1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Function.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Constant.h"
20 #include "llvm/Type.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/ValueHandle.h"
33 /// DeleteDeadBlock - Delete the specified block, which must have no
35 void llvm::DeleteDeadBlock(BasicBlock
*BB
) {
36 assert((pred_begin(BB
) == pred_end(BB
) ||
37 // Can delete self loop.
38 BB
->getSinglePredecessor() == BB
) && "Block is not dead!");
39 TerminatorInst
*BBTerm
= BB
->getTerminator();
41 // Loop through all of our successors and make sure they know that one
42 // of their predecessors is going away.
43 for (unsigned i
= 0, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
)
44 BBTerm
->getSuccessor(i
)->removePredecessor(BB
);
46 // Zap all the instructions in the block.
47 while (!BB
->empty()) {
48 Instruction
&I
= BB
->back();
49 // If this instruction is used, replace uses with an arbitrary value.
50 // Because control flow can't get here, we don't care what we replace the
51 // value with. Note that since this block is unreachable, and all values
52 // contained within it must dominate their uses, that all uses will
53 // eventually be removed (they are themselves dead).
55 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
56 BB
->getInstList().pop_back();
60 BB
->eraseFromParent();
63 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
64 /// any single-entry PHI nodes in it, fold them away. This handles the case
65 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
66 /// when the block has exactly one predecessor.
67 void llvm::FoldSingleEntryPHINodes(BasicBlock
*BB
, Pass
*P
) {
68 if (!isa
<PHINode
>(BB
->begin())) return;
70 AliasAnalysis
*AA
= 0;
71 MemoryDependenceAnalysis
*MemDep
= 0;
73 AA
= P
->getAnalysisIfAvailable
<AliasAnalysis
>();
74 MemDep
= P
->getAnalysisIfAvailable
<MemoryDependenceAnalysis
>();
77 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
78 if (PN
->getIncomingValue(0) != PN
)
79 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
81 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
84 MemDep
->removeInstruction(PN
); // Memdep updates AA itself.
85 else if (AA
&& isa
<PointerType
>(PN
->getType()))
88 PN
->eraseFromParent();
93 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
94 /// is dead. Also recursively delete any operands that become dead as
95 /// a result. This includes tracing the def-use list from the PHI to see if
96 /// it is ultimately unused or if it reaches an unused cycle.
97 bool llvm::DeleteDeadPHIs(BasicBlock
*BB
) {
98 // Recursively deleting a PHI may cause multiple PHIs to be deleted
99 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
100 SmallVector
<WeakVH
, 8> PHIs
;
101 for (BasicBlock::iterator I
= BB
->begin();
102 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
105 bool Changed
= false;
106 for (unsigned i
= 0, e
= PHIs
.size(); i
!= e
; ++i
)
107 if (PHINode
*PN
= dyn_cast_or_null
<PHINode
>(PHIs
[i
].operator Value
*()))
108 Changed
|= RecursivelyDeleteDeadPHINode(PN
);
113 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
114 /// if possible. The return value indicates success or failure.
115 bool llvm::MergeBlockIntoPredecessor(BasicBlock
*BB
, Pass
*P
) {
116 // Don't merge away blocks who have their address taken.
117 if (BB
->hasAddressTaken()) return false;
119 // Can't merge if there are multiple predecessors, or no predecessors.
120 BasicBlock
*PredBB
= BB
->getUniquePredecessor();
121 if (!PredBB
) return false;
123 // Don't break self-loops.
124 if (PredBB
== BB
) return false;
125 // Don't break invokes.
126 if (isa
<InvokeInst
>(PredBB
->getTerminator())) return false;
128 succ_iterator
SI(succ_begin(PredBB
)), SE(succ_end(PredBB
));
129 BasicBlock
*OnlySucc
= BB
;
130 for (; SI
!= SE
; ++SI
)
131 if (*SI
!= OnlySucc
) {
132 OnlySucc
= 0; // There are multiple distinct successors!
136 // Can't merge if there are multiple successors.
137 if (!OnlySucc
) return false;
139 // Can't merge if there is PHI loop.
140 for (BasicBlock::iterator BI
= BB
->begin(), BE
= BB
->end(); BI
!= BE
; ++BI
) {
141 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
)) {
142 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
143 if (PN
->getIncomingValue(i
) == PN
)
149 // Begin by getting rid of unneeded PHIs.
150 if (isa
<PHINode
>(BB
->front()))
151 FoldSingleEntryPHINodes(BB
, P
);
153 // Delete the unconditional branch from the predecessor...
154 PredBB
->getInstList().pop_back();
156 // Move all definitions in the successor to the predecessor...
157 PredBB
->getInstList().splice(PredBB
->end(), BB
->getInstList());
159 // Make all PHI nodes that referred to BB now refer to Pred as their
161 BB
->replaceAllUsesWith(PredBB
);
163 // Inherit predecessors name if it exists.
164 if (!PredBB
->hasName())
165 PredBB
->takeName(BB
);
167 // Finally, erase the old block and update dominator info.
169 if (DominatorTree
*DT
= P
->getAnalysisIfAvailable
<DominatorTree
>()) {
170 if (DomTreeNode
*DTN
= DT
->getNode(BB
)) {
171 DomTreeNode
*PredDTN
= DT
->getNode(PredBB
);
172 SmallVector
<DomTreeNode
*, 8> Children(DTN
->begin(), DTN
->end());
173 for (SmallVector
<DomTreeNode
*, 8>::iterator DI
= Children
.begin(),
174 DE
= Children
.end(); DI
!= DE
; ++DI
)
175 DT
->changeImmediateDominator(*DI
, PredDTN
);
180 if (LoopInfo
*LI
= P
->getAnalysisIfAvailable
<LoopInfo
>())
183 if (MemoryDependenceAnalysis
*MD
=
184 P
->getAnalysisIfAvailable
<MemoryDependenceAnalysis
>())
185 MD
->invalidateCachedPredecessors();
189 BB
->eraseFromParent();
193 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
194 /// with a value, then remove and delete the original instruction.
196 void llvm::ReplaceInstWithValue(BasicBlock::InstListType
&BIL
,
197 BasicBlock::iterator
&BI
, Value
*V
) {
198 Instruction
&I
= *BI
;
199 // Replaces all of the uses of the instruction with uses of the value
200 I
.replaceAllUsesWith(V
);
202 // Make sure to propagate a name if there is one already.
203 if (I
.hasName() && !V
->hasName())
206 // Delete the unnecessary instruction now...
211 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
212 /// instruction specified by I. The original instruction is deleted and BI is
213 /// updated to point to the new instruction.
215 void llvm::ReplaceInstWithInst(BasicBlock::InstListType
&BIL
,
216 BasicBlock::iterator
&BI
, Instruction
*I
) {
217 assert(I
->getParent() == 0 &&
218 "ReplaceInstWithInst: Instruction already inserted into basic block!");
220 // Insert the new instruction into the basic block...
221 BasicBlock::iterator New
= BIL
.insert(BI
, I
);
223 // Replace all uses of the old instruction, and delete it.
224 ReplaceInstWithValue(BIL
, BI
, I
);
226 // Move BI back to point to the newly inserted instruction
230 /// ReplaceInstWithInst - Replace the instruction specified by From with the
231 /// instruction specified by To.
233 void llvm::ReplaceInstWithInst(Instruction
*From
, Instruction
*To
) {
234 BasicBlock::iterator
BI(From
);
235 ReplaceInstWithInst(From
->getParent()->getInstList(), BI
, To
);
238 /// GetSuccessorNumber - Search for the specified successor of basic block BB
239 /// and return its position in the terminator instruction's list of
240 /// successors. It is an error to call this with a block that is not a
242 unsigned llvm::GetSuccessorNumber(BasicBlock
*BB
, BasicBlock
*Succ
) {
243 TerminatorInst
*Term
= BB
->getTerminator();
245 unsigned e
= Term
->getNumSuccessors();
247 for (unsigned i
= 0; ; ++i
) {
248 assert(i
!= e
&& "Didn't find edge?");
249 if (Term
->getSuccessor(i
) == Succ
)
255 /// SplitEdge - Split the edge connecting specified block. Pass P must
257 BasicBlock
*llvm::SplitEdge(BasicBlock
*BB
, BasicBlock
*Succ
, Pass
*P
) {
258 unsigned SuccNum
= GetSuccessorNumber(BB
, Succ
);
260 // If this is a critical edge, let SplitCriticalEdge do it.
261 TerminatorInst
*LatchTerm
= BB
->getTerminator();
262 if (SplitCriticalEdge(LatchTerm
, SuccNum
, P
))
263 return LatchTerm
->getSuccessor(SuccNum
);
265 // If the edge isn't critical, then BB has a single successor or Succ has a
266 // single pred. Split the block.
267 BasicBlock::iterator SplitPoint
;
268 if (BasicBlock
*SP
= Succ
->getSinglePredecessor()) {
269 // If the successor only has a single pred, split the top of the successor
271 assert(SP
== BB
&& "CFG broken");
273 return SplitBlock(Succ
, Succ
->begin(), P
);
276 // Otherwise, if BB has a single successor, split it at the bottom of the
278 assert(BB
->getTerminator()->getNumSuccessors() == 1 &&
279 "Should have a single succ!");
280 return SplitBlock(BB
, BB
->getTerminator(), P
);
283 /// SplitBlock - Split the specified block at the specified instruction - every
284 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
285 /// to a new block. The two blocks are joined by an unconditional branch and
286 /// the loop info is updated.
288 BasicBlock
*llvm::SplitBlock(BasicBlock
*Old
, Instruction
*SplitPt
, Pass
*P
) {
289 BasicBlock::iterator SplitIt
= SplitPt
;
290 while (isa
<PHINode
>(SplitIt
))
292 BasicBlock
*New
= Old
->splitBasicBlock(SplitIt
, Old
->getName()+".split");
294 // The new block lives in whichever loop the old one did. This preserves
295 // LCSSA as well, because we force the split point to be after any PHI nodes.
296 if (LoopInfo
*LI
= P
->getAnalysisIfAvailable
<LoopInfo
>())
297 if (Loop
*L
= LI
->getLoopFor(Old
))
298 L
->addBasicBlockToLoop(New
, LI
->getBase());
300 if (DominatorTree
*DT
= P
->getAnalysisIfAvailable
<DominatorTree
>()) {
301 // Old dominates New. New node dominates all other nodes dominated by Old.
302 DomTreeNode
*OldNode
= DT
->getNode(Old
);
303 std::vector
<DomTreeNode
*> Children
;
304 for (DomTreeNode::iterator I
= OldNode
->begin(), E
= OldNode
->end();
306 Children
.push_back(*I
);
308 DomTreeNode
*NewNode
= DT
->addNewBlock(New
,Old
);
309 for (std::vector
<DomTreeNode
*>::iterator I
= Children
.begin(),
310 E
= Children
.end(); I
!= E
; ++I
)
311 DT
->changeImmediateDominator(*I
, NewNode
);
318 /// SplitBlockPredecessors - This method transforms BB by introducing a new
319 /// basic block into the function, and moving some of the predecessors of BB to
320 /// be predecessors of the new block. The new predecessors are indicated by the
321 /// Preds array, which has NumPreds elements in it. The new block is given a
322 /// suffix of 'Suffix'.
324 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
325 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not
326 /// preserve LoopSimplify (because it's complicated to handle the case where one
327 /// of the edges being split is an exit of a loop with other exits).
329 BasicBlock
*llvm::SplitBlockPredecessors(BasicBlock
*BB
,
330 BasicBlock
*const *Preds
,
331 unsigned NumPreds
, const char *Suffix
,
333 // Create new basic block, insert right before the original block.
334 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(), BB
->getName()+Suffix
,
335 BB
->getParent(), BB
);
337 // The new block unconditionally branches to the old block.
338 BranchInst
*BI
= BranchInst::Create(BB
, NewBB
);
340 LoopInfo
*LI
= P
? P
->getAnalysisIfAvailable
<LoopInfo
>() : 0;
341 Loop
*L
= LI
? LI
->getLoopFor(BB
) : 0;
342 bool PreserveLCSSA
= P
->mustPreserveAnalysisID(LCSSAID
);
344 // Move the edges from Preds to point to NewBB instead of BB.
345 // While here, if we need to preserve loop analyses, collect
346 // some information about how this split will affect loops.
347 bool HasLoopExit
= false;
348 bool IsLoopEntry
= !!L
;
349 bool SplitMakesNewLoopHeader
= false;
350 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
351 // This is slightly more strict than necessary; the minimum requirement
352 // is that there be no more than one indirectbr branching to BB. And
353 // all BlockAddress uses would need to be updated.
354 assert(!isa
<IndirectBrInst
>(Preds
[i
]->getTerminator()) &&
355 "Cannot split an edge from an IndirectBrInst");
357 Preds
[i
]->getTerminator()->replaceUsesOfWith(BB
, NewBB
);
360 // If we need to preserve LCSSA, determine if any of
361 // the preds is a loop exit.
363 if (Loop
*PL
= LI
->getLoopFor(Preds
[i
]))
364 if (!PL
->contains(BB
))
366 // If we need to preserve LoopInfo, note whether any of the
367 // preds crosses an interesting loop boundary.
369 if (L
->contains(Preds
[i
]))
372 SplitMakesNewLoopHeader
= true;
377 // Update dominator tree if available.
378 DominatorTree
*DT
= P
? P
->getAnalysisIfAvailable
<DominatorTree
>() : 0;
380 DT
->splitBlock(NewBB
);
382 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
383 // node becomes an incoming value for BB's phi node. However, if the Preds
384 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
385 // account for the newly created predecessor.
387 // Insert dummy values as the incoming value.
388 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++I
)
389 cast
<PHINode
>(I
)->addIncoming(UndefValue::get(I
->getType()), NewBB
);
393 AliasAnalysis
*AA
= P
? P
->getAnalysisIfAvailable
<AliasAnalysis
>() : 0;
397 // Add the new block to the nearest enclosing loop (and not an
398 // adjacent loop). To find this, examine each of the predecessors and
399 // determine which loops enclose them, and select the most-nested loop
400 // which contains the loop containing the block being split.
401 Loop
*InnermostPredLoop
= 0;
402 for (unsigned i
= 0; i
!= NumPreds
; ++i
)
403 if (Loop
*PredLoop
= LI
->getLoopFor(Preds
[i
])) {
404 // Seek a loop which actually contains the block being split (to
405 // avoid adjacent loops).
406 while (PredLoop
&& !PredLoop
->contains(BB
))
407 PredLoop
= PredLoop
->getParentLoop();
408 // Select the most-nested of these loops which contains the block.
410 PredLoop
->contains(BB
) &&
411 (!InnermostPredLoop
||
412 InnermostPredLoop
->getLoopDepth() < PredLoop
->getLoopDepth()))
413 InnermostPredLoop
= PredLoop
;
415 if (InnermostPredLoop
)
416 InnermostPredLoop
->addBasicBlockToLoop(NewBB
, LI
->getBase());
418 L
->addBasicBlockToLoop(NewBB
, LI
->getBase());
419 if (SplitMakesNewLoopHeader
)
420 L
->moveToHeader(NewBB
);
424 // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
425 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ) {
426 PHINode
*PN
= cast
<PHINode
>(I
++);
428 // Check to see if all of the values coming in are the same. If so, we
429 // don't need to create a new PHI node, unless it's needed for LCSSA.
432 InVal
= PN
->getIncomingValueForBlock(Preds
[0]);
433 for (unsigned i
= 1; i
!= NumPreds
; ++i
)
434 if (InVal
!= PN
->getIncomingValueForBlock(Preds
[i
])) {
441 // If all incoming values for the new PHI would be the same, just don't
442 // make a new PHI. Instead, just remove the incoming values from the old
444 for (unsigned i
= 0; i
!= NumPreds
; ++i
)
445 PN
->removeIncomingValue(Preds
[i
], false);
447 // If the values coming into the block are not the same, we need a PHI.
448 // Create the new PHI node, insert it into NewBB at the end of the block
450 PHINode::Create(PN
->getType(), NumPreds
, PN
->getName()+".ph", BI
);
451 if (AA
) AA
->copyValue(PN
, NewPHI
);
453 // Move all of the PHI values for 'Preds' to the new PHI.
454 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
455 Value
*V
= PN
->removeIncomingValue(Preds
[i
], false);
456 NewPHI
->addIncoming(V
, Preds
[i
]);
461 // Add an incoming value to the PHI node in the loop for the preheader
463 PN
->addIncoming(InVal
, NewBB
);
469 /// FindFunctionBackedges - Analyze the specified function to find all of the
470 /// loop backedges in the function and return them. This is a relatively cheap
471 /// (compared to computing dominators and loop info) analysis.
473 /// The output is added to Result, as pairs of <from,to> edge info.
474 void llvm::FindFunctionBackedges(const Function
&F
,
475 SmallVectorImpl
<std::pair
<const BasicBlock
*,const BasicBlock
*> > &Result
) {
476 const BasicBlock
*BB
= &F
.getEntryBlock();
477 if (succ_begin(BB
) == succ_end(BB
))
480 SmallPtrSet
<const BasicBlock
*, 8> Visited
;
481 SmallVector
<std::pair
<const BasicBlock
*, succ_const_iterator
>, 8> VisitStack
;
482 SmallPtrSet
<const BasicBlock
*, 8> InStack
;
485 VisitStack
.push_back(std::make_pair(BB
, succ_begin(BB
)));
488 std::pair
<const BasicBlock
*, succ_const_iterator
> &Top
= VisitStack
.back();
489 const BasicBlock
*ParentBB
= Top
.first
;
490 succ_const_iterator
&I
= Top
.second
;
492 bool FoundNew
= false;
493 while (I
!= succ_end(ParentBB
)) {
495 if (Visited
.insert(BB
)) {
499 // Successor is in VisitStack, it's a back edge.
500 if (InStack
.count(BB
))
501 Result
.push_back(std::make_pair(ParentBB
, BB
));
505 // Go down one level if there is a unvisited successor.
507 VisitStack
.push_back(std::make_pair(BB
, succ_begin(BB
)));
510 InStack
.erase(VisitStack
.pop_back_val().first
);
512 } while (!VisitStack
.empty());
515 /// FoldReturnIntoUncondBranch - This method duplicates the specified return
516 /// instruction into a predecessor which ends in an unconditional branch. If
517 /// the return instruction returns a value defined by a PHI, propagate the
518 /// right value into the return. It returns the new return instruction in the
520 ReturnInst
*llvm::FoldReturnIntoUncondBranch(ReturnInst
*RI
, BasicBlock
*BB
,
522 Instruction
*UncondBranch
= Pred
->getTerminator();
523 // Clone the return and add it to the end of the predecessor.
524 Instruction
*NewRet
= RI
->clone();
525 Pred
->getInstList().push_back(NewRet
);
527 // If the return instruction returns a value, and if the value was a
528 // PHI node in "BB", propagate the right value into the return.
529 for (User::op_iterator i
= NewRet
->op_begin(), e
= NewRet
->op_end();
531 if (PHINode
*PN
= dyn_cast
<PHINode
>(*i
))
532 if (PN
->getParent() == BB
)
533 *i
= PN
->getIncomingValueForBlock(Pred
);
535 // Update any PHI nodes in the returning block to realize that we no
536 // longer branch to them.
537 BB
->removePredecessor(Pred
);
538 UncondBranch
->eraseFromParent();
539 return cast
<ReturnInst
>(NewRet
);
542 /// GetFirstDebugLocInBasicBlock - Return first valid DebugLoc entry in a
543 /// given basic block.
544 DebugLoc
llvm::GetFirstDebugLocInBasicBlock(const BasicBlock
*BB
) {
545 if (const Instruction
*I
= BB
->getFirstNonPHI())
546 return I
->getDebugLoc();
547 // Scanning entire block may be too expensive, if the first instruction
548 // does not have valid location info.