Revert r131155 for now. It makes VMCore depend on Analysis and Transforms
[llvm/stm8.git] / lib / Transforms / InstCombine / InstCombineShifts.cpp
blob811f94976f68164232e8e7e4ec0da13c94709370
1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitShl, visitLShr, and visitAShr functions.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombine.h"
15 #include "llvm/IntrinsicInst.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Support/PatternMatch.h"
18 using namespace llvm;
19 using namespace PatternMatch;
21 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
22 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
23 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
25 // See if we can fold away this shift.
26 if (SimplifyDemandedInstructionBits(I))
27 return &I;
29 // Try to fold constant and into select arguments.
30 if (isa<Constant>(Op0))
31 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
32 if (Instruction *R = FoldOpIntoSelect(I, SI))
33 return R;
35 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
36 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
37 return Res;
39 // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
40 // Because shifts by negative values (which could occur if A were negative)
41 // are undefined.
42 Value *A; const APInt *B;
43 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
44 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
45 // demand the sign bit (and many others) here??
46 Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
47 Op1->getName());
48 I.setOperand(1, Rem);
49 return &I;
52 return 0;
55 /// CanEvaluateShifted - See if we can compute the specified value, but shifted
56 /// logically to the left or right by some number of bits. This should return
57 /// true if the expression can be computed for the same cost as the current
58 /// expression tree. This is used to eliminate extraneous shifting from things
59 /// like:
60 /// %C = shl i128 %A, 64
61 /// %D = shl i128 %B, 96
62 /// %E = or i128 %C, %D
63 /// %F = lshr i128 %E, 64
64 /// where the client will ask if E can be computed shifted right by 64-bits. If
65 /// this succeeds, the GetShiftedValue function will be called to produce the
66 /// value.
67 static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
68 InstCombiner &IC) {
69 // We can always evaluate constants shifted.
70 if (isa<Constant>(V))
71 return true;
73 Instruction *I = dyn_cast<Instruction>(V);
74 if (!I) return false;
76 // If this is the opposite shift, we can directly reuse the input of the shift
77 // if the needed bits are already zero in the input. This allows us to reuse
78 // the value which means that we don't care if the shift has multiple uses.
79 // TODO: Handle opposite shift by exact value.
80 ConstantInt *CI = 0;
81 if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
82 (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
83 if (CI->getZExtValue() == NumBits) {
84 // TODO: Check that the input bits are already zero with MaskedValueIsZero
85 #if 0
86 // If this is a truncate of a logical shr, we can truncate it to a smaller
87 // lshr iff we know that the bits we would otherwise be shifting in are
88 // already zeros.
89 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
90 uint32_t BitWidth = Ty->getScalarSizeInBits();
91 if (MaskedValueIsZero(I->getOperand(0),
92 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
93 CI->getLimitedValue(BitWidth) < BitWidth) {
94 return CanEvaluateTruncated(I->getOperand(0), Ty);
96 #endif
101 // We can't mutate something that has multiple uses: doing so would
102 // require duplicating the instruction in general, which isn't profitable.
103 if (!I->hasOneUse()) return false;
105 switch (I->getOpcode()) {
106 default: return false;
107 case Instruction::And:
108 case Instruction::Or:
109 case Instruction::Xor:
110 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
111 return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
112 CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
114 case Instruction::Shl: {
115 // We can often fold the shift into shifts-by-a-constant.
116 CI = dyn_cast<ConstantInt>(I->getOperand(1));
117 if (CI == 0) return false;
119 // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
120 if (isLeftShift) return true;
122 // We can always turn shl(c)+shr(c) -> and(c2).
123 if (CI->getValue() == NumBits) return true;
125 unsigned TypeWidth = I->getType()->getScalarSizeInBits();
127 // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
128 // profitable unless we know the and'd out bits are already zero.
129 if (CI->getZExtValue() > NumBits) {
130 unsigned LowBits = TypeWidth - CI->getZExtValue();
131 if (MaskedValueIsZero(I->getOperand(0),
132 APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
133 return true;
136 return false;
138 case Instruction::LShr: {
139 // We can often fold the shift into shifts-by-a-constant.
140 CI = dyn_cast<ConstantInt>(I->getOperand(1));
141 if (CI == 0) return false;
143 // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
144 if (!isLeftShift) return true;
146 // We can always turn lshr(c)+shl(c) -> and(c2).
147 if (CI->getValue() == NumBits) return true;
149 unsigned TypeWidth = I->getType()->getScalarSizeInBits();
151 // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
152 // profitable unless we know the and'd out bits are already zero.
153 if (CI->getZExtValue() > NumBits) {
154 unsigned LowBits = CI->getZExtValue() - NumBits;
155 if (MaskedValueIsZero(I->getOperand(0),
156 APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
157 return true;
160 return false;
162 case Instruction::Select: {
163 SelectInst *SI = cast<SelectInst>(I);
164 return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) &&
165 CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC);
167 case Instruction::PHI: {
168 // We can change a phi if we can change all operands. Note that we never
169 // get into trouble with cyclic PHIs here because we only consider
170 // instructions with a single use.
171 PHINode *PN = cast<PHINode>(I);
172 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
173 if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC))
174 return false;
175 return true;
180 /// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
181 /// this value inserts the new computation that produces the shifted value.
182 static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
183 InstCombiner &IC) {
184 // We can always evaluate constants shifted.
185 if (Constant *C = dyn_cast<Constant>(V)) {
186 if (isLeftShift)
187 V = IC.Builder->CreateShl(C, NumBits);
188 else
189 V = IC.Builder->CreateLShr(C, NumBits);
190 // If we got a constantexpr back, try to simplify it with TD info.
191 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
192 V = ConstantFoldConstantExpression(CE, IC.getTargetData());
193 return V;
196 Instruction *I = cast<Instruction>(V);
197 IC.Worklist.Add(I);
199 switch (I->getOpcode()) {
200 default: assert(0 && "Inconsistency with CanEvaluateShifted");
201 case Instruction::And:
202 case Instruction::Or:
203 case Instruction::Xor:
204 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
205 I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
206 I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
207 return I;
209 case Instruction::Shl: {
210 unsigned TypeWidth = I->getType()->getScalarSizeInBits();
212 // We only accept shifts-by-a-constant in CanEvaluateShifted.
213 ConstantInt *CI = cast<ConstantInt>(I->getOperand(1));
215 // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
216 if (isLeftShift) {
217 // If this is oversized composite shift, then unsigned shifts get 0.
218 unsigned NewShAmt = NumBits+CI->getZExtValue();
219 if (NewShAmt >= TypeWidth)
220 return Constant::getNullValue(I->getType());
222 I->setOperand(1, ConstantInt::get(I->getType(), NewShAmt));
223 return I;
226 // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
227 // zeros.
228 if (CI->getValue() == NumBits) {
229 APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
230 V = IC.Builder->CreateAnd(I->getOperand(0),
231 ConstantInt::get(I->getContext(), Mask));
232 if (Instruction *VI = dyn_cast<Instruction>(V)) {
233 VI->moveBefore(I);
234 VI->takeName(I);
236 return V;
239 // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
240 // the and won't be needed.
241 assert(CI->getZExtValue() > NumBits);
242 I->setOperand(1, ConstantInt::get(I->getType(),
243 CI->getZExtValue() - NumBits));
244 return I;
246 case Instruction::LShr: {
247 unsigned TypeWidth = I->getType()->getScalarSizeInBits();
248 // We only accept shifts-by-a-constant in CanEvaluateShifted.
249 ConstantInt *CI = cast<ConstantInt>(I->getOperand(1));
251 // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
252 if (!isLeftShift) {
253 // If this is oversized composite shift, then unsigned shifts get 0.
254 unsigned NewShAmt = NumBits+CI->getZExtValue();
255 if (NewShAmt >= TypeWidth)
256 return Constant::getNullValue(I->getType());
258 I->setOperand(1, ConstantInt::get(I->getType(), NewShAmt));
259 return I;
262 // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
263 // zeros.
264 if (CI->getValue() == NumBits) {
265 APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
266 V = IC.Builder->CreateAnd(I->getOperand(0),
267 ConstantInt::get(I->getContext(), Mask));
268 if (Instruction *VI = dyn_cast<Instruction>(V)) {
269 VI->moveBefore(I);
270 VI->takeName(I);
272 return V;
275 // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
276 // the and won't be needed.
277 assert(CI->getZExtValue() > NumBits);
278 I->setOperand(1, ConstantInt::get(I->getType(),
279 CI->getZExtValue() - NumBits));
280 return I;
283 case Instruction::Select:
284 I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
285 I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
286 return I;
287 case Instruction::PHI: {
288 // We can change a phi if we can change all operands. Note that we never
289 // get into trouble with cyclic PHIs here because we only consider
290 // instructions with a single use.
291 PHINode *PN = cast<PHINode>(I);
292 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
293 PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i),
294 NumBits, isLeftShift, IC));
295 return PN;
302 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
303 BinaryOperator &I) {
304 bool isLeftShift = I.getOpcode() == Instruction::Shl;
307 // See if we can propagate this shift into the input, this covers the trivial
308 // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
309 if (I.getOpcode() != Instruction::AShr &&
310 CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) {
311 DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
312 " to eliminate shift:\n IN: " << *Op0 << "\n SH: " << I <<"\n");
314 return ReplaceInstUsesWith(I,
315 GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this));
319 // See if we can simplify any instructions used by the instruction whose sole
320 // purpose is to compute bits we don't care about.
321 uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
323 // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
324 // a signed shift.
326 if (Op1->uge(TypeBits)) {
327 if (I.getOpcode() != Instruction::AShr)
328 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
329 // ashr i32 X, 32 --> ashr i32 X, 31
330 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
331 return &I;
334 // ((X*C1) << C2) == (X * (C1 << C2))
335 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
336 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
337 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
338 return BinaryOperator::CreateMul(BO->getOperand(0),
339 ConstantExpr::getShl(BOOp, Op1));
341 // Try to fold constant and into select arguments.
342 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
343 if (Instruction *R = FoldOpIntoSelect(I, SI))
344 return R;
345 if (isa<PHINode>(Op0))
346 if (Instruction *NV = FoldOpIntoPhi(I))
347 return NV;
349 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
350 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
351 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
352 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
353 // place. Don't try to do this transformation in this case. Also, we
354 // require that the input operand is a shift-by-constant so that we have
355 // confidence that the shifts will get folded together. We could do this
356 // xform in more cases, but it is unlikely to be profitable.
357 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
358 isa<ConstantInt>(TrOp->getOperand(1))) {
359 // Okay, we'll do this xform. Make the shift of shift.
360 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
361 // (shift2 (shift1 & 0x00FF), c2)
362 Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
364 // For logical shifts, the truncation has the effect of making the high
365 // part of the register be zeros. Emulate this by inserting an AND to
366 // clear the top bits as needed. This 'and' will usually be zapped by
367 // other xforms later if dead.
368 unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
369 unsigned DstSize = TI->getType()->getScalarSizeInBits();
370 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
372 // The mask we constructed says what the trunc would do if occurring
373 // between the shifts. We want to know the effect *after* the second
374 // shift. We know that it is a logical shift by a constant, so adjust the
375 // mask as appropriate.
376 if (I.getOpcode() == Instruction::Shl)
377 MaskV <<= Op1->getZExtValue();
378 else {
379 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
380 MaskV = MaskV.lshr(Op1->getZExtValue());
383 // shift1 & 0x00FF
384 Value *And = Builder->CreateAnd(NSh,
385 ConstantInt::get(I.getContext(), MaskV),
386 TI->getName());
388 // Return the value truncated to the interesting size.
389 return new TruncInst(And, I.getType());
393 if (Op0->hasOneUse()) {
394 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
395 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
396 Value *V1, *V2;
397 ConstantInt *CC;
398 switch (Op0BO->getOpcode()) {
399 default: break;
400 case Instruction::Add:
401 case Instruction::And:
402 case Instruction::Or:
403 case Instruction::Xor: {
404 // These operators commute.
405 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
406 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
407 match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
408 m_Specific(Op1)))) {
409 Value *YS = // (Y << C)
410 Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
411 // (X + (Y << C))
412 Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
413 Op0BO->getOperand(1)->getName());
414 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
415 return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
416 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
419 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
420 Value *Op0BOOp1 = Op0BO->getOperand(1);
421 if (isLeftShift && Op0BOOp1->hasOneUse() &&
422 match(Op0BOOp1,
423 m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
424 m_ConstantInt(CC))) &&
425 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
426 Value *YS = // (Y << C)
427 Builder->CreateShl(Op0BO->getOperand(0), Op1,
428 Op0BO->getName());
429 // X & (CC << C)
430 Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
431 V1->getName()+".mask");
432 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
436 // FALL THROUGH.
437 case Instruction::Sub: {
438 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
439 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
440 match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
441 m_Specific(Op1)))) {
442 Value *YS = // (Y << C)
443 Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
444 // (X + (Y << C))
445 Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
446 Op0BO->getOperand(0)->getName());
447 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
448 return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
449 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
452 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
453 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
454 match(Op0BO->getOperand(0),
455 m_And(m_Shr(m_Value(V1), m_Value(V2)),
456 m_ConstantInt(CC))) && V2 == Op1 &&
457 cast<BinaryOperator>(Op0BO->getOperand(0))
458 ->getOperand(0)->hasOneUse()) {
459 Value *YS = // (Y << C)
460 Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
461 // X & (CC << C)
462 Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
463 V1->getName()+".mask");
465 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
468 break;
473 // If the operand is an bitwise operator with a constant RHS, and the
474 // shift is the only use, we can pull it out of the shift.
475 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
476 bool isValid = true; // Valid only for And, Or, Xor
477 bool highBitSet = false; // Transform if high bit of constant set?
479 switch (Op0BO->getOpcode()) {
480 default: isValid = false; break; // Do not perform transform!
481 case Instruction::Add:
482 isValid = isLeftShift;
483 break;
484 case Instruction::Or:
485 case Instruction::Xor:
486 highBitSet = false;
487 break;
488 case Instruction::And:
489 highBitSet = true;
490 break;
493 // If this is a signed shift right, and the high bit is modified
494 // by the logical operation, do not perform the transformation.
495 // The highBitSet boolean indicates the value of the high bit of
496 // the constant which would cause it to be modified for this
497 // operation.
499 if (isValid && I.getOpcode() == Instruction::AShr)
500 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
502 if (isValid) {
503 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
505 Value *NewShift =
506 Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
507 NewShift->takeName(Op0BO);
509 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
510 NewRHS);
516 // Find out if this is a shift of a shift by a constant.
517 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
518 if (ShiftOp && !ShiftOp->isShift())
519 ShiftOp = 0;
521 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
522 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
523 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
524 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
525 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
526 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
527 Value *X = ShiftOp->getOperand(0);
529 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
531 const IntegerType *Ty = cast<IntegerType>(I.getType());
533 // Check for (X << c1) << c2 and (X >> c1) >> c2
534 if (I.getOpcode() == ShiftOp->getOpcode()) {
535 // If this is oversized composite shift, then unsigned shifts get 0, ashr
536 // saturates.
537 if (AmtSum >= TypeBits) {
538 if (I.getOpcode() != Instruction::AShr)
539 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
540 AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr.
543 return BinaryOperator::Create(I.getOpcode(), X,
544 ConstantInt::get(Ty, AmtSum));
547 if (ShiftAmt1 == ShiftAmt2) {
548 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
549 if (I.getOpcode() == Instruction::Shl &&
550 ShiftOp->getOpcode() != Instruction::Shl) {
551 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
552 return BinaryOperator::CreateAnd(X,
553 ConstantInt::get(I.getContext(),Mask));
555 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
556 if (I.getOpcode() == Instruction::LShr &&
557 ShiftOp->getOpcode() == Instruction::Shl) {
558 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
559 return BinaryOperator::CreateAnd(X,
560 ConstantInt::get(I.getContext(), Mask));
562 } else if (ShiftAmt1 < ShiftAmt2) {
563 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
565 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
566 if (I.getOpcode() == Instruction::Shl &&
567 ShiftOp->getOpcode() != Instruction::Shl) {
568 assert(ShiftOp->getOpcode() == Instruction::LShr ||
569 ShiftOp->getOpcode() == Instruction::AShr);
570 Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
572 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
573 return BinaryOperator::CreateAnd(Shift,
574 ConstantInt::get(I.getContext(),Mask));
577 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
578 if (I.getOpcode() == Instruction::LShr &&
579 ShiftOp->getOpcode() == Instruction::Shl) {
580 assert(ShiftOp->getOpcode() == Instruction::Shl);
581 Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
583 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
584 return BinaryOperator::CreateAnd(Shift,
585 ConstantInt::get(I.getContext(),Mask));
588 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
589 } else {
590 assert(ShiftAmt2 < ShiftAmt1);
591 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
593 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
594 if (I.getOpcode() == Instruction::Shl &&
595 ShiftOp->getOpcode() != Instruction::Shl) {
596 Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X,
597 ConstantInt::get(Ty, ShiftDiff));
599 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
600 return BinaryOperator::CreateAnd(Shift,
601 ConstantInt::get(I.getContext(),Mask));
604 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
605 if (I.getOpcode() == Instruction::LShr &&
606 ShiftOp->getOpcode() == Instruction::Shl) {
607 Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
609 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
610 return BinaryOperator::CreateAnd(Shift,
611 ConstantInt::get(I.getContext(),Mask));
614 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
617 return 0;
620 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
621 if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
622 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
623 TD))
624 return ReplaceInstUsesWith(I, V);
626 if (Instruction *V = commonShiftTransforms(I))
627 return V;
629 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
630 unsigned ShAmt = Op1C->getZExtValue();
632 // If the shifted-out value is known-zero, then this is a NUW shift.
633 if (!I.hasNoUnsignedWrap() &&
634 MaskedValueIsZero(I.getOperand(0),
635 APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
636 I.setHasNoUnsignedWrap();
637 return &I;
640 // If the shifted out value is all signbits, this is a NSW shift.
641 if (!I.hasNoSignedWrap() &&
642 ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
643 I.setHasNoSignedWrap();
644 return &I;
648 // (C1 << A) << C2 -> (C1 << C2) << A
649 Constant *C1, *C2;
650 Value *A;
651 if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) &&
652 match(I.getOperand(1), m_Constant(C2)))
653 return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
655 return 0;
658 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
659 if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1),
660 I.isExact(), TD))
661 return ReplaceInstUsesWith(I, V);
663 if (Instruction *R = commonShiftTransforms(I))
664 return R;
666 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
668 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
669 unsigned ShAmt = Op1C->getZExtValue();
671 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
672 unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
673 // ctlz.i32(x)>>5 --> zext(x == 0)
674 // cttz.i32(x)>>5 --> zext(x == 0)
675 // ctpop.i32(x)>>5 --> zext(x == -1)
676 if ((II->getIntrinsicID() == Intrinsic::ctlz ||
677 II->getIntrinsicID() == Intrinsic::cttz ||
678 II->getIntrinsicID() == Intrinsic::ctpop) &&
679 isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
680 bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
681 Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
682 Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
683 return new ZExtInst(Cmp, II->getType());
687 // If the shifted-out value is known-zero, then this is an exact shift.
688 if (!I.isExact() &&
689 MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
690 I.setIsExact();
691 return &I;
695 return 0;
698 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
699 if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1),
700 I.isExact(), TD))
701 return ReplaceInstUsesWith(I, V);
703 if (Instruction *R = commonShiftTransforms(I))
704 return R;
706 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
708 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
709 unsigned ShAmt = Op1C->getZExtValue();
711 // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
712 // have a sign-extend idiom.
713 Value *X;
714 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
715 // If the left shift is just shifting out partial signbits, delete the
716 // extension.
717 if (cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
718 return ReplaceInstUsesWith(I, X);
720 // If the input is an extension from the shifted amount value, e.g.
721 // %x = zext i8 %A to i32
722 // %y = shl i32 %x, 24
723 // %z = ashr %y, 24
724 // then turn this into "z = sext i8 A to i32".
725 if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
726 uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
727 uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
728 if (Op1C->getZExtValue() == DestBits-SrcBits)
729 return new SExtInst(ZI->getOperand(0), ZI->getType());
733 // If the shifted-out value is known-zero, then this is an exact shift.
734 if (!I.isExact() &&
735 MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
736 I.setIsExact();
737 return &I;
741 // See if we can turn a signed shr into an unsigned shr.
742 if (MaskedValueIsZero(Op0,
743 APInt::getSignBit(I.getType()->getScalarSizeInBits())))
744 return BinaryOperator::CreateLShr(Op0, Op1);
746 // Arithmetic shifting an all-sign-bit value is a no-op.
747 unsigned NumSignBits = ComputeNumSignBits(Op0);
748 if (NumSignBits == Op0->getType()->getScalarSizeInBits())
749 return ReplaceInstUsesWith(I, Op0);
751 return 0;