1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Peephole optimize the CFG.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Type.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/ConstantRange.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
40 static cl::opt
<unsigned>
41 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden
, cl::init(1),
42 cl::desc("Control the amount of phi node folding to perform (default = 1)"));
45 DupRet("simplifycfg-dup-ret", cl::Hidden
, cl::init(false),
46 cl::desc("Duplicate return instructions into unconditional branches"));
48 STATISTIC(NumSpeculations
, "Number of speculative executed instructions");
51 class SimplifyCFGOpt
{
52 const TargetData
*const TD
;
54 Value
*isValueEqualityComparison(TerminatorInst
*TI
);
55 BasicBlock
*GetValueEqualityComparisonCases(TerminatorInst
*TI
,
56 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &Cases
);
57 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst
*TI
,
59 bool FoldValueComparisonIntoPredecessors(TerminatorInst
*TI
);
61 bool SimplifyReturn(ReturnInst
*RI
);
62 bool SimplifyUnwind(UnwindInst
*UI
);
63 bool SimplifyUnreachable(UnreachableInst
*UI
);
64 bool SimplifySwitch(SwitchInst
*SI
);
65 bool SimplifyIndirectBr(IndirectBrInst
*IBI
);
66 bool SimplifyUncondBranch(BranchInst
*BI
);
67 bool SimplifyCondBranch(BranchInst
*BI
);
70 explicit SimplifyCFGOpt(const TargetData
*td
) : TD(td
) {}
71 bool run(BasicBlock
*BB
);
75 /// SafeToMergeTerminators - Return true if it is safe to merge these two
76 /// terminator instructions together.
78 static bool SafeToMergeTerminators(TerminatorInst
*SI1
, TerminatorInst
*SI2
) {
79 if (SI1
== SI2
) return false; // Can't merge with self!
81 // It is not safe to merge these two switch instructions if they have a common
82 // successor, and if that successor has a PHI node, and if *that* PHI node has
83 // conflicting incoming values from the two switch blocks.
84 BasicBlock
*SI1BB
= SI1
->getParent();
85 BasicBlock
*SI2BB
= SI2
->getParent();
86 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
88 for (succ_iterator I
= succ_begin(SI2BB
), E
= succ_end(SI2BB
); I
!= E
; ++I
)
89 if (SI1Succs
.count(*I
))
90 for (BasicBlock::iterator BBI
= (*I
)->begin();
91 isa
<PHINode
>(BBI
); ++BBI
) {
92 PHINode
*PN
= cast
<PHINode
>(BBI
);
93 if (PN
->getIncomingValueForBlock(SI1BB
) !=
94 PN
->getIncomingValueForBlock(SI2BB
))
101 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
102 /// now be entries in it from the 'NewPred' block. The values that will be
103 /// flowing into the PHI nodes will be the same as those coming in from
104 /// ExistPred, an existing predecessor of Succ.
105 static void AddPredecessorToBlock(BasicBlock
*Succ
, BasicBlock
*NewPred
,
106 BasicBlock
*ExistPred
) {
107 if (!isa
<PHINode
>(Succ
->begin())) return; // Quick exit if nothing to do
110 for (BasicBlock::iterator I
= Succ
->begin();
111 (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
112 PN
->addIncoming(PN
->getIncomingValueForBlock(ExistPred
), NewPred
);
116 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at
117 /// least one PHI node in it), check to see if the merge at this block is due
118 /// to an "if condition". If so, return the boolean condition that determines
119 /// which entry into BB will be taken. Also, return by references the block
120 /// that will be entered from if the condition is true, and the block that will
121 /// be entered if the condition is false.
123 /// This does no checking to see if the true/false blocks have large or unsavory
124 /// instructions in them.
125 static Value
*GetIfCondition(BasicBlock
*BB
, BasicBlock
*&IfTrue
,
126 BasicBlock
*&IfFalse
) {
127 PHINode
*SomePHI
= cast
<PHINode
>(BB
->begin());
128 assert(SomePHI
->getNumIncomingValues() == 2 &&
129 "Function can only handle blocks with 2 predecessors!");
130 BasicBlock
*Pred1
= SomePHI
->getIncomingBlock(0);
131 BasicBlock
*Pred2
= SomePHI
->getIncomingBlock(1);
133 // We can only handle branches. Other control flow will be lowered to
134 // branches if possible anyway.
135 BranchInst
*Pred1Br
= dyn_cast
<BranchInst
>(Pred1
->getTerminator());
136 BranchInst
*Pred2Br
= dyn_cast
<BranchInst
>(Pred2
->getTerminator());
137 if (Pred1Br
== 0 || Pred2Br
== 0)
140 // Eliminate code duplication by ensuring that Pred1Br is conditional if
142 if (Pred2Br
->isConditional()) {
143 // If both branches are conditional, we don't have an "if statement". In
144 // reality, we could transform this case, but since the condition will be
145 // required anyway, we stand no chance of eliminating it, so the xform is
146 // probably not profitable.
147 if (Pred1Br
->isConditional())
150 std::swap(Pred1
, Pred2
);
151 std::swap(Pred1Br
, Pred2Br
);
154 if (Pred1Br
->isConditional()) {
155 // The only thing we have to watch out for here is to make sure that Pred2
156 // doesn't have incoming edges from other blocks. If it does, the condition
157 // doesn't dominate BB.
158 if (Pred2
->getSinglePredecessor() == 0)
161 // If we found a conditional branch predecessor, make sure that it branches
162 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
163 if (Pred1Br
->getSuccessor(0) == BB
&&
164 Pred1Br
->getSuccessor(1) == Pred2
) {
167 } else if (Pred1Br
->getSuccessor(0) == Pred2
&&
168 Pred1Br
->getSuccessor(1) == BB
) {
172 // We know that one arm of the conditional goes to BB, so the other must
173 // go somewhere unrelated, and this must not be an "if statement".
177 return Pred1Br
->getCondition();
180 // Ok, if we got here, both predecessors end with an unconditional branch to
181 // BB. Don't panic! If both blocks only have a single (identical)
182 // predecessor, and THAT is a conditional branch, then we're all ok!
183 BasicBlock
*CommonPred
= Pred1
->getSinglePredecessor();
184 if (CommonPred
== 0 || CommonPred
!= Pred2
->getSinglePredecessor())
187 // Otherwise, if this is a conditional branch, then we can use it!
188 BranchInst
*BI
= dyn_cast
<BranchInst
>(CommonPred
->getTerminator());
189 if (BI
== 0) return 0;
191 assert(BI
->isConditional() && "Two successors but not conditional?");
192 if (BI
->getSuccessor(0) == Pred1
) {
199 return BI
->getCondition();
202 /// DominatesMergePoint - If we have a merge point of an "if condition" as
203 /// accepted above, return true if the specified value dominates the block. We
204 /// don't handle the true generality of domination here, just a special case
205 /// which works well enough for us.
207 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
208 /// see if V (which must be an instruction) and its recursive operands
209 /// that do not dominate BB have a combined cost lower than CostRemaining and
210 /// are non-trapping. If both are true, the instruction is inserted into the
211 /// set and true is returned.
213 /// The cost for most non-trapping instructions is defined as 1 except for
214 /// Select whose cost is 2.
216 /// After this function returns, CostRemaining is decreased by the cost of
217 /// V plus its non-dominating operands. If that cost is greater than
218 /// CostRemaining, false is returned and CostRemaining is undefined.
219 static bool DominatesMergePoint(Value
*V
, BasicBlock
*BB
,
220 SmallPtrSet
<Instruction
*, 4> *AggressiveInsts
,
221 unsigned &CostRemaining
) {
222 Instruction
*I
= dyn_cast
<Instruction
>(V
);
224 // Non-instructions all dominate instructions, but not all constantexprs
225 // can be executed unconditionally.
226 if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
))
231 BasicBlock
*PBB
= I
->getParent();
233 // We don't want to allow weird loops that might have the "if condition" in
234 // the bottom of this block.
235 if (PBB
== BB
) return false;
237 // If this instruction is defined in a block that contains an unconditional
238 // branch to BB, then it must be in the 'conditional' part of the "if
239 // statement". If not, it definitely dominates the region.
240 BranchInst
*BI
= dyn_cast
<BranchInst
>(PBB
->getTerminator());
241 if (BI
== 0 || BI
->isConditional() || BI
->getSuccessor(0) != BB
)
244 // If we aren't allowing aggressive promotion anymore, then don't consider
245 // instructions in the 'if region'.
246 if (AggressiveInsts
== 0) return false;
248 // If we have seen this instruction before, don't count it again.
249 if (AggressiveInsts
->count(I
)) return true;
251 // Okay, it looks like the instruction IS in the "condition". Check to
252 // see if it's a cheap instruction to unconditionally compute, and if it
253 // only uses stuff defined outside of the condition. If so, hoist it out.
254 if (!I
->isSafeToSpeculativelyExecute())
259 switch (I
->getOpcode()) {
260 default: return false; // Cannot hoist this out safely.
261 case Instruction::Load
:
262 // We have to check to make sure there are no instructions before the
263 // load in its basic block, as we are going to hoist the load out to its
265 if (PBB
->getFirstNonPHIOrDbg() != I
)
269 case Instruction::GetElementPtr
:
270 // GEPs are cheap if all indices are constant.
271 if (!cast
<GetElementPtrInst
>(I
)->hasAllConstantIndices())
275 case Instruction::Add
:
276 case Instruction::Sub
:
277 case Instruction::And
:
278 case Instruction::Or
:
279 case Instruction::Xor
:
280 case Instruction::Shl
:
281 case Instruction::LShr
:
282 case Instruction::AShr
:
283 case Instruction::ICmp
:
284 case Instruction::Trunc
:
285 case Instruction::ZExt
:
286 case Instruction::SExt
:
288 break; // These are all cheap and non-trapping instructions.
290 case Instruction::Select
:
295 if (Cost
> CostRemaining
)
298 CostRemaining
-= Cost
;
300 // Okay, we can only really hoist these out if their operands do
301 // not take us over the cost threshold.
302 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
303 if (!DominatesMergePoint(*i
, BB
, AggressiveInsts
, CostRemaining
))
305 // Okay, it's safe to do this! Remember this instruction.
306 AggressiveInsts
->insert(I
);
310 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
311 /// and PointerNullValue. Return NULL if value is not a constant int.
312 static ConstantInt
*GetConstantInt(Value
*V
, const TargetData
*TD
) {
313 // Normal constant int.
314 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
);
315 if (CI
|| !TD
|| !isa
<Constant
>(V
) || !V
->getType()->isPointerTy())
318 // This is some kind of pointer constant. Turn it into a pointer-sized
319 // ConstantInt if possible.
320 const IntegerType
*PtrTy
= TD
->getIntPtrType(V
->getContext());
322 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
323 if (isa
<ConstantPointerNull
>(V
))
324 return ConstantInt::get(PtrTy
, 0);
326 // IntToPtr const int.
327 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
328 if (CE
->getOpcode() == Instruction::IntToPtr
)
329 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CE
->getOperand(0))) {
330 // The constant is very likely to have the right type already.
331 if (CI
->getType() == PtrTy
)
334 return cast
<ConstantInt
>
335 (ConstantExpr::getIntegerCast(CI
, PtrTy
, /*isSigned=*/false));
340 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
341 /// collection of icmp eq/ne instructions that compare a value against a
342 /// constant, return the value being compared, and stick the constant into the
345 GatherConstantCompares(Value
*V
, std::vector
<ConstantInt
*> &Vals
, Value
*&Extra
,
346 const TargetData
*TD
, bool isEQ
, unsigned &UsedICmps
) {
347 Instruction
*I
= dyn_cast
<Instruction
>(V
);
348 if (I
== 0) return 0;
350 // If this is an icmp against a constant, handle this as one of the cases.
351 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(I
)) {
352 if (ConstantInt
*C
= GetConstantInt(I
->getOperand(1), TD
)) {
353 if (ICI
->getPredicate() == (isEQ
? ICmpInst::ICMP_EQ
:ICmpInst::ICMP_NE
)) {
356 return I
->getOperand(0);
359 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
362 ConstantRange::makeICmpRegion(ICI
->getPredicate(), C
->getValue());
364 // If this is an and/!= check then we want to optimize "x ugt 2" into
367 Span
= Span
.inverse();
369 // If there are a ton of values, we don't want to make a ginormous switch.
370 if (Span
.getSetSize().ugt(8) || Span
.isEmptySet() ||
371 // We don't handle wrapped sets yet.
375 for (APInt Tmp
= Span
.getLower(); Tmp
!= Span
.getUpper(); ++Tmp
)
376 Vals
.push_back(ConstantInt::get(V
->getContext(), Tmp
));
378 return I
->getOperand(0);
383 // Otherwise, we can only handle an | or &, depending on isEQ.
384 if (I
->getOpcode() != (isEQ
? Instruction::Or
: Instruction::And
))
387 unsigned NumValsBeforeLHS
= Vals
.size();
388 unsigned UsedICmpsBeforeLHS
= UsedICmps
;
389 if (Value
*LHS
= GatherConstantCompares(I
->getOperand(0), Vals
, Extra
, TD
,
391 unsigned NumVals
= Vals
.size();
392 unsigned UsedICmpsBeforeRHS
= UsedICmps
;
393 if (Value
*RHS
= GatherConstantCompares(I
->getOperand(1), Vals
, Extra
, TD
,
397 Vals
.resize(NumVals
);
398 UsedICmps
= UsedICmpsBeforeRHS
;
401 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
402 // set it and return success.
403 if (Extra
== 0 || Extra
== I
->getOperand(1)) {
404 Extra
= I
->getOperand(1);
408 Vals
.resize(NumValsBeforeLHS
);
409 UsedICmps
= UsedICmpsBeforeLHS
;
413 // If the LHS can't be folded in, but Extra is available and RHS can, try to
415 if (Extra
== 0 || Extra
== I
->getOperand(0)) {
416 Value
*OldExtra
= Extra
;
417 Extra
= I
->getOperand(0);
418 if (Value
*RHS
= GatherConstantCompares(I
->getOperand(1), Vals
, Extra
, TD
,
421 assert(Vals
.size() == NumValsBeforeLHS
);
428 static void EraseTerminatorInstAndDCECond(TerminatorInst
*TI
) {
429 Instruction
* Cond
= 0;
430 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
431 Cond
= dyn_cast
<Instruction
>(SI
->getCondition());
432 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
433 if (BI
->isConditional())
434 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
435 } else if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(TI
)) {
436 Cond
= dyn_cast
<Instruction
>(IBI
->getAddress());
439 TI
->eraseFromParent();
440 if (Cond
) RecursivelyDeleteTriviallyDeadInstructions(Cond
);
443 /// isValueEqualityComparison - Return true if the specified terminator checks
444 /// to see if a value is equal to constant integer value.
445 Value
*SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst
*TI
) {
447 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
448 // Do not permit merging of large switch instructions into their
449 // predecessors unless there is only one predecessor.
450 if (SI
->getNumSuccessors()*std::distance(pred_begin(SI
->getParent()),
451 pred_end(SI
->getParent())) <= 128)
452 CV
= SI
->getCondition();
453 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
))
454 if (BI
->isConditional() && BI
->getCondition()->hasOneUse())
455 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition()))
456 if ((ICI
->getPredicate() == ICmpInst::ICMP_EQ
||
457 ICI
->getPredicate() == ICmpInst::ICMP_NE
) &&
458 GetConstantInt(ICI
->getOperand(1), TD
))
459 CV
= ICI
->getOperand(0);
461 // Unwrap any lossless ptrtoint cast.
462 if (TD
&& CV
&& CV
->getType() == TD
->getIntPtrType(CV
->getContext()))
463 if (PtrToIntInst
*PTII
= dyn_cast
<PtrToIntInst
>(CV
))
464 CV
= PTII
->getOperand(0);
468 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
469 /// decode all of the 'cases' that it represents and return the 'default' block.
470 BasicBlock
*SimplifyCFGOpt::
471 GetValueEqualityComparisonCases(TerminatorInst
*TI
,
472 std::vector
<std::pair
<ConstantInt
*,
473 BasicBlock
*> > &Cases
) {
474 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
475 Cases
.reserve(SI
->getNumCases());
476 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
477 Cases
.push_back(std::make_pair(SI
->getCaseValue(i
), SI
->getSuccessor(i
)));
478 return SI
->getDefaultDest();
481 BranchInst
*BI
= cast
<BranchInst
>(TI
);
482 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
483 Cases
.push_back(std::make_pair(GetConstantInt(ICI
->getOperand(1), TD
),
484 BI
->getSuccessor(ICI
->getPredicate() ==
485 ICmpInst::ICMP_NE
)));
486 return BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_EQ
);
490 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
491 /// in the list that match the specified block.
492 static void EliminateBlockCases(BasicBlock
*BB
,
493 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &Cases
) {
494 for (unsigned i
= 0, e
= Cases
.size(); i
!= e
; ++i
)
495 if (Cases
[i
].second
== BB
) {
496 Cases
.erase(Cases
.begin()+i
);
501 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
504 ValuesOverlap(std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &C1
,
505 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &C2
) {
506 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > *V1
= &C1
, *V2
= &C2
;
508 // Make V1 be smaller than V2.
509 if (V1
->size() > V2
->size())
512 if (V1
->size() == 0) return false;
513 if (V1
->size() == 1) {
515 ConstantInt
*TheVal
= (*V1
)[0].first
;
516 for (unsigned i
= 0, e
= V2
->size(); i
!= e
; ++i
)
517 if (TheVal
== (*V2
)[i
].first
)
521 // Otherwise, just sort both lists and compare element by element.
522 array_pod_sort(V1
->begin(), V1
->end());
523 array_pod_sort(V2
->begin(), V2
->end());
524 unsigned i1
= 0, i2
= 0, e1
= V1
->size(), e2
= V2
->size();
525 while (i1
!= e1
&& i2
!= e2
) {
526 if ((*V1
)[i1
].first
== (*V2
)[i2
].first
)
528 if ((*V1
)[i1
].first
< (*V2
)[i2
].first
)
536 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
537 /// terminator instruction and its block is known to only have a single
538 /// predecessor block, check to see if that predecessor is also a value
539 /// comparison with the same value, and if that comparison determines the
540 /// outcome of this comparison. If so, simplify TI. This does a very limited
541 /// form of jump threading.
542 bool SimplifyCFGOpt::
543 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst
*TI
,
545 Value
*PredVal
= isValueEqualityComparison(Pred
->getTerminator());
546 if (!PredVal
) return false; // Not a value comparison in predecessor.
548 Value
*ThisVal
= isValueEqualityComparison(TI
);
549 assert(ThisVal
&& "This isn't a value comparison!!");
550 if (ThisVal
!= PredVal
) return false; // Different predicates.
552 // Find out information about when control will move from Pred to TI's block.
553 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > PredCases
;
554 BasicBlock
*PredDef
= GetValueEqualityComparisonCases(Pred
->getTerminator(),
556 EliminateBlockCases(PredDef
, PredCases
); // Remove default from cases.
558 // Find information about how control leaves this block.
559 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > ThisCases
;
560 BasicBlock
*ThisDef
= GetValueEqualityComparisonCases(TI
, ThisCases
);
561 EliminateBlockCases(ThisDef
, ThisCases
); // Remove default from cases.
563 // If TI's block is the default block from Pred's comparison, potentially
564 // simplify TI based on this knowledge.
565 if (PredDef
== TI
->getParent()) {
566 // If we are here, we know that the value is none of those cases listed in
567 // PredCases. If there are any cases in ThisCases that are in PredCases, we
569 if (!ValuesOverlap(PredCases
, ThisCases
))
572 if (isa
<BranchInst
>(TI
)) {
573 // Okay, one of the successors of this condbr is dead. Convert it to a
575 assert(ThisCases
.size() == 1 && "Branch can only have one case!");
576 // Insert the new branch.
577 Instruction
*NI
= BranchInst::Create(ThisDef
, TI
);
580 // Remove PHI node entries for the dead edge.
581 ThisCases
[0].second
->removePredecessor(TI
->getParent());
583 DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
584 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
<< "\n");
586 EraseTerminatorInstAndDCECond(TI
);
590 SwitchInst
*SI
= cast
<SwitchInst
>(TI
);
591 // Okay, TI has cases that are statically dead, prune them away.
592 SmallPtrSet
<Constant
*, 16> DeadCases
;
593 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
594 DeadCases
.insert(PredCases
[i
].first
);
596 DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
597 << "Through successor TI: " << *TI
);
599 for (unsigned i
= SI
->getNumCases()-1; i
!= 0; --i
)
600 if (DeadCases
.count(SI
->getCaseValue(i
))) {
601 SI
->getSuccessor(i
)->removePredecessor(TI
->getParent());
605 DEBUG(dbgs() << "Leaving: " << *TI
<< "\n");
609 // Otherwise, TI's block must correspond to some matched value. Find out
610 // which value (or set of values) this is.
611 ConstantInt
*TIV
= 0;
612 BasicBlock
*TIBB
= TI
->getParent();
613 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
614 if (PredCases
[i
].second
== TIBB
) {
616 return false; // Cannot handle multiple values coming to this block.
617 TIV
= PredCases
[i
].first
;
619 assert(TIV
&& "No edge from pred to succ?");
621 // Okay, we found the one constant that our value can be if we get into TI's
622 // BB. Find out which successor will unconditionally be branched to.
623 BasicBlock
*TheRealDest
= 0;
624 for (unsigned i
= 0, e
= ThisCases
.size(); i
!= e
; ++i
)
625 if (ThisCases
[i
].first
== TIV
) {
626 TheRealDest
= ThisCases
[i
].second
;
630 // If not handled by any explicit cases, it is handled by the default case.
631 if (TheRealDest
== 0) TheRealDest
= ThisDef
;
633 // Remove PHI node entries for dead edges.
634 BasicBlock
*CheckEdge
= TheRealDest
;
635 for (succ_iterator SI
= succ_begin(TIBB
), e
= succ_end(TIBB
); SI
!= e
; ++SI
)
636 if (*SI
!= CheckEdge
)
637 (*SI
)->removePredecessor(TIBB
);
641 // Insert the new branch.
642 Instruction
*NI
= BranchInst::Create(TheRealDest
, TI
);
645 DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
646 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
<< "\n");
648 EraseTerminatorInstAndDCECond(TI
);
653 /// ConstantIntOrdering - This class implements a stable ordering of constant
654 /// integers that does not depend on their address. This is important for
655 /// applications that sort ConstantInt's to ensure uniqueness.
656 struct ConstantIntOrdering
{
657 bool operator()(const ConstantInt
*LHS
, const ConstantInt
*RHS
) const {
658 return LHS
->getValue().ult(RHS
->getValue());
663 static int ConstantIntSortPredicate(const void *P1
, const void *P2
) {
664 const ConstantInt
*LHS
= *(const ConstantInt
**)P1
;
665 const ConstantInt
*RHS
= *(const ConstantInt
**)P2
;
666 if (LHS
->getValue().ult(RHS
->getValue()))
668 if (LHS
->getValue() == RHS
->getValue())
673 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
674 /// equality comparison instruction (either a switch or a branch on "X == c").
675 /// See if any of the predecessors of the terminator block are value comparisons
676 /// on the same value. If so, and if safe to do so, fold them together.
677 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst
*TI
) {
678 BasicBlock
*BB
= TI
->getParent();
679 Value
*CV
= isValueEqualityComparison(TI
); // CondVal
680 assert(CV
&& "Not a comparison?");
681 bool Changed
= false;
683 SmallVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
684 while (!Preds
.empty()) {
685 BasicBlock
*Pred
= Preds
.pop_back_val();
687 // See if the predecessor is a comparison with the same value.
688 TerminatorInst
*PTI
= Pred
->getTerminator();
689 Value
*PCV
= isValueEqualityComparison(PTI
); // PredCondVal
691 if (PCV
== CV
&& SafeToMergeTerminators(TI
, PTI
)) {
692 // Figure out which 'cases' to copy from SI to PSI.
693 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > BBCases
;
694 BasicBlock
*BBDefault
= GetValueEqualityComparisonCases(TI
, BBCases
);
696 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > PredCases
;
697 BasicBlock
*PredDefault
= GetValueEqualityComparisonCases(PTI
, PredCases
);
699 // Based on whether the default edge from PTI goes to BB or not, fill in
700 // PredCases and PredDefault with the new switch cases we would like to
702 SmallVector
<BasicBlock
*, 8> NewSuccessors
;
704 if (PredDefault
== BB
) {
705 // If this is the default destination from PTI, only the edges in TI
706 // that don't occur in PTI, or that branch to BB will be activated.
707 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
708 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
709 if (PredCases
[i
].second
!= BB
)
710 PTIHandled
.insert(PredCases
[i
].first
);
712 // The default destination is BB, we don't need explicit targets.
713 std::swap(PredCases
[i
], PredCases
.back());
714 PredCases
.pop_back();
718 // Reconstruct the new switch statement we will be building.
719 if (PredDefault
!= BBDefault
) {
720 PredDefault
->removePredecessor(Pred
);
721 PredDefault
= BBDefault
;
722 NewSuccessors
.push_back(BBDefault
);
724 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
725 if (!PTIHandled
.count(BBCases
[i
].first
) &&
726 BBCases
[i
].second
!= BBDefault
) {
727 PredCases
.push_back(BBCases
[i
]);
728 NewSuccessors
.push_back(BBCases
[i
].second
);
732 // If this is not the default destination from PSI, only the edges
733 // in SI that occur in PSI with a destination of BB will be
735 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
736 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
737 if (PredCases
[i
].second
== BB
) {
738 PTIHandled
.insert(PredCases
[i
].first
);
739 std::swap(PredCases
[i
], PredCases
.back());
740 PredCases
.pop_back();
744 // Okay, now we know which constants were sent to BB from the
745 // predecessor. Figure out where they will all go now.
746 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
747 if (PTIHandled
.count(BBCases
[i
].first
)) {
748 // If this is one we are capable of getting...
749 PredCases
.push_back(BBCases
[i
]);
750 NewSuccessors
.push_back(BBCases
[i
].second
);
751 PTIHandled
.erase(BBCases
[i
].first
);// This constant is taken care of
754 // If there are any constants vectored to BB that TI doesn't handle,
755 // they must go to the default destination of TI.
756 for (std::set
<ConstantInt
*, ConstantIntOrdering
>::iterator I
=
758 E
= PTIHandled
.end(); I
!= E
; ++I
) {
759 PredCases
.push_back(std::make_pair(*I
, BBDefault
));
760 NewSuccessors
.push_back(BBDefault
);
764 // Okay, at this point, we know which new successor Pred will get. Make
765 // sure we update the number of entries in the PHI nodes for these
767 for (unsigned i
= 0, e
= NewSuccessors
.size(); i
!= e
; ++i
)
768 AddPredecessorToBlock(NewSuccessors
[i
], Pred
, BB
);
770 // Convert pointer to int before we switch.
771 if (CV
->getType()->isPointerTy()) {
772 assert(TD
&& "Cannot switch on pointer without TargetData");
773 CV
= new PtrToIntInst(CV
, TD
->getIntPtrType(CV
->getContext()),
777 // Now that the successors are updated, create the new Switch instruction.
778 SwitchInst
*NewSI
= SwitchInst::Create(CV
, PredDefault
,
779 PredCases
.size(), PTI
);
780 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
781 NewSI
->addCase(PredCases
[i
].first
, PredCases
[i
].second
);
783 EraseTerminatorInstAndDCECond(PTI
);
785 // Okay, last check. If BB is still a successor of PSI, then we must
786 // have an infinite loop case. If so, add an infinitely looping block
787 // to handle the case to preserve the behavior of the code.
788 BasicBlock
*InfLoopBlock
= 0;
789 for (unsigned i
= 0, e
= NewSI
->getNumSuccessors(); i
!= e
; ++i
)
790 if (NewSI
->getSuccessor(i
) == BB
) {
791 if (InfLoopBlock
== 0) {
792 // Insert it at the end of the function, because it's either code,
793 // or it won't matter if it's hot. :)
794 InfLoopBlock
= BasicBlock::Create(BB
->getContext(),
795 "infloop", BB
->getParent());
796 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
798 NewSI
->setSuccessor(i
, InfLoopBlock
);
807 // isSafeToHoistInvoke - If we would need to insert a select that uses the
808 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
809 // would need to do this), we can't hoist the invoke, as there is nowhere
810 // to put the select in this case.
811 static bool isSafeToHoistInvoke(BasicBlock
*BB1
, BasicBlock
*BB2
,
812 Instruction
*I1
, Instruction
*I2
) {
813 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
) {
815 for (BasicBlock::iterator BBI
= SI
->begin();
816 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
817 Value
*BB1V
= PN
->getIncomingValueForBlock(BB1
);
818 Value
*BB2V
= PN
->getIncomingValueForBlock(BB2
);
819 if (BB1V
!= BB2V
&& (BB1V
==I1
|| BB2V
==I2
)) {
827 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
828 /// BB2, hoist any common code in the two blocks up into the branch block. The
829 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
830 static bool HoistThenElseCodeToIf(BranchInst
*BI
) {
831 // This does very trivial matching, with limited scanning, to find identical
832 // instructions in the two blocks. In particular, we don't want to get into
833 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
834 // such, we currently just scan for obviously identical instructions in an
836 BasicBlock
*BB1
= BI
->getSuccessor(0); // The true destination.
837 BasicBlock
*BB2
= BI
->getSuccessor(1); // The false destination
839 BasicBlock::iterator BB1_Itr
= BB1
->begin();
840 BasicBlock::iterator BB2_Itr
= BB2
->begin();
842 Instruction
*I1
= BB1_Itr
++, *I2
= BB2_Itr
++;
843 // Skip debug info if it is not identical.
844 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
845 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
846 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
847 while (isa
<DbgInfoIntrinsic
>(I1
))
849 while (isa
<DbgInfoIntrinsic
>(I2
))
852 if (isa
<PHINode
>(I1
) || !I1
->isIdenticalToWhenDefined(I2
) ||
853 (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
)))
856 // If we get here, we can hoist at least one instruction.
857 BasicBlock
*BIParent
= BI
->getParent();
860 // If we are hoisting the terminator instruction, don't move one (making a
861 // broken BB), instead clone it, and remove BI.
862 if (isa
<TerminatorInst
>(I1
))
863 goto HoistTerminator
;
865 // For a normal instruction, we just move one to right before the branch,
866 // then replace all uses of the other with the first. Finally, we remove
867 // the now redundant second instruction.
868 BIParent
->getInstList().splice(BI
, BB1
->getInstList(), I1
);
869 if (!I2
->use_empty())
870 I2
->replaceAllUsesWith(I1
);
871 I1
->intersectOptionalDataWith(I2
);
872 I2
->eraseFromParent();
876 // Skip debug info if it is not identical.
877 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
878 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
879 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
880 while (isa
<DbgInfoIntrinsic
>(I1
))
882 while (isa
<DbgInfoIntrinsic
>(I2
))
885 } while (I1
->isIdenticalToWhenDefined(I2
));
890 // It may not be possible to hoist an invoke.
891 if (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
))
894 // Okay, it is safe to hoist the terminator.
895 Instruction
*NT
= I1
->clone();
896 BIParent
->getInstList().insert(BI
, NT
);
897 if (!NT
->getType()->isVoidTy()) {
898 I1
->replaceAllUsesWith(NT
);
899 I2
->replaceAllUsesWith(NT
);
903 // Hoisting one of the terminators from our successor is a great thing.
904 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
905 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
906 // nodes, so we insert select instruction to compute the final result.
907 std::map
<std::pair
<Value
*,Value
*>, SelectInst
*> InsertedSelects
;
908 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
) {
910 for (BasicBlock::iterator BBI
= SI
->begin();
911 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
912 Value
*BB1V
= PN
->getIncomingValueForBlock(BB1
);
913 Value
*BB2V
= PN
->getIncomingValueForBlock(BB2
);
914 if (BB1V
== BB2V
) continue;
916 // These values do not agree. Insert a select instruction before NT
917 // that determines the right value.
918 SelectInst
*&SI
= InsertedSelects
[std::make_pair(BB1V
, BB2V
)];
920 SI
= SelectInst::Create(BI
->getCondition(), BB1V
, BB2V
,
921 BB1V
->getName()+"."+BB2V
->getName(), NT
);
922 // Make the PHI node use the select for all incoming values for BB1/BB2
923 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
924 if (PN
->getIncomingBlock(i
) == BB1
|| PN
->getIncomingBlock(i
) == BB2
)
925 PN
->setIncomingValue(i
, SI
);
929 // Update any PHI nodes in our new successors.
930 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
)
931 AddPredecessorToBlock(*SI
, BIParent
, BB1
);
933 EraseTerminatorInstAndDCECond(BI
);
937 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
938 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
939 /// (for now, restricted to a single instruction that's side effect free) from
940 /// the BB1 into the branch block to speculatively execute it.
941 static bool SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*BB1
) {
942 // Only speculatively execution a single instruction (not counting the
943 // terminator) for now.
944 Instruction
*HInst
= NULL
;
945 Instruction
*Term
= BB1
->getTerminator();
946 for (BasicBlock::iterator BBI
= BB1
->begin(), BBE
= BB1
->end();
948 Instruction
*I
= BBI
;
950 if (isa
<DbgInfoIntrinsic
>(I
)) continue;
951 if (I
== Term
) break;
960 // Be conservative for now. FP select instruction can often be expensive.
961 Value
*BrCond
= BI
->getCondition();
962 if (isa
<FCmpInst
>(BrCond
))
965 // If BB1 is actually on the false edge of the conditional branch, remember
966 // to swap the select operands later.
968 if (BB1
!= BI
->getSuccessor(0)) {
969 assert(BB1
== BI
->getSuccessor(1) && "No edge from 'if' block?");
976 // br i1 %t1, label %BB1, label %BB2
985 // %t3 = select i1 %t1, %t2, %t3
986 switch (HInst
->getOpcode()) {
987 default: return false; // Not safe / profitable to hoist.
988 case Instruction::Add
:
989 case Instruction::Sub
:
990 // Not worth doing for vector ops.
991 if (HInst
->getType()->isVectorTy())
994 case Instruction::And
:
995 case Instruction::Or
:
996 case Instruction::Xor
:
997 case Instruction::Shl
:
998 case Instruction::LShr
:
999 case Instruction::AShr
:
1000 // Don't mess with vector operations.
1001 if (HInst
->getType()->isVectorTy())
1003 break; // These are all cheap and non-trapping instructions.
1006 // If the instruction is obviously dead, don't try to predicate it.
1007 if (HInst
->use_empty()) {
1008 HInst
->eraseFromParent();
1012 // Can we speculatively execute the instruction? And what is the value
1013 // if the condition is false? Consider the phi uses, if the incoming value
1014 // from the "if" block are all the same V, then V is the value of the
1015 // select if the condition is false.
1016 BasicBlock
*BIParent
= BI
->getParent();
1017 SmallVector
<PHINode
*, 4> PHIUses
;
1018 Value
*FalseV
= NULL
;
1020 BasicBlock
*BB2
= BB1
->getTerminator()->getSuccessor(0);
1021 for (Value::use_iterator UI
= HInst
->use_begin(), E
= HInst
->use_end();
1023 // Ignore any user that is not a PHI node in BB2. These can only occur in
1024 // unreachable blocks, because they would not be dominated by the instr.
1025 PHINode
*PN
= dyn_cast
<PHINode
>(*UI
);
1026 if (!PN
|| PN
->getParent() != BB2
)
1028 PHIUses
.push_back(PN
);
1030 Value
*PHIV
= PN
->getIncomingValueForBlock(BIParent
);
1033 else if (FalseV
!= PHIV
)
1034 return false; // Inconsistent value when condition is false.
1037 assert(FalseV
&& "Must have at least one user, and it must be a PHI");
1039 // Do not hoist the instruction if any of its operands are defined but not
1040 // used in this BB. The transformation will prevent the operand from
1041 // being sunk into the use block.
1042 for (User::op_iterator i
= HInst
->op_begin(), e
= HInst
->op_end();
1044 Instruction
*OpI
= dyn_cast
<Instruction
>(*i
);
1045 if (OpI
&& OpI
->getParent() == BIParent
&&
1046 !OpI
->isUsedInBasicBlock(BIParent
))
1050 // If we get here, we can hoist the instruction. Try to place it
1051 // before the icmp instruction preceding the conditional branch.
1052 BasicBlock::iterator InsertPos
= BI
;
1053 if (InsertPos
!= BIParent
->begin())
1055 // Skip debug info between condition and branch.
1056 while (InsertPos
!= BIParent
->begin() && isa
<DbgInfoIntrinsic
>(InsertPos
))
1058 if (InsertPos
== BrCond
&& !isa
<PHINode
>(BrCond
)) {
1059 SmallPtrSet
<Instruction
*, 4> BB1Insns
;
1060 for(BasicBlock::iterator BB1I
= BB1
->begin(), BB1E
= BB1
->end();
1061 BB1I
!= BB1E
; ++BB1I
)
1062 BB1Insns
.insert(BB1I
);
1063 for(Value::use_iterator UI
= BrCond
->use_begin(), UE
= BrCond
->use_end();
1065 Instruction
*Use
= cast
<Instruction
>(*UI
);
1066 if (!BB1Insns
.count(Use
)) continue;
1068 // If BrCond uses the instruction that place it just before
1069 // branch instruction.
1075 BIParent
->getInstList().splice(InsertPos
, BB1
->getInstList(), HInst
);
1077 // Create a select whose true value is the speculatively executed value and
1078 // false value is the previously determined FalseV.
1081 SI
= SelectInst::Create(BrCond
, FalseV
, HInst
,
1082 FalseV
->getName() + "." + HInst
->getName(), BI
);
1084 SI
= SelectInst::Create(BrCond
, HInst
, FalseV
,
1085 HInst
->getName() + "." + FalseV
->getName(), BI
);
1087 // Make the PHI node use the select for all incoming values for "then" and
1089 for (unsigned i
= 0, e
= PHIUses
.size(); i
!= e
; ++i
) {
1090 PHINode
*PN
= PHIUses
[i
];
1091 for (unsigned j
= 0, ee
= PN
->getNumIncomingValues(); j
!= ee
; ++j
)
1092 if (PN
->getIncomingBlock(j
) == BB1
|| PN
->getIncomingBlock(j
) == BIParent
)
1093 PN
->setIncomingValue(j
, SI
);
1100 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1101 /// across this block.
1102 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock
*BB
) {
1103 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
1106 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
1107 if (isa
<DbgInfoIntrinsic
>(BBI
))
1109 if (Size
> 10) return false; // Don't clone large BB's.
1112 // We can only support instructions that do not define values that are
1113 // live outside of the current basic block.
1114 for (Value::use_iterator UI
= BBI
->use_begin(), E
= BBI
->use_end();
1116 Instruction
*U
= cast
<Instruction
>(*UI
);
1117 if (U
->getParent() != BB
|| isa
<PHINode
>(U
)) return false;
1120 // Looks ok, continue checking.
1126 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1127 /// that is defined in the same block as the branch and if any PHI entries are
1128 /// constants, thread edges corresponding to that entry to be branches to their
1129 /// ultimate destination.
1130 static bool FoldCondBranchOnPHI(BranchInst
*BI
, const TargetData
*TD
) {
1131 BasicBlock
*BB
= BI
->getParent();
1132 PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition());
1133 // NOTE: we currently cannot transform this case if the PHI node is used
1134 // outside of the block.
1135 if (!PN
|| PN
->getParent() != BB
|| !PN
->hasOneUse())
1138 // Degenerate case of a single entry PHI.
1139 if (PN
->getNumIncomingValues() == 1) {
1140 FoldSingleEntryPHINodes(PN
->getParent());
1144 // Now we know that this block has multiple preds and two succs.
1145 if (!BlockIsSimpleEnoughToThreadThrough(BB
)) return false;
1147 // Okay, this is a simple enough basic block. See if any phi values are
1149 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1150 ConstantInt
*CB
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(i
));
1151 if (CB
== 0 || !CB
->getType()->isIntegerTy(1)) continue;
1153 // Okay, we now know that all edges from PredBB should be revectored to
1154 // branch to RealDest.
1155 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
1156 BasicBlock
*RealDest
= BI
->getSuccessor(!CB
->getZExtValue());
1158 if (RealDest
== BB
) continue; // Skip self loops.
1160 // The dest block might have PHI nodes, other predecessors and other
1161 // difficult cases. Instead of being smart about this, just insert a new
1162 // block that jumps to the destination block, effectively splitting
1163 // the edge we are about to create.
1164 BasicBlock
*EdgeBB
= BasicBlock::Create(BB
->getContext(),
1165 RealDest
->getName()+".critedge",
1166 RealDest
->getParent(), RealDest
);
1167 BranchInst::Create(RealDest
, EdgeBB
);
1169 // Update PHI nodes.
1170 AddPredecessorToBlock(RealDest
, EdgeBB
, BB
);
1172 // BB may have instructions that are being threaded over. Clone these
1173 // instructions into EdgeBB. We know that there will be no uses of the
1174 // cloned instructions outside of EdgeBB.
1175 BasicBlock::iterator InsertPt
= EdgeBB
->begin();
1176 DenseMap
<Value
*, Value
*> TranslateMap
; // Track translated values.
1177 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
1178 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
)) {
1179 TranslateMap
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
1182 // Clone the instruction.
1183 Instruction
*N
= BBI
->clone();
1184 if (BBI
->hasName()) N
->setName(BBI
->getName()+".c");
1186 // Update operands due to translation.
1187 for (User::op_iterator i
= N
->op_begin(), e
= N
->op_end();
1189 DenseMap
<Value
*, Value
*>::iterator PI
= TranslateMap
.find(*i
);
1190 if (PI
!= TranslateMap
.end())
1194 // Check for trivial simplification.
1195 if (Value
*V
= SimplifyInstruction(N
, TD
)) {
1196 TranslateMap
[BBI
] = V
;
1197 delete N
; // Instruction folded away, don't need actual inst
1199 // Insert the new instruction into its new home.
1200 EdgeBB
->getInstList().insert(InsertPt
, N
);
1201 if (!BBI
->use_empty())
1202 TranslateMap
[BBI
] = N
;
1206 // Loop over all of the edges from PredBB to BB, changing them to branch
1207 // to EdgeBB instead.
1208 TerminatorInst
*PredBBTI
= PredBB
->getTerminator();
1209 for (unsigned i
= 0, e
= PredBBTI
->getNumSuccessors(); i
!= e
; ++i
)
1210 if (PredBBTI
->getSuccessor(i
) == BB
) {
1211 BB
->removePredecessor(PredBB
);
1212 PredBBTI
->setSuccessor(i
, EdgeBB
);
1215 // Recurse, simplifying any other constants.
1216 return FoldCondBranchOnPHI(BI
, TD
) | true;
1222 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1223 /// PHI node, see if we can eliminate it.
1224 static bool FoldTwoEntryPHINode(PHINode
*PN
, const TargetData
*TD
) {
1225 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1226 // statement", which has a very simple dominance structure. Basically, we
1227 // are trying to find the condition that is being branched on, which
1228 // subsequently causes this merge to happen. We really want control
1229 // dependence information for this check, but simplifycfg can't keep it up
1230 // to date, and this catches most of the cases we care about anyway.
1231 BasicBlock
*BB
= PN
->getParent();
1232 BasicBlock
*IfTrue
, *IfFalse
;
1233 Value
*IfCond
= GetIfCondition(BB
, IfTrue
, IfFalse
);
1235 // Don't bother if the branch will be constant folded trivially.
1236 isa
<ConstantInt
>(IfCond
))
1239 // Okay, we found that we can merge this two-entry phi node into a select.
1240 // Doing so would require us to fold *all* two entry phi nodes in this block.
1241 // At some point this becomes non-profitable (particularly if the target
1242 // doesn't support cmov's). Only do this transformation if there are two or
1243 // fewer PHI nodes in this block.
1244 unsigned NumPhis
= 0;
1245 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++NumPhis
, ++I
)
1249 // Loop over the PHI's seeing if we can promote them all to select
1250 // instructions. While we are at it, keep track of the instructions
1251 // that need to be moved to the dominating block.
1252 SmallPtrSet
<Instruction
*, 4> AggressiveInsts
;
1253 unsigned MaxCostVal0
= PHINodeFoldingThreshold
,
1254 MaxCostVal1
= PHINodeFoldingThreshold
;
1256 for (BasicBlock::iterator II
= BB
->begin(); isa
<PHINode
>(II
);) {
1257 PHINode
*PN
= cast
<PHINode
>(II
++);
1258 if (Value
*V
= SimplifyInstruction(PN
, TD
)) {
1259 PN
->replaceAllUsesWith(V
);
1260 PN
->eraseFromParent();
1264 if (!DominatesMergePoint(PN
->getIncomingValue(0), BB
, &AggressiveInsts
,
1266 !DominatesMergePoint(PN
->getIncomingValue(1), BB
, &AggressiveInsts
,
1271 // If we folded the the first phi, PN dangles at this point. Refresh it. If
1272 // we ran out of PHIs then we simplified them all.
1273 PN
= dyn_cast
<PHINode
>(BB
->begin());
1274 if (PN
== 0) return true;
1276 // Don't fold i1 branches on PHIs which contain binary operators. These can
1277 // often be turned into switches and other things.
1278 if (PN
->getType()->isIntegerTy(1) &&
1279 (isa
<BinaryOperator
>(PN
->getIncomingValue(0)) ||
1280 isa
<BinaryOperator
>(PN
->getIncomingValue(1)) ||
1281 isa
<BinaryOperator
>(IfCond
)))
1284 // If we all PHI nodes are promotable, check to make sure that all
1285 // instructions in the predecessor blocks can be promoted as well. If
1286 // not, we won't be able to get rid of the control flow, so it's not
1287 // worth promoting to select instructions.
1288 BasicBlock
*DomBlock
= 0;
1289 BasicBlock
*IfBlock1
= PN
->getIncomingBlock(0);
1290 BasicBlock
*IfBlock2
= PN
->getIncomingBlock(1);
1291 if (cast
<BranchInst
>(IfBlock1
->getTerminator())->isConditional()) {
1294 DomBlock
= *pred_begin(IfBlock1
);
1295 for (BasicBlock::iterator I
= IfBlock1
->begin();!isa
<TerminatorInst
>(I
);++I
)
1296 if (!AggressiveInsts
.count(I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
1297 // This is not an aggressive instruction that we can promote.
1298 // Because of this, we won't be able to get rid of the control
1299 // flow, so the xform is not worth it.
1304 if (cast
<BranchInst
>(IfBlock2
->getTerminator())->isConditional()) {
1307 DomBlock
= *pred_begin(IfBlock2
);
1308 for (BasicBlock::iterator I
= IfBlock2
->begin();!isa
<TerminatorInst
>(I
);++I
)
1309 if (!AggressiveInsts
.count(I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
1310 // This is not an aggressive instruction that we can promote.
1311 // Because of this, we won't be able to get rid of the control
1312 // flow, so the xform is not worth it.
1317 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
<< " T: "
1318 << IfTrue
->getName() << " F: " << IfFalse
->getName() << "\n");
1320 // If we can still promote the PHI nodes after this gauntlet of tests,
1321 // do all of the PHI's now.
1322 Instruction
*InsertPt
= DomBlock
->getTerminator();
1324 // Move all 'aggressive' instructions, which are defined in the
1325 // conditional parts of the if's up to the dominating block.
1327 DomBlock
->getInstList().splice(InsertPt
,
1328 IfBlock1
->getInstList(), IfBlock1
->begin(),
1329 IfBlock1
->getTerminator());
1331 DomBlock
->getInstList().splice(InsertPt
,
1332 IfBlock2
->getInstList(), IfBlock2
->begin(),
1333 IfBlock2
->getTerminator());
1335 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
1336 // Change the PHI node into a select instruction.
1337 Value
*TrueVal
= PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfFalse
);
1338 Value
*FalseVal
= PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfTrue
);
1340 Value
*NV
= SelectInst::Create(IfCond
, TrueVal
, FalseVal
, "", InsertPt
);
1341 PN
->replaceAllUsesWith(NV
);
1343 PN
->eraseFromParent();
1346 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1347 // has been flattened. Change DomBlock to jump directly to our new block to
1348 // avoid other simplifycfg's kicking in on the diamond.
1349 TerminatorInst
*OldTI
= DomBlock
->getTerminator();
1350 BranchInst::Create(BB
, OldTI
);
1351 OldTI
->eraseFromParent();
1355 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1356 /// to two returning blocks, try to merge them together into one return,
1357 /// introducing a select if the return values disagree.
1358 static bool SimplifyCondBranchToTwoReturns(BranchInst
*BI
) {
1359 assert(BI
->isConditional() && "Must be a conditional branch");
1360 BasicBlock
*TrueSucc
= BI
->getSuccessor(0);
1361 BasicBlock
*FalseSucc
= BI
->getSuccessor(1);
1362 ReturnInst
*TrueRet
= cast
<ReturnInst
>(TrueSucc
->getTerminator());
1363 ReturnInst
*FalseRet
= cast
<ReturnInst
>(FalseSucc
->getTerminator());
1365 // Check to ensure both blocks are empty (just a return) or optionally empty
1366 // with PHI nodes. If there are other instructions, merging would cause extra
1367 // computation on one path or the other.
1368 if (!TrueSucc
->getFirstNonPHIOrDbg()->isTerminator())
1370 if (!FalseSucc
->getFirstNonPHIOrDbg()->isTerminator())
1373 // Okay, we found a branch that is going to two return nodes. If
1374 // there is no return value for this function, just change the
1375 // branch into a return.
1376 if (FalseRet
->getNumOperands() == 0) {
1377 TrueSucc
->removePredecessor(BI
->getParent());
1378 FalseSucc
->removePredecessor(BI
->getParent());
1379 ReturnInst::Create(BI
->getContext(), 0, BI
);
1380 EraseTerminatorInstAndDCECond(BI
);
1384 // Otherwise, figure out what the true and false return values are
1385 // so we can insert a new select instruction.
1386 Value
*TrueValue
= TrueRet
->getReturnValue();
1387 Value
*FalseValue
= FalseRet
->getReturnValue();
1389 // Unwrap any PHI nodes in the return blocks.
1390 if (PHINode
*TVPN
= dyn_cast_or_null
<PHINode
>(TrueValue
))
1391 if (TVPN
->getParent() == TrueSucc
)
1392 TrueValue
= TVPN
->getIncomingValueForBlock(BI
->getParent());
1393 if (PHINode
*FVPN
= dyn_cast_or_null
<PHINode
>(FalseValue
))
1394 if (FVPN
->getParent() == FalseSucc
)
1395 FalseValue
= FVPN
->getIncomingValueForBlock(BI
->getParent());
1397 // In order for this transformation to be safe, we must be able to
1398 // unconditionally execute both operands to the return. This is
1399 // normally the case, but we could have a potentially-trapping
1400 // constant expression that prevents this transformation from being
1402 if (ConstantExpr
*TCV
= dyn_cast_or_null
<ConstantExpr
>(TrueValue
))
1405 if (ConstantExpr
*FCV
= dyn_cast_or_null
<ConstantExpr
>(FalseValue
))
1409 // Okay, we collected all the mapped values and checked them for sanity, and
1410 // defined to really do this transformation. First, update the CFG.
1411 TrueSucc
->removePredecessor(BI
->getParent());
1412 FalseSucc
->removePredecessor(BI
->getParent());
1414 // Insert select instructions where needed.
1415 Value
*BrCond
= BI
->getCondition();
1417 // Insert a select if the results differ.
1418 if (TrueValue
== FalseValue
|| isa
<UndefValue
>(FalseValue
)) {
1419 } else if (isa
<UndefValue
>(TrueValue
)) {
1420 TrueValue
= FalseValue
;
1422 TrueValue
= SelectInst::Create(BrCond
, TrueValue
,
1423 FalseValue
, "retval", BI
);
1427 Value
*RI
= !TrueValue
?
1428 ReturnInst::Create(BI
->getContext(), BI
) :
1429 ReturnInst::Create(BI
->getContext(), TrueValue
, BI
);
1432 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1433 << "\n " << *BI
<< "NewRet = " << *RI
1434 << "TRUEBLOCK: " << *TrueSucc
<< "FALSEBLOCK: "<< *FalseSucc
);
1436 EraseTerminatorInstAndDCECond(BI
);
1441 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1442 /// predecessor branches to us and one of our successors, fold the block into
1443 /// the predecessor and use logical operations to pick the right destination.
1444 bool llvm::FoldBranchToCommonDest(BranchInst
*BI
) {
1445 BasicBlock
*BB
= BI
->getParent();
1446 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
1447 if (Cond
== 0 || (!isa
<CmpInst
>(Cond
) && !isa
<BinaryOperator
>(Cond
)) ||
1448 Cond
->getParent() != BB
|| !Cond
->hasOneUse())
1451 // Only allow this if the condition is a simple instruction that can be
1452 // executed unconditionally. It must be in the same block as the branch, and
1453 // must be at the front of the block.
1454 BasicBlock::iterator FrontIt
= BB
->front();
1456 // Ignore dbg intrinsics.
1457 while (isa
<DbgInfoIntrinsic
>(FrontIt
)) ++FrontIt
;
1459 // Allow a single instruction to be hoisted in addition to the compare
1460 // that feeds the branch. We later ensure that any values that _it_ uses
1461 // were also live in the predecessor, so that we don't unnecessarily create
1462 // register pressure or inhibit out-of-order execution.
1463 Instruction
*BonusInst
= 0;
1464 if (&*FrontIt
!= Cond
&&
1465 FrontIt
->hasOneUse() && *FrontIt
->use_begin() == Cond
&&
1466 FrontIt
->isSafeToSpeculativelyExecute()) {
1467 BonusInst
= &*FrontIt
;
1470 // Ignore dbg intrinsics.
1471 while (isa
<DbgInfoIntrinsic
>(FrontIt
)) ++FrontIt
;
1474 // Only a single bonus inst is allowed.
1475 if (&*FrontIt
!= Cond
)
1478 // Make sure the instruction after the condition is the cond branch.
1479 BasicBlock::iterator CondIt
= Cond
; ++CondIt
;
1481 // Ingore dbg intrinsics.
1482 while (isa
<DbgInfoIntrinsic
>(CondIt
)) ++CondIt
;
1487 // Cond is known to be a compare or binary operator. Check to make sure that
1488 // neither operand is a potentially-trapping constant expression.
1489 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(0)))
1492 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(1)))
1496 // Finally, don't infinitely unroll conditional loops.
1497 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
1498 BasicBlock
*FalseDest
= BI
->getSuccessor(1);
1499 if (TrueDest
== BB
|| FalseDest
== BB
)
1502 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1503 BasicBlock
*PredBlock
= *PI
;
1504 BranchInst
*PBI
= dyn_cast
<BranchInst
>(PredBlock
->getTerminator());
1506 // Check that we have two conditional branches. If there is a PHI node in
1507 // the common successor, verify that the same value flows in from both
1509 if (PBI
== 0 || PBI
->isUnconditional() || !SafeToMergeTerminators(BI
, PBI
))
1512 // Determine if the two branches share a common destination.
1513 Instruction::BinaryOps Opc
;
1514 bool InvertPredCond
= false;
1516 if (PBI
->getSuccessor(0) == TrueDest
)
1517 Opc
= Instruction::Or
;
1518 else if (PBI
->getSuccessor(1) == FalseDest
)
1519 Opc
= Instruction::And
;
1520 else if (PBI
->getSuccessor(0) == FalseDest
)
1521 Opc
= Instruction::And
, InvertPredCond
= true;
1522 else if (PBI
->getSuccessor(1) == TrueDest
)
1523 Opc
= Instruction::Or
, InvertPredCond
= true;
1527 // Ensure that any values used in the bonus instruction are also used
1528 // by the terminator of the predecessor. This means that those values
1529 // must already have been resolved, so we won't be inhibiting the
1530 // out-of-order core by speculating them earlier.
1532 // Collect the values used by the bonus inst
1533 SmallPtrSet
<Value
*, 4> UsedValues
;
1534 for (Instruction::op_iterator OI
= BonusInst
->op_begin(),
1535 OE
= BonusInst
->op_end(); OI
!= OE
; ++OI
) {
1537 if (!isa
<Constant
>(V
))
1538 UsedValues
.insert(V
);
1541 SmallVector
<std::pair
<Value
*, unsigned>, 4> Worklist
;
1542 Worklist
.push_back(std::make_pair(PBI
->getOperand(0), 0));
1544 // Walk up to four levels back up the use-def chain of the predecessor's
1545 // terminator to see if all those values were used. The choice of four
1546 // levels is arbitrary, to provide a compile-time-cost bound.
1547 while (!Worklist
.empty()) {
1548 std::pair
<Value
*, unsigned> Pair
= Worklist
.back();
1549 Worklist
.pop_back();
1551 if (Pair
.second
>= 4) continue;
1552 UsedValues
.erase(Pair
.first
);
1553 if (UsedValues
.empty()) break;
1555 if (Instruction
*I
= dyn_cast
<Instruction
>(Pair
.first
)) {
1556 for (Instruction::op_iterator OI
= I
->op_begin(), OE
= I
->op_end();
1558 Worklist
.push_back(std::make_pair(OI
->get(), Pair
.second
+1));
1562 if (!UsedValues
.empty()) return false;
1565 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI
<< *BB
);
1567 // If we need to invert the condition in the pred block to match, do so now.
1568 if (InvertPredCond
) {
1569 Value
*NewCond
= PBI
->getCondition();
1571 if (NewCond
->hasOneUse() && isa
<CmpInst
>(NewCond
)) {
1572 CmpInst
*CI
= cast
<CmpInst
>(NewCond
);
1573 CI
->setPredicate(CI
->getInversePredicate());
1575 NewCond
= BinaryOperator::CreateNot(NewCond
,
1576 PBI
->getCondition()->getName()+".not", PBI
);
1579 PBI
->setCondition(NewCond
);
1580 BasicBlock
*OldTrue
= PBI
->getSuccessor(0);
1581 BasicBlock
*OldFalse
= PBI
->getSuccessor(1);
1582 PBI
->setSuccessor(0, OldFalse
);
1583 PBI
->setSuccessor(1, OldTrue
);
1586 // If we have a bonus inst, clone it into the predecessor block.
1587 Instruction
*NewBonus
= 0;
1589 NewBonus
= BonusInst
->clone();
1590 PredBlock
->getInstList().insert(PBI
, NewBonus
);
1591 NewBonus
->takeName(BonusInst
);
1592 BonusInst
->setName(BonusInst
->getName()+".old");
1595 // Clone Cond into the predecessor basic block, and or/and the
1596 // two conditions together.
1597 Instruction
*New
= Cond
->clone();
1598 if (BonusInst
) New
->replaceUsesOfWith(BonusInst
, NewBonus
);
1599 PredBlock
->getInstList().insert(PBI
, New
);
1600 New
->takeName(Cond
);
1601 Cond
->setName(New
->getName()+".old");
1603 Value
*NewCond
= BinaryOperator::Create(Opc
, PBI
->getCondition(),
1604 New
, "or.cond", PBI
);
1605 PBI
->setCondition(NewCond
);
1606 if (PBI
->getSuccessor(0) == BB
) {
1607 AddPredecessorToBlock(TrueDest
, PredBlock
, BB
);
1608 PBI
->setSuccessor(0, TrueDest
);
1610 if (PBI
->getSuccessor(1) == BB
) {
1611 AddPredecessorToBlock(FalseDest
, PredBlock
, BB
);
1612 PBI
->setSuccessor(1, FalseDest
);
1615 // Copy any debug value intrinsics into the end of PredBlock.
1616 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
1617 if (isa
<DbgInfoIntrinsic
>(*I
))
1618 I
->clone()->insertBefore(PBI
);
1625 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1626 /// predecessor of another block, this function tries to simplify it. We know
1627 /// that PBI and BI are both conditional branches, and BI is in one of the
1628 /// successor blocks of PBI - PBI branches to BI.
1629 static bool SimplifyCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
) {
1630 assert(PBI
->isConditional() && BI
->isConditional());
1631 BasicBlock
*BB
= BI
->getParent();
1633 // If this block ends with a branch instruction, and if there is a
1634 // predecessor that ends on a branch of the same condition, make
1635 // this conditional branch redundant.
1636 if (PBI
->getCondition() == BI
->getCondition() &&
1637 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
1638 // Okay, the outcome of this conditional branch is statically
1639 // knowable. If this block had a single pred, handle specially.
1640 if (BB
->getSinglePredecessor()) {
1641 // Turn this into a branch on constant.
1642 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
1643 BI
->setCondition(ConstantInt::get(Type::getInt1Ty(BB
->getContext()),
1645 return true; // Nuke the branch on constant.
1648 // Otherwise, if there are multiple predecessors, insert a PHI that merges
1649 // in the constant and simplify the block result. Subsequent passes of
1650 // simplifycfg will thread the block.
1651 if (BlockIsSimpleEnoughToThreadThrough(BB
)) {
1652 pred_iterator PB
= pred_begin(BB
), PE
= pred_end(BB
);
1653 PHINode
*NewPN
= PHINode::Create(Type::getInt1Ty(BB
->getContext()),
1654 std::distance(PB
, PE
),
1655 BI
->getCondition()->getName() + ".pr",
1657 // Okay, we're going to insert the PHI node. Since PBI is not the only
1658 // predecessor, compute the PHI'd conditional value for all of the preds.
1659 // Any predecessor where the condition is not computable we keep symbolic.
1660 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
1661 BasicBlock
*P
= *PI
;
1662 if ((PBI
= dyn_cast
<BranchInst
>(P
->getTerminator())) &&
1663 PBI
!= BI
&& PBI
->isConditional() &&
1664 PBI
->getCondition() == BI
->getCondition() &&
1665 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
1666 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
1667 NewPN
->addIncoming(ConstantInt::get(Type::getInt1Ty(BB
->getContext()),
1670 NewPN
->addIncoming(BI
->getCondition(), P
);
1674 BI
->setCondition(NewPN
);
1679 // If this is a conditional branch in an empty block, and if any
1680 // predecessors is a conditional branch to one of our destinations,
1681 // fold the conditions into logical ops and one cond br.
1682 BasicBlock::iterator BBI
= BB
->begin();
1683 // Ignore dbg intrinsics.
1684 while (isa
<DbgInfoIntrinsic
>(BBI
))
1690 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(BI
->getCondition()))
1695 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0))
1697 else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1))
1698 PBIOp
= 0, BIOp
= 1;
1699 else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0))
1700 PBIOp
= 1, BIOp
= 0;
1701 else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1))
1706 // Check to make sure that the other destination of this branch
1707 // isn't BB itself. If so, this is an infinite loop that will
1708 // keep getting unwound.
1709 if (PBI
->getSuccessor(PBIOp
) == BB
)
1712 // Do not perform this transformation if it would require
1713 // insertion of a large number of select instructions. For targets
1714 // without predication/cmovs, this is a big pessimization.
1715 BasicBlock
*CommonDest
= PBI
->getSuccessor(PBIOp
);
1717 unsigned NumPhis
= 0;
1718 for (BasicBlock::iterator II
= CommonDest
->begin();
1719 isa
<PHINode
>(II
); ++II
, ++NumPhis
)
1720 if (NumPhis
> 2) // Disable this xform.
1723 // Finally, if everything is ok, fold the branches to logical ops.
1724 BasicBlock
*OtherDest
= BI
->getSuccessor(BIOp
^ 1);
1726 DEBUG(dbgs() << "FOLDING BRs:" << *PBI
->getParent()
1727 << "AND: " << *BI
->getParent());
1730 // If OtherDest *is* BB, then BB is a basic block with a single conditional
1731 // branch in it, where one edge (OtherDest) goes back to itself but the other
1732 // exits. We don't *know* that the program avoids the infinite loop
1733 // (even though that seems likely). If we do this xform naively, we'll end up
1734 // recursively unpeeling the loop. Since we know that (after the xform is
1735 // done) that the block *is* infinite if reached, we just make it an obviously
1736 // infinite loop with no cond branch.
1737 if (OtherDest
== BB
) {
1738 // Insert it at the end of the function, because it's either code,
1739 // or it won't matter if it's hot. :)
1740 BasicBlock
*InfLoopBlock
= BasicBlock::Create(BB
->getContext(),
1741 "infloop", BB
->getParent());
1742 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
1743 OtherDest
= InfLoopBlock
;
1746 DEBUG(dbgs() << *PBI
->getParent()->getParent());
1748 // BI may have other predecessors. Because of this, we leave
1749 // it alone, but modify PBI.
1751 // Make sure we get to CommonDest on True&True directions.
1752 Value
*PBICond
= PBI
->getCondition();
1754 PBICond
= BinaryOperator::CreateNot(PBICond
,
1755 PBICond
->getName()+".not",
1757 Value
*BICond
= BI
->getCondition();
1759 BICond
= BinaryOperator::CreateNot(BICond
,
1760 BICond
->getName()+".not",
1762 // Merge the conditions.
1763 Value
*Cond
= BinaryOperator::CreateOr(PBICond
, BICond
, "brmerge", PBI
);
1765 // Modify PBI to branch on the new condition to the new dests.
1766 PBI
->setCondition(Cond
);
1767 PBI
->setSuccessor(0, CommonDest
);
1768 PBI
->setSuccessor(1, OtherDest
);
1770 // OtherDest may have phi nodes. If so, add an entry from PBI's
1771 // block that are identical to the entries for BI's block.
1772 AddPredecessorToBlock(OtherDest
, PBI
->getParent(), BB
);
1774 // We know that the CommonDest already had an edge from PBI to
1775 // it. If it has PHIs though, the PHIs may have different
1776 // entries for BB and PBI's BB. If so, insert a select to make
1779 for (BasicBlock::iterator II
= CommonDest
->begin();
1780 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
1781 Value
*BIV
= PN
->getIncomingValueForBlock(BB
);
1782 unsigned PBBIdx
= PN
->getBasicBlockIndex(PBI
->getParent());
1783 Value
*PBIV
= PN
->getIncomingValue(PBBIdx
);
1785 // Insert a select in PBI to pick the right value.
1786 Value
*NV
= SelectInst::Create(PBICond
, PBIV
, BIV
,
1787 PBIV
->getName()+".mux", PBI
);
1788 PN
->setIncomingValue(PBBIdx
, NV
);
1792 DEBUG(dbgs() << "INTO: " << *PBI
->getParent());
1793 DEBUG(dbgs() << *PBI
->getParent()->getParent());
1795 // This basic block is probably dead. We know it has at least
1796 // one fewer predecessor.
1800 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
1801 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
1802 // Takes care of updating the successors and removing the old terminator.
1803 // Also makes sure not to introduce new successors by assuming that edges to
1804 // non-successor TrueBBs and FalseBBs aren't reachable.
1805 static bool SimplifyTerminatorOnSelect(TerminatorInst
*OldTerm
, Value
*Cond
,
1806 BasicBlock
*TrueBB
, BasicBlock
*FalseBB
){
1807 // Remove any superfluous successor edges from the CFG.
1808 // First, figure out which successors to preserve.
1809 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
1811 BasicBlock
*KeepEdge1
= TrueBB
;
1812 BasicBlock
*KeepEdge2
= TrueBB
!= FalseBB
? FalseBB
: 0;
1814 // Then remove the rest.
1815 for (unsigned I
= 0, E
= OldTerm
->getNumSuccessors(); I
!= E
; ++I
) {
1816 BasicBlock
*Succ
= OldTerm
->getSuccessor(I
);
1817 // Make sure only to keep exactly one copy of each edge.
1818 if (Succ
== KeepEdge1
)
1820 else if (Succ
== KeepEdge2
)
1823 Succ
->removePredecessor(OldTerm
->getParent());
1826 // Insert an appropriate new terminator.
1827 if ((KeepEdge1
== 0) && (KeepEdge2
== 0)) {
1828 if (TrueBB
== FalseBB
)
1829 // We were only looking for one successor, and it was present.
1830 // Create an unconditional branch to it.
1831 BranchInst::Create(TrueBB
, OldTerm
);
1833 // We found both of the successors we were looking for.
1834 // Create a conditional branch sharing the condition of the select.
1835 BranchInst::Create(TrueBB
, FalseBB
, Cond
, OldTerm
);
1836 } else if (KeepEdge1
&& (KeepEdge2
|| TrueBB
== FalseBB
)) {
1837 // Neither of the selected blocks were successors, so this
1838 // terminator must be unreachable.
1839 new UnreachableInst(OldTerm
->getContext(), OldTerm
);
1841 // One of the selected values was a successor, but the other wasn't.
1842 // Insert an unconditional branch to the one that was found;
1843 // the edge to the one that wasn't must be unreachable.
1845 // Only TrueBB was found.
1846 BranchInst::Create(TrueBB
, OldTerm
);
1848 // Only FalseBB was found.
1849 BranchInst::Create(FalseBB
, OldTerm
);
1852 EraseTerminatorInstAndDCECond(OldTerm
);
1856 // SimplifySwitchOnSelect - Replaces
1857 // (switch (select cond, X, Y)) on constant X, Y
1858 // with a branch - conditional if X and Y lead to distinct BBs,
1859 // unconditional otherwise.
1860 static bool SimplifySwitchOnSelect(SwitchInst
*SI
, SelectInst
*Select
) {
1861 // Check for constant integer values in the select.
1862 ConstantInt
*TrueVal
= dyn_cast
<ConstantInt
>(Select
->getTrueValue());
1863 ConstantInt
*FalseVal
= dyn_cast
<ConstantInt
>(Select
->getFalseValue());
1864 if (!TrueVal
|| !FalseVal
)
1867 // Find the relevant condition and destinations.
1868 Value
*Condition
= Select
->getCondition();
1869 BasicBlock
*TrueBB
= SI
->getSuccessor(SI
->findCaseValue(TrueVal
));
1870 BasicBlock
*FalseBB
= SI
->getSuccessor(SI
->findCaseValue(FalseVal
));
1872 // Perform the actual simplification.
1873 return SimplifyTerminatorOnSelect(SI
, Condition
, TrueBB
, FalseBB
);
1876 // SimplifyIndirectBrOnSelect - Replaces
1877 // (indirectbr (select cond, blockaddress(@fn, BlockA),
1878 // blockaddress(@fn, BlockB)))
1880 // (br cond, BlockA, BlockB).
1881 static bool SimplifyIndirectBrOnSelect(IndirectBrInst
*IBI
, SelectInst
*SI
) {
1882 // Check that both operands of the select are block addresses.
1883 BlockAddress
*TBA
= dyn_cast
<BlockAddress
>(SI
->getTrueValue());
1884 BlockAddress
*FBA
= dyn_cast
<BlockAddress
>(SI
->getFalseValue());
1888 // Extract the actual blocks.
1889 BasicBlock
*TrueBB
= TBA
->getBasicBlock();
1890 BasicBlock
*FalseBB
= FBA
->getBasicBlock();
1892 // Perform the actual simplification.
1893 return SimplifyTerminatorOnSelect(IBI
, SI
->getCondition(), TrueBB
, FalseBB
);
1896 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
1897 /// instruction (a seteq/setne with a constant) as the only instruction in a
1898 /// block that ends with an uncond branch. We are looking for a very specific
1899 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
1900 /// this case, we merge the first two "or's of icmp" into a switch, but then the
1901 /// default value goes to an uncond block with a seteq in it, we get something
1904 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
1906 /// %tmp = icmp eq i8 %A, 92
1909 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
1911 /// We prefer to split the edge to 'end' so that there is a true/false entry to
1912 /// the PHI, merging the third icmp into the switch.
1913 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst
*ICI
,
1914 const TargetData
*TD
) {
1915 BasicBlock
*BB
= ICI
->getParent();
1916 // If the block has any PHIs in it or the icmp has multiple uses, it is too
1918 if (isa
<PHINode
>(BB
->begin()) || !ICI
->hasOneUse()) return false;
1920 Value
*V
= ICI
->getOperand(0);
1921 ConstantInt
*Cst
= cast
<ConstantInt
>(ICI
->getOperand(1));
1923 // The pattern we're looking for is where our only predecessor is a switch on
1924 // 'V' and this block is the default case for the switch. In this case we can
1925 // fold the compared value into the switch to simplify things.
1926 BasicBlock
*Pred
= BB
->getSinglePredecessor();
1927 if (Pred
== 0 || !isa
<SwitchInst
>(Pred
->getTerminator())) return false;
1929 SwitchInst
*SI
= cast
<SwitchInst
>(Pred
->getTerminator());
1930 if (SI
->getCondition() != V
)
1933 // If BB is reachable on a non-default case, then we simply know the value of
1934 // V in this block. Substitute it and constant fold the icmp instruction
1936 if (SI
->getDefaultDest() != BB
) {
1937 ConstantInt
*VVal
= SI
->findCaseDest(BB
);
1938 assert(VVal
&& "Should have a unique destination value");
1939 ICI
->setOperand(0, VVal
);
1941 if (Value
*V
= SimplifyInstruction(ICI
, TD
)) {
1942 ICI
->replaceAllUsesWith(V
);
1943 ICI
->eraseFromParent();
1945 // BB is now empty, so it is likely to simplify away.
1946 return SimplifyCFG(BB
) | true;
1949 // Ok, the block is reachable from the default dest. If the constant we're
1950 // comparing exists in one of the other edges, then we can constant fold ICI
1952 if (SI
->findCaseValue(Cst
) != 0) {
1954 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
1955 V
= ConstantInt::getFalse(BB
->getContext());
1957 V
= ConstantInt::getTrue(BB
->getContext());
1959 ICI
->replaceAllUsesWith(V
);
1960 ICI
->eraseFromParent();
1961 // BB is now empty, so it is likely to simplify away.
1962 return SimplifyCFG(BB
) | true;
1965 // The use of the icmp has to be in the 'end' block, by the only PHI node in
1967 BasicBlock
*SuccBlock
= BB
->getTerminator()->getSuccessor(0);
1968 PHINode
*PHIUse
= dyn_cast
<PHINode
>(ICI
->use_back());
1969 if (PHIUse
== 0 || PHIUse
!= &SuccBlock
->front() ||
1970 isa
<PHINode
>(++BasicBlock::iterator(PHIUse
)))
1973 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
1975 Constant
*DefaultCst
= ConstantInt::getTrue(BB
->getContext());
1976 Constant
*NewCst
= ConstantInt::getFalse(BB
->getContext());
1978 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
1979 std::swap(DefaultCst
, NewCst
);
1981 // Replace ICI (which is used by the PHI for the default value) with true or
1982 // false depending on if it is EQ or NE.
1983 ICI
->replaceAllUsesWith(DefaultCst
);
1984 ICI
->eraseFromParent();
1986 // Okay, the switch goes to this block on a default value. Add an edge from
1987 // the switch to the merge point on the compared value.
1988 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(), "switch.edge",
1989 BB
->getParent(), BB
);
1990 SI
->addCase(Cst
, NewBB
);
1992 // NewBB branches to the phi block, add the uncond branch and the phi entry.
1993 BranchInst::Create(SuccBlock
, NewBB
);
1994 PHIUse
->addIncoming(NewCst
, NewBB
);
1998 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
1999 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2000 /// fold it into a switch instruction if so.
2001 static bool SimplifyBranchOnICmpChain(BranchInst
*BI
, const TargetData
*TD
) {
2002 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
2003 if (Cond
== 0) return false;
2006 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2007 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2008 // 'setne's and'ed together, collect them.
2010 std::vector
<ConstantInt
*> Values
;
2011 bool TrueWhenEqual
= true;
2012 Value
*ExtraCase
= 0;
2013 unsigned UsedICmps
= 0;
2015 if (Cond
->getOpcode() == Instruction::Or
) {
2016 CompVal
= GatherConstantCompares(Cond
, Values
, ExtraCase
, TD
, true,
2018 } else if (Cond
->getOpcode() == Instruction::And
) {
2019 CompVal
= GatherConstantCompares(Cond
, Values
, ExtraCase
, TD
, false,
2021 TrueWhenEqual
= false;
2024 // If we didn't have a multiply compared value, fail.
2025 if (CompVal
== 0) return false;
2027 // Avoid turning single icmps into a switch.
2031 // There might be duplicate constants in the list, which the switch
2032 // instruction can't handle, remove them now.
2033 array_pod_sort(Values
.begin(), Values
.end(), ConstantIntSortPredicate
);
2034 Values
.erase(std::unique(Values
.begin(), Values
.end()), Values
.end());
2036 // If Extra was used, we require at least two switch values to do the
2037 // transformation. A switch with one value is just an cond branch.
2038 if (ExtraCase
&& Values
.size() < 2) return false;
2040 // Figure out which block is which destination.
2041 BasicBlock
*DefaultBB
= BI
->getSuccessor(1);
2042 BasicBlock
*EdgeBB
= BI
->getSuccessor(0);
2043 if (!TrueWhenEqual
) std::swap(DefaultBB
, EdgeBB
);
2045 BasicBlock
*BB
= BI
->getParent();
2047 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values
.size()
2048 << " cases into SWITCH. BB is:\n" << *BB
);
2050 // If there are any extra values that couldn't be folded into the switch
2051 // then we evaluate them with an explicit branch first. Split the block
2052 // right before the condbr to handle it.
2054 BasicBlock
*NewBB
= BB
->splitBasicBlock(BI
, "switch.early.test");
2055 // Remove the uncond branch added to the old block.
2056 TerminatorInst
*OldTI
= BB
->getTerminator();
2059 BranchInst::Create(EdgeBB
, NewBB
, ExtraCase
, OldTI
);
2061 BranchInst::Create(NewBB
, EdgeBB
, ExtraCase
, OldTI
);
2063 OldTI
->eraseFromParent();
2065 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2066 // for the edge we just added.
2067 AddPredecessorToBlock(EdgeBB
, BB
, NewBB
);
2069 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
2070 << "\nEXTRABB = " << *BB
);
2074 // Convert pointer to int before we switch.
2075 if (CompVal
->getType()->isPointerTy()) {
2076 assert(TD
&& "Cannot switch on pointer without TargetData");
2077 CompVal
= new PtrToIntInst(CompVal
,
2078 TD
->getIntPtrType(CompVal
->getContext()),
2082 // Create the new switch instruction now.
2083 SwitchInst
*New
= SwitchInst::Create(CompVal
, DefaultBB
, Values
.size(), BI
);
2085 // Add all of the 'cases' to the switch instruction.
2086 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
)
2087 New
->addCase(Values
[i
], EdgeBB
);
2089 // We added edges from PI to the EdgeBB. As such, if there were any
2090 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2091 // the number of edges added.
2092 for (BasicBlock::iterator BBI
= EdgeBB
->begin();
2093 isa
<PHINode
>(BBI
); ++BBI
) {
2094 PHINode
*PN
= cast
<PHINode
>(BBI
);
2095 Value
*InVal
= PN
->getIncomingValueForBlock(BB
);
2096 for (unsigned i
= 0, e
= Values
.size()-1; i
!= e
; ++i
)
2097 PN
->addIncoming(InVal
, BB
);
2100 // Erase the old branch instruction.
2101 EraseTerminatorInstAndDCECond(BI
);
2103 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB
<< '\n');
2107 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst
*RI
) {
2108 BasicBlock
*BB
= RI
->getParent();
2109 if (!BB
->getFirstNonPHIOrDbg()->isTerminator()) return false;
2111 // Find predecessors that end with branches.
2112 SmallVector
<BasicBlock
*, 8> UncondBranchPreds
;
2113 SmallVector
<BranchInst
*, 8> CondBranchPreds
;
2114 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
2115 BasicBlock
*P
= *PI
;
2116 TerminatorInst
*PTI
= P
->getTerminator();
2117 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
)) {
2118 if (BI
->isUnconditional())
2119 UncondBranchPreds
.push_back(P
);
2121 CondBranchPreds
.push_back(BI
);
2125 // If we found some, do the transformation!
2126 if (!UncondBranchPreds
.empty() && DupRet
) {
2127 while (!UncondBranchPreds
.empty()) {
2128 BasicBlock
*Pred
= UncondBranchPreds
.pop_back_val();
2129 DEBUG(dbgs() << "FOLDING: " << *BB
2130 << "INTO UNCOND BRANCH PRED: " << *Pred
);
2131 (void)FoldReturnIntoUncondBranch(RI
, BB
, Pred
);
2134 // If we eliminated all predecessors of the block, delete the block now.
2135 if (pred_begin(BB
) == pred_end(BB
))
2136 // We know there are no successors, so just nuke the block.
2137 BB
->eraseFromParent();
2142 // Check out all of the conditional branches going to this return
2143 // instruction. If any of them just select between returns, change the
2144 // branch itself into a select/return pair.
2145 while (!CondBranchPreds
.empty()) {
2146 BranchInst
*BI
= CondBranchPreds
.pop_back_val();
2148 // Check to see if the non-BB successor is also a return block.
2149 if (isa
<ReturnInst
>(BI
->getSuccessor(0)->getTerminator()) &&
2150 isa
<ReturnInst
>(BI
->getSuccessor(1)->getTerminator()) &&
2151 SimplifyCondBranchToTwoReturns(BI
))
2157 bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst
*UI
) {
2158 // Check to see if the first instruction in this block is just an unwind.
2159 // If so, replace any invoke instructions which use this as an exception
2160 // destination with call instructions.
2161 BasicBlock
*BB
= UI
->getParent();
2162 if (!BB
->getFirstNonPHIOrDbg()->isTerminator()) return false;
2164 bool Changed
= false;
2165 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
2166 while (!Preds
.empty()) {
2167 BasicBlock
*Pred
= Preds
.back();
2168 InvokeInst
*II
= dyn_cast
<InvokeInst
>(Pred
->getTerminator());
2169 if (II
&& II
->getUnwindDest() == BB
) {
2170 // Insert a new branch instruction before the invoke, because this
2171 // is now a fall through.
2172 BranchInst
*BI
= BranchInst::Create(II
->getNormalDest(), II
);
2173 Pred
->getInstList().remove(II
); // Take out of symbol table
2175 // Insert the call now.
2176 SmallVector
<Value
*,8> Args(II
->op_begin(), II
->op_end()-3);
2177 CallInst
*CI
= CallInst::Create(II
->getCalledValue(),
2178 Args
.begin(), Args
.end(),
2180 CI
->setCallingConv(II
->getCallingConv());
2181 CI
->setAttributes(II
->getAttributes());
2182 // If the invoke produced a value, the Call now does instead.
2183 II
->replaceAllUsesWith(CI
);
2191 // If this block is now dead (and isn't the entry block), remove it.
2192 if (pred_begin(BB
) == pred_end(BB
) &&
2193 BB
!= &BB
->getParent()->getEntryBlock()) {
2194 // We know there are no successors, so just nuke the block.
2195 BB
->eraseFromParent();
2202 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst
*UI
) {
2203 BasicBlock
*BB
= UI
->getParent();
2205 bool Changed
= false;
2207 // If there are any instructions immediately before the unreachable that can
2208 // be removed, do so.
2209 while (UI
!= BB
->begin()) {
2210 BasicBlock::iterator BBI
= UI
;
2212 // Do not delete instructions that can have side effects, like calls
2213 // (which may never return) and volatile loads and stores.
2214 if (isa
<CallInst
>(BBI
) && !isa
<DbgInfoIntrinsic
>(BBI
)) break;
2216 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(BBI
))
2217 if (SI
->isVolatile())
2220 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
))
2221 if (LI
->isVolatile())
2224 // Delete this instruction (any uses are guaranteed to be dead)
2225 if (!BBI
->use_empty())
2226 BBI
->replaceAllUsesWith(UndefValue::get(BBI
->getType()));
2227 BBI
->eraseFromParent();
2231 // If the unreachable instruction is the first in the block, take a gander
2232 // at all of the predecessors of this instruction, and simplify them.
2233 if (&BB
->front() != UI
) return Changed
;
2235 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
2236 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
) {
2237 TerminatorInst
*TI
= Preds
[i
]->getTerminator();
2239 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
2240 if (BI
->isUnconditional()) {
2241 if (BI
->getSuccessor(0) == BB
) {
2242 new UnreachableInst(TI
->getContext(), TI
);
2243 TI
->eraseFromParent();
2247 if (BI
->getSuccessor(0) == BB
) {
2248 BranchInst::Create(BI
->getSuccessor(1), BI
);
2249 EraseTerminatorInstAndDCECond(BI
);
2250 } else if (BI
->getSuccessor(1) == BB
) {
2251 BranchInst::Create(BI
->getSuccessor(0), BI
);
2252 EraseTerminatorInstAndDCECond(BI
);
2256 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
2257 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2258 if (SI
->getSuccessor(i
) == BB
) {
2259 BB
->removePredecessor(SI
->getParent());
2264 // If the default value is unreachable, figure out the most popular
2265 // destination and make it the default.
2266 if (SI
->getSuccessor(0) == BB
) {
2267 std::map
<BasicBlock
*, std::pair
<unsigned, unsigned> > Popularity
;
2268 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
) {
2269 std::pair
<unsigned, unsigned>& entry
=
2270 Popularity
[SI
->getSuccessor(i
)];
2271 if (entry
.first
== 0) {
2279 // Find the most popular block.
2280 unsigned MaxPop
= 0;
2281 unsigned MaxIndex
= 0;
2282 BasicBlock
*MaxBlock
= 0;
2283 for (std::map
<BasicBlock
*, std::pair
<unsigned, unsigned> >::iterator
2284 I
= Popularity
.begin(), E
= Popularity
.end(); I
!= E
; ++I
) {
2285 if (I
->second
.first
> MaxPop
||
2286 (I
->second
.first
== MaxPop
&& MaxIndex
> I
->second
.second
)) {
2287 MaxPop
= I
->second
.first
;
2288 MaxIndex
= I
->second
.second
;
2289 MaxBlock
= I
->first
;
2293 // Make this the new default, allowing us to delete any explicit
2295 SI
->setSuccessor(0, MaxBlock
);
2298 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2300 if (isa
<PHINode
>(MaxBlock
->begin()))
2301 for (unsigned i
= 0; i
!= MaxPop
-1; ++i
)
2302 MaxBlock
->removePredecessor(SI
->getParent());
2304 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2305 if (SI
->getSuccessor(i
) == MaxBlock
) {
2311 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TI
)) {
2312 if (II
->getUnwindDest() == BB
) {
2313 // Convert the invoke to a call instruction. This would be a good
2314 // place to note that the call does not throw though.
2315 BranchInst
*BI
= BranchInst::Create(II
->getNormalDest(), II
);
2316 II
->removeFromParent(); // Take out of symbol table
2318 // Insert the call now...
2319 SmallVector
<Value
*, 8> Args(II
->op_begin(), II
->op_end()-3);
2320 CallInst
*CI
= CallInst::Create(II
->getCalledValue(),
2321 Args
.begin(), Args
.end(),
2323 CI
->setCallingConv(II
->getCallingConv());
2324 CI
->setAttributes(II
->getAttributes());
2325 // If the invoke produced a value, the call does now instead.
2326 II
->replaceAllUsesWith(CI
);
2333 // If this block is now dead, remove it.
2334 if (pred_begin(BB
) == pred_end(BB
) &&
2335 BB
!= &BB
->getParent()->getEntryBlock()) {
2336 // We know there are no successors, so just nuke the block.
2337 BB
->eraseFromParent();
2344 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2345 /// integer range comparison into a sub, an icmp and a branch.
2346 static bool TurnSwitchRangeIntoICmp(SwitchInst
*SI
) {
2347 assert(SI
->getNumCases() > 2 && "Degenerate switch?");
2349 // Make sure all cases point to the same destination and gather the values.
2350 SmallVector
<ConstantInt
*, 16> Cases
;
2351 Cases
.push_back(SI
->getCaseValue(1));
2352 for (unsigned I
= 2, E
= SI
->getNumCases(); I
!= E
; ++I
) {
2353 if (SI
->getSuccessor(I
-1) != SI
->getSuccessor(I
))
2355 Cases
.push_back(SI
->getCaseValue(I
));
2357 assert(Cases
.size() == SI
->getNumCases()-1 && "Not all cases gathered");
2359 // Sort the case values, then check if they form a range we can transform.
2360 array_pod_sort(Cases
.begin(), Cases
.end(), ConstantIntSortPredicate
);
2361 for (unsigned I
= 1, E
= Cases
.size(); I
!= E
; ++I
) {
2362 if (Cases
[I
-1]->getValue() != Cases
[I
]->getValue()+1)
2366 Constant
*Offset
= ConstantExpr::getNeg(Cases
.back());
2367 Constant
*NumCases
= ConstantInt::get(Offset
->getType(), SI
->getNumCases()-1);
2369 Value
*Sub
= SI
->getCondition();
2370 if (!Offset
->isNullValue())
2371 Sub
= BinaryOperator::CreateAdd(Sub
, Offset
, Sub
->getName()+".off", SI
);
2372 Value
*Cmp
= new ICmpInst(SI
, ICmpInst::ICMP_ULT
, Sub
, NumCases
, "switch");
2373 BranchInst::Create(SI
->getSuccessor(1), SI
->getDefaultDest(), Cmp
, SI
);
2375 // Prune obsolete incoming values off the successor's PHI nodes.
2376 for (BasicBlock::iterator BBI
= SI
->getSuccessor(1)->begin();
2377 isa
<PHINode
>(BBI
); ++BBI
) {
2378 for (unsigned I
= 0, E
= SI
->getNumCases()-2; I
!= E
; ++I
)
2379 cast
<PHINode
>(BBI
)->removeIncomingValue(SI
->getParent());
2381 SI
->eraseFromParent();
2386 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst
*SI
) {
2387 // If this switch is too complex to want to look at, ignore it.
2388 if (!isValueEqualityComparison(SI
))
2391 BasicBlock
*BB
= SI
->getParent();
2393 // If we only have one predecessor, and if it is a branch on this value,
2394 // see if that predecessor totally determines the outcome of this switch.
2395 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
2396 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI
, OnlyPred
))
2397 return SimplifyCFG(BB
) | true;
2399 Value
*Cond
= SI
->getCondition();
2400 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(Cond
))
2401 if (SimplifySwitchOnSelect(SI
, Select
))
2402 return SimplifyCFG(BB
) | true;
2404 // If the block only contains the switch, see if we can fold the block
2405 // away into any preds.
2406 BasicBlock::iterator BBI
= BB
->begin();
2407 // Ignore dbg intrinsics.
2408 while (isa
<DbgInfoIntrinsic
>(BBI
))
2411 if (FoldValueComparisonIntoPredecessors(SI
))
2412 return SimplifyCFG(BB
) | true;
2414 // Try to transform the switch into an icmp and a branch.
2415 if (TurnSwitchRangeIntoICmp(SI
))
2416 return SimplifyCFG(BB
) | true;
2421 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst
*IBI
) {
2422 BasicBlock
*BB
= IBI
->getParent();
2423 bool Changed
= false;
2425 // Eliminate redundant destinations.
2426 SmallPtrSet
<Value
*, 8> Succs
;
2427 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
2428 BasicBlock
*Dest
= IBI
->getDestination(i
);
2429 if (!Dest
->hasAddressTaken() || !Succs
.insert(Dest
)) {
2430 Dest
->removePredecessor(BB
);
2431 IBI
->removeDestination(i
);
2437 if (IBI
->getNumDestinations() == 0) {
2438 // If the indirectbr has no successors, change it to unreachable.
2439 new UnreachableInst(IBI
->getContext(), IBI
);
2440 EraseTerminatorInstAndDCECond(IBI
);
2444 if (IBI
->getNumDestinations() == 1) {
2445 // If the indirectbr has one successor, change it to a direct branch.
2446 BranchInst::Create(IBI
->getDestination(0), IBI
);
2447 EraseTerminatorInstAndDCECond(IBI
);
2451 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(IBI
->getAddress())) {
2452 if (SimplifyIndirectBrOnSelect(IBI
, SI
))
2453 return SimplifyCFG(BB
) | true;
2458 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst
*BI
) {
2459 BasicBlock
*BB
= BI
->getParent();
2461 // If the Terminator is the only non-phi instruction, simplify the block.
2462 BasicBlock::iterator I
= BB
->getFirstNonPHIOrDbg();
2463 if (I
->isTerminator() && BB
!= &BB
->getParent()->getEntryBlock() &&
2464 TryToSimplifyUncondBranchFromEmptyBlock(BB
))
2467 // If the only instruction in the block is a seteq/setne comparison
2468 // against a constant, try to simplify the block.
2469 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(I
))
2470 if (ICI
->isEquality() && isa
<ConstantInt
>(ICI
->getOperand(1))) {
2471 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
2473 if (I
->isTerminator() && TryToSimplifyUncondBranchWithICmpInIt(ICI
, TD
))
2481 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst
*BI
) {
2482 BasicBlock
*BB
= BI
->getParent();
2484 // Conditional branch
2485 if (isValueEqualityComparison(BI
)) {
2486 // If we only have one predecessor, and if it is a branch on this value,
2487 // see if that predecessor totally determines the outcome of this
2489 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
2490 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI
, OnlyPred
))
2491 return SimplifyCFG(BB
) | true;
2493 // This block must be empty, except for the setcond inst, if it exists.
2494 // Ignore dbg intrinsics.
2495 BasicBlock::iterator I
= BB
->begin();
2496 // Ignore dbg intrinsics.
2497 while (isa
<DbgInfoIntrinsic
>(I
))
2500 if (FoldValueComparisonIntoPredecessors(BI
))
2501 return SimplifyCFG(BB
) | true;
2502 } else if (&*I
== cast
<Instruction
>(BI
->getCondition())){
2504 // Ignore dbg intrinsics.
2505 while (isa
<DbgInfoIntrinsic
>(I
))
2507 if (&*I
== BI
&& FoldValueComparisonIntoPredecessors(BI
))
2508 return SimplifyCFG(BB
) | true;
2512 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2513 if (SimplifyBranchOnICmpChain(BI
, TD
))
2516 // We have a conditional branch to two blocks that are only reachable
2517 // from BI. We know that the condbr dominates the two blocks, so see if
2518 // there is any identical code in the "then" and "else" blocks. If so, we
2519 // can hoist it up to the branching block.
2520 if (BI
->getSuccessor(0)->getSinglePredecessor() != 0) {
2521 if (BI
->getSuccessor(1)->getSinglePredecessor() != 0) {
2522 if (HoistThenElseCodeToIf(BI
))
2523 return SimplifyCFG(BB
) | true;
2525 // If Successor #1 has multiple preds, we may be able to conditionally
2526 // execute Successor #0 if it branches to successor #1.
2527 TerminatorInst
*Succ0TI
= BI
->getSuccessor(0)->getTerminator();
2528 if (Succ0TI
->getNumSuccessors() == 1 &&
2529 Succ0TI
->getSuccessor(0) == BI
->getSuccessor(1))
2530 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(0)))
2531 return SimplifyCFG(BB
) | true;
2533 } else if (BI
->getSuccessor(1)->getSinglePredecessor() != 0) {
2534 // If Successor #0 has multiple preds, we may be able to conditionally
2535 // execute Successor #1 if it branches to successor #0.
2536 TerminatorInst
*Succ1TI
= BI
->getSuccessor(1)->getTerminator();
2537 if (Succ1TI
->getNumSuccessors() == 1 &&
2538 Succ1TI
->getSuccessor(0) == BI
->getSuccessor(0))
2539 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(1)))
2540 return SimplifyCFG(BB
) | true;
2543 // If this is a branch on a phi node in the current block, thread control
2544 // through this block if any PHI node entries are constants.
2545 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition()))
2546 if (PN
->getParent() == BI
->getParent())
2547 if (FoldCondBranchOnPHI(BI
, TD
))
2548 return SimplifyCFG(BB
) | true;
2550 // If this basic block is ONLY a setcc and a branch, and if a predecessor
2551 // branches to us and one of our successors, fold the setcc into the
2552 // predecessor and use logical operations to pick the right destination.
2553 if (FoldBranchToCommonDest(BI
))
2554 return SimplifyCFG(BB
) | true;
2556 // Scan predecessor blocks for conditional branches.
2557 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
2558 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
2559 if (PBI
!= BI
&& PBI
->isConditional())
2560 if (SimplifyCondBranchToCondBranch(PBI
, BI
))
2561 return SimplifyCFG(BB
) | true;
2566 bool SimplifyCFGOpt::run(BasicBlock
*BB
) {
2567 bool Changed
= false;
2569 assert(BB
&& BB
->getParent() && "Block not embedded in function!");
2570 assert(BB
->getTerminator() && "Degenerate basic block encountered!");
2572 // Remove basic blocks that have no predecessors (except the entry block)...
2573 // or that just have themself as a predecessor. These are unreachable.
2574 if ((pred_begin(BB
) == pred_end(BB
) &&
2575 BB
!= &BB
->getParent()->getEntryBlock()) ||
2576 BB
->getSinglePredecessor() == BB
) {
2577 DEBUG(dbgs() << "Removing BB: \n" << *BB
);
2578 DeleteDeadBlock(BB
);
2582 // Check to see if we can constant propagate this terminator instruction
2584 Changed
|= ConstantFoldTerminator(BB
);
2586 // Check for and eliminate duplicate PHI nodes in this block.
2587 Changed
|= EliminateDuplicatePHINodes(BB
);
2589 // Merge basic blocks into their predecessor if there is only one distinct
2590 // pred, and if there is only one distinct successor of the predecessor, and
2591 // if there are no PHI nodes.
2593 if (MergeBlockIntoPredecessor(BB
))
2596 // If there is a trivial two-entry PHI node in this basic block, and we can
2597 // eliminate it, do so now.
2598 if (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin()))
2599 if (PN
->getNumIncomingValues() == 2)
2600 Changed
|= FoldTwoEntryPHINode(PN
, TD
);
2602 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
2603 if (BI
->isUnconditional()) {
2604 if (SimplifyUncondBranch(BI
)) return true;
2606 if (SimplifyCondBranch(BI
)) return true;
2608 } else if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
2609 if (SimplifyReturn(RI
)) return true;
2610 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
2611 if (SimplifySwitch(SI
)) return true;
2612 } else if (UnreachableInst
*UI
=
2613 dyn_cast
<UnreachableInst
>(BB
->getTerminator())) {
2614 if (SimplifyUnreachable(UI
)) return true;
2615 } else if (UnwindInst
*UI
= dyn_cast
<UnwindInst
>(BB
->getTerminator())) {
2616 if (SimplifyUnwind(UI
)) return true;
2617 } else if (IndirectBrInst
*IBI
=
2618 dyn_cast
<IndirectBrInst
>(BB
->getTerminator())) {
2619 if (SimplifyIndirectBr(IBI
)) return true;
2625 /// SimplifyCFG - This function is used to do simplification of a CFG. For
2626 /// example, it adjusts branches to branches to eliminate the extra hop, it
2627 /// eliminates unreachable basic blocks, and does other "peephole" optimization
2628 /// of the CFG. It returns true if a modification was made.
2630 bool llvm::SimplifyCFG(BasicBlock
*BB
, const TargetData
*TD
) {
2631 return SimplifyCFGOpt(TD
).run(BB
);