Revert r131155 for now. It makes VMCore depend on Analysis and Transforms
[llvm/stm8.git] / lib / VMCore / ConstantsContext.h
blob13957545786deff1d3c69efb13a548157bac7f1d
1 //===-- ConstantsContext.h - Constants-related Context Interals -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines various helper methods and classes used by
11 // LLVMContextImpl for creating and managing constants.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_CONSTANTSCONTEXT_H
16 #define LLVM_CONSTANTSCONTEXT_H
18 #include "llvm/InlineAsm.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Operator.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <map>
26 namespace llvm {
27 template<class ValType>
28 struct ConstantTraits;
30 /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
31 /// behind the scenes to implement unary constant exprs.
32 class UnaryConstantExpr : public ConstantExpr {
33 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
34 public:
35 // allocate space for exactly one operand
36 void *operator new(size_t s) {
37 return User::operator new(s, 1);
39 UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
40 : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
41 Op<0>() = C;
43 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
46 /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
47 /// behind the scenes to implement binary constant exprs.
48 class BinaryConstantExpr : public ConstantExpr {
49 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
50 public:
51 // allocate space for exactly two operands
52 void *operator new(size_t s) {
53 return User::operator new(s, 2);
55 BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
56 unsigned Flags)
57 : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
58 Op<0>() = C1;
59 Op<1>() = C2;
60 SubclassOptionalData = Flags;
62 /// Transparently provide more efficient getOperand methods.
63 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
66 /// SelectConstantExpr - This class is private to Constants.cpp, and is used
67 /// behind the scenes to implement select constant exprs.
68 class SelectConstantExpr : public ConstantExpr {
69 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
70 public:
71 // allocate space for exactly three operands
72 void *operator new(size_t s) {
73 return User::operator new(s, 3);
75 SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
76 : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
77 Op<0>() = C1;
78 Op<1>() = C2;
79 Op<2>() = C3;
81 /// Transparently provide more efficient getOperand methods.
82 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
85 /// ExtractElementConstantExpr - This class is private to
86 /// Constants.cpp, and is used behind the scenes to implement
87 /// extractelement constant exprs.
88 class ExtractElementConstantExpr : public ConstantExpr {
89 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
90 public:
91 // allocate space for exactly two operands
92 void *operator new(size_t s) {
93 return User::operator new(s, 2);
95 ExtractElementConstantExpr(Constant *C1, Constant *C2)
96 : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
97 Instruction::ExtractElement, &Op<0>(), 2) {
98 Op<0>() = C1;
99 Op<1>() = C2;
101 /// Transparently provide more efficient getOperand methods.
102 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
105 /// InsertElementConstantExpr - This class is private to
106 /// Constants.cpp, and is used behind the scenes to implement
107 /// insertelement constant exprs.
108 class InsertElementConstantExpr : public ConstantExpr {
109 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
110 public:
111 // allocate space for exactly three operands
112 void *operator new(size_t s) {
113 return User::operator new(s, 3);
115 InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
116 : ConstantExpr(C1->getType(), Instruction::InsertElement,
117 &Op<0>(), 3) {
118 Op<0>() = C1;
119 Op<1>() = C2;
120 Op<2>() = C3;
122 /// Transparently provide more efficient getOperand methods.
123 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
126 /// ShuffleVectorConstantExpr - This class is private to
127 /// Constants.cpp, and is used behind the scenes to implement
128 /// shufflevector constant exprs.
129 class ShuffleVectorConstantExpr : public ConstantExpr {
130 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
131 public:
132 // allocate space for exactly three operands
133 void *operator new(size_t s) {
134 return User::operator new(s, 3);
136 ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
137 : ConstantExpr(VectorType::get(
138 cast<VectorType>(C1->getType())->getElementType(),
139 cast<VectorType>(C3->getType())->getNumElements()),
140 Instruction::ShuffleVector,
141 &Op<0>(), 3) {
142 Op<0>() = C1;
143 Op<1>() = C2;
144 Op<2>() = C3;
146 /// Transparently provide more efficient getOperand methods.
147 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
150 /// ExtractValueConstantExpr - This class is private to
151 /// Constants.cpp, and is used behind the scenes to implement
152 /// extractvalue constant exprs.
153 class ExtractValueConstantExpr : public ConstantExpr {
154 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
155 public:
156 // allocate space for exactly one operand
157 void *operator new(size_t s) {
158 return User::operator new(s, 1);
160 ExtractValueConstantExpr(Constant *Agg,
161 const SmallVector<unsigned, 4> &IdxList,
162 const Type *DestTy)
163 : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
164 Indices(IdxList) {
165 Op<0>() = Agg;
168 /// Indices - These identify which value to extract.
169 const SmallVector<unsigned, 4> Indices;
171 /// Transparently provide more efficient getOperand methods.
172 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
175 /// InsertValueConstantExpr - This class is private to
176 /// Constants.cpp, and is used behind the scenes to implement
177 /// insertvalue constant exprs.
178 class InsertValueConstantExpr : public ConstantExpr {
179 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
180 public:
181 // allocate space for exactly one operand
182 void *operator new(size_t s) {
183 return User::operator new(s, 2);
185 InsertValueConstantExpr(Constant *Agg, Constant *Val,
186 const SmallVector<unsigned, 4> &IdxList,
187 const Type *DestTy)
188 : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
189 Indices(IdxList) {
190 Op<0>() = Agg;
191 Op<1>() = Val;
194 /// Indices - These identify the position for the insertion.
195 const SmallVector<unsigned, 4> Indices;
197 /// Transparently provide more efficient getOperand methods.
198 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
202 /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
203 /// used behind the scenes to implement getelementpr constant exprs.
204 class GetElementPtrConstantExpr : public ConstantExpr {
205 GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
206 const Type *DestTy);
207 public:
208 static GetElementPtrConstantExpr *Create(Constant *C,
209 const std::vector<Constant*>&IdxList,
210 const Type *DestTy,
211 unsigned Flags) {
212 GetElementPtrConstantExpr *Result =
213 new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
214 Result->SubclassOptionalData = Flags;
215 return Result;
217 /// Transparently provide more efficient getOperand methods.
218 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
221 // CompareConstantExpr - This class is private to Constants.cpp, and is used
222 // behind the scenes to implement ICmp and FCmp constant expressions. This is
223 // needed in order to store the predicate value for these instructions.
224 struct CompareConstantExpr : public ConstantExpr {
225 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
226 // allocate space for exactly two operands
227 void *operator new(size_t s) {
228 return User::operator new(s, 2);
230 unsigned short predicate;
231 CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
232 unsigned short pred, Constant* LHS, Constant* RHS)
233 : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
234 Op<0>() = LHS;
235 Op<1>() = RHS;
237 /// Transparently provide more efficient getOperand methods.
238 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
241 template <>
242 struct OperandTraits<UnaryConstantExpr> :
243 public FixedNumOperandTraits<UnaryConstantExpr, 1> {
245 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
247 template <>
248 struct OperandTraits<BinaryConstantExpr> :
249 public FixedNumOperandTraits<BinaryConstantExpr, 2> {
251 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
253 template <>
254 struct OperandTraits<SelectConstantExpr> :
255 public FixedNumOperandTraits<SelectConstantExpr, 3> {
257 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
259 template <>
260 struct OperandTraits<ExtractElementConstantExpr> :
261 public FixedNumOperandTraits<ExtractElementConstantExpr, 2> {
263 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
265 template <>
266 struct OperandTraits<InsertElementConstantExpr> :
267 public FixedNumOperandTraits<InsertElementConstantExpr, 3> {
269 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
271 template <>
272 struct OperandTraits<ShuffleVectorConstantExpr> :
273 public FixedNumOperandTraits<ShuffleVectorConstantExpr, 3> {
275 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
277 template <>
278 struct OperandTraits<ExtractValueConstantExpr> :
279 public FixedNumOperandTraits<ExtractValueConstantExpr, 1> {
281 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
283 template <>
284 struct OperandTraits<InsertValueConstantExpr> :
285 public FixedNumOperandTraits<InsertValueConstantExpr, 2> {
287 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
289 template <>
290 struct OperandTraits<GetElementPtrConstantExpr> :
291 public VariadicOperandTraits<GetElementPtrConstantExpr, 1> {
294 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
297 template <>
298 struct OperandTraits<CompareConstantExpr> :
299 public FixedNumOperandTraits<CompareConstantExpr, 2> {
301 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
303 struct ExprMapKeyType {
304 ExprMapKeyType(unsigned opc,
305 ArrayRef<Constant*> ops,
306 unsigned short flags = 0,
307 unsigned short optionalflags = 0,
308 ArrayRef<unsigned> inds = ArrayRef<unsigned>())
309 : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
310 operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {}
311 uint8_t opcode;
312 uint8_t subclassoptionaldata;
313 uint16_t subclassdata;
314 std::vector<Constant*> operands;
315 SmallVector<unsigned, 4> indices;
316 bool operator==(const ExprMapKeyType& that) const {
317 return this->opcode == that.opcode &&
318 this->subclassdata == that.subclassdata &&
319 this->subclassoptionaldata == that.subclassoptionaldata &&
320 this->operands == that.operands &&
321 this->indices == that.indices;
323 bool operator<(const ExprMapKeyType & that) const {
324 if (this->opcode != that.opcode) return this->opcode < that.opcode;
325 if (this->operands != that.operands) return this->operands < that.operands;
326 if (this->subclassdata != that.subclassdata)
327 return this->subclassdata < that.subclassdata;
328 if (this->subclassoptionaldata != that.subclassoptionaldata)
329 return this->subclassoptionaldata < that.subclassoptionaldata;
330 if (this->indices != that.indices) return this->indices < that.indices;
331 return false;
334 bool operator!=(const ExprMapKeyType& that) const {
335 return !(*this == that);
339 struct InlineAsmKeyType {
340 InlineAsmKeyType(StringRef AsmString,
341 StringRef Constraints, bool hasSideEffects,
342 bool isAlignStack)
343 : asm_string(AsmString), constraints(Constraints),
344 has_side_effects(hasSideEffects), is_align_stack(isAlignStack) {}
345 std::string asm_string;
346 std::string constraints;
347 bool has_side_effects;
348 bool is_align_stack;
349 bool operator==(const InlineAsmKeyType& that) const {
350 return this->asm_string == that.asm_string &&
351 this->constraints == that.constraints &&
352 this->has_side_effects == that.has_side_effects &&
353 this->is_align_stack == that.is_align_stack;
355 bool operator<(const InlineAsmKeyType& that) const {
356 if (this->asm_string != that.asm_string)
357 return this->asm_string < that.asm_string;
358 if (this->constraints != that.constraints)
359 return this->constraints < that.constraints;
360 if (this->has_side_effects != that.has_side_effects)
361 return this->has_side_effects < that.has_side_effects;
362 if (this->is_align_stack != that.is_align_stack)
363 return this->is_align_stack < that.is_align_stack;
364 return false;
367 bool operator!=(const InlineAsmKeyType& that) const {
368 return !(*this == that);
372 // The number of operands for each ConstantCreator::create method is
373 // determined by the ConstantTraits template.
374 // ConstantCreator - A class that is used to create constants by
375 // ConstantUniqueMap*. This class should be partially specialized if there is
376 // something strange that needs to be done to interface to the ctor for the
377 // constant.
379 template<typename T, typename Alloc>
380 struct ConstantTraits< std::vector<T, Alloc> > {
381 static unsigned uses(const std::vector<T, Alloc>& v) {
382 return v.size();
386 template<>
387 struct ConstantTraits<Constant *> {
388 static unsigned uses(Constant * const & v) {
389 return 1;
393 template<class ConstantClass, class TypeClass, class ValType>
394 struct ConstantCreator {
395 static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
396 return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
400 template<class ConstantClass>
401 struct ConstantKeyData {
402 typedef void ValType;
403 static ValType getValType(ConstantClass *C) {
404 llvm_unreachable("Unknown Constant type!");
408 template<>
409 struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
410 static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
411 unsigned short pred = 0) {
412 if (Instruction::isCast(V.opcode))
413 return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
414 if ((V.opcode >= Instruction::BinaryOpsBegin &&
415 V.opcode < Instruction::BinaryOpsEnd))
416 return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
417 V.subclassoptionaldata);
418 if (V.opcode == Instruction::Select)
419 return new SelectConstantExpr(V.operands[0], V.operands[1],
420 V.operands[2]);
421 if (V.opcode == Instruction::ExtractElement)
422 return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
423 if (V.opcode == Instruction::InsertElement)
424 return new InsertElementConstantExpr(V.operands[0], V.operands[1],
425 V.operands[2]);
426 if (V.opcode == Instruction::ShuffleVector)
427 return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
428 V.operands[2]);
429 if (V.opcode == Instruction::InsertValue)
430 return new InsertValueConstantExpr(V.operands[0], V.operands[1],
431 V.indices, Ty);
432 if (V.opcode == Instruction::ExtractValue)
433 return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
434 if (V.opcode == Instruction::GetElementPtr) {
435 std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
436 return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
437 V.subclassoptionaldata);
440 // The compare instructions are weird. We have to encode the predicate
441 // value and it is combined with the instruction opcode by multiplying
442 // the opcode by one hundred. We must decode this to get the predicate.
443 if (V.opcode == Instruction::ICmp)
444 return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
445 V.operands[0], V.operands[1]);
446 if (V.opcode == Instruction::FCmp)
447 return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
448 V.operands[0], V.operands[1]);
449 llvm_unreachable("Invalid ConstantExpr!");
450 return 0;
454 template<>
455 struct ConstantKeyData<ConstantExpr> {
456 typedef ExprMapKeyType ValType;
457 static ValType getValType(ConstantExpr *CE) {
458 std::vector<Constant*> Operands;
459 Operands.reserve(CE->getNumOperands());
460 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
461 Operands.push_back(cast<Constant>(CE->getOperand(i)));
462 return ExprMapKeyType(CE->getOpcode(), Operands,
463 CE->isCompare() ? CE->getPredicate() : 0,
464 CE->getRawSubclassOptionalData(),
465 CE->hasIndices() ?
466 CE->getIndices() : ArrayRef<unsigned>());
470 // ConstantAggregateZero does not take extra "value" argument...
471 template<class ValType>
472 struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
473 static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
474 return new ConstantAggregateZero(Ty);
478 template<>
479 struct ConstantKeyData<ConstantVector> {
480 typedef std::vector<Constant*> ValType;
481 static ValType getValType(ConstantVector *CP) {
482 std::vector<Constant*> Elements;
483 Elements.reserve(CP->getNumOperands());
484 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
485 Elements.push_back(CP->getOperand(i));
486 return Elements;
490 template<>
491 struct ConstantKeyData<ConstantAggregateZero> {
492 typedef char ValType;
493 static ValType getValType(ConstantAggregateZero *C) {
494 return 0;
498 template<>
499 struct ConstantKeyData<ConstantArray> {
500 typedef std::vector<Constant*> ValType;
501 static ValType getValType(ConstantArray *CA) {
502 std::vector<Constant*> Elements;
503 Elements.reserve(CA->getNumOperands());
504 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
505 Elements.push_back(cast<Constant>(CA->getOperand(i)));
506 return Elements;
510 template<>
511 struct ConstantKeyData<ConstantStruct> {
512 typedef std::vector<Constant*> ValType;
513 static ValType getValType(ConstantStruct *CS) {
514 std::vector<Constant*> Elements;
515 Elements.reserve(CS->getNumOperands());
516 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
517 Elements.push_back(cast<Constant>(CS->getOperand(i)));
518 return Elements;
522 // ConstantPointerNull does not take extra "value" argument...
523 template<class ValType>
524 struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
525 static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
526 return new ConstantPointerNull(Ty);
530 template<>
531 struct ConstantKeyData<ConstantPointerNull> {
532 typedef char ValType;
533 static ValType getValType(ConstantPointerNull *C) {
534 return 0;
538 // UndefValue does not take extra "value" argument...
539 template<class ValType>
540 struct ConstantCreator<UndefValue, Type, ValType> {
541 static UndefValue *create(const Type *Ty, const ValType &V) {
542 return new UndefValue(Ty);
546 template<>
547 struct ConstantKeyData<UndefValue> {
548 typedef char ValType;
549 static ValType getValType(UndefValue *C) {
550 return 0;
554 template<>
555 struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
556 static InlineAsm *create(const PointerType *Ty, const InlineAsmKeyType &Key) {
557 return new InlineAsm(Ty, Key.asm_string, Key.constraints,
558 Key.has_side_effects, Key.is_align_stack);
562 template<>
563 struct ConstantKeyData<InlineAsm> {
564 typedef InlineAsmKeyType ValType;
565 static ValType getValType(InlineAsm *Asm) {
566 return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
567 Asm->hasSideEffects(), Asm->isAlignStack());
571 template<class ValType, class TypeClass, class ConstantClass,
572 bool HasLargeKey = false /*true for arrays and structs*/ >
573 class ConstantUniqueMap : public AbstractTypeUser {
574 public:
575 typedef std::pair<const TypeClass*, ValType> MapKey;
576 typedef std::map<MapKey, ConstantClass *> MapTy;
577 typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
578 typedef std::map<const DerivedType*, typename MapTy::iterator>
579 AbstractTypeMapTy;
580 private:
581 /// Map - This is the main map from the element descriptor to the Constants.
582 /// This is the primary way we avoid creating two of the same shape
583 /// constant.
584 MapTy Map;
586 /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
587 /// from the constants to their element in Map. This is important for
588 /// removal of constants from the array, which would otherwise have to scan
589 /// through the map with very large keys.
590 InverseMapTy InverseMap;
592 /// AbstractTypeMap - Map for abstract type constants.
594 AbstractTypeMapTy AbstractTypeMap;
596 public:
597 typename MapTy::iterator map_begin() { return Map.begin(); }
598 typename MapTy::iterator map_end() { return Map.end(); }
600 void freeConstants() {
601 for (typename MapTy::iterator I=Map.begin(), E=Map.end();
602 I != E; ++I) {
603 // Asserts that use_empty().
604 delete I->second;
608 /// InsertOrGetItem - Return an iterator for the specified element.
609 /// If the element exists in the map, the returned iterator points to the
610 /// entry and Exists=true. If not, the iterator points to the newly
611 /// inserted entry and returns Exists=false. Newly inserted entries have
612 /// I->second == 0, and should be filled in.
613 typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
614 &InsertVal,
615 bool &Exists) {
616 std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
617 Exists = !IP.second;
618 return IP.first;
621 private:
622 typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
623 if (HasLargeKey) {
624 typename InverseMapTy::iterator IMI = InverseMap.find(CP);
625 assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
626 IMI->second->second == CP &&
627 "InverseMap corrupt!");
628 return IMI->second;
631 typename MapTy::iterator I =
632 Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
633 ConstantKeyData<ConstantClass>::getValType(CP)));
634 if (I == Map.end() || I->second != CP) {
635 // FIXME: This should not use a linear scan. If this gets to be a
636 // performance problem, someone should look at this.
637 for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
638 /* empty */;
640 return I;
643 void AddAbstractTypeUser(const Type *Ty, typename MapTy::iterator I) {
644 // If the type of the constant is abstract, make sure that an entry
645 // exists for it in the AbstractTypeMap.
646 if (Ty->isAbstract()) {
647 const DerivedType *DTy = static_cast<const DerivedType *>(Ty);
648 typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(DTy);
650 if (TI == AbstractTypeMap.end()) {
651 // Add ourselves to the ATU list of the type.
652 cast<DerivedType>(DTy)->addAbstractTypeUser(this);
654 AbstractTypeMap.insert(TI, std::make_pair(DTy, I));
659 ConstantClass* Create(const TypeClass *Ty, const ValType &V,
660 typename MapTy::iterator I) {
661 ConstantClass* Result =
662 ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
664 assert(Result->getType() == Ty && "Type specified is not correct!");
665 I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
667 if (HasLargeKey) // Remember the reverse mapping if needed.
668 InverseMap.insert(std::make_pair(Result, I));
670 AddAbstractTypeUser(Ty, I);
672 return Result;
674 public:
676 /// getOrCreate - Return the specified constant from the map, creating it if
677 /// necessary.
678 ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
679 MapKey Lookup(Ty, V);
680 ConstantClass* Result = 0;
682 typename MapTy::iterator I = Map.find(Lookup);
683 // Is it in the map?
684 if (I != Map.end())
685 Result = I->second;
687 if (!Result) {
688 // If no preexisting value, create one now...
689 Result = Create(Ty, V, I);
692 return Result;
695 void UpdateAbstractTypeMap(const DerivedType *Ty,
696 typename MapTy::iterator I) {
697 assert(AbstractTypeMap.count(Ty) &&
698 "Abstract type not in AbstractTypeMap?");
699 typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
700 if (ATMEntryIt == I) {
701 // Yes, we are removing the representative entry for this type.
702 // See if there are any other entries of the same type.
703 typename MapTy::iterator TmpIt = ATMEntryIt;
705 // First check the entry before this one...
706 if (TmpIt != Map.begin()) {
707 --TmpIt;
708 if (TmpIt->first.first != Ty) // Not the same type, move back...
709 ++TmpIt;
712 // If we didn't find the same type, try to move forward...
713 if (TmpIt == ATMEntryIt) {
714 ++TmpIt;
715 if (TmpIt == Map.end() || TmpIt->first.first != Ty)
716 --TmpIt; // No entry afterwards with the same type
719 // If there is another entry in the map of the same abstract type,
720 // update the AbstractTypeMap entry now.
721 if (TmpIt != ATMEntryIt) {
722 ATMEntryIt = TmpIt;
723 } else {
724 // Otherwise, we are removing the last instance of this type
725 // from the table. Remove from the ATM, and from user list.
726 cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
727 AbstractTypeMap.erase(Ty);
732 void remove(ConstantClass *CP) {
733 typename MapTy::iterator I = FindExistingElement(CP);
734 assert(I != Map.end() && "Constant not found in constant table!");
735 assert(I->second == CP && "Didn't find correct element?");
737 if (HasLargeKey) // Remember the reverse mapping if needed.
738 InverseMap.erase(CP);
740 // Now that we found the entry, make sure this isn't the entry that
741 // the AbstractTypeMap points to.
742 const TypeClass *Ty = I->first.first;
743 if (Ty->isAbstract())
744 UpdateAbstractTypeMap(static_cast<const DerivedType *>(Ty), I);
746 Map.erase(I);
749 /// MoveConstantToNewSlot - If we are about to change C to be the element
750 /// specified by I, update our internal data structures to reflect this
751 /// fact.
752 void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
753 // First, remove the old location of the specified constant in the map.
754 typename MapTy::iterator OldI = FindExistingElement(C);
755 assert(OldI != Map.end() && "Constant not found in constant table!");
756 assert(OldI->second == C && "Didn't find correct element?");
758 // If this constant is the representative element for its abstract type,
759 // update the AbstractTypeMap so that the representative element is I.
761 // This must use getRawType() because if the type is under refinement, we
762 // will get the refineAbstractType callback below, and we don't want to
763 // kick union find in on the constant.
764 if (C->getRawType()->isAbstract()) {
765 typename AbstractTypeMapTy::iterator ATI =
766 AbstractTypeMap.find(cast<DerivedType>(C->getRawType()));
767 assert(ATI != AbstractTypeMap.end() &&
768 "Abstract type not in AbstractTypeMap?");
769 if (ATI->second == OldI)
770 ATI->second = I;
773 // Remove the old entry from the map.
774 Map.erase(OldI);
776 // Update the inverse map so that we know that this constant is now
777 // located at descriptor I.
778 if (HasLargeKey) {
779 assert(I->second == C && "Bad inversemap entry!");
780 InverseMap[C] = I;
784 void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
785 typename AbstractTypeMapTy::iterator I = AbstractTypeMap.find(OldTy);
787 assert(I != AbstractTypeMap.end() &&
788 "Abstract type not in AbstractTypeMap?");
790 // Convert a constant at a time until the last one is gone. The last one
791 // leaving will remove() itself, causing the AbstractTypeMapEntry to be
792 // eliminated eventually.
793 do {
794 ConstantClass *C = I->second->second;
795 MapKey Key(cast<TypeClass>(NewTy),
796 ConstantKeyData<ConstantClass>::getValType(C));
798 std::pair<typename MapTy::iterator, bool> IP =
799 Map.insert(std::make_pair(Key, C));
800 if (IP.second) {
801 // The map didn't previously have an appropriate constant in the
802 // new type.
804 // Remove the old entry.
805 typename MapTy::iterator OldI =
806 Map.find(MapKey(cast<TypeClass>(OldTy), IP.first->first.second));
807 assert(OldI != Map.end() && "Constant not in map!");
808 UpdateAbstractTypeMap(OldTy, OldI);
809 Map.erase(OldI);
811 // Set the constant's type. This is done in place!
812 setType(C, NewTy);
814 // Update the inverse map so that we know that this constant is now
815 // located at descriptor I.
816 if (HasLargeKey)
817 InverseMap[C] = IP.first;
819 AddAbstractTypeUser(NewTy, IP.first);
820 } else {
821 // The map already had an appropriate constant in the new type, so
822 // there's no longer a need for the old constant.
823 C->uncheckedReplaceAllUsesWith(IP.first->second);
824 C->destroyConstant(); // This constant is now dead, destroy it.
826 I = AbstractTypeMap.find(OldTy);
827 } while (I != AbstractTypeMap.end());
830 // If the type became concrete without being refined to any other existing
831 // type, we just remove ourselves from the ATU list.
832 void typeBecameConcrete(const DerivedType *AbsTy) {
833 AbsTy->removeAbstractTypeUser(this);
836 void dump() const {
837 DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
843 #endif