 Builder
->CreateNot(Y
, Y
->getName() + ".not"));
621 // 0 - (X sdiv C) -> (X sdiv -C)
622 if (match(Op1
, m_SDiv(m_Value(X
), m_Constant(C
))) &&
623 match(Op0
, m_Zero()))
624 return BinaryOperator::CreateSDiv(X
, ConstantExpr::getNeg(C
));
626 // 0 - (X << Y) -> (-X << Y) when X is freely negatable.
627 if (match(Op1
, m_Shl(m_Value(X
), m_Value(Y
))) && match(Op0
, m_Zero()))
628 if (Value
*XNeg
= dyn_castNegVal(X
))
629 return BinaryOperator::CreateShl(XNeg
, Y
);
631 // X - X*C --> X * (1-C)
632 if (match(Op1
, m_Mul(m_Specific(Op0
), m_ConstantInt(CI
)))) {
633 Constant
*CP1
= ConstantExpr::getSub(ConstantInt::get(I
.getType(),1), CI
);
634 return BinaryOperator::CreateMul(Op0
, CP1
);
637 // X - X<<C --> X * (1-(1<<C))
638 if (match(Op1
, m_Shl(m_Specific(Op0
), m_ConstantInt(CI
)))) {
639 Constant
*One
= ConstantInt::get(I
.getType(), 1);
640 C
= ConstantExpr::getSub(One
, ConstantExpr::getShl(One
, CI
));
641 return BinaryOperator::CreateMul(Op0
, C
);
644 // X - A*-B -> X + A*B
645 // X - -A*B -> X + A*B
647 if (match(Op1
, m_Mul(m_Value(A
), m_Neg(m_Value(B
)))) ||
648 match(Op1
, m_Mul(m_Neg(m_Value(A
)), m_Value(B
))))
649 return BinaryOperator::CreateAdd(Op0
, Builder
->CreateMul(A
, B
));
651 // X - A*CI -> X + A*-CI
652 // X - CI*A -> X + A*-CI
653 if (match(Op1
, m_Mul(m_Value(A
), m_ConstantInt(CI
))) ||
654 match(Op1
, m_Mul(m_ConstantInt(CI
), m_Value(A
)))) {
655 Value
*NewMul
= Builder
->CreateMul(A
, ConstantExpr::getNeg(CI
));
656 return BinaryOperator::CreateAdd(Op0
, NewMul
);
661 if (Value
*X
= dyn_castFoldableMul(Op0
, C1
)) {
662 if (X
== Op1
) // X*C - X --> X * (C-1)
663 return BinaryOperator::CreateMul(Op1
, SubOne(C1
));
665 ConstantInt
*C2
; // X*C1 - X*C2 -> X * (C1-C2)
666 if (X
== dyn_castFoldableMul(Op1
, C2
))
667 return BinaryOperator::CreateMul(X
, ConstantExpr::getSub(C1
, C2
));
670 // Optimize pointer differences into the same array into a size. Consider:
671 // &A[10] - &A[0]: we should compile this to "10".
673 Value
*LHSOp
, *RHSOp
;
674 if (match(Op0
, m_PtrToInt(m_Value(LHSOp
))) &&
675 match(Op1
, m_PtrToInt(m_Value(RHSOp
))))
676 if (Value
*Res
= OptimizePointerDifference(LHSOp
, RHSOp
, I
.getType()))
677 return ReplaceInstUsesWith(I
, Res
);
679 // trunc(p)-trunc(q) -> trunc(p-q)
680 if (match(Op0
, m_Trunc(m_PtrToInt(m_Value(LHSOp
)))) &&
681 match(Op1
, m_Trunc(m_PtrToInt(m_Value(RHSOp
)))))
682 if (Value
*Res
= OptimizePointerDifference(LHSOp
, RHSOp
, I
.getType()))
683 return ReplaceInstUsesWith(I
, Res
);
689 Instruction
*InstCombiner::visitFSub(BinaryOperator
&I
) {
690 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
692 // If this is a 'B = x-(-A)', change to B = x+A...
693 if (Value
*V
= dyn_castFNegVal(Op1
))
694 return BinaryOperator::CreateFAdd(Op0
, V
);