Revert r131155 for now. It makes VMCore depend on Analysis and Transforms
[llvm/stm8.git] / lib / Transforms / Utils / SimplifyCFG.cpp
blob18b857308e34ede93d4b7921282c83fcec8e1d4a
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Type.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/ConstantRange.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <set>
37 #include <map>
38 using namespace llvm;
40 static cl::opt<unsigned>
41 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
42 cl::desc("Control the amount of phi node folding to perform (default = 1)"));
44 static cl::opt<bool>
45 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
46 cl::desc("Duplicate return instructions into unconditional branches"));
48 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
50 namespace {
51 class SimplifyCFGOpt {
52 const TargetData *const TD;
54 Value *isValueEqualityComparison(TerminatorInst *TI);
55 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
56 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
57 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
58 BasicBlock *Pred);
59 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI);
61 bool SimplifyReturn(ReturnInst *RI);
62 bool SimplifyUnwind(UnwindInst *UI);
63 bool SimplifyUnreachable(UnreachableInst *UI);
64 bool SimplifySwitch(SwitchInst *SI);
65 bool SimplifyIndirectBr(IndirectBrInst *IBI);
66 bool SimplifyUncondBranch(BranchInst *BI);
67 bool SimplifyCondBranch(BranchInst *BI);
69 public:
70 explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
71 bool run(BasicBlock *BB);
75 /// SafeToMergeTerminators - Return true if it is safe to merge these two
76 /// terminator instructions together.
77 ///
78 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
79 if (SI1 == SI2) return false; // Can't merge with self!
81 // It is not safe to merge these two switch instructions if they have a common
82 // successor, and if that successor has a PHI node, and if *that* PHI node has
83 // conflicting incoming values from the two switch blocks.
84 BasicBlock *SI1BB = SI1->getParent();
85 BasicBlock *SI2BB = SI2->getParent();
86 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
88 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
89 if (SI1Succs.count(*I))
90 for (BasicBlock::iterator BBI = (*I)->begin();
91 isa<PHINode>(BBI); ++BBI) {
92 PHINode *PN = cast<PHINode>(BBI);
93 if (PN->getIncomingValueForBlock(SI1BB) !=
94 PN->getIncomingValueForBlock(SI2BB))
95 return false;
98 return true;
101 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
102 /// now be entries in it from the 'NewPred' block. The values that will be
103 /// flowing into the PHI nodes will be the same as those coming in from
104 /// ExistPred, an existing predecessor of Succ.
105 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
106 BasicBlock *ExistPred) {
107 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
109 PHINode *PN;
110 for (BasicBlock::iterator I = Succ->begin();
111 (PN = dyn_cast<PHINode>(I)); ++I)
112 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
116 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at
117 /// least one PHI node in it), check to see if the merge at this block is due
118 /// to an "if condition". If so, return the boolean condition that determines
119 /// which entry into BB will be taken. Also, return by references the block
120 /// that will be entered from if the condition is true, and the block that will
121 /// be entered if the condition is false.
123 /// This does no checking to see if the true/false blocks have large or unsavory
124 /// instructions in them.
125 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
126 BasicBlock *&IfFalse) {
127 PHINode *SomePHI = cast<PHINode>(BB->begin());
128 assert(SomePHI->getNumIncomingValues() == 2 &&
129 "Function can only handle blocks with 2 predecessors!");
130 BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
131 BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
133 // We can only handle branches. Other control flow will be lowered to
134 // branches if possible anyway.
135 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
136 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
137 if (Pred1Br == 0 || Pred2Br == 0)
138 return 0;
140 // Eliminate code duplication by ensuring that Pred1Br is conditional if
141 // either are.
142 if (Pred2Br->isConditional()) {
143 // If both branches are conditional, we don't have an "if statement". In
144 // reality, we could transform this case, but since the condition will be
145 // required anyway, we stand no chance of eliminating it, so the xform is
146 // probably not profitable.
147 if (Pred1Br->isConditional())
148 return 0;
150 std::swap(Pred1, Pred2);
151 std::swap(Pred1Br, Pred2Br);
154 if (Pred1Br->isConditional()) {
155 // The only thing we have to watch out for here is to make sure that Pred2
156 // doesn't have incoming edges from other blocks. If it does, the condition
157 // doesn't dominate BB.
158 if (Pred2->getSinglePredecessor() == 0)
159 return 0;
161 // If we found a conditional branch predecessor, make sure that it branches
162 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
163 if (Pred1Br->getSuccessor(0) == BB &&
164 Pred1Br->getSuccessor(1) == Pred2) {
165 IfTrue = Pred1;
166 IfFalse = Pred2;
167 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
168 Pred1Br->getSuccessor(1) == BB) {
169 IfTrue = Pred2;
170 IfFalse = Pred1;
171 } else {
172 // We know that one arm of the conditional goes to BB, so the other must
173 // go somewhere unrelated, and this must not be an "if statement".
174 return 0;
177 return Pred1Br->getCondition();
180 // Ok, if we got here, both predecessors end with an unconditional branch to
181 // BB. Don't panic! If both blocks only have a single (identical)
182 // predecessor, and THAT is a conditional branch, then we're all ok!
183 BasicBlock *CommonPred = Pred1->getSinglePredecessor();
184 if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
185 return 0;
187 // Otherwise, if this is a conditional branch, then we can use it!
188 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
189 if (BI == 0) return 0;
191 assert(BI->isConditional() && "Two successors but not conditional?");
192 if (BI->getSuccessor(0) == Pred1) {
193 IfTrue = Pred1;
194 IfFalse = Pred2;
195 } else {
196 IfTrue = Pred2;
197 IfFalse = Pred1;
199 return BI->getCondition();
202 /// DominatesMergePoint - If we have a merge point of an "if condition" as
203 /// accepted above, return true if the specified value dominates the block. We
204 /// don't handle the true generality of domination here, just a special case
205 /// which works well enough for us.
207 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
208 /// see if V (which must be an instruction) and its recursive operands
209 /// that do not dominate BB have a combined cost lower than CostRemaining and
210 /// are non-trapping. If both are true, the instruction is inserted into the
211 /// set and true is returned.
213 /// The cost for most non-trapping instructions is defined as 1 except for
214 /// Select whose cost is 2.
216 /// After this function returns, CostRemaining is decreased by the cost of
217 /// V plus its non-dominating operands. If that cost is greater than
218 /// CostRemaining, false is returned and CostRemaining is undefined.
219 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
220 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
221 unsigned &CostRemaining) {
222 Instruction *I = dyn_cast<Instruction>(V);
223 if (!I) {
224 // Non-instructions all dominate instructions, but not all constantexprs
225 // can be executed unconditionally.
226 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
227 if (C->canTrap())
228 return false;
229 return true;
231 BasicBlock *PBB = I->getParent();
233 // We don't want to allow weird loops that might have the "if condition" in
234 // the bottom of this block.
235 if (PBB == BB) return false;
237 // If this instruction is defined in a block that contains an unconditional
238 // branch to BB, then it must be in the 'conditional' part of the "if
239 // statement". If not, it definitely dominates the region.
240 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
241 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
242 return true;
244 // If we aren't allowing aggressive promotion anymore, then don't consider
245 // instructions in the 'if region'.
246 if (AggressiveInsts == 0) return false;
248 // If we have seen this instruction before, don't count it again.
249 if (AggressiveInsts->count(I)) return true;
251 // Okay, it looks like the instruction IS in the "condition". Check to
252 // see if it's a cheap instruction to unconditionally compute, and if it
253 // only uses stuff defined outside of the condition. If so, hoist it out.
254 if (!I->isSafeToSpeculativelyExecute())
255 return false;
257 unsigned Cost = 0;
259 switch (I->getOpcode()) {
260 default: return false; // Cannot hoist this out safely.
261 case Instruction::Load:
262 // We have to check to make sure there are no instructions before the
263 // load in its basic block, as we are going to hoist the load out to its
264 // predecessor.
265 if (PBB->getFirstNonPHIOrDbg() != I)
266 return false;
267 Cost = 1;
268 break;
269 case Instruction::GetElementPtr:
270 // GEPs are cheap if all indices are constant.
271 if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices())
272 return false;
273 Cost = 1;
274 break;
275 case Instruction::Add:
276 case Instruction::Sub:
277 case Instruction::And:
278 case Instruction::Or:
279 case Instruction::Xor:
280 case Instruction::Shl:
281 case Instruction::LShr:
282 case Instruction::AShr:
283 case Instruction::ICmp:
284 case Instruction::Trunc:
285 case Instruction::ZExt:
286 case Instruction::SExt:
287 Cost = 1;
288 break; // These are all cheap and non-trapping instructions.
290 case Instruction::Select:
291 Cost = 2;
292 break;
295 if (Cost > CostRemaining)
296 return false;
298 CostRemaining -= Cost;
300 // Okay, we can only really hoist these out if their operands do
301 // not take us over the cost threshold.
302 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
303 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
304 return false;
305 // Okay, it's safe to do this! Remember this instruction.
306 AggressiveInsts->insert(I);
307 return true;
310 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
311 /// and PointerNullValue. Return NULL if value is not a constant int.
312 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
313 // Normal constant int.
314 ConstantInt *CI = dyn_cast<ConstantInt>(V);
315 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
316 return CI;
318 // This is some kind of pointer constant. Turn it into a pointer-sized
319 // ConstantInt if possible.
320 const IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
322 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
323 if (isa<ConstantPointerNull>(V))
324 return ConstantInt::get(PtrTy, 0);
326 // IntToPtr const int.
327 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
328 if (CE->getOpcode() == Instruction::IntToPtr)
329 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
330 // The constant is very likely to have the right type already.
331 if (CI->getType() == PtrTy)
332 return CI;
333 else
334 return cast<ConstantInt>
335 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
337 return 0;
340 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
341 /// collection of icmp eq/ne instructions that compare a value against a
342 /// constant, return the value being compared, and stick the constant into the
343 /// Values vector.
344 static Value *
345 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
346 const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
347 Instruction *I = dyn_cast<Instruction>(V);
348 if (I == 0) return 0;
350 // If this is an icmp against a constant, handle this as one of the cases.
351 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
352 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
353 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
354 UsedICmps++;
355 Vals.push_back(C);
356 return I->getOperand(0);
359 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
360 // the set.
361 ConstantRange Span =
362 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
364 // If this is an and/!= check then we want to optimize "x ugt 2" into
365 // x != 0 && x != 1.
366 if (!isEQ)
367 Span = Span.inverse();
369 // If there are a ton of values, we don't want to make a ginormous switch.
370 if (Span.getSetSize().ugt(8) || Span.isEmptySet() ||
371 // We don't handle wrapped sets yet.
372 Span.isWrappedSet())
373 return 0;
375 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
376 Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
377 UsedICmps++;
378 return I->getOperand(0);
380 return 0;
383 // Otherwise, we can only handle an | or &, depending on isEQ.
384 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
385 return 0;
387 unsigned NumValsBeforeLHS = Vals.size();
388 unsigned UsedICmpsBeforeLHS = UsedICmps;
389 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
390 isEQ, UsedICmps)) {
391 unsigned NumVals = Vals.size();
392 unsigned UsedICmpsBeforeRHS = UsedICmps;
393 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
394 isEQ, UsedICmps)) {
395 if (LHS == RHS)
396 return LHS;
397 Vals.resize(NumVals);
398 UsedICmps = UsedICmpsBeforeRHS;
401 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
402 // set it and return success.
403 if (Extra == 0 || Extra == I->getOperand(1)) {
404 Extra = I->getOperand(1);
405 return LHS;
408 Vals.resize(NumValsBeforeLHS);
409 UsedICmps = UsedICmpsBeforeLHS;
410 return 0;
413 // If the LHS can't be folded in, but Extra is available and RHS can, try to
414 // use LHS as Extra.
415 if (Extra == 0 || Extra == I->getOperand(0)) {
416 Value *OldExtra = Extra;
417 Extra = I->getOperand(0);
418 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
419 isEQ, UsedICmps))
420 return RHS;
421 assert(Vals.size() == NumValsBeforeLHS);
422 Extra = OldExtra;
425 return 0;
428 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
429 Instruction* Cond = 0;
430 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
431 Cond = dyn_cast<Instruction>(SI->getCondition());
432 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
433 if (BI->isConditional())
434 Cond = dyn_cast<Instruction>(BI->getCondition());
435 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
436 Cond = dyn_cast<Instruction>(IBI->getAddress());
439 TI->eraseFromParent();
440 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
443 /// isValueEqualityComparison - Return true if the specified terminator checks
444 /// to see if a value is equal to constant integer value.
445 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
446 Value *CV = 0;
447 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
448 // Do not permit merging of large switch instructions into their
449 // predecessors unless there is only one predecessor.
450 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
451 pred_end(SI->getParent())) <= 128)
452 CV = SI->getCondition();
453 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
454 if (BI->isConditional() && BI->getCondition()->hasOneUse())
455 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
456 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
457 ICI->getPredicate() == ICmpInst::ICMP_NE) &&
458 GetConstantInt(ICI->getOperand(1), TD))
459 CV = ICI->getOperand(0);
461 // Unwrap any lossless ptrtoint cast.
462 if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
463 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
464 CV = PTII->getOperand(0);
465 return CV;
468 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
469 /// decode all of the 'cases' that it represents and return the 'default' block.
470 BasicBlock *SimplifyCFGOpt::
471 GetValueEqualityComparisonCases(TerminatorInst *TI,
472 std::vector<std::pair<ConstantInt*,
473 BasicBlock*> > &Cases) {
474 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
475 Cases.reserve(SI->getNumCases());
476 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
477 Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
478 return SI->getDefaultDest();
481 BranchInst *BI = cast<BranchInst>(TI);
482 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
483 Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
484 BI->getSuccessor(ICI->getPredicate() ==
485 ICmpInst::ICMP_NE)));
486 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
490 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
491 /// in the list that match the specified block.
492 static void EliminateBlockCases(BasicBlock *BB,
493 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
494 for (unsigned i = 0, e = Cases.size(); i != e; ++i)
495 if (Cases[i].second == BB) {
496 Cases.erase(Cases.begin()+i);
497 --i; --e;
501 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
502 /// well.
503 static bool
504 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
505 std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
506 std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
508 // Make V1 be smaller than V2.
509 if (V1->size() > V2->size())
510 std::swap(V1, V2);
512 if (V1->size() == 0) return false;
513 if (V1->size() == 1) {
514 // Just scan V2.
515 ConstantInt *TheVal = (*V1)[0].first;
516 for (unsigned i = 0, e = V2->size(); i != e; ++i)
517 if (TheVal == (*V2)[i].first)
518 return true;
521 // Otherwise, just sort both lists and compare element by element.
522 array_pod_sort(V1->begin(), V1->end());
523 array_pod_sort(V2->begin(), V2->end());
524 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
525 while (i1 != e1 && i2 != e2) {
526 if ((*V1)[i1].first == (*V2)[i2].first)
527 return true;
528 if ((*V1)[i1].first < (*V2)[i2].first)
529 ++i1;
530 else
531 ++i2;
533 return false;
536 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
537 /// terminator instruction and its block is known to only have a single
538 /// predecessor block, check to see if that predecessor is also a value
539 /// comparison with the same value, and if that comparison determines the
540 /// outcome of this comparison. If so, simplify TI. This does a very limited
541 /// form of jump threading.
542 bool SimplifyCFGOpt::
543 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
544 BasicBlock *Pred) {
545 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
546 if (!PredVal) return false; // Not a value comparison in predecessor.
548 Value *ThisVal = isValueEqualityComparison(TI);
549 assert(ThisVal && "This isn't a value comparison!!");
550 if (ThisVal != PredVal) return false; // Different predicates.
552 // Find out information about when control will move from Pred to TI's block.
553 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
554 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
555 PredCases);
556 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
558 // Find information about how control leaves this block.
559 std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
560 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
561 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
563 // If TI's block is the default block from Pred's comparison, potentially
564 // simplify TI based on this knowledge.
565 if (PredDef == TI->getParent()) {
566 // If we are here, we know that the value is none of those cases listed in
567 // PredCases. If there are any cases in ThisCases that are in PredCases, we
568 // can simplify TI.
569 if (!ValuesOverlap(PredCases, ThisCases))
570 return false;
572 if (isa<BranchInst>(TI)) {
573 // Okay, one of the successors of this condbr is dead. Convert it to a
574 // uncond br.
575 assert(ThisCases.size() == 1 && "Branch can only have one case!");
576 // Insert the new branch.
577 Instruction *NI = BranchInst::Create(ThisDef, TI);
578 (void) NI;
580 // Remove PHI node entries for the dead edge.
581 ThisCases[0].second->removePredecessor(TI->getParent());
583 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
584 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
586 EraseTerminatorInstAndDCECond(TI);
587 return true;
590 SwitchInst *SI = cast<SwitchInst>(TI);
591 // Okay, TI has cases that are statically dead, prune them away.
592 SmallPtrSet<Constant*, 16> DeadCases;
593 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
594 DeadCases.insert(PredCases[i].first);
596 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
597 << "Through successor TI: " << *TI);
599 for (unsigned i = SI->getNumCases()-1; i != 0; --i)
600 if (DeadCases.count(SI->getCaseValue(i))) {
601 SI->getSuccessor(i)->removePredecessor(TI->getParent());
602 SI->removeCase(i);
605 DEBUG(dbgs() << "Leaving: " << *TI << "\n");
606 return true;
609 // Otherwise, TI's block must correspond to some matched value. Find out
610 // which value (or set of values) this is.
611 ConstantInt *TIV = 0;
612 BasicBlock *TIBB = TI->getParent();
613 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
614 if (PredCases[i].second == TIBB) {
615 if (TIV != 0)
616 return false; // Cannot handle multiple values coming to this block.
617 TIV = PredCases[i].first;
619 assert(TIV && "No edge from pred to succ?");
621 // Okay, we found the one constant that our value can be if we get into TI's
622 // BB. Find out which successor will unconditionally be branched to.
623 BasicBlock *TheRealDest = 0;
624 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
625 if (ThisCases[i].first == TIV) {
626 TheRealDest = ThisCases[i].second;
627 break;
630 // If not handled by any explicit cases, it is handled by the default case.
631 if (TheRealDest == 0) TheRealDest = ThisDef;
633 // Remove PHI node entries for dead edges.
634 BasicBlock *CheckEdge = TheRealDest;
635 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
636 if (*SI != CheckEdge)
637 (*SI)->removePredecessor(TIBB);
638 else
639 CheckEdge = 0;
641 // Insert the new branch.
642 Instruction *NI = BranchInst::Create(TheRealDest, TI);
643 (void) NI;
645 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
646 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
648 EraseTerminatorInstAndDCECond(TI);
649 return true;
652 namespace {
653 /// ConstantIntOrdering - This class implements a stable ordering of constant
654 /// integers that does not depend on their address. This is important for
655 /// applications that sort ConstantInt's to ensure uniqueness.
656 struct ConstantIntOrdering {
657 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
658 return LHS->getValue().ult(RHS->getValue());
663 static int ConstantIntSortPredicate(const void *P1, const void *P2) {
664 const ConstantInt *LHS = *(const ConstantInt**)P1;
665 const ConstantInt *RHS = *(const ConstantInt**)P2;
666 if (LHS->getValue().ult(RHS->getValue()))
667 return 1;
668 if (LHS->getValue() == RHS->getValue())
669 return 0;
670 return -1;
673 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
674 /// equality comparison instruction (either a switch or a branch on "X == c").
675 /// See if any of the predecessors of the terminator block are value comparisons
676 /// on the same value. If so, and if safe to do so, fold them together.
677 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
678 BasicBlock *BB = TI->getParent();
679 Value *CV = isValueEqualityComparison(TI); // CondVal
680 assert(CV && "Not a comparison?");
681 bool Changed = false;
683 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
684 while (!Preds.empty()) {
685 BasicBlock *Pred = Preds.pop_back_val();
687 // See if the predecessor is a comparison with the same value.
688 TerminatorInst *PTI = Pred->getTerminator();
689 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
691 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
692 // Figure out which 'cases' to copy from SI to PSI.
693 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
694 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
696 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
697 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
699 // Based on whether the default edge from PTI goes to BB or not, fill in
700 // PredCases and PredDefault with the new switch cases we would like to
701 // build.
702 SmallVector<BasicBlock*, 8> NewSuccessors;
704 if (PredDefault == BB) {
705 // If this is the default destination from PTI, only the edges in TI
706 // that don't occur in PTI, or that branch to BB will be activated.
707 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
708 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
709 if (PredCases[i].second != BB)
710 PTIHandled.insert(PredCases[i].first);
711 else {
712 // The default destination is BB, we don't need explicit targets.
713 std::swap(PredCases[i], PredCases.back());
714 PredCases.pop_back();
715 --i; --e;
718 // Reconstruct the new switch statement we will be building.
719 if (PredDefault != BBDefault) {
720 PredDefault->removePredecessor(Pred);
721 PredDefault = BBDefault;
722 NewSuccessors.push_back(BBDefault);
724 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
725 if (!PTIHandled.count(BBCases[i].first) &&
726 BBCases[i].second != BBDefault) {
727 PredCases.push_back(BBCases[i]);
728 NewSuccessors.push_back(BBCases[i].second);
731 } else {
732 // If this is not the default destination from PSI, only the edges
733 // in SI that occur in PSI with a destination of BB will be
734 // activated.
735 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
736 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
737 if (PredCases[i].second == BB) {
738 PTIHandled.insert(PredCases[i].first);
739 std::swap(PredCases[i], PredCases.back());
740 PredCases.pop_back();
741 --i; --e;
744 // Okay, now we know which constants were sent to BB from the
745 // predecessor. Figure out where they will all go now.
746 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
747 if (PTIHandled.count(BBCases[i].first)) {
748 // If this is one we are capable of getting...
749 PredCases.push_back(BBCases[i]);
750 NewSuccessors.push_back(BBCases[i].second);
751 PTIHandled.erase(BBCases[i].first);// This constant is taken care of
754 // If there are any constants vectored to BB that TI doesn't handle,
755 // they must go to the default destination of TI.
756 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
757 PTIHandled.begin(),
758 E = PTIHandled.end(); I != E; ++I) {
759 PredCases.push_back(std::make_pair(*I, BBDefault));
760 NewSuccessors.push_back(BBDefault);
764 // Okay, at this point, we know which new successor Pred will get. Make
765 // sure we update the number of entries in the PHI nodes for these
766 // successors.
767 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
768 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
770 // Convert pointer to int before we switch.
771 if (CV->getType()->isPointerTy()) {
772 assert(TD && "Cannot switch on pointer without TargetData");
773 CV = new PtrToIntInst(CV, TD->getIntPtrType(CV->getContext()),
774 "magicptr", PTI);
777 // Now that the successors are updated, create the new Switch instruction.
778 SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
779 PredCases.size(), PTI);
780 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
781 NewSI->addCase(PredCases[i].first, PredCases[i].second);
783 EraseTerminatorInstAndDCECond(PTI);
785 // Okay, last check. If BB is still a successor of PSI, then we must
786 // have an infinite loop case. If so, add an infinitely looping block
787 // to handle the case to preserve the behavior of the code.
788 BasicBlock *InfLoopBlock = 0;
789 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
790 if (NewSI->getSuccessor(i) == BB) {
791 if (InfLoopBlock == 0) {
792 // Insert it at the end of the function, because it's either code,
793 // or it won't matter if it's hot. :)
794 InfLoopBlock = BasicBlock::Create(BB->getContext(),
795 "infloop", BB->getParent());
796 BranchInst::Create(InfLoopBlock, InfLoopBlock);
798 NewSI->setSuccessor(i, InfLoopBlock);
801 Changed = true;
804 return Changed;
807 // isSafeToHoistInvoke - If we would need to insert a select that uses the
808 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
809 // would need to do this), we can't hoist the invoke, as there is nowhere
810 // to put the select in this case.
811 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
812 Instruction *I1, Instruction *I2) {
813 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
814 PHINode *PN;
815 for (BasicBlock::iterator BBI = SI->begin();
816 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
817 Value *BB1V = PN->getIncomingValueForBlock(BB1);
818 Value *BB2V = PN->getIncomingValueForBlock(BB2);
819 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
820 return false;
824 return true;
827 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
828 /// BB2, hoist any common code in the two blocks up into the branch block. The
829 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
830 static bool HoistThenElseCodeToIf(BranchInst *BI) {
831 // This does very trivial matching, with limited scanning, to find identical
832 // instructions in the two blocks. In particular, we don't want to get into
833 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
834 // such, we currently just scan for obviously identical instructions in an
835 // identical order.
836 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
837 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
839 BasicBlock::iterator BB1_Itr = BB1->begin();
840 BasicBlock::iterator BB2_Itr = BB2->begin();
842 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
843 // Skip debug info if it is not identical.
844 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
845 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
846 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
847 while (isa<DbgInfoIntrinsic>(I1))
848 I1 = BB1_Itr++;
849 while (isa<DbgInfoIntrinsic>(I2))
850 I2 = BB2_Itr++;
852 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
853 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
854 return false;
856 // If we get here, we can hoist at least one instruction.
857 BasicBlock *BIParent = BI->getParent();
859 do {
860 // If we are hoisting the terminator instruction, don't move one (making a
861 // broken BB), instead clone it, and remove BI.
862 if (isa<TerminatorInst>(I1))
863 goto HoistTerminator;
865 // For a normal instruction, we just move one to right before the branch,
866 // then replace all uses of the other with the first. Finally, we remove
867 // the now redundant second instruction.
868 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
869 if (!I2->use_empty())
870 I2->replaceAllUsesWith(I1);
871 I1->intersectOptionalDataWith(I2);
872 I2->eraseFromParent();
874 I1 = BB1_Itr++;
875 I2 = BB2_Itr++;
876 // Skip debug info if it is not identical.
877 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
878 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
879 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
880 while (isa<DbgInfoIntrinsic>(I1))
881 I1 = BB1_Itr++;
882 while (isa<DbgInfoIntrinsic>(I2))
883 I2 = BB2_Itr++;
885 } while (I1->isIdenticalToWhenDefined(I2));
887 return true;
889 HoistTerminator:
890 // It may not be possible to hoist an invoke.
891 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
892 return true;
894 // Okay, it is safe to hoist the terminator.
895 Instruction *NT = I1->clone();
896 BIParent->getInstList().insert(BI, NT);
897 if (!NT->getType()->isVoidTy()) {
898 I1->replaceAllUsesWith(NT);
899 I2->replaceAllUsesWith(NT);
900 NT->takeName(I1);
903 // Hoisting one of the terminators from our successor is a great thing.
904 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
905 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
906 // nodes, so we insert select instruction to compute the final result.
907 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
908 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
909 PHINode *PN;
910 for (BasicBlock::iterator BBI = SI->begin();
911 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
912 Value *BB1V = PN->getIncomingValueForBlock(BB1);
913 Value *BB2V = PN->getIncomingValueForBlock(BB2);
914 if (BB1V == BB2V) continue;
916 // These values do not agree. Insert a select instruction before NT
917 // that determines the right value.
918 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
919 if (SI == 0)
920 SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
921 BB1V->getName()+"."+BB2V->getName(), NT);
922 // Make the PHI node use the select for all incoming values for BB1/BB2
923 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
924 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
925 PN->setIncomingValue(i, SI);
929 // Update any PHI nodes in our new successors.
930 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
931 AddPredecessorToBlock(*SI, BIParent, BB1);
933 EraseTerminatorInstAndDCECond(BI);
934 return true;
937 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
938 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
939 /// (for now, restricted to a single instruction that's side effect free) from
940 /// the BB1 into the branch block to speculatively execute it.
941 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
942 // Only speculatively execution a single instruction (not counting the
943 // terminator) for now.
944 Instruction *HInst = NULL;
945 Instruction *Term = BB1->getTerminator();
946 for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
947 BBI != BBE; ++BBI) {
948 Instruction *I = BBI;
949 // Skip debug info.
950 if (isa<DbgInfoIntrinsic>(I)) continue;
951 if (I == Term) break;
953 if (HInst)
954 return false;
955 HInst = I;
957 if (!HInst)
958 return false;
960 // Be conservative for now. FP select instruction can often be expensive.
961 Value *BrCond = BI->getCondition();
962 if (isa<FCmpInst>(BrCond))
963 return false;
965 // If BB1 is actually on the false edge of the conditional branch, remember
966 // to swap the select operands later.
967 bool Invert = false;
968 if (BB1 != BI->getSuccessor(0)) {
969 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
970 Invert = true;
973 // Turn
974 // BB:
975 // %t1 = icmp
976 // br i1 %t1, label %BB1, label %BB2
977 // BB1:
978 // %t3 = add %t2, c
979 // br label BB2
980 // BB2:
981 // =>
982 // BB:
983 // %t1 = icmp
984 // %t4 = add %t2, c
985 // %t3 = select i1 %t1, %t2, %t3
986 switch (HInst->getOpcode()) {
987 default: return false; // Not safe / profitable to hoist.
988 case Instruction::Add:
989 case Instruction::Sub:
990 // Not worth doing for vector ops.
991 if (HInst->getType()->isVectorTy())
992 return false;
993 break;
994 case Instruction::And:
995 case Instruction::Or:
996 case Instruction::Xor:
997 case Instruction::Shl:
998 case Instruction::LShr:
999 case Instruction::AShr:
1000 // Don't mess with vector operations.
1001 if (HInst->getType()->isVectorTy())
1002 return false;
1003 break; // These are all cheap and non-trapping instructions.
1006 // If the instruction is obviously dead, don't try to predicate it.
1007 if (HInst->use_empty()) {
1008 HInst->eraseFromParent();
1009 return true;
1012 // Can we speculatively execute the instruction? And what is the value
1013 // if the condition is false? Consider the phi uses, if the incoming value
1014 // from the "if" block are all the same V, then V is the value of the
1015 // select if the condition is false.
1016 BasicBlock *BIParent = BI->getParent();
1017 SmallVector<PHINode*, 4> PHIUses;
1018 Value *FalseV = NULL;
1020 BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1021 for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
1022 UI != E; ++UI) {
1023 // Ignore any user that is not a PHI node in BB2. These can only occur in
1024 // unreachable blocks, because they would not be dominated by the instr.
1025 PHINode *PN = dyn_cast<PHINode>(*UI);
1026 if (!PN || PN->getParent() != BB2)
1027 return false;
1028 PHIUses.push_back(PN);
1030 Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1031 if (!FalseV)
1032 FalseV = PHIV;
1033 else if (FalseV != PHIV)
1034 return false; // Inconsistent value when condition is false.
1037 assert(FalseV && "Must have at least one user, and it must be a PHI");
1039 // Do not hoist the instruction if any of its operands are defined but not
1040 // used in this BB. The transformation will prevent the operand from
1041 // being sunk into the use block.
1042 for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1043 i != e; ++i) {
1044 Instruction *OpI = dyn_cast<Instruction>(*i);
1045 if (OpI && OpI->getParent() == BIParent &&
1046 !OpI->isUsedInBasicBlock(BIParent))
1047 return false;
1050 // If we get here, we can hoist the instruction. Try to place it
1051 // before the icmp instruction preceding the conditional branch.
1052 BasicBlock::iterator InsertPos = BI;
1053 if (InsertPos != BIParent->begin())
1054 --InsertPos;
1055 // Skip debug info between condition and branch.
1056 while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
1057 --InsertPos;
1058 if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
1059 SmallPtrSet<Instruction *, 4> BB1Insns;
1060 for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
1061 BB1I != BB1E; ++BB1I)
1062 BB1Insns.insert(BB1I);
1063 for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
1064 UI != UE; ++UI) {
1065 Instruction *Use = cast<Instruction>(*UI);
1066 if (!BB1Insns.count(Use)) continue;
1068 // If BrCond uses the instruction that place it just before
1069 // branch instruction.
1070 InsertPos = BI;
1071 break;
1073 } else
1074 InsertPos = BI;
1075 BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
1077 // Create a select whose true value is the speculatively executed value and
1078 // false value is the previously determined FalseV.
1079 SelectInst *SI;
1080 if (Invert)
1081 SI = SelectInst::Create(BrCond, FalseV, HInst,
1082 FalseV->getName() + "." + HInst->getName(), BI);
1083 else
1084 SI = SelectInst::Create(BrCond, HInst, FalseV,
1085 HInst->getName() + "." + FalseV->getName(), BI);
1087 // Make the PHI node use the select for all incoming values for "then" and
1088 // "if" blocks.
1089 for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1090 PHINode *PN = PHIUses[i];
1091 for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1092 if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent)
1093 PN->setIncomingValue(j, SI);
1096 ++NumSpeculations;
1097 return true;
1100 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1101 /// across this block.
1102 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1103 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1104 unsigned Size = 0;
1106 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1107 if (isa<DbgInfoIntrinsic>(BBI))
1108 continue;
1109 if (Size > 10) return false; // Don't clone large BB's.
1110 ++Size;
1112 // We can only support instructions that do not define values that are
1113 // live outside of the current basic block.
1114 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1115 UI != E; ++UI) {
1116 Instruction *U = cast<Instruction>(*UI);
1117 if (U->getParent() != BB || isa<PHINode>(U)) return false;
1120 // Looks ok, continue checking.
1123 return true;
1126 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1127 /// that is defined in the same block as the branch and if any PHI entries are
1128 /// constants, thread edges corresponding to that entry to be branches to their
1129 /// ultimate destination.
1130 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1131 BasicBlock *BB = BI->getParent();
1132 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1133 // NOTE: we currently cannot transform this case if the PHI node is used
1134 // outside of the block.
1135 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1136 return false;
1138 // Degenerate case of a single entry PHI.
1139 if (PN->getNumIncomingValues() == 1) {
1140 FoldSingleEntryPHINodes(PN->getParent());
1141 return true;
1144 // Now we know that this block has multiple preds and two succs.
1145 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1147 // Okay, this is a simple enough basic block. See if any phi values are
1148 // constants.
1149 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1150 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1151 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1153 // Okay, we now know that all edges from PredBB should be revectored to
1154 // branch to RealDest.
1155 BasicBlock *PredBB = PN->getIncomingBlock(i);
1156 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1158 if (RealDest == BB) continue; // Skip self loops.
1160 // The dest block might have PHI nodes, other predecessors and other
1161 // difficult cases. Instead of being smart about this, just insert a new
1162 // block that jumps to the destination block, effectively splitting
1163 // the edge we are about to create.
1164 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1165 RealDest->getName()+".critedge",
1166 RealDest->getParent(), RealDest);
1167 BranchInst::Create(RealDest, EdgeBB);
1169 // Update PHI nodes.
1170 AddPredecessorToBlock(RealDest, EdgeBB, BB);
1172 // BB may have instructions that are being threaded over. Clone these
1173 // instructions into EdgeBB. We know that there will be no uses of the
1174 // cloned instructions outside of EdgeBB.
1175 BasicBlock::iterator InsertPt = EdgeBB->begin();
1176 DenseMap<Value*, Value*> TranslateMap; // Track translated values.
1177 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1178 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1179 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1180 continue;
1182 // Clone the instruction.
1183 Instruction *N = BBI->clone();
1184 if (BBI->hasName()) N->setName(BBI->getName()+".c");
1186 // Update operands due to translation.
1187 for (User::op_iterator i = N->op_begin(), e = N->op_end();
1188 i != e; ++i) {
1189 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1190 if (PI != TranslateMap.end())
1191 *i = PI->second;
1194 // Check for trivial simplification.
1195 if (Value *V = SimplifyInstruction(N, TD)) {
1196 TranslateMap[BBI] = V;
1197 delete N; // Instruction folded away, don't need actual inst
1198 } else {
1199 // Insert the new instruction into its new home.
1200 EdgeBB->getInstList().insert(InsertPt, N);
1201 if (!BBI->use_empty())
1202 TranslateMap[BBI] = N;
1206 // Loop over all of the edges from PredBB to BB, changing them to branch
1207 // to EdgeBB instead.
1208 TerminatorInst *PredBBTI = PredBB->getTerminator();
1209 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1210 if (PredBBTI->getSuccessor(i) == BB) {
1211 BB->removePredecessor(PredBB);
1212 PredBBTI->setSuccessor(i, EdgeBB);
1215 // Recurse, simplifying any other constants.
1216 return FoldCondBranchOnPHI(BI, TD) | true;
1219 return false;
1222 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1223 /// PHI node, see if we can eliminate it.
1224 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1225 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1226 // statement", which has a very simple dominance structure. Basically, we
1227 // are trying to find the condition that is being branched on, which
1228 // subsequently causes this merge to happen. We really want control
1229 // dependence information for this check, but simplifycfg can't keep it up
1230 // to date, and this catches most of the cases we care about anyway.
1231 BasicBlock *BB = PN->getParent();
1232 BasicBlock *IfTrue, *IfFalse;
1233 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1234 if (!IfCond ||
1235 // Don't bother if the branch will be constant folded trivially.
1236 isa<ConstantInt>(IfCond))
1237 return false;
1239 // Okay, we found that we can merge this two-entry phi node into a select.
1240 // Doing so would require us to fold *all* two entry phi nodes in this block.
1241 // At some point this becomes non-profitable (particularly if the target
1242 // doesn't support cmov's). Only do this transformation if there are two or
1243 // fewer PHI nodes in this block.
1244 unsigned NumPhis = 0;
1245 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1246 if (NumPhis > 2)
1247 return false;
1249 // Loop over the PHI's seeing if we can promote them all to select
1250 // instructions. While we are at it, keep track of the instructions
1251 // that need to be moved to the dominating block.
1252 SmallPtrSet<Instruction*, 4> AggressiveInsts;
1253 unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1254 MaxCostVal1 = PHINodeFoldingThreshold;
1256 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1257 PHINode *PN = cast<PHINode>(II++);
1258 if (Value *V = SimplifyInstruction(PN, TD)) {
1259 PN->replaceAllUsesWith(V);
1260 PN->eraseFromParent();
1261 continue;
1264 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1265 MaxCostVal0) ||
1266 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1267 MaxCostVal1))
1268 return false;
1271 // If we folded the the first phi, PN dangles at this point. Refresh it. If
1272 // we ran out of PHIs then we simplified them all.
1273 PN = dyn_cast<PHINode>(BB->begin());
1274 if (PN == 0) return true;
1276 // Don't fold i1 branches on PHIs which contain binary operators. These can
1277 // often be turned into switches and other things.
1278 if (PN->getType()->isIntegerTy(1) &&
1279 (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1280 isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1281 isa<BinaryOperator>(IfCond)))
1282 return false;
1284 // If we all PHI nodes are promotable, check to make sure that all
1285 // instructions in the predecessor blocks can be promoted as well. If
1286 // not, we won't be able to get rid of the control flow, so it's not
1287 // worth promoting to select instructions.
1288 BasicBlock *DomBlock = 0;
1289 BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1290 BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1291 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1292 IfBlock1 = 0;
1293 } else {
1294 DomBlock = *pred_begin(IfBlock1);
1295 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1296 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1297 // This is not an aggressive instruction that we can promote.
1298 // Because of this, we won't be able to get rid of the control
1299 // flow, so the xform is not worth it.
1300 return false;
1304 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1305 IfBlock2 = 0;
1306 } else {
1307 DomBlock = *pred_begin(IfBlock2);
1308 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1309 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1310 // This is not an aggressive instruction that we can promote.
1311 // Because of this, we won't be able to get rid of the control
1312 // flow, so the xform is not worth it.
1313 return false;
1317 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
1318 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
1320 // If we can still promote the PHI nodes after this gauntlet of tests,
1321 // do all of the PHI's now.
1322 Instruction *InsertPt = DomBlock->getTerminator();
1324 // Move all 'aggressive' instructions, which are defined in the
1325 // conditional parts of the if's up to the dominating block.
1326 if (IfBlock1)
1327 DomBlock->getInstList().splice(InsertPt,
1328 IfBlock1->getInstList(), IfBlock1->begin(),
1329 IfBlock1->getTerminator());
1330 if (IfBlock2)
1331 DomBlock->getInstList().splice(InsertPt,
1332 IfBlock2->getInstList(), IfBlock2->begin(),
1333 IfBlock2->getTerminator());
1335 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1336 // Change the PHI node into a select instruction.
1337 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1338 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1340 Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", InsertPt);
1341 PN->replaceAllUsesWith(NV);
1342 NV->takeName(PN);
1343 PN->eraseFromParent();
1346 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1347 // has been flattened. Change DomBlock to jump directly to our new block to
1348 // avoid other simplifycfg's kicking in on the diamond.
1349 TerminatorInst *OldTI = DomBlock->getTerminator();
1350 BranchInst::Create(BB, OldTI);
1351 OldTI->eraseFromParent();
1352 return true;
1355 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1356 /// to two returning blocks, try to merge them together into one return,
1357 /// introducing a select if the return values disagree.
1358 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
1359 assert(BI->isConditional() && "Must be a conditional branch");
1360 BasicBlock *TrueSucc = BI->getSuccessor(0);
1361 BasicBlock *FalseSucc = BI->getSuccessor(1);
1362 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1363 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1365 // Check to ensure both blocks are empty (just a return) or optionally empty
1366 // with PHI nodes. If there are other instructions, merging would cause extra
1367 // computation on one path or the other.
1368 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1369 return false;
1370 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1371 return false;
1373 // Okay, we found a branch that is going to two return nodes. If
1374 // there is no return value for this function, just change the
1375 // branch into a return.
1376 if (FalseRet->getNumOperands() == 0) {
1377 TrueSucc->removePredecessor(BI->getParent());
1378 FalseSucc->removePredecessor(BI->getParent());
1379 ReturnInst::Create(BI->getContext(), 0, BI);
1380 EraseTerminatorInstAndDCECond(BI);
1381 return true;
1384 // Otherwise, figure out what the true and false return values are
1385 // so we can insert a new select instruction.
1386 Value *TrueValue = TrueRet->getReturnValue();
1387 Value *FalseValue = FalseRet->getReturnValue();
1389 // Unwrap any PHI nodes in the return blocks.
1390 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1391 if (TVPN->getParent() == TrueSucc)
1392 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1393 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1394 if (FVPN->getParent() == FalseSucc)
1395 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1397 // In order for this transformation to be safe, we must be able to
1398 // unconditionally execute both operands to the return. This is
1399 // normally the case, but we could have a potentially-trapping
1400 // constant expression that prevents this transformation from being
1401 // safe.
1402 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1403 if (TCV->canTrap())
1404 return false;
1405 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1406 if (FCV->canTrap())
1407 return false;
1409 // Okay, we collected all the mapped values and checked them for sanity, and
1410 // defined to really do this transformation. First, update the CFG.
1411 TrueSucc->removePredecessor(BI->getParent());
1412 FalseSucc->removePredecessor(BI->getParent());
1414 // Insert select instructions where needed.
1415 Value *BrCond = BI->getCondition();
1416 if (TrueValue) {
1417 // Insert a select if the results differ.
1418 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1419 } else if (isa<UndefValue>(TrueValue)) {
1420 TrueValue = FalseValue;
1421 } else {
1422 TrueValue = SelectInst::Create(BrCond, TrueValue,
1423 FalseValue, "retval", BI);
1427 Value *RI = !TrueValue ?
1428 ReturnInst::Create(BI->getContext(), BI) :
1429 ReturnInst::Create(BI->getContext(), TrueValue, BI);
1430 (void) RI;
1432 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1433 << "\n " << *BI << "NewRet = " << *RI
1434 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1436 EraseTerminatorInstAndDCECond(BI);
1438 return true;
1441 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1442 /// predecessor branches to us and one of our successors, fold the block into
1443 /// the predecessor and use logical operations to pick the right destination.
1444 bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1445 BasicBlock *BB = BI->getParent();
1446 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1447 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1448 Cond->getParent() != BB || !Cond->hasOneUse())
1449 return false;
1451 // Only allow this if the condition is a simple instruction that can be
1452 // executed unconditionally. It must be in the same block as the branch, and
1453 // must be at the front of the block.
1454 BasicBlock::iterator FrontIt = BB->front();
1456 // Ignore dbg intrinsics.
1457 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1459 // Allow a single instruction to be hoisted in addition to the compare
1460 // that feeds the branch. We later ensure that any values that _it_ uses
1461 // were also live in the predecessor, so that we don't unnecessarily create
1462 // register pressure or inhibit out-of-order execution.
1463 Instruction *BonusInst = 0;
1464 if (&*FrontIt != Cond &&
1465 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1466 FrontIt->isSafeToSpeculativelyExecute()) {
1467 BonusInst = &*FrontIt;
1468 ++FrontIt;
1470 // Ignore dbg intrinsics.
1471 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1474 // Only a single bonus inst is allowed.
1475 if (&*FrontIt != Cond)
1476 return false;
1478 // Make sure the instruction after the condition is the cond branch.
1479 BasicBlock::iterator CondIt = Cond; ++CondIt;
1481 // Ingore dbg intrinsics.
1482 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1484 if (&*CondIt != BI)
1485 return false;
1487 // Cond is known to be a compare or binary operator. Check to make sure that
1488 // neither operand is a potentially-trapping constant expression.
1489 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1490 if (CE->canTrap())
1491 return false;
1492 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1493 if (CE->canTrap())
1494 return false;
1496 // Finally, don't infinitely unroll conditional loops.
1497 BasicBlock *TrueDest = BI->getSuccessor(0);
1498 BasicBlock *FalseDest = BI->getSuccessor(1);
1499 if (TrueDest == BB || FalseDest == BB)
1500 return false;
1502 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1503 BasicBlock *PredBlock = *PI;
1504 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1506 // Check that we have two conditional branches. If there is a PHI node in
1507 // the common successor, verify that the same value flows in from both
1508 // blocks.
1509 if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
1510 continue;
1512 // Determine if the two branches share a common destination.
1513 Instruction::BinaryOps Opc;
1514 bool InvertPredCond = false;
1516 if (PBI->getSuccessor(0) == TrueDest)
1517 Opc = Instruction::Or;
1518 else if (PBI->getSuccessor(1) == FalseDest)
1519 Opc = Instruction::And;
1520 else if (PBI->getSuccessor(0) == FalseDest)
1521 Opc = Instruction::And, InvertPredCond = true;
1522 else if (PBI->getSuccessor(1) == TrueDest)
1523 Opc = Instruction::Or, InvertPredCond = true;
1524 else
1525 continue;
1527 // Ensure that any values used in the bonus instruction are also used
1528 // by the terminator of the predecessor. This means that those values
1529 // must already have been resolved, so we won't be inhibiting the
1530 // out-of-order core by speculating them earlier.
1531 if (BonusInst) {
1532 // Collect the values used by the bonus inst
1533 SmallPtrSet<Value*, 4> UsedValues;
1534 for (Instruction::op_iterator OI = BonusInst->op_begin(),
1535 OE = BonusInst->op_end(); OI != OE; ++OI) {
1536 Value* V = *OI;
1537 if (!isa<Constant>(V))
1538 UsedValues.insert(V);
1541 SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1542 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1544 // Walk up to four levels back up the use-def chain of the predecessor's
1545 // terminator to see if all those values were used. The choice of four
1546 // levels is arbitrary, to provide a compile-time-cost bound.
1547 while (!Worklist.empty()) {
1548 std::pair<Value*, unsigned> Pair = Worklist.back();
1549 Worklist.pop_back();
1551 if (Pair.second >= 4) continue;
1552 UsedValues.erase(Pair.first);
1553 if (UsedValues.empty()) break;
1555 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1556 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1557 OI != OE; ++OI)
1558 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1562 if (!UsedValues.empty()) return false;
1565 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1567 // If we need to invert the condition in the pred block to match, do so now.
1568 if (InvertPredCond) {
1569 Value *NewCond = PBI->getCondition();
1571 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1572 CmpInst *CI = cast<CmpInst>(NewCond);
1573 CI->setPredicate(CI->getInversePredicate());
1574 } else {
1575 NewCond = BinaryOperator::CreateNot(NewCond,
1576 PBI->getCondition()->getName()+".not", PBI);
1579 PBI->setCondition(NewCond);
1580 BasicBlock *OldTrue = PBI->getSuccessor(0);
1581 BasicBlock *OldFalse = PBI->getSuccessor(1);
1582 PBI->setSuccessor(0, OldFalse);
1583 PBI->setSuccessor(1, OldTrue);
1586 // If we have a bonus inst, clone it into the predecessor block.
1587 Instruction *NewBonus = 0;
1588 if (BonusInst) {
1589 NewBonus = BonusInst->clone();
1590 PredBlock->getInstList().insert(PBI, NewBonus);
1591 NewBonus->takeName(BonusInst);
1592 BonusInst->setName(BonusInst->getName()+".old");
1595 // Clone Cond into the predecessor basic block, and or/and the
1596 // two conditions together.
1597 Instruction *New = Cond->clone();
1598 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1599 PredBlock->getInstList().insert(PBI, New);
1600 New->takeName(Cond);
1601 Cond->setName(New->getName()+".old");
1603 Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
1604 New, "or.cond", PBI);
1605 PBI->setCondition(NewCond);
1606 if (PBI->getSuccessor(0) == BB) {
1607 AddPredecessorToBlock(TrueDest, PredBlock, BB);
1608 PBI->setSuccessor(0, TrueDest);
1610 if (PBI->getSuccessor(1) == BB) {
1611 AddPredecessorToBlock(FalseDest, PredBlock, BB);
1612 PBI->setSuccessor(1, FalseDest);
1615 // Copy any debug value intrinsics into the end of PredBlock.
1616 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1617 if (isa<DbgInfoIntrinsic>(*I))
1618 I->clone()->insertBefore(PBI);
1620 return true;
1622 return false;
1625 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1626 /// predecessor of another block, this function tries to simplify it. We know
1627 /// that PBI and BI are both conditional branches, and BI is in one of the
1628 /// successor blocks of PBI - PBI branches to BI.
1629 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1630 assert(PBI->isConditional() && BI->isConditional());
1631 BasicBlock *BB = BI->getParent();
1633 // If this block ends with a branch instruction, and if there is a
1634 // predecessor that ends on a branch of the same condition, make
1635 // this conditional branch redundant.
1636 if (PBI->getCondition() == BI->getCondition() &&
1637 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1638 // Okay, the outcome of this conditional branch is statically
1639 // knowable. If this block had a single pred, handle specially.
1640 if (BB->getSinglePredecessor()) {
1641 // Turn this into a branch on constant.
1642 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1643 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1644 CondIsTrue));
1645 return true; // Nuke the branch on constant.
1648 // Otherwise, if there are multiple predecessors, insert a PHI that merges
1649 // in the constant and simplify the block result. Subsequent passes of
1650 // simplifycfg will thread the block.
1651 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1652 pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
1653 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1654 std::distance(PB, PE),
1655 BI->getCondition()->getName() + ".pr",
1656 BB->begin());
1657 // Okay, we're going to insert the PHI node. Since PBI is not the only
1658 // predecessor, compute the PHI'd conditional value for all of the preds.
1659 // Any predecessor where the condition is not computable we keep symbolic.
1660 for (pred_iterator PI = PB; PI != PE; ++PI) {
1661 BasicBlock *P = *PI;
1662 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
1663 PBI != BI && PBI->isConditional() &&
1664 PBI->getCondition() == BI->getCondition() &&
1665 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1666 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1667 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1668 CondIsTrue), P);
1669 } else {
1670 NewPN->addIncoming(BI->getCondition(), P);
1674 BI->setCondition(NewPN);
1675 return true;
1679 // If this is a conditional branch in an empty block, and if any
1680 // predecessors is a conditional branch to one of our destinations,
1681 // fold the conditions into logical ops and one cond br.
1682 BasicBlock::iterator BBI = BB->begin();
1683 // Ignore dbg intrinsics.
1684 while (isa<DbgInfoIntrinsic>(BBI))
1685 ++BBI;
1686 if (&*BBI != BI)
1687 return false;
1690 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1691 if (CE->canTrap())
1692 return false;
1694 int PBIOp, BIOp;
1695 if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1696 PBIOp = BIOp = 0;
1697 else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1698 PBIOp = 0, BIOp = 1;
1699 else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1700 PBIOp = 1, BIOp = 0;
1701 else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1702 PBIOp = BIOp = 1;
1703 else
1704 return false;
1706 // Check to make sure that the other destination of this branch
1707 // isn't BB itself. If so, this is an infinite loop that will
1708 // keep getting unwound.
1709 if (PBI->getSuccessor(PBIOp) == BB)
1710 return false;
1712 // Do not perform this transformation if it would require
1713 // insertion of a large number of select instructions. For targets
1714 // without predication/cmovs, this is a big pessimization.
1715 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1717 unsigned NumPhis = 0;
1718 for (BasicBlock::iterator II = CommonDest->begin();
1719 isa<PHINode>(II); ++II, ++NumPhis)
1720 if (NumPhis > 2) // Disable this xform.
1721 return false;
1723 // Finally, if everything is ok, fold the branches to logical ops.
1724 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
1726 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
1727 << "AND: " << *BI->getParent());
1730 // If OtherDest *is* BB, then BB is a basic block with a single conditional
1731 // branch in it, where one edge (OtherDest) goes back to itself but the other
1732 // exits. We don't *know* that the program avoids the infinite loop
1733 // (even though that seems likely). If we do this xform naively, we'll end up
1734 // recursively unpeeling the loop. Since we know that (after the xform is
1735 // done) that the block *is* infinite if reached, we just make it an obviously
1736 // infinite loop with no cond branch.
1737 if (OtherDest == BB) {
1738 // Insert it at the end of the function, because it's either code,
1739 // or it won't matter if it's hot. :)
1740 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
1741 "infloop", BB->getParent());
1742 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1743 OtherDest = InfLoopBlock;
1746 DEBUG(dbgs() << *PBI->getParent()->getParent());
1748 // BI may have other predecessors. Because of this, we leave
1749 // it alone, but modify PBI.
1751 // Make sure we get to CommonDest on True&True directions.
1752 Value *PBICond = PBI->getCondition();
1753 if (PBIOp)
1754 PBICond = BinaryOperator::CreateNot(PBICond,
1755 PBICond->getName()+".not",
1756 PBI);
1757 Value *BICond = BI->getCondition();
1758 if (BIOp)
1759 BICond = BinaryOperator::CreateNot(BICond,
1760 BICond->getName()+".not",
1761 PBI);
1762 // Merge the conditions.
1763 Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
1765 // Modify PBI to branch on the new condition to the new dests.
1766 PBI->setCondition(Cond);
1767 PBI->setSuccessor(0, CommonDest);
1768 PBI->setSuccessor(1, OtherDest);
1770 // OtherDest may have phi nodes. If so, add an entry from PBI's
1771 // block that are identical to the entries for BI's block.
1772 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
1774 // We know that the CommonDest already had an edge from PBI to
1775 // it. If it has PHIs though, the PHIs may have different
1776 // entries for BB and PBI's BB. If so, insert a select to make
1777 // them agree.
1778 PHINode *PN;
1779 for (BasicBlock::iterator II = CommonDest->begin();
1780 (PN = dyn_cast<PHINode>(II)); ++II) {
1781 Value *BIV = PN->getIncomingValueForBlock(BB);
1782 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1783 Value *PBIV = PN->getIncomingValue(PBBIdx);
1784 if (BIV != PBIV) {
1785 // Insert a select in PBI to pick the right value.
1786 Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
1787 PBIV->getName()+".mux", PBI);
1788 PN->setIncomingValue(PBBIdx, NV);
1792 DEBUG(dbgs() << "INTO: " << *PBI->getParent());
1793 DEBUG(dbgs() << *PBI->getParent()->getParent());
1795 // This basic block is probably dead. We know it has at least
1796 // one fewer predecessor.
1797 return true;
1800 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
1801 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
1802 // Takes care of updating the successors and removing the old terminator.
1803 // Also makes sure not to introduce new successors by assuming that edges to
1804 // non-successor TrueBBs and FalseBBs aren't reachable.
1805 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
1806 BasicBlock *TrueBB, BasicBlock *FalseBB){
1807 // Remove any superfluous successor edges from the CFG.
1808 // First, figure out which successors to preserve.
1809 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
1810 // successor.
1811 BasicBlock *KeepEdge1 = TrueBB;
1812 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
1814 // Then remove the rest.
1815 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
1816 BasicBlock *Succ = OldTerm->getSuccessor(I);
1817 // Make sure only to keep exactly one copy of each edge.
1818 if (Succ == KeepEdge1)
1819 KeepEdge1 = 0;
1820 else if (Succ == KeepEdge2)
1821 KeepEdge2 = 0;
1822 else
1823 Succ->removePredecessor(OldTerm->getParent());
1826 // Insert an appropriate new terminator.
1827 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
1828 if (TrueBB == FalseBB)
1829 // We were only looking for one successor, and it was present.
1830 // Create an unconditional branch to it.
1831 BranchInst::Create(TrueBB, OldTerm);
1832 else
1833 // We found both of the successors we were looking for.
1834 // Create a conditional branch sharing the condition of the select.
1835 BranchInst::Create(TrueBB, FalseBB, Cond, OldTerm);
1836 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
1837 // Neither of the selected blocks were successors, so this
1838 // terminator must be unreachable.
1839 new UnreachableInst(OldTerm->getContext(), OldTerm);
1840 } else {
1841 // One of the selected values was a successor, but the other wasn't.
1842 // Insert an unconditional branch to the one that was found;
1843 // the edge to the one that wasn't must be unreachable.
1844 if (KeepEdge1 == 0)
1845 // Only TrueBB was found.
1846 BranchInst::Create(TrueBB, OldTerm);
1847 else
1848 // Only FalseBB was found.
1849 BranchInst::Create(FalseBB, OldTerm);
1852 EraseTerminatorInstAndDCECond(OldTerm);
1853 return true;
1856 // SimplifySwitchOnSelect - Replaces
1857 // (switch (select cond, X, Y)) on constant X, Y
1858 // with a branch - conditional if X and Y lead to distinct BBs,
1859 // unconditional otherwise.
1860 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
1861 // Check for constant integer values in the select.
1862 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
1863 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
1864 if (!TrueVal || !FalseVal)
1865 return false;
1867 // Find the relevant condition and destinations.
1868 Value *Condition = Select->getCondition();
1869 BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal));
1870 BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal));
1872 // Perform the actual simplification.
1873 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
1876 // SimplifyIndirectBrOnSelect - Replaces
1877 // (indirectbr (select cond, blockaddress(@fn, BlockA),
1878 // blockaddress(@fn, BlockB)))
1879 // with
1880 // (br cond, BlockA, BlockB).
1881 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
1882 // Check that both operands of the select are block addresses.
1883 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
1884 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
1885 if (!TBA || !FBA)
1886 return false;
1888 // Extract the actual blocks.
1889 BasicBlock *TrueBB = TBA->getBasicBlock();
1890 BasicBlock *FalseBB = FBA->getBasicBlock();
1892 // Perform the actual simplification.
1893 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
1896 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
1897 /// instruction (a seteq/setne with a constant) as the only instruction in a
1898 /// block that ends with an uncond branch. We are looking for a very specific
1899 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
1900 /// this case, we merge the first two "or's of icmp" into a switch, but then the
1901 /// default value goes to an uncond block with a seteq in it, we get something
1902 /// like:
1904 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
1905 /// DEFAULT:
1906 /// %tmp = icmp eq i8 %A, 92
1907 /// br label %end
1908 /// end:
1909 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
1910 ///
1911 /// We prefer to split the edge to 'end' so that there is a true/false entry to
1912 /// the PHI, merging the third icmp into the switch.
1913 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
1914 const TargetData *TD) {
1915 BasicBlock *BB = ICI->getParent();
1916 // If the block has any PHIs in it or the icmp has multiple uses, it is too
1917 // complex.
1918 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
1920 Value *V = ICI->getOperand(0);
1921 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
1923 // The pattern we're looking for is where our only predecessor is a switch on
1924 // 'V' and this block is the default case for the switch. In this case we can
1925 // fold the compared value into the switch to simplify things.
1926 BasicBlock *Pred = BB->getSinglePredecessor();
1927 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
1929 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
1930 if (SI->getCondition() != V)
1931 return false;
1933 // If BB is reachable on a non-default case, then we simply know the value of
1934 // V in this block. Substitute it and constant fold the icmp instruction
1935 // away.
1936 if (SI->getDefaultDest() != BB) {
1937 ConstantInt *VVal = SI->findCaseDest(BB);
1938 assert(VVal && "Should have a unique destination value");
1939 ICI->setOperand(0, VVal);
1941 if (Value *V = SimplifyInstruction(ICI, TD)) {
1942 ICI->replaceAllUsesWith(V);
1943 ICI->eraseFromParent();
1945 // BB is now empty, so it is likely to simplify away.
1946 return SimplifyCFG(BB) | true;
1949 // Ok, the block is reachable from the default dest. If the constant we're
1950 // comparing exists in one of the other edges, then we can constant fold ICI
1951 // and zap it.
1952 if (SI->findCaseValue(Cst) != 0) {
1953 Value *V;
1954 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1955 V = ConstantInt::getFalse(BB->getContext());
1956 else
1957 V = ConstantInt::getTrue(BB->getContext());
1959 ICI->replaceAllUsesWith(V);
1960 ICI->eraseFromParent();
1961 // BB is now empty, so it is likely to simplify away.
1962 return SimplifyCFG(BB) | true;
1965 // The use of the icmp has to be in the 'end' block, by the only PHI node in
1966 // the block.
1967 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
1968 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
1969 if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
1970 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
1971 return false;
1973 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
1974 // true in the PHI.
1975 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
1976 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
1978 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1979 std::swap(DefaultCst, NewCst);
1981 // Replace ICI (which is used by the PHI for the default value) with true or
1982 // false depending on if it is EQ or NE.
1983 ICI->replaceAllUsesWith(DefaultCst);
1984 ICI->eraseFromParent();
1986 // Okay, the switch goes to this block on a default value. Add an edge from
1987 // the switch to the merge point on the compared value.
1988 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
1989 BB->getParent(), BB);
1990 SI->addCase(Cst, NewBB);
1992 // NewBB branches to the phi block, add the uncond branch and the phi entry.
1993 BranchInst::Create(SuccBlock, NewBB);
1994 PHIUse->addIncoming(NewCst, NewBB);
1995 return true;
1998 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
1999 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2000 /// fold it into a switch instruction if so.
2001 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD) {
2002 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2003 if (Cond == 0) return false;
2006 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2007 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2008 // 'setne's and'ed together, collect them.
2009 Value *CompVal = 0;
2010 std::vector<ConstantInt*> Values;
2011 bool TrueWhenEqual = true;
2012 Value *ExtraCase = 0;
2013 unsigned UsedICmps = 0;
2015 if (Cond->getOpcode() == Instruction::Or) {
2016 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2017 UsedICmps);
2018 } else if (Cond->getOpcode() == Instruction::And) {
2019 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2020 UsedICmps);
2021 TrueWhenEqual = false;
2024 // If we didn't have a multiply compared value, fail.
2025 if (CompVal == 0) return false;
2027 // Avoid turning single icmps into a switch.
2028 if (UsedICmps <= 1)
2029 return false;
2031 // There might be duplicate constants in the list, which the switch
2032 // instruction can't handle, remove them now.
2033 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2034 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2036 // If Extra was used, we require at least two switch values to do the
2037 // transformation. A switch with one value is just an cond branch.
2038 if (ExtraCase && Values.size() < 2) return false;
2040 // Figure out which block is which destination.
2041 BasicBlock *DefaultBB = BI->getSuccessor(1);
2042 BasicBlock *EdgeBB = BI->getSuccessor(0);
2043 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2045 BasicBlock *BB = BI->getParent();
2047 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2048 << " cases into SWITCH. BB is:\n" << *BB);
2050 // If there are any extra values that couldn't be folded into the switch
2051 // then we evaluate them with an explicit branch first. Split the block
2052 // right before the condbr to handle it.
2053 if (ExtraCase) {
2054 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2055 // Remove the uncond branch added to the old block.
2056 TerminatorInst *OldTI = BB->getTerminator();
2058 if (TrueWhenEqual)
2059 BranchInst::Create(EdgeBB, NewBB, ExtraCase, OldTI);
2060 else
2061 BranchInst::Create(NewBB, EdgeBB, ExtraCase, OldTI);
2063 OldTI->eraseFromParent();
2065 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2066 // for the edge we just added.
2067 AddPredecessorToBlock(EdgeBB, BB, NewBB);
2069 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
2070 << "\nEXTRABB = " << *BB);
2071 BB = NewBB;
2074 // Convert pointer to int before we switch.
2075 if (CompVal->getType()->isPointerTy()) {
2076 assert(TD && "Cannot switch on pointer without TargetData");
2077 CompVal = new PtrToIntInst(CompVal,
2078 TD->getIntPtrType(CompVal->getContext()),
2079 "magicptr", BI);
2082 // Create the new switch instruction now.
2083 SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB, Values.size(), BI);
2085 // Add all of the 'cases' to the switch instruction.
2086 for (unsigned i = 0, e = Values.size(); i != e; ++i)
2087 New->addCase(Values[i], EdgeBB);
2089 // We added edges from PI to the EdgeBB. As such, if there were any
2090 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2091 // the number of edges added.
2092 for (BasicBlock::iterator BBI = EdgeBB->begin();
2093 isa<PHINode>(BBI); ++BBI) {
2094 PHINode *PN = cast<PHINode>(BBI);
2095 Value *InVal = PN->getIncomingValueForBlock(BB);
2096 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2097 PN->addIncoming(InVal, BB);
2100 // Erase the old branch instruction.
2101 EraseTerminatorInstAndDCECond(BI);
2103 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
2104 return true;
2107 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI) {
2108 BasicBlock *BB = RI->getParent();
2109 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2111 // Find predecessors that end with branches.
2112 SmallVector<BasicBlock*, 8> UncondBranchPreds;
2113 SmallVector<BranchInst*, 8> CondBranchPreds;
2114 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2115 BasicBlock *P = *PI;
2116 TerminatorInst *PTI = P->getTerminator();
2117 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2118 if (BI->isUnconditional())
2119 UncondBranchPreds.push_back(P);
2120 else
2121 CondBranchPreds.push_back(BI);
2125 // If we found some, do the transformation!
2126 if (!UncondBranchPreds.empty() && DupRet) {
2127 while (!UncondBranchPreds.empty()) {
2128 BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2129 DEBUG(dbgs() << "FOLDING: " << *BB
2130 << "INTO UNCOND BRANCH PRED: " << *Pred);
2131 (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2134 // If we eliminated all predecessors of the block, delete the block now.
2135 if (pred_begin(BB) == pred_end(BB))
2136 // We know there are no successors, so just nuke the block.
2137 BB->eraseFromParent();
2139 return true;
2142 // Check out all of the conditional branches going to this return
2143 // instruction. If any of them just select between returns, change the
2144 // branch itself into a select/return pair.
2145 while (!CondBranchPreds.empty()) {
2146 BranchInst *BI = CondBranchPreds.pop_back_val();
2148 // Check to see if the non-BB successor is also a return block.
2149 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2150 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2151 SimplifyCondBranchToTwoReturns(BI))
2152 return true;
2154 return false;
2157 bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI) {
2158 // Check to see if the first instruction in this block is just an unwind.
2159 // If so, replace any invoke instructions which use this as an exception
2160 // destination with call instructions.
2161 BasicBlock *BB = UI->getParent();
2162 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2164 bool Changed = false;
2165 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2166 while (!Preds.empty()) {
2167 BasicBlock *Pred = Preds.back();
2168 InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
2169 if (II && II->getUnwindDest() == BB) {
2170 // Insert a new branch instruction before the invoke, because this
2171 // is now a fall through.
2172 BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2173 Pred->getInstList().remove(II); // Take out of symbol table
2175 // Insert the call now.
2176 SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
2177 CallInst *CI = CallInst::Create(II->getCalledValue(),
2178 Args.begin(), Args.end(),
2179 II->getName(), BI);
2180 CI->setCallingConv(II->getCallingConv());
2181 CI->setAttributes(II->getAttributes());
2182 // If the invoke produced a value, the Call now does instead.
2183 II->replaceAllUsesWith(CI);
2184 delete II;
2185 Changed = true;
2188 Preds.pop_back();
2191 // If this block is now dead (and isn't the entry block), remove it.
2192 if (pred_begin(BB) == pred_end(BB) &&
2193 BB != &BB->getParent()->getEntryBlock()) {
2194 // We know there are no successors, so just nuke the block.
2195 BB->eraseFromParent();
2196 return true;
2199 return Changed;
2202 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2203 BasicBlock *BB = UI->getParent();
2205 bool Changed = false;
2207 // If there are any instructions immediately before the unreachable that can
2208 // be removed, do so.
2209 while (UI != BB->begin()) {
2210 BasicBlock::iterator BBI = UI;
2211 --BBI;
2212 // Do not delete instructions that can have side effects, like calls
2213 // (which may never return) and volatile loads and stores.
2214 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2216 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
2217 if (SI->isVolatile())
2218 break;
2220 if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
2221 if (LI->isVolatile())
2222 break;
2224 // Delete this instruction (any uses are guaranteed to be dead)
2225 if (!BBI->use_empty())
2226 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2227 BBI->eraseFromParent();
2228 Changed = true;
2231 // If the unreachable instruction is the first in the block, take a gander
2232 // at all of the predecessors of this instruction, and simplify them.
2233 if (&BB->front() != UI) return Changed;
2235 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2236 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2237 TerminatorInst *TI = Preds[i]->getTerminator();
2239 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2240 if (BI->isUnconditional()) {
2241 if (BI->getSuccessor(0) == BB) {
2242 new UnreachableInst(TI->getContext(), TI);
2243 TI->eraseFromParent();
2244 Changed = true;
2246 } else {
2247 if (BI->getSuccessor(0) == BB) {
2248 BranchInst::Create(BI->getSuccessor(1), BI);
2249 EraseTerminatorInstAndDCECond(BI);
2250 } else if (BI->getSuccessor(1) == BB) {
2251 BranchInst::Create(BI->getSuccessor(0), BI);
2252 EraseTerminatorInstAndDCECond(BI);
2253 Changed = true;
2256 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2257 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2258 if (SI->getSuccessor(i) == BB) {
2259 BB->removePredecessor(SI->getParent());
2260 SI->removeCase(i);
2261 --i; --e;
2262 Changed = true;
2264 // If the default value is unreachable, figure out the most popular
2265 // destination and make it the default.
2266 if (SI->getSuccessor(0) == BB) {
2267 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2268 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
2269 std::pair<unsigned, unsigned>& entry =
2270 Popularity[SI->getSuccessor(i)];
2271 if (entry.first == 0) {
2272 entry.first = 1;
2273 entry.second = i;
2274 } else {
2275 entry.first++;
2279 // Find the most popular block.
2280 unsigned MaxPop = 0;
2281 unsigned MaxIndex = 0;
2282 BasicBlock *MaxBlock = 0;
2283 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2284 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2285 if (I->second.first > MaxPop ||
2286 (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2287 MaxPop = I->second.first;
2288 MaxIndex = I->second.second;
2289 MaxBlock = I->first;
2292 if (MaxBlock) {
2293 // Make this the new default, allowing us to delete any explicit
2294 // edges to it.
2295 SI->setSuccessor(0, MaxBlock);
2296 Changed = true;
2298 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2299 // it.
2300 if (isa<PHINode>(MaxBlock->begin()))
2301 for (unsigned i = 0; i != MaxPop-1; ++i)
2302 MaxBlock->removePredecessor(SI->getParent());
2304 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2305 if (SI->getSuccessor(i) == MaxBlock) {
2306 SI->removeCase(i);
2307 --i; --e;
2311 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2312 if (II->getUnwindDest() == BB) {
2313 // Convert the invoke to a call instruction. This would be a good
2314 // place to note that the call does not throw though.
2315 BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2316 II->removeFromParent(); // Take out of symbol table
2318 // Insert the call now...
2319 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2320 CallInst *CI = CallInst::Create(II->getCalledValue(),
2321 Args.begin(), Args.end(),
2322 II->getName(), BI);
2323 CI->setCallingConv(II->getCallingConv());
2324 CI->setAttributes(II->getAttributes());
2325 // If the invoke produced a value, the call does now instead.
2326 II->replaceAllUsesWith(CI);
2327 delete II;
2328 Changed = true;
2333 // If this block is now dead, remove it.
2334 if (pred_begin(BB) == pred_end(BB) &&
2335 BB != &BB->getParent()->getEntryBlock()) {
2336 // We know there are no successors, so just nuke the block.
2337 BB->eraseFromParent();
2338 return true;
2341 return Changed;
2344 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2345 /// integer range comparison into a sub, an icmp and a branch.
2346 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI) {
2347 assert(SI->getNumCases() > 2 && "Degenerate switch?");
2349 // Make sure all cases point to the same destination and gather the values.
2350 SmallVector<ConstantInt *, 16> Cases;
2351 Cases.push_back(SI->getCaseValue(1));
2352 for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) {
2353 if (SI->getSuccessor(I-1) != SI->getSuccessor(I))
2354 return false;
2355 Cases.push_back(SI->getCaseValue(I));
2357 assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered");
2359 // Sort the case values, then check if they form a range we can transform.
2360 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2361 for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2362 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2363 return false;
2366 Constant *Offset = ConstantExpr::getNeg(Cases.back());
2367 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1);
2369 Value *Sub = SI->getCondition();
2370 if (!Offset->isNullValue())
2371 Sub = BinaryOperator::CreateAdd(Sub, Offset, Sub->getName()+".off", SI);
2372 Value *Cmp = new ICmpInst(SI, ICmpInst::ICMP_ULT, Sub, NumCases, "switch");
2373 BranchInst::Create(SI->getSuccessor(1), SI->getDefaultDest(), Cmp, SI);
2375 // Prune obsolete incoming values off the successor's PHI nodes.
2376 for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin();
2377 isa<PHINode>(BBI); ++BBI) {
2378 for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I)
2379 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2381 SI->eraseFromParent();
2383 return true;
2386 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI) {
2387 // If this switch is too complex to want to look at, ignore it.
2388 if (!isValueEqualityComparison(SI))
2389 return false;
2391 BasicBlock *BB = SI->getParent();
2393 // If we only have one predecessor, and if it is a branch on this value,
2394 // see if that predecessor totally determines the outcome of this switch.
2395 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2396 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
2397 return SimplifyCFG(BB) | true;
2399 Value *Cond = SI->getCondition();
2400 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
2401 if (SimplifySwitchOnSelect(SI, Select))
2402 return SimplifyCFG(BB) | true;
2404 // If the block only contains the switch, see if we can fold the block
2405 // away into any preds.
2406 BasicBlock::iterator BBI = BB->begin();
2407 // Ignore dbg intrinsics.
2408 while (isa<DbgInfoIntrinsic>(BBI))
2409 ++BBI;
2410 if (SI == &*BBI)
2411 if (FoldValueComparisonIntoPredecessors(SI))
2412 return SimplifyCFG(BB) | true;
2414 // Try to transform the switch into an icmp and a branch.
2415 if (TurnSwitchRangeIntoICmp(SI))
2416 return SimplifyCFG(BB) | true;
2418 return false;
2421 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
2422 BasicBlock *BB = IBI->getParent();
2423 bool Changed = false;
2425 // Eliminate redundant destinations.
2426 SmallPtrSet<Value *, 8> Succs;
2427 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
2428 BasicBlock *Dest = IBI->getDestination(i);
2429 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
2430 Dest->removePredecessor(BB);
2431 IBI->removeDestination(i);
2432 --i; --e;
2433 Changed = true;
2437 if (IBI->getNumDestinations() == 0) {
2438 // If the indirectbr has no successors, change it to unreachable.
2439 new UnreachableInst(IBI->getContext(), IBI);
2440 EraseTerminatorInstAndDCECond(IBI);
2441 return true;
2444 if (IBI->getNumDestinations() == 1) {
2445 // If the indirectbr has one successor, change it to a direct branch.
2446 BranchInst::Create(IBI->getDestination(0), IBI);
2447 EraseTerminatorInstAndDCECond(IBI);
2448 return true;
2451 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
2452 if (SimplifyIndirectBrOnSelect(IBI, SI))
2453 return SimplifyCFG(BB) | true;
2455 return Changed;
2458 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI) {
2459 BasicBlock *BB = BI->getParent();
2461 // If the Terminator is the only non-phi instruction, simplify the block.
2462 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
2463 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
2464 TryToSimplifyUncondBranchFromEmptyBlock(BB))
2465 return true;
2467 // If the only instruction in the block is a seteq/setne comparison
2468 // against a constant, try to simplify the block.
2469 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
2470 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
2471 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
2473 if (I->isTerminator() && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD))
2474 return true;
2477 return false;
2481 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI) {
2482 BasicBlock *BB = BI->getParent();
2484 // Conditional branch
2485 if (isValueEqualityComparison(BI)) {
2486 // If we only have one predecessor, and if it is a branch on this value,
2487 // see if that predecessor totally determines the outcome of this
2488 // switch.
2489 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2490 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
2491 return SimplifyCFG(BB) | true;
2493 // This block must be empty, except for the setcond inst, if it exists.
2494 // Ignore dbg intrinsics.
2495 BasicBlock::iterator I = BB->begin();
2496 // Ignore dbg intrinsics.
2497 while (isa<DbgInfoIntrinsic>(I))
2498 ++I;
2499 if (&*I == BI) {
2500 if (FoldValueComparisonIntoPredecessors(BI))
2501 return SimplifyCFG(BB) | true;
2502 } else if (&*I == cast<Instruction>(BI->getCondition())){
2503 ++I;
2504 // Ignore dbg intrinsics.
2505 while (isa<DbgInfoIntrinsic>(I))
2506 ++I;
2507 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI))
2508 return SimplifyCFG(BB) | true;
2512 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2513 if (SimplifyBranchOnICmpChain(BI, TD))
2514 return true;
2516 // We have a conditional branch to two blocks that are only reachable
2517 // from BI. We know that the condbr dominates the two blocks, so see if
2518 // there is any identical code in the "then" and "else" blocks. If so, we
2519 // can hoist it up to the branching block.
2520 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
2521 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2522 if (HoistThenElseCodeToIf(BI))
2523 return SimplifyCFG(BB) | true;
2524 } else {
2525 // If Successor #1 has multiple preds, we may be able to conditionally
2526 // execute Successor #0 if it branches to successor #1.
2527 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
2528 if (Succ0TI->getNumSuccessors() == 1 &&
2529 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
2530 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
2531 return SimplifyCFG(BB) | true;
2533 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2534 // If Successor #0 has multiple preds, we may be able to conditionally
2535 // execute Successor #1 if it branches to successor #0.
2536 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
2537 if (Succ1TI->getNumSuccessors() == 1 &&
2538 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
2539 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
2540 return SimplifyCFG(BB) | true;
2543 // If this is a branch on a phi node in the current block, thread control
2544 // through this block if any PHI node entries are constants.
2545 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
2546 if (PN->getParent() == BI->getParent())
2547 if (FoldCondBranchOnPHI(BI, TD))
2548 return SimplifyCFG(BB) | true;
2550 // If this basic block is ONLY a setcc and a branch, and if a predecessor
2551 // branches to us and one of our successors, fold the setcc into the
2552 // predecessor and use logical operations to pick the right destination.
2553 if (FoldBranchToCommonDest(BI))
2554 return SimplifyCFG(BB) | true;
2556 // Scan predecessor blocks for conditional branches.
2557 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2558 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2559 if (PBI != BI && PBI->isConditional())
2560 if (SimplifyCondBranchToCondBranch(PBI, BI))
2561 return SimplifyCFG(BB) | true;
2563 return false;
2566 bool SimplifyCFGOpt::run(BasicBlock *BB) {
2567 bool Changed = false;
2569 assert(BB && BB->getParent() && "Block not embedded in function!");
2570 assert(BB->getTerminator() && "Degenerate basic block encountered!");
2572 // Remove basic blocks that have no predecessors (except the entry block)...
2573 // or that just have themself as a predecessor. These are unreachable.
2574 if ((pred_begin(BB) == pred_end(BB) &&
2575 BB != &BB->getParent()->getEntryBlock()) ||
2576 BB->getSinglePredecessor() == BB) {
2577 DEBUG(dbgs() << "Removing BB: \n" << *BB);
2578 DeleteDeadBlock(BB);
2579 return true;
2582 // Check to see if we can constant propagate this terminator instruction
2583 // away...
2584 Changed |= ConstantFoldTerminator(BB);
2586 // Check for and eliminate duplicate PHI nodes in this block.
2587 Changed |= EliminateDuplicatePHINodes(BB);
2589 // Merge basic blocks into their predecessor if there is only one distinct
2590 // pred, and if there is only one distinct successor of the predecessor, and
2591 // if there are no PHI nodes.
2593 if (MergeBlockIntoPredecessor(BB))
2594 return true;
2596 // If there is a trivial two-entry PHI node in this basic block, and we can
2597 // eliminate it, do so now.
2598 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
2599 if (PN->getNumIncomingValues() == 2)
2600 Changed |= FoldTwoEntryPHINode(PN, TD);
2602 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
2603 if (BI->isUnconditional()) {
2604 if (SimplifyUncondBranch(BI)) return true;
2605 } else {
2606 if (SimplifyCondBranch(BI)) return true;
2608 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
2609 if (SimplifyReturn(RI)) return true;
2610 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2611 if (SimplifySwitch(SI)) return true;
2612 } else if (UnreachableInst *UI =
2613 dyn_cast<UnreachableInst>(BB->getTerminator())) {
2614 if (SimplifyUnreachable(UI)) return true;
2615 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
2616 if (SimplifyUnwind(UI)) return true;
2617 } else if (IndirectBrInst *IBI =
2618 dyn_cast<IndirectBrInst>(BB->getTerminator())) {
2619 if (SimplifyIndirectBr(IBI)) return true;
2622 return Changed;
2625 /// SimplifyCFG - This function is used to do simplification of a CFG. For
2626 /// example, it adjusts branches to branches to eliminate the extra hop, it
2627 /// eliminates unreachable basic blocks, and does other "peephole" optimization
2628 /// of the CFG. It returns true if a modification was made.
2630 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
2631 return SimplifyCFGOpt(TD).run(BB);