the various ConstantExpr::get*Ty methods existed to work with issues around
[llvm/stm8.git] / docs / LangRef.html
blob5959b3d5dca825e110d6327770a682daae73f777
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11 </head>
13 <body>
15 <h1>LLVM Language Reference Manual</h1>
16 <ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a>
24 <ol>
25 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
28 <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
29 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
36 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
37 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
38 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
39 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
41 </ol>
42 </li>
43 <li><a href="#callingconv">Calling Conventions</a></li>
44 <li><a href="#namedtypes">Named Types</a></li>
45 <li><a href="#globalvars">Global Variables</a></li>
46 <li><a href="#functionstructure">Functions</a></li>
47 <li><a href="#aliasstructure">Aliases</a></li>
48 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
49 <li><a href="#paramattrs">Parameter Attributes</a></li>
50 <li><a href="#fnattrs">Function Attributes</a></li>
51 <li><a href="#gc">Garbage Collector Names</a></li>
52 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
53 <li><a href="#datalayout">Data Layout</a></li>
54 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
55 <li><a href="#volatile">Volatile Memory Accesses</a></li>
56 </ol>
57 </li>
58 <li><a href="#typesystem">Type System</a>
59 <ol>
60 <li><a href="#t_classifications">Type Classifications</a></li>
61 <li><a href="#t_primitive">Primitive Types</a>
62 <ol>
63 <li><a href="#t_integer">Integer Type</a></li>
64 <li><a href="#t_floating">Floating Point Types</a></li>
65 <li><a href="#t_x86mmx">X86mmx Type</a></li>
66 <li><a href="#t_void">Void Type</a></li>
67 <li><a href="#t_label">Label Type</a></li>
68 <li><a href="#t_metadata">Metadata Type</a></li>
69 </ol>
70 </li>
71 <li><a href="#t_derived">Derived Types</a>
72 <ol>
73 <li><a href="#t_aggregate">Aggregate Types</a>
74 <ol>
75 <li><a href="#t_array">Array Type</a></li>
76 <li><a href="#t_struct">Structure Type</a></li>
77 <li><a href="#t_opaque">Opaque Type</a></li>
78 <li><a href="#t_vector">Vector Type</a></li>
79 </ol>
80 </li>
81 <li><a href="#t_function">Function Type</a></li>
82 <li><a href="#t_pointer">Pointer Type</a></li>
83 </ol>
84 </li>
85 </ol>
86 </li>
87 <li><a href="#constants">Constants</a>
88 <ol>
89 <li><a href="#simpleconstants">Simple Constants</a></li>
90 <li><a href="#complexconstants">Complex Constants</a></li>
91 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
92 <li><a href="#undefvalues">Undefined Values</a></li>
93 <li><a href="#trapvalues">Trap Values</a></li>
94 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
95 <li><a href="#constantexprs">Constant Expressions</a></li>
96 </ol>
97 </li>
98 <li><a href="#othervalues">Other Values</a>
99 <ol>
100 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
101 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
102 </ol>
103 </li>
104 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
105 <ol>
106 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
107 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
108 Global Variable</a></li>
109 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
110 Global Variable</a></li>
111 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
112 Global Variable</a></li>
113 </ol>
114 </li>
115 <li><a href="#instref">Instruction Reference</a>
116 <ol>
117 <li><a href="#terminators">Terminator Instructions</a>
118 <ol>
119 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
120 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
121 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
122 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
123 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
124 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
125 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
126 </ol>
127 </li>
128 <li><a href="#binaryops">Binary Operations</a>
129 <ol>
130 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
131 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
132 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
133 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
134 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
135 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
136 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
137 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
138 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
139 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
140 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
141 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
142 </ol>
143 </li>
144 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
145 <ol>
146 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
147 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
148 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
149 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
150 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
151 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
152 </ol>
153 </li>
154 <li><a href="#vectorops">Vector Operations</a>
155 <ol>
156 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
157 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
158 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
159 </ol>
160 </li>
161 <li><a href="#aggregateops">Aggregate Operations</a>
162 <ol>
163 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
164 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
165 </ol>
166 </li>
167 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
168 <ol>
169 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
170 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
171 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
172 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
173 </ol>
174 </li>
175 <li><a href="#convertops">Conversion Operations</a>
176 <ol>
177 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
178 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
179 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
180 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
181 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
182 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
183 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
184 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
185 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
186 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
187 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
188 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
189 </ol>
190 </li>
191 <li><a href="#otherops">Other Operations</a>
192 <ol>
193 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
194 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
195 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
196 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
197 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
198 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
199 </ol>
200 </li>
201 </ol>
202 </li>
203 <li><a href="#intrinsics">Intrinsic Functions</a>
204 <ol>
205 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
206 <ol>
207 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
208 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
209 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
210 </ol>
211 </li>
212 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
213 <ol>
214 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
215 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
216 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
217 </ol>
218 </li>
219 <li><a href="#int_codegen">Code Generator Intrinsics</a>
220 <ol>
221 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
222 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
223 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
224 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
225 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
226 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
227 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
228 </ol>
229 </li>
230 <li><a href="#int_libc">Standard C Library Intrinsics</a>
231 <ol>
232 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
233 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
234 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
235 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
236 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
237 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
238 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
239 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
240 <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
241 <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
242 <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
243 </ol>
244 </li>
245 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
246 <ol>
247 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
248 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
249 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
250 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
251 </ol>
252 </li>
253 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
254 <ol>
255 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
256 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
257 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
258 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
259 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
260 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
261 </ol>
262 </li>
263 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
264 <ol>
265 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
266 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
267 </ol>
268 </li>
269 <li><a href="#int_debugger">Debugger intrinsics</a></li>
270 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
271 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
272 <ol>
273 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
274 </ol>
275 </li>
276 <li><a href="#int_atomics">Atomic intrinsics</a>
277 <ol>
278 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
279 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
280 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
281 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
282 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
283 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
284 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
285 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
286 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
287 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
288 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
289 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
290 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
291 </ol>
292 </li>
293 <li><a href="#int_memorymarkers">Memory Use Markers</a>
294 <ol>
295 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
296 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
297 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
298 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
299 </ol>
300 </li>
301 <li><a href="#int_general">General intrinsics</a>
302 <ol>
303 <li><a href="#int_var_annotation">
304 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
305 <li><a href="#int_annotation">
306 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
307 <li><a href="#int_trap">
308 '<tt>llvm.trap</tt>' Intrinsic</a></li>
309 <li><a href="#int_stackprotector">
310 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
311 <li><a href="#int_objectsize">
312 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
313 </ol>
314 </li>
315 </ol>
316 </li>
317 </ol>
319 <div class="doc_author">
320 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
321 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
322 </div>
324 <!-- *********************************************************************** -->
325 <h2><a name="abstract">Abstract</a></h2>
326 <!-- *********************************************************************** -->
328 <div>
330 <p>This document is a reference manual for the LLVM assembly language. LLVM is
331 a Static Single Assignment (SSA) based representation that provides type
332 safety, low-level operations, flexibility, and the capability of representing
333 'all' high-level languages cleanly. It is the common code representation
334 used throughout all phases of the LLVM compilation strategy.</p>
336 </div>
338 <!-- *********************************************************************** -->
339 <h2><a name="introduction">Introduction</a></h2>
340 <!-- *********************************************************************** -->
342 <div>
344 <p>The LLVM code representation is designed to be used in three different forms:
345 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
346 for fast loading by a Just-In-Time compiler), and as a human readable
347 assembly language representation. This allows LLVM to provide a powerful
348 intermediate representation for efficient compiler transformations and
349 analysis, while providing a natural means to debug and visualize the
350 transformations. The three different forms of LLVM are all equivalent. This
351 document describes the human readable representation and notation.</p>
353 <p>The LLVM representation aims to be light-weight and low-level while being
354 expressive, typed, and extensible at the same time. It aims to be a
355 "universal IR" of sorts, by being at a low enough level that high-level ideas
356 may be cleanly mapped to it (similar to how microprocessors are "universal
357 IR's", allowing many source languages to be mapped to them). By providing
358 type information, LLVM can be used as the target of optimizations: for
359 example, through pointer analysis, it can be proven that a C automatic
360 variable is never accessed outside of the current function, allowing it to
361 be promoted to a simple SSA value instead of a memory location.</p>
363 <!-- _______________________________________________________________________ -->
364 <h4>
365 <a name="wellformed">Well-Formedness</a>
366 </h4>
368 <div>
370 <p>It is important to note that this document describes 'well formed' LLVM
371 assembly language. There is a difference between what the parser accepts and
372 what is considered 'well formed'. For example, the following instruction is
373 syntactically okay, but not well formed:</p>
375 <pre class="doc_code">
376 %x = <a href="#i_add">add</a> i32 1, %x
377 </pre>
379 <p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
380 LLVM infrastructure provides a verification pass that may be used to verify
381 that an LLVM module is well formed. This pass is automatically run by the
382 parser after parsing input assembly and by the optimizer before it outputs
383 bitcode. The violations pointed out by the verifier pass indicate bugs in
384 transformation passes or input to the parser.</p>
386 </div>
388 </div>
390 <!-- Describe the typesetting conventions here. -->
392 <!-- *********************************************************************** -->
393 <h2><a name="identifiers">Identifiers</a></h2>
394 <!-- *********************************************************************** -->
396 <div>
398 <p>LLVM identifiers come in two basic types: global and local. Global
399 identifiers (functions, global variables) begin with the <tt>'@'</tt>
400 character. Local identifiers (register names, types) begin with
401 the <tt>'%'</tt> character. Additionally, there are three different formats
402 for identifiers, for different purposes:</p>
404 <ol>
405 <li>Named values are represented as a string of characters with their prefix.
406 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
407 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
408 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
409 other characters in their names can be surrounded with quotes. Special
410 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
411 ASCII code for the character in hexadecimal. In this way, any character
412 can be used in a name value, even quotes themselves.</li>
414 <li>Unnamed values are represented as an unsigned numeric value with their
415 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
417 <li>Constants, which are described in a <a href="#constants">section about
418 constants</a>, below.</li>
419 </ol>
421 <p>LLVM requires that values start with a prefix for two reasons: Compilers
422 don't need to worry about name clashes with reserved words, and the set of
423 reserved words may be expanded in the future without penalty. Additionally,
424 unnamed identifiers allow a compiler to quickly come up with a temporary
425 variable without having to avoid symbol table conflicts.</p>
427 <p>Reserved words in LLVM are very similar to reserved words in other
428 languages. There are keywords for different opcodes
429 ('<tt><a href="#i_add">add</a></tt>',
430 '<tt><a href="#i_bitcast">bitcast</a></tt>',
431 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
432 ('<tt><a href="#t_void">void</a></tt>',
433 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
434 reserved words cannot conflict with variable names, because none of them
435 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
437 <p>Here is an example of LLVM code to multiply the integer variable
438 '<tt>%X</tt>' by 8:</p>
440 <p>The easy way:</p>
442 <pre class="doc_code">
443 %result = <a href="#i_mul">mul</a> i32 %X, 8
444 </pre>
446 <p>After strength reduction:</p>
448 <pre class="doc_code">
449 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
450 </pre>
452 <p>And the hard way:</p>
454 <pre class="doc_code">
455 %0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
456 %1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
457 %result = <a href="#i_add">add</a> i32 %1, %1
458 </pre>
460 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
461 lexical features of LLVM:</p>
463 <ol>
464 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
465 line.</li>
467 <li>Unnamed temporaries are created when the result of a computation is not
468 assigned to a named value.</li>
470 <li>Unnamed temporaries are numbered sequentially</li>
471 </ol>
473 <p>It also shows a convention that we follow in this document. When
474 demonstrating instructions, we will follow an instruction with a comment that
475 defines the type and name of value produced. Comments are shown in italic
476 text.</p>
478 </div>
480 <!-- *********************************************************************** -->
481 <h2><a name="highlevel">High Level Structure</a></h2>
482 <!-- *********************************************************************** -->
483 <div>
484 <!-- ======================================================================= -->
485 <h3>
486 <a name="modulestructure">Module Structure</a>
487 </h3>
489 <div>
491 <p>LLVM programs are composed of "Module"s, each of which is a translation unit
492 of the input programs. Each module consists of functions, global variables,
493 and symbol table entries. Modules may be combined together with the LLVM
494 linker, which merges function (and global variable) definitions, resolves
495 forward declarations, and merges symbol table entries. Here is an example of
496 the "hello world" module:</p>
498 <pre class="doc_code">
499 <i>; Declare the string constant as a global constant.</i>&nbsp;
500 <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>&nbsp;
502 <i>; External declaration of the puts function</i>&nbsp;
503 <a href="#functionstructure">declare</a> i32 @puts(i8*) <i>; i32 (i8*)* </i>&nbsp;
505 <i>; Definition of main function</i>
506 define i32 @main() { <i>; i32()* </i>&nbsp;
507 <i>; Convert [13 x i8]* to i8 *...</i>&nbsp;
508 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8*</i>&nbsp;
510 <i>; Call puts function to write out the string to stdout.</i>&nbsp;
511 <a href="#i_call">call</a> i32 @puts(i8* %cast210) <i>; i32</i>&nbsp;
512 <a href="#i_ret">ret</a> i32 0&nbsp;
515 <i>; Named metadata</i>
516 !1 = metadata !{i32 41}
517 !foo = !{!1, null}
518 </pre>
520 <p>This example is made up of a <a href="#globalvars">global variable</a> named
521 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
522 a <a href="#functionstructure">function definition</a> for
523 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
524 "<tt>foo"</tt>.</p>
526 <p>In general, a module is made up of a list of global values, where both
527 functions and global variables are global values. Global values are
528 represented by a pointer to a memory location (in this case, a pointer to an
529 array of char, and a pointer to a function), and have one of the
530 following <a href="#linkage">linkage types</a>.</p>
532 </div>
534 <!-- ======================================================================= -->
535 <h3>
536 <a name="linkage">Linkage Types</a>
537 </h3>
539 <div>
541 <p>All Global Variables and Functions have one of the following types of
542 linkage:</p>
544 <dl>
545 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
546 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
547 by objects in the current module. In particular, linking code into a
548 module with an private global value may cause the private to be renamed as
549 necessary to avoid collisions. Because the symbol is private to the
550 module, all references can be updated. This doesn't show up in any symbol
551 table in the object file.</dd>
553 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
554 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
555 assembler and evaluated by the linker. Unlike normal strong symbols, they
556 are removed by the linker from the final linked image (executable or
557 dynamic library).</dd>
559 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
560 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
561 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
562 linker. The symbols are removed by the linker from the final linked image
563 (executable or dynamic library).</dd>
565 <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
566 <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
567 of the object is not taken. For instance, functions that had an inline
568 definition, but the compiler decided not to inline it. Note,
569 unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
570 <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
571 visibility. The symbols are removed by the linker from the final linked
572 image (executable or dynamic library).</dd>
574 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
575 <dd>Similar to private, but the value shows as a local symbol
576 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
577 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
579 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
580 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
581 into the object file corresponding to the LLVM module. They exist to
582 allow inlining and other optimizations to take place given knowledge of
583 the definition of the global, which is known to be somewhere outside the
584 module. Globals with <tt>available_externally</tt> linkage are allowed to
585 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
586 This linkage type is only allowed on definitions, not declarations.</dd>
588 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
589 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
590 the same name when linkage occurs. This can be used to implement
591 some forms of inline functions, templates, or other code which must be
592 generated in each translation unit that uses it, but where the body may
593 be overridden with a more definitive definition later. Unreferenced
594 <tt>linkonce</tt> globals are allowed to be discarded. Note that
595 <tt>linkonce</tt> linkage does not actually allow the optimizer to
596 inline the body of this function into callers because it doesn't know if
597 this definition of the function is the definitive definition within the
598 program or whether it will be overridden by a stronger definition.
599 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
600 linkage.</dd>
602 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
603 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
604 <tt>linkonce</tt> linkage, except that unreferenced globals with
605 <tt>weak</tt> linkage may not be discarded. This is used for globals that
606 are declared "weak" in C source code.</dd>
608 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
609 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
610 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
611 global scope.
612 Symbols with "<tt>common</tt>" linkage are merged in the same way as
613 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
614 <tt>common</tt> symbols may not have an explicit section,
615 must have a zero initializer, and may not be marked '<a
616 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
617 have common linkage.</dd>
620 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
621 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
622 pointer to array type. When two global variables with appending linkage
623 are linked together, the two global arrays are appended together. This is
624 the LLVM, typesafe, equivalent of having the system linker append together
625 "sections" with identical names when .o files are linked.</dd>
627 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
628 <dd>The semantics of this linkage follow the ELF object file model: the symbol
629 is weak until linked, if not linked, the symbol becomes null instead of
630 being an undefined reference.</dd>
632 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
633 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
634 <dd>Some languages allow differing globals to be merged, such as two functions
635 with different semantics. Other languages, such as <tt>C++</tt>, ensure
636 that only equivalent globals are ever merged (the "one definition rule"
637 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
638 and <tt>weak_odr</tt> linkage types to indicate that the global will only
639 be merged with equivalent globals. These linkage types are otherwise the
640 same as their non-<tt>odr</tt> versions.</dd>
642 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
643 <dd>If none of the above identifiers are used, the global is externally
644 visible, meaning that it participates in linkage and can be used to
645 resolve external symbol references.</dd>
646 </dl>
648 <p>The next two types of linkage are targeted for Microsoft Windows platform
649 only. They are designed to support importing (exporting) symbols from (to)
650 DLLs (Dynamic Link Libraries).</p>
652 <dl>
653 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
654 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
655 or variable via a global pointer to a pointer that is set up by the DLL
656 exporting the symbol. On Microsoft Windows targets, the pointer name is
657 formed by combining <code>__imp_</code> and the function or variable
658 name.</dd>
660 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
661 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
662 pointer to a pointer in a DLL, so that it can be referenced with the
663 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
664 name is formed by combining <code>__imp_</code> and the function or
665 variable name.</dd>
666 </dl>
668 <p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
669 another module defined a "<tt>.LC0</tt>" variable and was linked with this
670 one, one of the two would be renamed, preventing a collision. Since
671 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
672 declarations), they are accessible outside of the current module.</p>
674 <p>It is illegal for a function <i>declaration</i> to have any linkage type
675 other than "externally visible", <tt>dllimport</tt>
676 or <tt>extern_weak</tt>.</p>
678 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
679 or <tt>weak_odr</tt> linkages.</p>
681 </div>
683 <!-- ======================================================================= -->
684 <h3>
685 <a name="callingconv">Calling Conventions</a>
686 </h3>
688 <div>
690 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
691 and <a href="#i_invoke">invokes</a> can all have an optional calling
692 convention specified for the call. The calling convention of any pair of
693 dynamic caller/callee must match, or the behavior of the program is
694 undefined. The following calling conventions are supported by LLVM, and more
695 may be added in the future:</p>
697 <dl>
698 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
699 <dd>This calling convention (the default if no other calling convention is
700 specified) matches the target C calling conventions. This calling
701 convention supports varargs function calls and tolerates some mismatch in
702 the declared prototype and implemented declaration of the function (as
703 does normal C).</dd>
705 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
706 <dd>This calling convention attempts to make calls as fast as possible
707 (e.g. by passing things in registers). This calling convention allows the
708 target to use whatever tricks it wants to produce fast code for the
709 target, without having to conform to an externally specified ABI
710 (Application Binary Interface).
711 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
712 when this or the GHC convention is used.</a> This calling convention
713 does not support varargs and requires the prototype of all callees to
714 exactly match the prototype of the function definition.</dd>
716 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
717 <dd>This calling convention attempts to make code in the caller as efficient
718 as possible under the assumption that the call is not commonly executed.
719 As such, these calls often preserve all registers so that the call does
720 not break any live ranges in the caller side. This calling convention
721 does not support varargs and requires the prototype of all callees to
722 exactly match the prototype of the function definition.</dd>
724 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
725 <dd>This calling convention has been implemented specifically for use by the
726 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
727 It passes everything in registers, going to extremes to achieve this by
728 disabling callee save registers. This calling convention should not be
729 used lightly but only for specific situations such as an alternative to
730 the <em>register pinning</em> performance technique often used when
731 implementing functional programming languages.At the moment only X86
732 supports this convention and it has the following limitations:
733 <ul>
734 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
735 floating point types are supported.</li>
736 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
737 6 floating point parameters.</li>
738 </ul>
739 This calling convention supports
740 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
741 requires both the caller and callee are using it.
742 </dd>
744 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
745 <dd>Any calling convention may be specified by number, allowing
746 target-specific calling conventions to be used. Target specific calling
747 conventions start at 64.</dd>
748 </dl>
750 <p>More calling conventions can be added/defined on an as-needed basis, to
751 support Pascal conventions or any other well-known target-independent
752 convention.</p>
754 </div>
756 <!-- ======================================================================= -->
757 <h3>
758 <a name="visibility">Visibility Styles</a>
759 </h3>
761 <div>
763 <p>All Global Variables and Functions have one of the following visibility
764 styles:</p>
766 <dl>
767 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
768 <dd>On targets that use the ELF object file format, default visibility means
769 that the declaration is visible to other modules and, in shared libraries,
770 means that the declared entity may be overridden. On Darwin, default
771 visibility means that the declaration is visible to other modules. Default
772 visibility corresponds to "external linkage" in the language.</dd>
774 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
775 <dd>Two declarations of an object with hidden visibility refer to the same
776 object if they are in the same shared object. Usually, hidden visibility
777 indicates that the symbol will not be placed into the dynamic symbol
778 table, so no other module (executable or shared library) can reference it
779 directly.</dd>
781 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
782 <dd>On ELF, protected visibility indicates that the symbol will be placed in
783 the dynamic symbol table, but that references within the defining module
784 will bind to the local symbol. That is, the symbol cannot be overridden by
785 another module.</dd>
786 </dl>
788 </div>
790 <!-- ======================================================================= -->
791 <h3>
792 <a name="namedtypes">Named Types</a>
793 </h3>
795 <div>
797 <p>LLVM IR allows you to specify name aliases for certain types. This can make
798 it easier to read the IR and make the IR more condensed (particularly when
799 recursive types are involved). An example of a name specification is:</p>
801 <pre class="doc_code">
802 %mytype = type { %mytype*, i32 }
803 </pre>
805 <p>You may give a name to any <a href="#typesystem">type</a> except
806 "<a href="#t_void">void</a>". Type name aliases may be used anywhere a type
807 is expected with the syntax "%mytype".</p>
809 <p>Note that type names are aliases for the structural type that they indicate,
810 and that you can therefore specify multiple names for the same type. This
811 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
812 uses structural typing, the name is not part of the type. When printing out
813 LLVM IR, the printer will pick <em>one name</em> to render all types of a
814 particular shape. This means that if you have code where two different
815 source types end up having the same LLVM type, that the dumper will sometimes
816 print the "wrong" or unexpected type. This is an important design point and
817 isn't going to change.</p>
819 </div>
821 <!-- ======================================================================= -->
822 <h3>
823 <a name="globalvars">Global Variables</a>
824 </h3>
826 <div>
828 <p>Global variables define regions of memory allocated at compilation time
829 instead of run-time. Global variables may optionally be initialized, may
830 have an explicit section to be placed in, and may have an optional explicit
831 alignment specified. A variable may be defined as "thread_local", which
832 means that it will not be shared by threads (each thread will have a
833 separated copy of the variable). A variable may be defined as a global
834 "constant," which indicates that the contents of the variable
835 will <b>never</b> be modified (enabling better optimization, allowing the
836 global data to be placed in the read-only section of an executable, etc).
837 Note that variables that need runtime initialization cannot be marked
838 "constant" as there is a store to the variable.</p>
840 <p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
841 constant, even if the final definition of the global is not. This capability
842 can be used to enable slightly better optimization of the program, but
843 requires the language definition to guarantee that optimizations based on the
844 'constantness' are valid for the translation units that do not include the
845 definition.</p>
847 <p>As SSA values, global variables define pointer values that are in scope
848 (i.e. they dominate) all basic blocks in the program. Global variables
849 always define a pointer to their "content" type because they describe a
850 region of memory, and all memory objects in LLVM are accessed through
851 pointers.</p>
853 <p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
854 that the address is not significant, only the content. Constants marked
855 like this can be merged with other constants if they have the same
856 initializer. Note that a constant with significant address <em>can</em>
857 be merged with a <tt>unnamed_addr</tt> constant, the result being a
858 constant whose address is significant.</p>
860 <p>A global variable may be declared to reside in a target-specific numbered
861 address space. For targets that support them, address spaces may affect how
862 optimizations are performed and/or what target instructions are used to
863 access the variable. The default address space is zero. The address space
864 qualifier must precede any other attributes.</p>
866 <p>LLVM allows an explicit section to be specified for globals. If the target
867 supports it, it will emit globals to the section specified.</p>
869 <p>An explicit alignment may be specified for a global, which must be a power
870 of 2. If not present, or if the alignment is set to zero, the alignment of
871 the global is set by the target to whatever it feels convenient. If an
872 explicit alignment is specified, the global is forced to have exactly that
873 alignment. Targets and optimizers are not allowed to over-align the global
874 if the global has an assigned section. In this case, the extra alignment
875 could be observable: for example, code could assume that the globals are
876 densely packed in their section and try to iterate over them as an array,
877 alignment padding would break this iteration.</p>
879 <p>For example, the following defines a global in a numbered address space with
880 an initializer, section, and alignment:</p>
882 <pre class="doc_code">
883 @G = addrspace(5) constant float 1.0, section "foo", align 4
884 </pre>
886 </div>
889 <!-- ======================================================================= -->
890 <h3>
891 <a name="functionstructure">Functions</a>
892 </h3>
894 <div>
896 <p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
897 optional <a href="#linkage">linkage type</a>, an optional
898 <a href="#visibility">visibility style</a>, an optional
899 <a href="#callingconv">calling convention</a>,
900 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
901 <a href="#paramattrs">parameter attribute</a> for the return type, a function
902 name, a (possibly empty) argument list (each with optional
903 <a href="#paramattrs">parameter attributes</a>), optional
904 <a href="#fnattrs">function attributes</a>, an optional section, an optional
905 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
906 curly brace, a list of basic blocks, and a closing curly brace.</p>
908 <p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
909 optional <a href="#linkage">linkage type</a>, an optional
910 <a href="#visibility">visibility style</a>, an optional
911 <a href="#callingconv">calling convention</a>,
912 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
913 <a href="#paramattrs">parameter attribute</a> for the return type, a function
914 name, a possibly empty list of arguments, an optional alignment, and an
915 optional <a href="#gc">garbage collector name</a>.</p>
917 <p>A function definition contains a list of basic blocks, forming the CFG
918 (Control Flow Graph) for the function. Each basic block may optionally start
919 with a label (giving the basic block a symbol table entry), contains a list
920 of instructions, and ends with a <a href="#terminators">terminator</a>
921 instruction (such as a branch or function return).</p>
923 <p>The first basic block in a function is special in two ways: it is immediately
924 executed on entrance to the function, and it is not allowed to have
925 predecessor basic blocks (i.e. there can not be any branches to the entry
926 block of a function). Because the block can have no predecessors, it also
927 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
929 <p>LLVM allows an explicit section to be specified for functions. If the target
930 supports it, it will emit functions to the section specified.</p>
932 <p>An explicit alignment may be specified for a function. If not present, or if
933 the alignment is set to zero, the alignment of the function is set by the
934 target to whatever it feels convenient. If an explicit alignment is
935 specified, the function is forced to have at least that much alignment. All
936 alignments must be a power of 2.</p>
938 <p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
939 be significant and two identical functions can be merged</p>.
941 <h5>Syntax:</h5>
942 <pre class="doc_code">
943 define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
944 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
945 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
946 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
947 [<a href="#gc">gc</a>] { ... }
948 </pre>
950 </div>
952 <!-- ======================================================================= -->
953 <h3>
954 <a name="aliasstructure">Aliases</a>
955 </h3>
957 <div>
959 <p>Aliases act as "second name" for the aliasee value (which can be either
960 function, global variable, another alias or bitcast of global value). Aliases
961 may have an optional <a href="#linkage">linkage type</a>, and an
962 optional <a href="#visibility">visibility style</a>.</p>
964 <h5>Syntax:</h5>
965 <pre class="doc_code">
966 @&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
967 </pre>
969 </div>
971 <!-- ======================================================================= -->
972 <h3>
973 <a name="namedmetadatastructure">Named Metadata</a>
974 </h3>
976 <div>
978 <p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
979 nodes</a> (but not metadata strings) are the only valid operands for
980 a named metadata.</p>
982 <h5>Syntax:</h5>
983 <pre class="doc_code">
984 ; Some unnamed metadata nodes, which are referenced by the named metadata.
985 !0 = metadata !{metadata !"zero"}
986 !1 = metadata !{metadata !"one"}
987 !2 = metadata !{metadata !"two"}
988 ; A named metadata.
989 !name = !{!0, !1, !2}
990 </pre>
992 </div>
994 <!-- ======================================================================= -->
995 <h3>
996 <a name="paramattrs">Parameter Attributes</a>
997 </h3>
999 <div>
1001 <p>The return type and each parameter of a function type may have a set of
1002 <i>parameter attributes</i> associated with them. Parameter attributes are
1003 used to communicate additional information about the result or parameters of
1004 a function. Parameter attributes are considered to be part of the function,
1005 not of the function type, so functions with different parameter attributes
1006 can have the same function type.</p>
1008 <p>Parameter attributes are simple keywords that follow the type specified. If
1009 multiple parameter attributes are needed, they are space separated. For
1010 example:</p>
1012 <pre class="doc_code">
1013 declare i32 @printf(i8* noalias nocapture, ...)
1014 declare i32 @atoi(i8 zeroext)
1015 declare signext i8 @returns_signed_char()
1016 </pre>
1018 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
1019 <tt>readonly</tt>) come immediately after the argument list.</p>
1021 <p>Currently, only the following parameter attributes are defined:</p>
1023 <dl>
1024 <dt><tt><b>zeroext</b></tt></dt>
1025 <dd>This indicates to the code generator that the parameter or return value
1026 should be zero-extended to the extent required by the target's ABI (which
1027 is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1028 parameter) or the callee (for a return value).</dd>
1030 <dt><tt><b>signext</b></tt></dt>
1031 <dd>This indicates to the code generator that the parameter or return value
1032 should be sign-extended to the extent required by the target's ABI (which
1033 is usually 32-bits) by the caller (for a parameter) or the callee (for a
1034 return value).</dd>
1036 <dt><tt><b>inreg</b></tt></dt>
1037 <dd>This indicates that this parameter or return value should be treated in a
1038 special target-dependent fashion during while emitting code for a function
1039 call or return (usually, by putting it in a register as opposed to memory,
1040 though some targets use it to distinguish between two different kinds of
1041 registers). Use of this attribute is target-specific.</dd>
1043 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
1044 <dd><p>This indicates that the pointer parameter should really be passed by
1045 value to the function. The attribute implies that a hidden copy of the
1046 pointee
1047 is made between the caller and the callee, so the callee is unable to
1048 modify the value in the callee. This attribute is only valid on LLVM
1049 pointer arguments. It is generally used to pass structs and arrays by
1050 value, but is also valid on pointers to scalars. The copy is considered
1051 to belong to the caller not the callee (for example,
1052 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1053 <tt>byval</tt> parameters). This is not a valid attribute for return
1054 values.</p>
1056 <p>The byval attribute also supports specifying an alignment with
1057 the align attribute. It indicates the alignment of the stack slot to
1058 form and the known alignment of the pointer specified to the call site. If
1059 the alignment is not specified, then the code generator makes a
1060 target-specific assumption.</p></dd>
1062 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
1063 <dd>This indicates that the pointer parameter specifies the address of a
1064 structure that is the return value of the function in the source program.
1065 This pointer must be guaranteed by the caller to be valid: loads and
1066 stores to the structure may be assumed by the callee to not to trap. This
1067 may only be applied to the first parameter. This is not a valid attribute
1068 for return values. </dd>
1070 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
1071 <dd>This indicates that pointer values
1072 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
1073 value do not alias pointer values which are not <i>based</i> on it,
1074 ignoring certain "irrelevant" dependencies.
1075 For a call to the parent function, dependencies between memory
1076 references from before or after the call and from those during the call
1077 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1078 return value used in that call.
1079 The caller shares the responsibility with the callee for ensuring that
1080 these requirements are met.
1081 For further details, please see the discussion of the NoAlias response in
1082 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1083 <br>
1084 Note that this definition of <tt>noalias</tt> is intentionally
1085 similar to the definition of <tt>restrict</tt> in C99 for function
1086 arguments, though it is slightly weaker.
1087 <br>
1088 For function return values, C99's <tt>restrict</tt> is not meaningful,
1089 while LLVM's <tt>noalias</tt> is.
1090 </dd>
1092 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
1093 <dd>This indicates that the callee does not make any copies of the pointer
1094 that outlive the callee itself. This is not a valid attribute for return
1095 values.</dd>
1097 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
1098 <dd>This indicates that the pointer parameter can be excised using the
1099 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1100 attribute for return values.</dd>
1101 </dl>
1103 </div>
1105 <!-- ======================================================================= -->
1106 <h3>
1107 <a name="gc">Garbage Collector Names</a>
1108 </h3>
1110 <div>
1112 <p>Each function may specify a garbage collector name, which is simply a
1113 string:</p>
1115 <pre class="doc_code">
1116 define void @f() gc "name" { ... }
1117 </pre>
1119 <p>The compiler declares the supported values of <i>name</i>. Specifying a
1120 collector which will cause the compiler to alter its output in order to
1121 support the named garbage collection algorithm.</p>
1123 </div>
1125 <!-- ======================================================================= -->
1126 <h3>
1127 <a name="fnattrs">Function Attributes</a>
1128 </h3>
1130 <div>
1132 <p>Function attributes are set to communicate additional information about a
1133 function. Function attributes are considered to be part of the function, not
1134 of the function type, so functions with different parameter attributes can
1135 have the same function type.</p>
1137 <p>Function attributes are simple keywords that follow the type specified. If
1138 multiple attributes are needed, they are space separated. For example:</p>
1140 <pre class="doc_code">
1141 define void @f() noinline { ... }
1142 define void @f() alwaysinline { ... }
1143 define void @f() alwaysinline optsize { ... }
1144 define void @f() optsize { ... }
1145 </pre>
1147 <dl>
1148 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1149 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1150 the backend should forcibly align the stack pointer. Specify the
1151 desired alignment, which must be a power of two, in parentheses.
1153 <dt><tt><b>alwaysinline</b></tt></dt>
1154 <dd>This attribute indicates that the inliner should attempt to inline this
1155 function into callers whenever possible, ignoring any active inlining size
1156 threshold for this caller.</dd>
1158 <dt><tt><b>hotpatch</b></tt></dt>
1159 <dd>This attribute indicates that the function should be 'hotpatchable',
1160 meaning the function can be patched and/or hooked even while it is
1161 loaded into memory. On x86, the function prologue will be preceded
1162 by six bytes of padding and will begin with a two-byte instruction.
1163 Most of the functions in the Windows system DLLs in Windows XP SP2 or
1164 higher were compiled in this fashion.</dd>
1166 <dt><tt><b>nonlazybind</b></tt></dt>
1167 <dd>This attribute suppresses lazy symbol binding for the function. This
1168 may make calls to the function faster, at the cost of extra program
1169 startup time if the function is not called during program startup.</dd>
1171 <dt><tt><b>inlinehint</b></tt></dt>
1172 <dd>This attribute indicates that the source code contained a hint that inlining
1173 this function is desirable (such as the "inline" keyword in C/C++). It
1174 is just a hint; it imposes no requirements on the inliner.</dd>
1176 <dt><tt><b>naked</b></tt></dt>
1177 <dd>This attribute disables prologue / epilogue emission for the function.
1178 This can have very system-specific consequences.</dd>
1180 <dt><tt><b>noimplicitfloat</b></tt></dt>
1181 <dd>This attributes disables implicit floating point instructions.</dd>
1183 <dt><tt><b>noinline</b></tt></dt>
1184 <dd>This attribute indicates that the inliner should never inline this
1185 function in any situation. This attribute may not be used together with
1186 the <tt>alwaysinline</tt> attribute.</dd>
1188 <dt><tt><b>noredzone</b></tt></dt>
1189 <dd>This attribute indicates that the code generator should not use a red
1190 zone, even if the target-specific ABI normally permits it.</dd>
1192 <dt><tt><b>noreturn</b></tt></dt>
1193 <dd>This function attribute indicates that the function never returns
1194 normally. This produces undefined behavior at runtime if the function
1195 ever does dynamically return.</dd>
1197 <dt><tt><b>nounwind</b></tt></dt>
1198 <dd>This function attribute indicates that the function never returns with an
1199 unwind or exceptional control flow. If the function does unwind, its
1200 runtime behavior is undefined.</dd>
1202 <dt><tt><b>optsize</b></tt></dt>
1203 <dd>This attribute suggests that optimization passes and code generator passes
1204 make choices that keep the code size of this function low, and otherwise
1205 do optimizations specifically to reduce code size.</dd>
1207 <dt><tt><b>readnone</b></tt></dt>
1208 <dd>This attribute indicates that the function computes its result (or decides
1209 to unwind an exception) based strictly on its arguments, without
1210 dereferencing any pointer arguments or otherwise accessing any mutable
1211 state (e.g. memory, control registers, etc) visible to caller functions.
1212 It does not write through any pointer arguments
1213 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1214 changes any state visible to callers. This means that it cannot unwind
1215 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1216 could use the <tt>unwind</tt> instruction.</dd>
1218 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
1219 <dd>This attribute indicates that the function does not write through any
1220 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1221 arguments) or otherwise modify any state (e.g. memory, control registers,
1222 etc) visible to caller functions. It may dereference pointer arguments
1223 and read state that may be set in the caller. A readonly function always
1224 returns the same value (or unwinds an exception identically) when called
1225 with the same set of arguments and global state. It cannot unwind an
1226 exception by calling the <tt>C++</tt> exception throwing methods, but may
1227 use the <tt>unwind</tt> instruction.</dd>
1229 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
1230 <dd>This attribute indicates that the function should emit a stack smashing
1231 protector. It is in the form of a "canary"&mdash;a random value placed on
1232 the stack before the local variables that's checked upon return from the
1233 function to see if it has been overwritten. A heuristic is used to
1234 determine if a function needs stack protectors or not.<br>
1235 <br>
1236 If a function that has an <tt>ssp</tt> attribute is inlined into a
1237 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1238 function will have an <tt>ssp</tt> attribute.</dd>
1240 <dt><tt><b>sspreq</b></tt></dt>
1241 <dd>This attribute indicates that the function should <em>always</em> emit a
1242 stack smashing protector. This overrides
1243 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1244 <br>
1245 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1246 function that doesn't have an <tt>sspreq</tt> attribute or which has
1247 an <tt>ssp</tt> attribute, then the resulting function will have
1248 an <tt>sspreq</tt> attribute.</dd>
1249 </dl>
1251 </div>
1253 <!-- ======================================================================= -->
1254 <h3>
1255 <a name="moduleasm">Module-Level Inline Assembly</a>
1256 </h3>
1258 <div>
1260 <p>Modules may contain "module-level inline asm" blocks, which corresponds to
1261 the GCC "file scope inline asm" blocks. These blocks are internally
1262 concatenated by LLVM and treated as a single unit, but may be separated in
1263 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
1265 <pre class="doc_code">
1266 module asm "inline asm code goes here"
1267 module asm "more can go here"
1268 </pre>
1270 <p>The strings can contain any character by escaping non-printable characters.
1271 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1272 for the number.</p>
1274 <p>The inline asm code is simply printed to the machine code .s file when
1275 assembly code is generated.</p>
1277 </div>
1279 <!-- ======================================================================= -->
1280 <h3>
1281 <a name="datalayout">Data Layout</a>
1282 </h3>
1284 <div>
1286 <p>A module may specify a target specific data layout string that specifies how
1287 data is to be laid out in memory. The syntax for the data layout is
1288 simply:</p>
1290 <pre class="doc_code">
1291 target datalayout = "<i>layout specification</i>"
1292 </pre>
1294 <p>The <i>layout specification</i> consists of a list of specifications
1295 separated by the minus sign character ('-'). Each specification starts with
1296 a letter and may include other information after the letter to define some
1297 aspect of the data layout. The specifications accepted are as follows:</p>
1299 <dl>
1300 <dt><tt>E</tt></dt>
1301 <dd>Specifies that the target lays out data in big-endian form. That is, the
1302 bits with the most significance have the lowest address location.</dd>
1304 <dt><tt>e</tt></dt>
1305 <dd>Specifies that the target lays out data in little-endian form. That is,
1306 the bits with the least significance have the lowest address
1307 location.</dd>
1309 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1310 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1311 <i>preferred</i> alignments. All sizes are in bits. Specifying
1312 the <i>pref</i> alignment is optional. If omitted, the
1313 preceding <tt>:</tt> should be omitted too.</dd>
1315 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1316 <dd>This specifies the alignment for an integer type of a given bit
1317 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1319 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1320 <dd>This specifies the alignment for a vector type of a given bit
1321 <i>size</i>.</dd>
1323 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1324 <dd>This specifies the alignment for a floating point type of a given bit
1325 <i>size</i>. Only values of <i>size</i> that are supported by the target
1326 will work. 32 (float) and 64 (double) are supported on all targets;
1327 80 or 128 (different flavors of long double) are also supported on some
1328 targets.
1330 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1331 <dd>This specifies the alignment for an aggregate type of a given bit
1332 <i>size</i>.</dd>
1334 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1335 <dd>This specifies the alignment for a stack object of a given bit
1336 <i>size</i>.</dd>
1338 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1339 <dd>This specifies a set of native integer widths for the target CPU
1340 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1341 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
1342 this set are considered to support most general arithmetic
1343 operations efficiently.</dd>
1344 </dl>
1346 <p>When constructing the data layout for a given target, LLVM starts with a
1347 default set of specifications which are then (possibly) overridden by the
1348 specifications in the <tt>datalayout</tt> keyword. The default specifications
1349 are given in this list:</p>
1351 <ul>
1352 <li><tt>E</tt> - big endian</li>
1353 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
1354 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1355 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1356 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1357 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
1358 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
1359 alignment of 64-bits</li>
1360 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1361 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1362 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1363 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1364 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1365 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
1366 </ul>
1368 <p>When LLVM is determining the alignment for a given type, it uses the
1369 following rules:</p>
1371 <ol>
1372 <li>If the type sought is an exact match for one of the specifications, that
1373 specification is used.</li>
1375 <li>If no match is found, and the type sought is an integer type, then the
1376 smallest integer type that is larger than the bitwidth of the sought type
1377 is used. If none of the specifications are larger than the bitwidth then
1378 the the largest integer type is used. For example, given the default
1379 specifications above, the i7 type will use the alignment of i8 (next
1380 largest) while both i65 and i256 will use the alignment of i64 (largest
1381 specified).</li>
1383 <li>If no match is found, and the type sought is a vector type, then the
1384 largest vector type that is smaller than the sought vector type will be
1385 used as a fall back. This happens because &lt;128 x double&gt; can be
1386 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
1387 </ol>
1389 </div>
1391 <!-- ======================================================================= -->
1392 <h3>
1393 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1394 </h3>
1396 <div>
1398 <p>Any memory access must be done through a pointer value associated
1399 with an address range of the memory access, otherwise the behavior
1400 is undefined. Pointer values are associated with address ranges
1401 according to the following rules:</p>
1403 <ul>
1404 <li>A pointer value is associated with the addresses associated with
1405 any value it is <i>based</i> on.
1406 <li>An address of a global variable is associated with the address
1407 range of the variable's storage.</li>
1408 <li>The result value of an allocation instruction is associated with
1409 the address range of the allocated storage.</li>
1410 <li>A null pointer in the default address-space is associated with
1411 no address.</li>
1412 <li>An integer constant other than zero or a pointer value returned
1413 from a function not defined within LLVM may be associated with address
1414 ranges allocated through mechanisms other than those provided by
1415 LLVM. Such ranges shall not overlap with any ranges of addresses
1416 allocated by mechanisms provided by LLVM.</li>
1417 </ul>
1419 <p>A pointer value is <i>based</i> on another pointer value according
1420 to the following rules:</p>
1422 <ul>
1423 <li>A pointer value formed from a
1424 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1425 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1426 <li>The result value of a
1427 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1428 of the <tt>bitcast</tt>.</li>
1429 <li>A pointer value formed by an
1430 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1431 pointer values that contribute (directly or indirectly) to the
1432 computation of the pointer's value.</li>
1433 <li>The "<i>based</i> on" relationship is transitive.</li>
1434 </ul>
1436 <p>Note that this definition of <i>"based"</i> is intentionally
1437 similar to the definition of <i>"based"</i> in C99, though it is
1438 slightly weaker.</p>
1440 <p>LLVM IR does not associate types with memory. The result type of a
1441 <tt><a href="#i_load">load</a></tt> merely indicates the size and
1442 alignment of the memory from which to load, as well as the
1443 interpretation of the value. The first operand type of a
1444 <tt><a href="#i_store">store</a></tt> similarly only indicates the size
1445 and alignment of the store.</p>
1447 <p>Consequently, type-based alias analysis, aka TBAA, aka
1448 <tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1449 LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1450 additional information which specialized optimization passes may use
1451 to implement type-based alias analysis.</p>
1453 </div>
1455 <!-- ======================================================================= -->
1456 <h3>
1457 <a name="volatile">Volatile Memory Accesses</a>
1458 </h3>
1460 <div>
1462 <p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1463 href="#i_store"><tt>store</tt></a>s, and <a
1464 href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1465 The optimizers must not change the number of volatile operations or change their
1466 order of execution relative to other volatile operations. The optimizers
1467 <i>may</i> change the order of volatile operations relative to non-volatile
1468 operations. This is not Java's "volatile" and has no cross-thread
1469 synchronization behavior.</p>
1471 </div>
1473 </div>
1475 <!-- *********************************************************************** -->
1476 <h2><a name="typesystem">Type System</a></h2>
1477 <!-- *********************************************************************** -->
1479 <div>
1481 <p>The LLVM type system is one of the most important features of the
1482 intermediate representation. Being typed enables a number of optimizations
1483 to be performed on the intermediate representation directly, without having
1484 to do extra analyses on the side before the transformation. A strong type
1485 system makes it easier to read the generated code and enables novel analyses
1486 and transformations that are not feasible to perform on normal three address
1487 code representations.</p>
1489 <!-- ======================================================================= -->
1490 <h3>
1491 <a name="t_classifications">Type Classifications</a>
1492 </h3>
1494 <div>
1496 <p>The types fall into a few useful classifications:</p>
1498 <table border="1" cellspacing="0" cellpadding="4">
1499 <tbody>
1500 <tr><th>Classification</th><th>Types</th></tr>
1501 <tr>
1502 <td><a href="#t_integer">integer</a></td>
1503 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1504 </tr>
1505 <tr>
1506 <td><a href="#t_floating">floating point</a></td>
1507 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
1508 </tr>
1509 <tr>
1510 <td><a name="t_firstclass">first class</a></td>
1511 <td><a href="#t_integer">integer</a>,
1512 <a href="#t_floating">floating point</a>,
1513 <a href="#t_pointer">pointer</a>,
1514 <a href="#t_vector">vector</a>,
1515 <a href="#t_struct">structure</a>,
1516 <a href="#t_array">array</a>,
1517 <a href="#t_label">label</a>,
1518 <a href="#t_metadata">metadata</a>.
1519 </td>
1520 </tr>
1521 <tr>
1522 <td><a href="#t_primitive">primitive</a></td>
1523 <td><a href="#t_label">label</a>,
1524 <a href="#t_void">void</a>,
1525 <a href="#t_integer">integer</a>,
1526 <a href="#t_floating">floating point</a>,
1527 <a href="#t_x86mmx">x86mmx</a>,
1528 <a href="#t_metadata">metadata</a>.</td>
1529 </tr>
1530 <tr>
1531 <td><a href="#t_derived">derived</a></td>
1532 <td><a href="#t_array">array</a>,
1533 <a href="#t_function">function</a>,
1534 <a href="#t_pointer">pointer</a>,
1535 <a href="#t_struct">structure</a>,
1536 <a href="#t_vector">vector</a>,
1537 <a href="#t_opaque">opaque</a>.
1538 </td>
1539 </tr>
1540 </tbody>
1541 </table>
1543 <p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1544 important. Values of these types are the only ones which can be produced by
1545 instructions.</p>
1547 </div>
1549 <!-- ======================================================================= -->
1550 <h3>
1551 <a name="t_primitive">Primitive Types</a>
1552 </h3>
1554 <div>
1556 <p>The primitive types are the fundamental building blocks of the LLVM
1557 system.</p>
1559 <!-- _______________________________________________________________________ -->
1560 <h4>
1561 <a name="t_integer">Integer Type</a>
1562 </h4>
1564 <div>
1566 <h5>Overview:</h5>
1567 <p>The integer type is a very simple type that simply specifies an arbitrary
1568 bit width for the integer type desired. Any bit width from 1 bit to
1569 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1571 <h5>Syntax:</h5>
1572 <pre>
1574 </pre>
1576 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1577 value.</p>
1579 <h5>Examples:</h5>
1580 <table class="layout">
1581 <tr class="layout">
1582 <td class="left"><tt>i1</tt></td>
1583 <td class="left">a single-bit integer.</td>
1584 </tr>
1585 <tr class="layout">
1586 <td class="left"><tt>i32</tt></td>
1587 <td class="left">a 32-bit integer.</td>
1588 </tr>
1589 <tr class="layout">
1590 <td class="left"><tt>i1942652</tt></td>
1591 <td class="left">a really big integer of over 1 million bits.</td>
1592 </tr>
1593 </table>
1595 </div>
1597 <!-- _______________________________________________________________________ -->
1598 <h4>
1599 <a name="t_floating">Floating Point Types</a>
1600 </h4>
1602 <div>
1604 <table>
1605 <tbody>
1606 <tr><th>Type</th><th>Description</th></tr>
1607 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1608 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1609 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1610 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1611 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1612 </tbody>
1613 </table>
1615 </div>
1617 <!-- _______________________________________________________________________ -->
1618 <h4>
1619 <a name="t_x86mmx">X86mmx Type</a>
1620 </h4>
1622 <div>
1624 <h5>Overview:</h5>
1625 <p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.</p>
1627 <h5>Syntax:</h5>
1628 <pre>
1629 x86mmx
1630 </pre>
1632 </div>
1634 <!-- _______________________________________________________________________ -->
1635 <h4>
1636 <a name="t_void">Void Type</a>
1637 </h4>
1639 <div>
1641 <h5>Overview:</h5>
1642 <p>The void type does not represent any value and has no size.</p>
1644 <h5>Syntax:</h5>
1645 <pre>
1646 void
1647 </pre>
1649 </div>
1651 <!-- _______________________________________________________________________ -->
1652 <h4>
1653 <a name="t_label">Label Type</a>
1654 </h4>
1656 <div>
1658 <h5>Overview:</h5>
1659 <p>The label type represents code labels.</p>
1661 <h5>Syntax:</h5>
1662 <pre>
1663 label
1664 </pre>
1666 </div>
1668 <!-- _______________________________________________________________________ -->
1669 <h4>
1670 <a name="t_metadata">Metadata Type</a>
1671 </h4>
1673 <div>
1675 <h5>Overview:</h5>
1676 <p>The metadata type represents embedded metadata. No derived types may be
1677 created from metadata except for <a href="#t_function">function</a>
1678 arguments.
1680 <h5>Syntax:</h5>
1681 <pre>
1682 metadata
1683 </pre>
1685 </div>
1687 </div>
1689 <!-- ======================================================================= -->
1690 <h3>
1691 <a name="t_derived">Derived Types</a>
1692 </h3>
1694 <div>
1696 <p>The real power in LLVM comes from the derived types in the system. This is
1697 what allows a programmer to represent arrays, functions, pointers, and other
1698 useful types. Each of these types contain one or more element types which
1699 may be a primitive type, or another derived type. For example, it is
1700 possible to have a two dimensional array, using an array as the element type
1701 of another array.</p>
1703 </div>
1706 <!-- _______________________________________________________________________ -->
1707 <h4>
1708 <a name="t_aggregate">Aggregate Types</a>
1709 </h4>
1711 <div>
1713 <p>Aggregate Types are a subset of derived types that can contain multiple
1714 member types. <a href="#t_array">Arrays</a>,
1715 <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
1716 aggregate types.</p>
1718 </div>
1720 <!-- _______________________________________________________________________ -->
1721 <h4>
1722 <a name="t_array">Array Type</a>
1723 </h4>
1725 <div>
1727 <h5>Overview:</h5>
1728 <p>The array type is a very simple derived type that arranges elements
1729 sequentially in memory. The array type requires a size (number of elements)
1730 and an underlying data type.</p>
1732 <h5>Syntax:</h5>
1733 <pre>
1734 [&lt;# elements&gt; x &lt;elementtype&gt;]
1735 </pre>
1737 <p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1738 be any type with a size.</p>
1740 <h5>Examples:</h5>
1741 <table class="layout">
1742 <tr class="layout">
1743 <td class="left"><tt>[40 x i32]</tt></td>
1744 <td class="left">Array of 40 32-bit integer values.</td>
1745 </tr>
1746 <tr class="layout">
1747 <td class="left"><tt>[41 x i32]</tt></td>
1748 <td class="left">Array of 41 32-bit integer values.</td>
1749 </tr>
1750 <tr class="layout">
1751 <td class="left"><tt>[4 x i8]</tt></td>
1752 <td class="left">Array of 4 8-bit integer values.</td>
1753 </tr>
1754 </table>
1755 <p>Here are some examples of multidimensional arrays:</p>
1756 <table class="layout">
1757 <tr class="layout">
1758 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1759 <td class="left">3x4 array of 32-bit integer values.</td>
1760 </tr>
1761 <tr class="layout">
1762 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1763 <td class="left">12x10 array of single precision floating point values.</td>
1764 </tr>
1765 <tr class="layout">
1766 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1767 <td class="left">2x3x4 array of 16-bit integer values.</td>
1768 </tr>
1769 </table>
1771 <p>There is no restriction on indexing beyond the end of the array implied by
1772 a static type (though there are restrictions on indexing beyond the bounds
1773 of an allocated object in some cases). This means that single-dimension
1774 'variable sized array' addressing can be implemented in LLVM with a zero
1775 length array type. An implementation of 'pascal style arrays' in LLVM could
1776 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
1778 </div>
1780 <!-- _______________________________________________________________________ -->
1781 <h4>
1782 <a name="t_function">Function Type</a>
1783 </h4>
1785 <div>
1787 <h5>Overview:</h5>
1788 <p>The function type can be thought of as a function signature. It consists of
1789 a return type and a list of formal parameter types. The return type of a
1790 function type is a first class type or a void type.</p>
1792 <h5>Syntax:</h5>
1793 <pre>
1794 &lt;returntype&gt; (&lt;parameter list&gt;)
1795 </pre>
1797 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1798 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1799 which indicates that the function takes a variable number of arguments.
1800 Variable argument functions can access their arguments with
1801 the <a href="#int_varargs">variable argument handling intrinsic</a>
1802 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
1803 <a href="#t_label">label</a>.</p>
1805 <h5>Examples:</h5>
1806 <table class="layout">
1807 <tr class="layout">
1808 <td class="left"><tt>i32 (i32)</tt></td>
1809 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1810 </td>
1811 </tr><tr class="layout">
1812 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
1813 </tt></td>
1814 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1815 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
1816 returning <tt>float</tt>.
1817 </td>
1818 </tr><tr class="layout">
1819 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1820 <td class="left">A vararg function that takes at least one
1821 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1822 which returns an integer. This is the signature for <tt>printf</tt> in
1823 LLVM.
1824 </td>
1825 </tr><tr class="layout">
1826 <td class="left"><tt>{i32, i32} (i32)</tt></td>
1827 <td class="left">A function taking an <tt>i32</tt>, returning a
1828 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
1829 </td>
1830 </tr>
1831 </table>
1833 </div>
1835 <!-- _______________________________________________________________________ -->
1836 <h4>
1837 <a name="t_struct">Structure Type</a>
1838 </h4>
1840 <div>
1842 <h5>Overview:</h5>
1843 <p>The structure type is used to represent a collection of data members together
1844 in memory. The elements of a structure may be any type that has a size.</p>
1846 <p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
1847 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
1848 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1849 Structures in registers are accessed using the
1850 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
1851 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
1853 <p>Structures may optionally be "packed" structures, which indicate that the
1854 alignment of the struct is one byte, and that there is no padding between
1855 the elements. In non-packed structs, padding between field types is defined
1856 by the target data string to match the underlying processor.</p>
1858 <p>Structures can either be "anonymous" or "named". An anonymous structure is
1859 defined inline with other types (e.g. <tt>{i32, i32}*</tt>) and a named types
1860 are always defined at the top level with a name. Anonmyous types are uniqued
1861 by their contents and can never be recursive since there is no way to write
1862 one. Named types can be recursive.
1863 </p>
1865 <h5>Syntax:</h5>
1866 <pre>
1867 %T1 = type { &lt;type list&gt; } <i>; Named normal struct type</i>
1868 %T2 = type &lt;{ &lt;type list&gt; }&gt; <i>; Named packed struct type</i>
1869 </pre>
1871 <h5>Examples:</h5>
1872 <table class="layout">
1873 <tr class="layout">
1874 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1875 <td class="left">A triple of three <tt>i32</tt> values</td>
1876 </tr>
1877 <tr class="layout">
1878 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1879 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1880 second element is a <a href="#t_pointer">pointer</a> to a
1881 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1882 an <tt>i32</tt>.</td>
1883 </tr>
1884 <tr class="layout">
1885 <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
1886 <td class="left">A packed struct known to be 5 bytes in size.</td>
1887 </tr>
1888 </table>
1890 </div>
1892 <!-- _______________________________________________________________________ -->
1893 <h4>
1894 <a name="t_opaque">Opaque Type</a>
1895 </h4>
1897 <div>
1899 <h5>Overview:</h5>
1900 <p>Opaque types are used to represent named structure types that do not have a
1901 body specified. This corresponds (for example) to the C notion of a forward
1902 declared structure.</p>
1904 <h5>Syntax:</h5>
1905 <pre>
1906 %X = type opaque
1907 %52 = type opaque
1908 </pre>
1910 <h5>Examples:</h5>
1911 <table class="layout">
1912 <tr class="layout">
1913 <td class="left"><tt>opaque</tt></td>
1914 <td class="left">An opaque type.</td>
1915 </tr>
1916 </table>
1918 </div>
1922 <!-- _______________________________________________________________________ -->
1923 <h4>
1924 <a name="t_pointer">Pointer Type</a>
1925 </h4>
1927 <div>
1929 <h5>Overview:</h5>
1930 <p>The pointer type is used to specify memory locations.
1931 Pointers are commonly used to reference objects in memory.</p>
1933 <p>Pointer types may have an optional address space attribute defining the
1934 numbered address space where the pointed-to object resides. The default
1935 address space is number zero. The semantics of non-zero address
1936 spaces are target-specific.</p>
1938 <p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1939 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
1941 <h5>Syntax:</h5>
1942 <pre>
1943 &lt;type&gt; *
1944 </pre>
1946 <h5>Examples:</h5>
1947 <table class="layout">
1948 <tr class="layout">
1949 <td class="left"><tt>[4 x i32]*</tt></td>
1950 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1951 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1952 </tr>
1953 <tr class="layout">
1954 <td class="left"><tt>i32 (i32*) *</tt></td>
1955 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
1956 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1957 <tt>i32</tt>.</td>
1958 </tr>
1959 <tr class="layout">
1960 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1961 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1962 that resides in address space #5.</td>
1963 </tr>
1964 </table>
1966 </div>
1968 <!-- _______________________________________________________________________ -->
1969 <h4>
1970 <a name="t_vector">Vector Type</a>
1971 </h4>
1973 <div>
1975 <h5>Overview:</h5>
1976 <p>A vector type is a simple derived type that represents a vector of elements.
1977 Vector types are used when multiple primitive data are operated in parallel
1978 using a single instruction (SIMD). A vector type requires a size (number of
1979 elements) and an underlying primitive data type. Vector types are considered
1980 <a href="#t_firstclass">first class</a>.</p>
1982 <h5>Syntax:</h5>
1983 <pre>
1984 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1985 </pre>
1987 <p>The number of elements is a constant integer value larger than 0; elementtype
1988 may be any integer or floating point type. Vectors of size zero are not
1989 allowed, and pointers are not allowed as the element type.</p>
1991 <h5>Examples:</h5>
1992 <table class="layout">
1993 <tr class="layout">
1994 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1995 <td class="left">Vector of 4 32-bit integer values.</td>
1996 </tr>
1997 <tr class="layout">
1998 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1999 <td class="left">Vector of 8 32-bit floating-point values.</td>
2000 </tr>
2001 <tr class="layout">
2002 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
2003 <td class="left">Vector of 2 64-bit integer values.</td>
2004 </tr>
2005 </table>
2007 </div>
2009 <!-- *********************************************************************** -->
2010 <h2><a name="constants">Constants</a></h2>
2011 <!-- *********************************************************************** -->
2013 <div>
2015 <p>LLVM has several different basic types of constants. This section describes
2016 them all and their syntax.</p>
2018 <!-- ======================================================================= -->
2019 <h3>
2020 <a name="simpleconstants">Simple Constants</a>
2021 </h3>
2023 <div>
2025 <dl>
2026 <dt><b>Boolean constants</b></dt>
2027 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
2028 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
2030 <dt><b>Integer constants</b></dt>
2031 <dd>Standard integers (such as '4') are constants of
2032 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2033 with integer types.</dd>
2035 <dt><b>Floating point constants</b></dt>
2036 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
2037 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2038 notation (see below). The assembler requires the exact decimal value of a
2039 floating-point constant. For example, the assembler accepts 1.25 but
2040 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2041 constants must have a <a href="#t_floating">floating point</a> type. </dd>
2043 <dt><b>Null pointer constants</b></dt>
2044 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
2045 and must be of <a href="#t_pointer">pointer type</a>.</dd>
2046 </dl>
2048 <p>The one non-intuitive notation for constants is the hexadecimal form of
2049 floating point constants. For example, the form '<tt>double
2050 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2051 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2052 constants are required (and the only time that they are generated by the
2053 disassembler) is when a floating point constant must be emitted but it cannot
2054 be represented as a decimal floating point number in a reasonable number of
2055 digits. For example, NaN's, infinities, and other special values are
2056 represented in their IEEE hexadecimal format so that assembly and disassembly
2057 do not cause any bits to change in the constants.</p>
2059 <p>When using the hexadecimal form, constants of types float and double are
2060 represented using the 16-digit form shown above (which matches the IEEE754
2061 representation for double); float values must, however, be exactly
2062 representable as IEE754 single precision. Hexadecimal format is always used
2063 for long double, and there are three forms of long double. The 80-bit format
2064 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2065 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2066 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2067 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2068 currently supported target uses this format. Long doubles will only work if
2069 they match the long double format on your target. All hexadecimal formats
2070 are big-endian (sign bit at the left).</p>
2072 <p>There are no constants of type x86mmx.</p>
2073 </div>
2075 <!-- ======================================================================= -->
2076 <h3>
2077 <a name="aggregateconstants"></a> <!-- old anchor -->
2078 <a name="complexconstants">Complex Constants</a>
2079 </h3>
2081 <div>
2083 <p>Complex constants are a (potentially recursive) combination of simple
2084 constants and smaller complex constants.</p>
2086 <dl>
2087 <dt><b>Structure constants</b></dt>
2088 <dd>Structure constants are represented with notation similar to structure
2089 type definitions (a comma separated list of elements, surrounded by braces
2090 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2091 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2092 Structure constants must have <a href="#t_struct">structure type</a>, and
2093 the number and types of elements must match those specified by the
2094 type.</dd>
2096 <dt><b>Array constants</b></dt>
2097 <dd>Array constants are represented with notation similar to array type
2098 definitions (a comma separated list of elements, surrounded by square
2099 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2100 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2101 the number and types of elements must match those specified by the
2102 type.</dd>
2104 <dt><b>Vector constants</b></dt>
2105 <dd>Vector constants are represented with notation similar to vector type
2106 definitions (a comma separated list of elements, surrounded by
2107 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2108 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2109 have <a href="#t_vector">vector type</a>, and the number and types of
2110 elements must match those specified by the type.</dd>
2112 <dt><b>Zero initialization</b></dt>
2113 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
2114 value to zero of <em>any</em> type, including scalar and
2115 <a href="#t_aggregate">aggregate</a> types.
2116 This is often used to avoid having to print large zero initializers
2117 (e.g. for large arrays) and is always exactly equivalent to using explicit
2118 zero initializers.</dd>
2120 <dt><b>Metadata node</b></dt>
2121 <dd>A metadata node is a structure-like constant with
2122 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2123 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2124 be interpreted as part of the instruction stream, metadata is a place to
2125 attach additional information such as debug info.</dd>
2126 </dl>
2128 </div>
2130 <!-- ======================================================================= -->
2131 <h3>
2132 <a name="globalconstants">Global Variable and Function Addresses</a>
2133 </h3>
2135 <div>
2137 <p>The addresses of <a href="#globalvars">global variables</a>
2138 and <a href="#functionstructure">functions</a> are always implicitly valid
2139 (link-time) constants. These constants are explicitly referenced when
2140 the <a href="#identifiers">identifier for the global</a> is used and always
2141 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2142 legal LLVM file:</p>
2144 <pre class="doc_code">
2145 @X = global i32 17
2146 @Y = global i32 42
2147 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2148 </pre>
2150 </div>
2152 <!-- ======================================================================= -->
2153 <h3>
2154 <a name="undefvalues">Undefined Values</a>
2155 </h3>
2157 <div>
2159 <p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
2160 indicates that the user of the value may receive an unspecified bit-pattern.
2161 Undefined values may be of any type (other than '<tt>label</tt>'
2162 or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
2164 <p>Undefined values are useful because they indicate to the compiler that the
2165 program is well defined no matter what value is used. This gives the
2166 compiler more freedom to optimize. Here are some examples of (potentially
2167 surprising) transformations that are valid (in pseudo IR):</p>
2170 <pre class="doc_code">
2171 %A = add %X, undef
2172 %B = sub %X, undef
2173 %C = xor %X, undef
2174 Safe:
2175 %A = undef
2176 %B = undef
2177 %C = undef
2178 </pre>
2180 <p>This is safe because all of the output bits are affected by the undef bits.
2181 Any output bit can have a zero or one depending on the input bits.</p>
2183 <pre class="doc_code">
2184 %A = or %X, undef
2185 %B = and %X, undef
2186 Safe:
2187 %A = -1
2188 %B = 0
2189 Unsafe:
2190 %A = undef
2191 %B = undef
2192 </pre>
2194 <p>These logical operations have bits that are not always affected by the input.
2195 For example, if <tt>%X</tt> has a zero bit, then the output of the
2196 '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2197 the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2198 optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2199 However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2200 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2201 all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2202 set, allowing the '<tt>or</tt>' to be folded to -1.</p>
2204 <pre class="doc_code">
2205 %A = select undef, %X, %Y
2206 %B = select undef, 42, %Y
2207 %C = select %X, %Y, undef
2208 Safe:
2209 %A = %X (or %Y)
2210 %B = 42 (or %Y)
2211 %C = %Y
2212 Unsafe:
2213 %A = undef
2214 %B = undef
2215 %C = undef
2216 </pre>
2218 <p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2219 branch) conditions can go <em>either way</em>, but they have to come from one
2220 of the two operands. In the <tt>%A</tt> example, if <tt>%X</tt> and
2221 <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2222 have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2223 optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2224 same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2225 eliminated.</p>
2227 <pre class="doc_code">
2228 %A = xor undef, undef
2230 %B = undef
2231 %C = xor %B, %B
2233 %D = undef
2234 %E = icmp lt %D, 4
2235 %F = icmp gte %D, 4
2237 Safe:
2238 %A = undef
2239 %B = undef
2240 %C = undef
2241 %D = undef
2242 %E = undef
2243 %F = undef
2244 </pre>
2246 <p>This example points out that two '<tt>undef</tt>' operands are not
2247 necessarily the same. This can be surprising to people (and also matches C
2248 semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2249 if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2250 short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2251 its value over its "live range". This is true because the variable doesn't
2252 actually <em>have a live range</em>. Instead, the value is logically read
2253 from arbitrary registers that happen to be around when needed, so the value
2254 is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2255 need to have the same semantics or the core LLVM "replace all uses with"
2256 concept would not hold.</p>
2258 <pre class="doc_code">
2259 %A = fdiv undef, %X
2260 %B = fdiv %X, undef
2261 Safe:
2262 %A = undef
2263 b: unreachable
2264 </pre>
2266 <p>These examples show the crucial difference between an <em>undefined
2267 value</em> and <em>undefined behavior</em>. An undefined value (like
2268 '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2269 the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2270 the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2271 defined on SNaN's. However, in the second example, we can make a more
2272 aggressive assumption: because the <tt>undef</tt> is allowed to be an
2273 arbitrary value, we are allowed to assume that it could be zero. Since a
2274 divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2275 the operation does not execute at all. This allows us to delete the divide and
2276 all code after it. Because the undefined operation "can't happen", the
2277 optimizer can assume that it occurs in dead code.</p>
2279 <pre class="doc_code">
2280 a: store undef -> %X
2281 b: store %X -> undef
2282 Safe:
2283 a: &lt;deleted&gt;
2284 b: unreachable
2285 </pre>
2287 <p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2288 undefined value can be assumed to not have any effect; we can assume that the
2289 value is overwritten with bits that happen to match what was already there.
2290 However, a store <em>to</em> an undefined location could clobber arbitrary
2291 memory, therefore, it has undefined behavior.</p>
2293 </div>
2295 <!-- ======================================================================= -->
2296 <h3>
2297 <a name="trapvalues">Trap Values</a>
2298 </h3>
2300 <div>
2302 <p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
2303 instead of representing an unspecified bit pattern, they represent the
2304 fact that an instruction or constant expression which cannot evoke side
2305 effects has nevertheless detected a condition which results in undefined
2306 behavior.</p>
2308 <p>There is currently no way of representing a trap value in the IR; they
2309 only exist when produced by operations such as
2310 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
2312 <p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
2314 <ul>
2315 <li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2316 their operands.</li>
2318 <li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2319 to their dynamic predecessor basic block.</li>
2321 <li>Function arguments depend on the corresponding actual argument values in
2322 the dynamic callers of their functions.</li>
2324 <li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2325 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2326 control back to them.</li>
2328 <li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2329 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
2330 or exception-throwing call instructions that dynamically transfer control
2331 back to them.</li>
2333 <li>Non-volatile loads and stores depend on the most recent stores to all of the
2334 referenced memory addresses, following the order in the IR
2335 (including loads and stores implied by intrinsics such as
2336 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2338 <!-- TODO: In the case of multiple threads, this only applies if the store
2339 "happens-before" the load or store. -->
2341 <!-- TODO: floating-point exception state -->
2343 <li>An instruction with externally visible side effects depends on the most
2344 recent preceding instruction with externally visible side effects, following
2345 the order in the IR. (This includes
2346 <a href="#volatile">volatile operations</a>.)</li>
2348 <li>An instruction <i>control-depends</i> on a
2349 <a href="#terminators">terminator instruction</a>
2350 if the terminator instruction has multiple successors and the instruction
2351 is always executed when control transfers to one of the successors, and
2352 may not be executed when control is transferred to another.</li>
2354 <li>Additionally, an instruction also <i>control-depends</i> on a terminator
2355 instruction if the set of instructions it otherwise depends on would be
2356 different if the terminator had transferred control to a different
2357 successor.</li>
2359 <li>Dependence is transitive.</li>
2361 </ul>
2363 <p>Whenever a trap value is generated, all values which depend on it evaluate
2364 to trap. If they have side effects, the evoke their side effects as if each
2365 operand with a trap value were undef. If they have externally-visible side
2366 effects, the behavior is undefined.</p>
2368 <p>Here are some examples:</p>
2370 <pre class="doc_code">
2371 entry:
2372 %trap = sub nuw i32 0, 1 ; Results in a trap value.
2373 %still_trap = and i32 %trap, 0 ; Whereas (and i32 undef, 0) would return 0.
2374 %trap_yet_again = getelementptr i32* @h, i32 %still_trap
2375 store i32 0, i32* %trap_yet_again ; undefined behavior
2377 store i32 %trap, i32* @g ; Trap value conceptually stored to memory.
2378 %trap2 = load i32* @g ; Returns a trap value, not just undef.
2380 volatile store i32 %trap, i32* @g ; External observation; undefined behavior.
2382 %narrowaddr = bitcast i32* @g to i16*
2383 %wideaddr = bitcast i32* @g to i64*
2384 %trap3 = load i16* %narrowaddr ; Returns a trap value.
2385 %trap4 = load i64* %wideaddr ; Returns a trap value.
2387 %cmp = icmp slt i32 %trap, 0 ; Returns a trap value.
2388 br i1 %cmp, label %true, label %end ; Branch to either destination.
2390 true:
2391 volatile store i32 0, i32* @g ; This is control-dependent on %cmp, so
2392 ; it has undefined behavior.
2393 br label %end
2395 end:
2396 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2397 ; Both edges into this PHI are
2398 ; control-dependent on %cmp, so this
2399 ; always results in a trap value.
2401 volatile store i32 0, i32* @g ; This would depend on the store in %true
2402 ; if %cmp is true, or the store in %entry
2403 ; otherwise, so this is undefined behavior.
2405 br i1 %cmp, label %second_true, label %second_end
2406 ; The same branch again, but this time the
2407 ; true block doesn't have side effects.
2409 second_true:
2410 ; No side effects!
2411 ret void
2413 second_end:
2414 volatile store i32 0, i32* @g ; This time, the instruction always depends
2415 ; on the store in %end. Also, it is
2416 ; control-equivalent to %end, so this is
2417 ; well-defined (again, ignoring earlier
2418 ; undefined behavior in this example).
2419 </pre>
2421 </div>
2423 <!-- ======================================================================= -->
2424 <h3>
2425 <a name="blockaddress">Addresses of Basic Blocks</a>
2426 </h3>
2428 <div>
2430 <p><b><tt>blockaddress(@function, %block)</tt></b></p>
2432 <p>The '<tt>blockaddress</tt>' constant computes the address of the specified
2433 basic block in the specified function, and always has an i8* type. Taking
2434 the address of the entry block is illegal.</p>
2436 <p>This value only has defined behavior when used as an operand to the
2437 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2438 comparisons against null. Pointer equality tests between labels addresses
2439 results in undefined behavior &mdash; though, again, comparison against null
2440 is ok, and no label is equal to the null pointer. This may be passed around
2441 as an opaque pointer sized value as long as the bits are not inspected. This
2442 allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2443 long as the original value is reconstituted before the <tt>indirectbr</tt>
2444 instruction.</p>
2446 <p>Finally, some targets may provide defined semantics when using the value as
2447 the operand to an inline assembly, but that is target specific.</p>
2449 </div>
2452 <!-- ======================================================================= -->
2453 <h3>
2454 <a name="constantexprs">Constant Expressions</a>
2455 </h3>
2457 <div>
2459 <p>Constant expressions are used to allow expressions involving other constants
2460 to be used as constants. Constant expressions may be of
2461 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2462 operation that does not have side effects (e.g. load and call are not
2463 supported). The following is the syntax for constant expressions:</p>
2465 <dl>
2466 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
2467 <dd>Truncate a constant to another type. The bit size of CST must be larger
2468 than the bit size of TYPE. Both types must be integers.</dd>
2470 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
2471 <dd>Zero extend a constant to another type. The bit size of CST must be
2472 smaller than the bit size of TYPE. Both types must be integers.</dd>
2474 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
2475 <dd>Sign extend a constant to another type. The bit size of CST must be
2476 smaller than the bit size of TYPE. Both types must be integers.</dd>
2478 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
2479 <dd>Truncate a floating point constant to another floating point type. The
2480 size of CST must be larger than the size of TYPE. Both types must be
2481 floating point.</dd>
2483 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
2484 <dd>Floating point extend a constant to another type. The size of CST must be
2485 smaller or equal to the size of TYPE. Both types must be floating
2486 point.</dd>
2488 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
2489 <dd>Convert a floating point constant to the corresponding unsigned integer
2490 constant. TYPE must be a scalar or vector integer type. CST must be of
2491 scalar or vector floating point type. Both CST and TYPE must be scalars,
2492 or vectors of the same number of elements. If the value won't fit in the
2493 integer type, the results are undefined.</dd>
2495 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
2496 <dd>Convert a floating point constant to the corresponding signed integer
2497 constant. TYPE must be a scalar or vector integer type. CST must be of
2498 scalar or vector floating point type. Both CST and TYPE must be scalars,
2499 or vectors of the same number of elements. If the value won't fit in the
2500 integer type, the results are undefined.</dd>
2502 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
2503 <dd>Convert an unsigned integer constant to the corresponding floating point
2504 constant. TYPE must be a scalar or vector floating point type. CST must be
2505 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2506 vectors of the same number of elements. If the value won't fit in the
2507 floating point type, the results are undefined.</dd>
2509 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
2510 <dd>Convert a signed integer constant to the corresponding floating point
2511 constant. TYPE must be a scalar or vector floating point type. CST must be
2512 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2513 vectors of the same number of elements. If the value won't fit in the
2514 floating point type, the results are undefined.</dd>
2516 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
2517 <dd>Convert a pointer typed constant to the corresponding integer constant
2518 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2519 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2520 make it fit in <tt>TYPE</tt>.</dd>
2522 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
2523 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2524 type. CST must be of integer type. The CST value is zero extended,
2525 truncated, or unchanged to make it fit in a pointer size. This one is
2526 <i>really</i> dangerous!</dd>
2528 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
2529 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2530 are the same as those for the <a href="#i_bitcast">bitcast
2531 instruction</a>.</dd>
2533 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2534 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2535 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2536 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2537 instruction, the index list may have zero or more indexes, which are
2538 required to make sense for the type of "CSTPTR".</dd>
2540 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
2541 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
2543 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
2544 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2546 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
2547 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
2549 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
2550 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2551 constants.</dd>
2553 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
2554 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2555 constants.</dd>
2557 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
2558 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2559 constants.</dd>
2561 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2562 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2563 constants. The index list is interpreted in a similar manner as indices in
2564 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2565 index value must be specified.</dd>
2567 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2568 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2569 constants. The index list is interpreted in a similar manner as indices in
2570 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2571 index value must be specified.</dd>
2573 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
2574 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2575 be any of the <a href="#binaryops">binary</a>
2576 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2577 on operands are the same as those for the corresponding instruction
2578 (e.g. no bitwise operations on floating point values are allowed).</dd>
2579 </dl>
2581 </div>
2583 </div>
2585 <!-- *********************************************************************** -->
2586 <h2><a name="othervalues">Other Values</a></h2>
2587 <!-- *********************************************************************** -->
2588 <div>
2589 <!-- ======================================================================= -->
2590 <h3>
2591 <a name="inlineasm">Inline Assembler Expressions</a>
2592 </h3>
2594 <div>
2596 <p>LLVM supports inline assembler expressions (as opposed
2597 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2598 a special value. This value represents the inline assembler as a string
2599 (containing the instructions to emit), a list of operand constraints (stored
2600 as a string), a flag that indicates whether or not the inline asm
2601 expression has side effects, and a flag indicating whether the function
2602 containing the asm needs to align its stack conservatively. An example
2603 inline assembler expression is:</p>
2605 <pre class="doc_code">
2606 i32 (i32) asm "bswap $0", "=r,r"
2607 </pre>
2609 <p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2610 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2611 have:</p>
2613 <pre class="doc_code">
2614 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
2615 </pre>
2617 <p>Inline asms with side effects not visible in the constraint list must be
2618 marked as having side effects. This is done through the use of the
2619 '<tt>sideeffect</tt>' keyword, like so:</p>
2621 <pre class="doc_code">
2622 call void asm sideeffect "eieio", ""()
2623 </pre>
2625 <p>In some cases inline asms will contain code that will not work unless the
2626 stack is aligned in some way, such as calls or SSE instructions on x86,
2627 yet will not contain code that does that alignment within the asm.
2628 The compiler should make conservative assumptions about what the asm might
2629 contain and should generate its usual stack alignment code in the prologue
2630 if the '<tt>alignstack</tt>' keyword is present:</p>
2632 <pre class="doc_code">
2633 call void asm alignstack "eieio", ""()
2634 </pre>
2636 <p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2637 first.</p>
2639 <p>TODO: The format of the asm and constraints string still need to be
2640 documented here. Constraints on what can be done (e.g. duplication, moving,
2641 etc need to be documented). This is probably best done by reference to
2642 another document that covers inline asm from a holistic perspective.</p>
2644 <h4>
2645 <a name="inlineasm_md">Inline Asm Metadata</a>
2646 </h4>
2648 <div>
2650 <p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
2651 attached to it that contains a list of constant integers. If present, the
2652 code generator will use the integer as the location cookie value when report
2653 errors through the LLVMContext error reporting mechanisms. This allows a
2654 front-end to correlate backend errors that occur with inline asm back to the
2655 source code that produced it. For example:</p>
2657 <pre class="doc_code">
2658 call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2660 !42 = !{ i32 1234567 }
2661 </pre>
2663 <p>It is up to the front-end to make sense of the magic numbers it places in the
2664 IR. If the MDNode contains multiple constants, the code generator will use
2665 the one that corresponds to the line of the asm that the error occurs on.</p>
2667 </div>
2669 </div>
2671 <!-- ======================================================================= -->
2672 <h3>
2673 <a name="metadata">Metadata Nodes and Metadata Strings</a>
2674 </h3>
2676 <div>
2678 <p>LLVM IR allows metadata to be attached to instructions in the program that
2679 can convey extra information about the code to the optimizers and code
2680 generator. One example application of metadata is source-level debug
2681 information. There are two metadata primitives: strings and nodes. All
2682 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2683 preceding exclamation point ('<tt>!</tt>').</p>
2685 <p>A metadata string is a string surrounded by double quotes. It can contain
2686 any character by escaping non-printable characters with "\xx" where "xx" is
2687 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2689 <p>Metadata nodes are represented with notation similar to structure constants
2690 (a comma separated list of elements, surrounded by braces and preceded by an
2691 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2692 10}</tt>". Metadata nodes can have any values as their operand.</p>
2694 <p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2695 metadata nodes, which can be looked up in the module symbol table. For
2696 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2698 <p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
2699 function is using two metadata arguments.</p>
2701 <div class="doc_code">
2702 <pre>
2703 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2704 </pre>
2705 </div>
2707 <p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
2708 attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
2710 <div class="doc_code">
2711 <pre>
2712 %indvar.next = add i64 %indvar, 1, !dbg !21
2713 </pre>
2714 </div>
2716 </div>
2718 </div>
2720 <!-- *********************************************************************** -->
2721 <h2>
2722 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2723 </h2>
2724 <!-- *********************************************************************** -->
2725 <div>
2726 <p>LLVM has a number of "magic" global variables that contain data that affect
2727 code generation or other IR semantics. These are documented here. All globals
2728 of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2729 section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2730 by LLVM.</p>
2732 <!-- ======================================================================= -->
2733 <h3>
2734 <a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2735 </h3>
2737 <div>
2739 <p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2740 href="#linkage_appending">appending linkage</a>. This array contains a list of
2741 pointers to global variables and functions which may optionally have a pointer
2742 cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2744 <pre>
2745 @X = global i8 4
2746 @Y = global i32 123
2748 @llvm.used = appending global [2 x i8*] [
2749 i8* @X,
2750 i8* bitcast (i32* @Y to i8*)
2751 ], section "llvm.metadata"
2752 </pre>
2754 <p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2755 compiler, assembler, and linker are required to treat the symbol as if there is
2756 a reference to the global that it cannot see. For example, if a variable has
2757 internal linkage and no references other than that from the <tt>@llvm.used</tt>
2758 list, it cannot be deleted. This is commonly used to represent references from
2759 inline asms and other things the compiler cannot "see", and corresponds to
2760 "attribute((used))" in GNU C.</p>
2762 <p>On some targets, the code generator must emit a directive to the assembler or
2763 object file to prevent the assembler and linker from molesting the symbol.</p>
2765 </div>
2767 <!-- ======================================================================= -->
2768 <h3>
2769 <a name="intg_compiler_used">
2770 The '<tt>llvm.compiler.used</tt>' Global Variable
2771 </a>
2772 </h3>
2774 <div>
2776 <p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2777 <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2778 touching the symbol. On targets that support it, this allows an intelligent
2779 linker to optimize references to the symbol without being impeded as it would be
2780 by <tt>@llvm.used</tt>.</p>
2782 <p>This is a rare construct that should only be used in rare circumstances, and
2783 should not be exposed to source languages.</p>
2785 </div>
2787 <!-- ======================================================================= -->
2788 <h3>
2789 <a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2790 </h3>
2792 <div>
2793 <pre>
2794 %0 = type { i32, void ()* }
2795 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2796 </pre>
2797 <p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor functions and associated priorities. The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded. The order of functions with the same priority is not defined.
2798 </p>
2800 </div>
2802 <!-- ======================================================================= -->
2803 <h3>
2804 <a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2805 </h3>
2807 <div>
2808 <pre>
2809 %0 = type { i32, void ()* }
2810 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2811 </pre>
2813 <p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions and associated priorities. The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded. The order of functions with the same priority is not defined.
2814 </p>
2816 </div>
2818 </div>
2820 <!-- *********************************************************************** -->
2821 <h2><a name="instref">Instruction Reference</a></h2>
2822 <!-- *********************************************************************** -->
2824 <div>
2826 <p>The LLVM instruction set consists of several different classifications of
2827 instructions: <a href="#terminators">terminator
2828 instructions</a>, <a href="#binaryops">binary instructions</a>,
2829 <a href="#bitwiseops">bitwise binary instructions</a>,
2830 <a href="#memoryops">memory instructions</a>, and
2831 <a href="#otherops">other instructions</a>.</p>
2833 <!-- ======================================================================= -->
2834 <h3>
2835 <a name="terminators">Terminator Instructions</a>
2836 </h3>
2838 <div>
2840 <p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2841 in a program ends with a "Terminator" instruction, which indicates which
2842 block should be executed after the current block is finished. These
2843 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2844 control flow, not values (the one exception being the
2845 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2847 <p>There are seven different terminator instructions: the
2848 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2849 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2850 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
2851 '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
2852 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2853 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2854 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
2856 <!-- _______________________________________________________________________ -->
2857 <h4>
2858 <a name="i_ret">'<tt>ret</tt>' Instruction</a>
2859 </h4>
2861 <div>
2863 <h5>Syntax:</h5>
2864 <pre>
2865 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
2866 ret void <i>; Return from void function</i>
2867 </pre>
2869 <h5>Overview:</h5>
2870 <p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2871 a value) from a function back to the caller.</p>
2873 <p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2874 value and then causes control flow, and one that just causes control flow to
2875 occur.</p>
2877 <h5>Arguments:</h5>
2878 <p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2879 return value. The type of the return value must be a
2880 '<a href="#t_firstclass">first class</a>' type.</p>
2882 <p>A function is not <a href="#wellformed">well formed</a> if it it has a
2883 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2884 value or a return value with a type that does not match its type, or if it
2885 has a void return type and contains a '<tt>ret</tt>' instruction with a
2886 return value.</p>
2888 <h5>Semantics:</h5>
2889 <p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2890 the calling function's context. If the caller is a
2891 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2892 instruction after the call. If the caller was an
2893 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2894 the beginning of the "normal" destination block. If the instruction returns
2895 a value, that value shall set the call or invoke instruction's return
2896 value.</p>
2898 <h5>Example:</h5>
2899 <pre>
2900 ret i32 5 <i>; Return an integer value of 5</i>
2901 ret void <i>; Return from a void function</i>
2902 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
2903 </pre>
2905 </div>
2906 <!-- _______________________________________________________________________ -->
2907 <h4>
2908 <a name="i_br">'<tt>br</tt>' Instruction</a>
2909 </h4>
2911 <div>
2913 <h5>Syntax:</h5>
2914 <pre>
2915 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
2916 </pre>
2918 <h5>Overview:</h5>
2919 <p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2920 different basic block in the current function. There are two forms of this
2921 instruction, corresponding to a conditional branch and an unconditional
2922 branch.</p>
2924 <h5>Arguments:</h5>
2925 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2926 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2927 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2928 target.</p>
2930 <h5>Semantics:</h5>
2931 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
2932 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2933 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2934 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2936 <h5>Example:</h5>
2937 <pre>
2938 Test:
2939 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2940 br i1 %cond, label %IfEqual, label %IfUnequal
2941 IfEqual:
2942 <a href="#i_ret">ret</a> i32 1
2943 IfUnequal:
2944 <a href="#i_ret">ret</a> i32 0
2945 </pre>
2947 </div>
2949 <!-- _______________________________________________________________________ -->
2950 <h4>
2951 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2952 </h4>
2954 <div>
2956 <h5>Syntax:</h5>
2957 <pre>
2958 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2959 </pre>
2961 <h5>Overview:</h5>
2962 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2963 several different places. It is a generalization of the '<tt>br</tt>'
2964 instruction, allowing a branch to occur to one of many possible
2965 destinations.</p>
2967 <h5>Arguments:</h5>
2968 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2969 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2970 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2971 The table is not allowed to contain duplicate constant entries.</p>
2973 <h5>Semantics:</h5>
2974 <p>The <tt>switch</tt> instruction specifies a table of values and
2975 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2976 is searched for the given value. If the value is found, control flow is
2977 transferred to the corresponding destination; otherwise, control flow is
2978 transferred to the default destination.</p>
2980 <h5>Implementation:</h5>
2981 <p>Depending on properties of the target machine and the particular
2982 <tt>switch</tt> instruction, this instruction may be code generated in
2983 different ways. For example, it could be generated as a series of chained
2984 conditional branches or with a lookup table.</p>
2986 <h5>Example:</h5>
2987 <pre>
2988 <i>; Emulate a conditional br instruction</i>
2989 %Val = <a href="#i_zext">zext</a> i1 %value to i32
2990 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2992 <i>; Emulate an unconditional br instruction</i>
2993 switch i32 0, label %dest [ ]
2995 <i>; Implement a jump table:</i>
2996 switch i32 %val, label %otherwise [ i32 0, label %onzero
2997 i32 1, label %onone
2998 i32 2, label %ontwo ]
2999 </pre>
3001 </div>
3004 <!-- _______________________________________________________________________ -->
3005 <h4>
3006 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
3007 </h4>
3009 <div>
3011 <h5>Syntax:</h5>
3012 <pre>
3013 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
3014 </pre>
3016 <h5>Overview:</h5>
3018 <p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
3019 within the current function, whose address is specified by
3020 "<tt>address</tt>". Address must be derived from a <a
3021 href="#blockaddress">blockaddress</a> constant.</p>
3023 <h5>Arguments:</h5>
3025 <p>The '<tt>address</tt>' argument is the address of the label to jump to. The
3026 rest of the arguments indicate the full set of possible destinations that the
3027 address may point to. Blocks are allowed to occur multiple times in the
3028 destination list, though this isn't particularly useful.</p>
3030 <p>This destination list is required so that dataflow analysis has an accurate
3031 understanding of the CFG.</p>
3033 <h5>Semantics:</h5>
3035 <p>Control transfers to the block specified in the address argument. All
3036 possible destination blocks must be listed in the label list, otherwise this
3037 instruction has undefined behavior. This implies that jumps to labels
3038 defined in other functions have undefined behavior as well.</p>
3040 <h5>Implementation:</h5>
3042 <p>This is typically implemented with a jump through a register.</p>
3044 <h5>Example:</h5>
3045 <pre>
3046 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3047 </pre>
3049 </div>
3052 <!-- _______________________________________________________________________ -->
3053 <h4>
3054 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
3055 </h4>
3057 <div>
3059 <h5>Syntax:</h5>
3060 <pre>
3061 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
3062 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
3063 </pre>
3065 <h5>Overview:</h5>
3066 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
3067 function, with the possibility of control flow transfer to either the
3068 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3069 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3070 control flow will return to the "normal" label. If the callee (or any
3071 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
3072 instruction, control is interrupted and continued at the dynamically nearest
3073 "exception" label.</p>
3075 <h5>Arguments:</h5>
3076 <p>This instruction requires several arguments:</p>
3078 <ol>
3079 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3080 convention</a> the call should use. If none is specified, the call
3081 defaults to using C calling conventions.</li>
3083 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
3084 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3085 '<tt>inreg</tt>' attributes are valid here.</li>
3087 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
3088 function value being invoked. In most cases, this is a direct function
3089 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3090 off an arbitrary pointer to function value.</li>
3092 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
3093 function to be invoked. </li>
3095 <li>'<tt>function args</tt>': argument list whose types match the function
3096 signature argument types and parameter attributes. All arguments must be
3097 of <a href="#t_firstclass">first class</a> type. If the function
3098 signature indicates the function accepts a variable number of arguments,
3099 the extra arguments can be specified.</li>
3101 <li>'<tt>normal label</tt>': the label reached when the called function
3102 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
3104 <li>'<tt>exception label</tt>': the label reached when a callee returns with
3105 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
3107 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
3108 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3109 '<tt>readnone</tt>' attributes are valid here.</li>
3110 </ol>
3112 <h5>Semantics:</h5>
3113 <p>This instruction is designed to operate as a standard
3114 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3115 primary difference is that it establishes an association with a label, which
3116 is used by the runtime library to unwind the stack.</p>
3118 <p>This instruction is used in languages with destructors to ensure that proper
3119 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3120 exception. Additionally, this is important for implementation of
3121 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
3123 <p>For the purposes of the SSA form, the definition of the value returned by the
3124 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3125 block to the "normal" label. If the callee unwinds then no return value is
3126 available.</p>
3128 <p>Note that the code generator does not yet completely support unwind, and
3129 that the invoke/unwind semantics are likely to change in future versions.</p>
3131 <h5>Example:</h5>
3132 <pre>
3133 %retval = invoke i32 @Test(i32 15) to label %Continue
3134 unwind label %TestCleanup <i>; {i32}:retval set</i>
3135 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
3136 unwind label %TestCleanup <i>; {i32}:retval set</i>
3137 </pre>
3139 </div>
3141 <!-- _______________________________________________________________________ -->
3143 <h4>
3144 <a name="i_unwind">'<tt>unwind</tt>' Instruction</a>
3145 </h4>
3147 <div>
3149 <h5>Syntax:</h5>
3150 <pre>
3151 unwind
3152 </pre>
3154 <h5>Overview:</h5>
3155 <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
3156 at the first callee in the dynamic call stack which used
3157 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3158 This is primarily used to implement exception handling.</p>
3160 <h5>Semantics:</h5>
3161 <p>The '<tt>unwind</tt>' instruction causes execution of the current function to
3162 immediately halt. The dynamic call stack is then searched for the
3163 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3164 Once found, execution continues at the "exceptional" destination block
3165 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
3166 instruction in the dynamic call chain, undefined behavior results.</p>
3168 <p>Note that the code generator does not yet completely support unwind, and
3169 that the invoke/unwind semantics are likely to change in future versions.</p>
3171 </div>
3173 <!-- _______________________________________________________________________ -->
3175 <h4>
3176 <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
3177 </h4>
3179 <div>
3181 <h5>Syntax:</h5>
3182 <pre>
3183 unreachable
3184 </pre>
3186 <h5>Overview:</h5>
3187 <p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
3188 instruction is used to inform the optimizer that a particular portion of the
3189 code is not reachable. This can be used to indicate that the code after a
3190 no-return function cannot be reached, and other facts.</p>
3192 <h5>Semantics:</h5>
3193 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
3195 </div>
3197 </div>
3199 <!-- ======================================================================= -->
3200 <h3>
3201 <a name="binaryops">Binary Operations</a>
3202 </h3>
3204 <div>
3206 <p>Binary operators are used to do most of the computation in a program. They
3207 require two operands of the same type, execute an operation on them, and
3208 produce a single value. The operands might represent multiple data, as is
3209 the case with the <a href="#t_vector">vector</a> data type. The result value
3210 has the same type as its operands.</p>
3212 <p>There are several different binary operators:</p>
3214 <!-- _______________________________________________________________________ -->
3215 <h4>
3216 <a name="i_add">'<tt>add</tt>' Instruction</a>
3217 </h4>
3219 <div>
3221 <h5>Syntax:</h5>
3222 <pre>
3223 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3224 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3225 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3226 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3227 </pre>
3229 <h5>Overview:</h5>
3230 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
3232 <h5>Arguments:</h5>
3233 <p>The two arguments to the '<tt>add</tt>' instruction must
3234 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3235 integer values. Both arguments must have identical types.</p>
3237 <h5>Semantics:</h5>
3238 <p>The value produced is the integer sum of the two operands.</p>
3240 <p>If the sum has unsigned overflow, the result returned is the mathematical
3241 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
3243 <p>Because LLVM integers use a two's complement representation, this instruction
3244 is appropriate for both signed and unsigned integers.</p>
3246 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3247 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3248 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
3249 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3250 respectively, occurs.</p>
3252 <h5>Example:</h5>
3253 <pre>
3254 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
3255 </pre>
3257 </div>
3259 <!-- _______________________________________________________________________ -->
3260 <h4>
3261 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
3262 </h4>
3264 <div>
3266 <h5>Syntax:</h5>
3267 <pre>
3268 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3269 </pre>
3271 <h5>Overview:</h5>
3272 <p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3274 <h5>Arguments:</h5>
3275 <p>The two arguments to the '<tt>fadd</tt>' instruction must be
3276 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3277 floating point values. Both arguments must have identical types.</p>
3279 <h5>Semantics:</h5>
3280 <p>The value produced is the floating point sum of the two operands.</p>
3282 <h5>Example:</h5>
3283 <pre>
3284 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3285 </pre>
3287 </div>
3289 <!-- _______________________________________________________________________ -->
3290 <h4>
3291 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
3292 </h4>
3294 <div>
3296 <h5>Syntax:</h5>
3297 <pre>
3298 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3299 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3300 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3301 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3302 </pre>
3304 <h5>Overview:</h5>
3305 <p>The '<tt>sub</tt>' instruction returns the difference of its two
3306 operands.</p>
3308 <p>Note that the '<tt>sub</tt>' instruction is used to represent the
3309 '<tt>neg</tt>' instruction present in most other intermediate
3310 representations.</p>
3312 <h5>Arguments:</h5>
3313 <p>The two arguments to the '<tt>sub</tt>' instruction must
3314 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3315 integer values. Both arguments must have identical types.</p>
3317 <h5>Semantics:</h5>
3318 <p>The value produced is the integer difference of the two operands.</p>
3320 <p>If the difference has unsigned overflow, the result returned is the
3321 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3322 result.</p>
3324 <p>Because LLVM integers use a two's complement representation, this instruction
3325 is appropriate for both signed and unsigned integers.</p>
3327 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3328 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3329 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
3330 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3331 respectively, occurs.</p>
3333 <h5>Example:</h5>
3334 <pre>
3335 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
3336 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
3337 </pre>
3339 </div>
3341 <!-- _______________________________________________________________________ -->
3342 <h4>
3343 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
3344 </h4>
3346 <div>
3348 <h5>Syntax:</h5>
3349 <pre>
3350 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3351 </pre>
3353 <h5>Overview:</h5>
3354 <p>The '<tt>fsub</tt>' instruction returns the difference of its two
3355 operands.</p>
3357 <p>Note that the '<tt>fsub</tt>' instruction is used to represent the
3358 '<tt>fneg</tt>' instruction present in most other intermediate
3359 representations.</p>
3361 <h5>Arguments:</h5>
3362 <p>The two arguments to the '<tt>fsub</tt>' instruction must be
3363 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3364 floating point values. Both arguments must have identical types.</p>
3366 <h5>Semantics:</h5>
3367 <p>The value produced is the floating point difference of the two operands.</p>
3369 <h5>Example:</h5>
3370 <pre>
3371 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3372 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3373 </pre>
3375 </div>
3377 <!-- _______________________________________________________________________ -->
3378 <h4>
3379 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
3380 </h4>
3382 <div>
3384 <h5>Syntax:</h5>
3385 <pre>
3386 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3387 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3388 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3389 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3390 </pre>
3392 <h5>Overview:</h5>
3393 <p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
3395 <h5>Arguments:</h5>
3396 <p>The two arguments to the '<tt>mul</tt>' instruction must
3397 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3398 integer values. Both arguments must have identical types.</p>
3400 <h5>Semantics:</h5>
3401 <p>The value produced is the integer product of the two operands.</p>
3403 <p>If the result of the multiplication has unsigned overflow, the result
3404 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3405 width of the result.</p>
3407 <p>Because LLVM integers use a two's complement representation, and the result
3408 is the same width as the operands, this instruction returns the correct
3409 result for both signed and unsigned integers. If a full product
3410 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3411 be sign-extended or zero-extended as appropriate to the width of the full
3412 product.</p>
3414 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3415 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3416 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
3417 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3418 respectively, occurs.</p>
3420 <h5>Example:</h5>
3421 <pre>
3422 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
3423 </pre>
3425 </div>
3427 <!-- _______________________________________________________________________ -->
3428 <h4>
3429 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
3430 </h4>
3432 <div>
3434 <h5>Syntax:</h5>
3435 <pre>
3436 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3437 </pre>
3439 <h5>Overview:</h5>
3440 <p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
3442 <h5>Arguments:</h5>
3443 <p>The two arguments to the '<tt>fmul</tt>' instruction must be
3444 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3445 floating point values. Both arguments must have identical types.</p>
3447 <h5>Semantics:</h5>
3448 <p>The value produced is the floating point product of the two operands.</p>
3450 <h5>Example:</h5>
3451 <pre>
3452 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
3453 </pre>
3455 </div>
3457 <!-- _______________________________________________________________________ -->
3458 <h4>
3459 <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
3460 </h4>
3462 <div>
3464 <h5>Syntax:</h5>
3465 <pre>
3466 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3467 &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3468 </pre>
3470 <h5>Overview:</h5>
3471 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
3473 <h5>Arguments:</h5>
3474 <p>The two arguments to the '<tt>udiv</tt>' instruction must be
3475 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3476 values. Both arguments must have identical types.</p>
3478 <h5>Semantics:</h5>
3479 <p>The value produced is the unsigned integer quotient of the two operands.</p>
3481 <p>Note that unsigned integer division and signed integer division are distinct
3482 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3484 <p>Division by zero leads to undefined behavior.</p>
3486 <p>If the <tt>exact</tt> keyword is present, the result value of the
3487 <tt>udiv</tt> is a <a href="#trapvalues">trap value</a> if %op1 is not a
3488 multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
3491 <h5>Example:</h5>
3492 <pre>
3493 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
3494 </pre>
3496 </div>
3498 <!-- _______________________________________________________________________ -->
3499 <h4>
3500 <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
3501 </h4>
3503 <div>
3505 <h5>Syntax:</h5>
3506 <pre>
3507 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3508 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3509 </pre>
3511 <h5>Overview:</h5>
3512 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
3514 <h5>Arguments:</h5>
3515 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
3516 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3517 values. Both arguments must have identical types.</p>
3519 <h5>Semantics:</h5>
3520 <p>The value produced is the signed integer quotient of the two operands rounded
3521 towards zero.</p>
3523 <p>Note that signed integer division and unsigned integer division are distinct
3524 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3526 <p>Division by zero leads to undefined behavior. Overflow also leads to
3527 undefined behavior; this is a rare case, but can occur, for example, by doing
3528 a 32-bit division of -2147483648 by -1.</p>
3530 <p>If the <tt>exact</tt> keyword is present, the result value of the
3531 <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
3532 be rounded.</p>
3534 <h5>Example:</h5>
3535 <pre>
3536 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
3537 </pre>
3539 </div>
3541 <!-- _______________________________________________________________________ -->
3542 <h4>
3543 <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
3544 </h4>
3546 <div>
3548 <h5>Syntax:</h5>
3549 <pre>
3550 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3551 </pre>
3553 <h5>Overview:</h5>
3554 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
3556 <h5>Arguments:</h5>
3557 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
3558 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3559 floating point values. Both arguments must have identical types.</p>
3561 <h5>Semantics:</h5>
3562 <p>The value produced is the floating point quotient of the two operands.</p>
3564 <h5>Example:</h5>
3565 <pre>
3566 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
3567 </pre>
3569 </div>
3571 <!-- _______________________________________________________________________ -->
3572 <h4>
3573 <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3574 </h4>
3576 <div>
3578 <h5>Syntax:</h5>
3579 <pre>
3580 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3581 </pre>
3583 <h5>Overview:</h5>
3584 <p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3585 division of its two arguments.</p>
3587 <h5>Arguments:</h5>
3588 <p>The two arguments to the '<tt>urem</tt>' instruction must be
3589 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3590 values. Both arguments must have identical types.</p>
3592 <h5>Semantics:</h5>
3593 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
3594 This instruction always performs an unsigned division to get the
3595 remainder.</p>
3597 <p>Note that unsigned integer remainder and signed integer remainder are
3598 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3600 <p>Taking the remainder of a division by zero leads to undefined behavior.</p>
3602 <h5>Example:</h5>
3603 <pre>
3604 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
3605 </pre>
3607 </div>
3609 <!-- _______________________________________________________________________ -->
3610 <h4>
3611 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3612 </h4>
3614 <div>
3616 <h5>Syntax:</h5>
3617 <pre>
3618 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3619 </pre>
3621 <h5>Overview:</h5>
3622 <p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3623 division of its two operands. This instruction can also take
3624 <a href="#t_vector">vector</a> versions of the values in which case the
3625 elements must be integers.</p>
3627 <h5>Arguments:</h5>
3628 <p>The two arguments to the '<tt>srem</tt>' instruction must be
3629 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3630 values. Both arguments must have identical types.</p>
3632 <h5>Semantics:</h5>
3633 <p>This instruction returns the <i>remainder</i> of a division (where the result
3634 is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
3635 <i>modulo</i> operator (where the result is either zero or has the same sign
3636 as the divisor, <tt>op2</tt>) of a value.
3637 For more information about the difference,
3638 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3639 Math Forum</a>. For a table of how this is implemented in various languages,
3640 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3641 Wikipedia: modulo operation</a>.</p>
3643 <p>Note that signed integer remainder and unsigned integer remainder are
3644 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3646 <p>Taking the remainder of a division by zero leads to undefined behavior.
3647 Overflow also leads to undefined behavior; this is a rare case, but can
3648 occur, for example, by taking the remainder of a 32-bit division of
3649 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3650 lets srem be implemented using instructions that return both the result of
3651 the division and the remainder.)</p>
3653 <h5>Example:</h5>
3654 <pre>
3655 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
3656 </pre>
3658 </div>
3660 <!-- _______________________________________________________________________ -->
3661 <h4>
3662 <a name="i_frem">'<tt>frem</tt>' Instruction</a>
3663 </h4>
3665 <div>
3667 <h5>Syntax:</h5>
3668 <pre>
3669 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3670 </pre>
3672 <h5>Overview:</h5>
3673 <p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3674 its two operands.</p>
3676 <h5>Arguments:</h5>
3677 <p>The two arguments to the '<tt>frem</tt>' instruction must be
3678 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3679 floating point values. Both arguments must have identical types.</p>
3681 <h5>Semantics:</h5>
3682 <p>This instruction returns the <i>remainder</i> of a division. The remainder
3683 has the same sign as the dividend.</p>
3685 <h5>Example:</h5>
3686 <pre>
3687 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
3688 </pre>
3690 </div>
3692 </div>
3694 <!-- ======================================================================= -->
3695 <h3>
3696 <a name="bitwiseops">Bitwise Binary Operations</a>
3697 </h3>
3699 <div>
3701 <p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3702 program. They are generally very efficient instructions and can commonly be
3703 strength reduced from other instructions. They require two operands of the
3704 same type, execute an operation on them, and produce a single value. The
3705 resulting value is the same type as its operands.</p>
3707 <!-- _______________________________________________________________________ -->
3708 <h4>
3709 <a name="i_shl">'<tt>shl</tt>' Instruction</a>
3710 </h4>
3712 <div>
3714 <h5>Syntax:</h5>
3715 <pre>
3716 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3717 &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3718 &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3719 &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3720 </pre>
3722 <h5>Overview:</h5>
3723 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3724 a specified number of bits.</p>
3726 <h5>Arguments:</h5>
3727 <p>Both arguments to the '<tt>shl</tt>' instruction must be the
3728 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3729 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
3731 <h5>Semantics:</h5>
3732 <p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3733 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3734 is (statically or dynamically) negative or equal to or larger than the number
3735 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3736 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3737 shift amount in <tt>op2</tt>.</p>
3739 <p>If the <tt>nuw</tt> keyword is present, then the shift produces a
3740 <a href="#trapvalues">trap value</a> if it shifts out any non-zero bits. If
3741 the <tt>nsw</tt> keyword is present, then the shift produces a
3742 <a href="#trapvalues">trap value</a> if it shifts out any bits that disagree
3743 with the resultant sign bit. As such, NUW/NSW have the same semantics as
3744 they would if the shift were expressed as a mul instruction with the same
3745 nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
3747 <h5>Example:</h5>
3748 <pre>
3749 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3750 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3751 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
3752 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
3753 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
3754 </pre>
3756 </div>
3758 <!-- _______________________________________________________________________ -->
3759 <h4>
3760 <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
3761 </h4>
3763 <div>
3765 <h5>Syntax:</h5>
3766 <pre>
3767 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3768 &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3769 </pre>
3771 <h5>Overview:</h5>
3772 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3773 operand shifted to the right a specified number of bits with zero fill.</p>
3775 <h5>Arguments:</h5>
3776 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
3777 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3778 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
3780 <h5>Semantics:</h5>
3781 <p>This instruction always performs a logical shift right operation. The most
3782 significant bits of the result will be filled with zero bits after the shift.
3783 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3784 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3785 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3786 shift amount in <tt>op2</tt>.</p>
3788 <p>If the <tt>exact</tt> keyword is present, the result value of the
3789 <tt>lshr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
3790 shifted out are non-zero.</p>
3793 <h5>Example:</h5>
3794 <pre>
3795 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3796 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3797 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3798 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
3799 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
3800 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
3801 </pre>
3803 </div>
3805 <!-- _______________________________________________________________________ -->
3806 <h4>
3807 <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
3808 </h4>
3810 <div>
3812 <h5>Syntax:</h5>
3813 <pre>
3814 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3815 &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3816 </pre>
3818 <h5>Overview:</h5>
3819 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3820 operand shifted to the right a specified number of bits with sign
3821 extension.</p>
3823 <h5>Arguments:</h5>
3824 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
3825 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3826 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
3828 <h5>Semantics:</h5>
3829 <p>This instruction always performs an arithmetic shift right operation, The
3830 most significant bits of the result will be filled with the sign bit
3831 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3832 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3833 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3834 the corresponding shift amount in <tt>op2</tt>.</p>
3836 <p>If the <tt>exact</tt> keyword is present, the result value of the
3837 <tt>ashr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
3838 shifted out are non-zero.</p>
3840 <h5>Example:</h5>
3841 <pre>
3842 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3843 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3844 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3845 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
3846 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
3847 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
3848 </pre>
3850 </div>
3852 <!-- _______________________________________________________________________ -->
3853 <h4>
3854 <a name="i_and">'<tt>and</tt>' Instruction</a>
3855 </h4>
3857 <div>
3859 <h5>Syntax:</h5>
3860 <pre>
3861 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3862 </pre>
3864 <h5>Overview:</h5>
3865 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3866 operands.</p>
3868 <h5>Arguments:</h5>
3869 <p>The two arguments to the '<tt>and</tt>' instruction must be
3870 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3871 values. Both arguments must have identical types.</p>
3873 <h5>Semantics:</h5>
3874 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
3876 <table border="1" cellspacing="0" cellpadding="4">
3877 <tbody>
3878 <tr>
3879 <td>In0</td>
3880 <td>In1</td>
3881 <td>Out</td>
3882 </tr>
3883 <tr>
3884 <td>0</td>
3885 <td>0</td>
3886 <td>0</td>
3887 </tr>
3888 <tr>
3889 <td>0</td>
3890 <td>1</td>
3891 <td>0</td>
3892 </tr>
3893 <tr>
3894 <td>1</td>
3895 <td>0</td>
3896 <td>0</td>
3897 </tr>
3898 <tr>
3899 <td>1</td>
3900 <td>1</td>
3901 <td>1</td>
3902 </tr>
3903 </tbody>
3904 </table>
3906 <h5>Example:</h5>
3907 <pre>
3908 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
3909 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3910 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
3911 </pre>
3912 </div>
3913 <!-- _______________________________________________________________________ -->
3914 <h4>
3915 <a name="i_or">'<tt>or</tt>' Instruction</a>
3916 </h4>
3918 <div>
3920 <h5>Syntax:</h5>
3921 <pre>
3922 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3923 </pre>
3925 <h5>Overview:</h5>
3926 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3927 two operands.</p>
3929 <h5>Arguments:</h5>
3930 <p>The two arguments to the '<tt>or</tt>' instruction must be
3931 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3932 values. Both arguments must have identical types.</p>
3934 <h5>Semantics:</h5>
3935 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
3937 <table border="1" cellspacing="0" cellpadding="4">
3938 <tbody>
3939 <tr>
3940 <td>In0</td>
3941 <td>In1</td>
3942 <td>Out</td>
3943 </tr>
3944 <tr>
3945 <td>0</td>
3946 <td>0</td>
3947 <td>0</td>
3948 </tr>
3949 <tr>
3950 <td>0</td>
3951 <td>1</td>
3952 <td>1</td>
3953 </tr>
3954 <tr>
3955 <td>1</td>
3956 <td>0</td>
3957 <td>1</td>
3958 </tr>
3959 <tr>
3960 <td>1</td>
3961 <td>1</td>
3962 <td>1</td>
3963 </tr>
3964 </tbody>
3965 </table>
3967 <h5>Example:</h5>
3968 <pre>
3969 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3970 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3971 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
3972 </pre>
3974 </div>
3976 <!-- _______________________________________________________________________ -->
3977 <h4>
3978 <a name="i_xor">'<tt>xor</tt>' Instruction</a>
3979 </h4>
3981 <div>
3983 <h5>Syntax:</h5>
3984 <pre>
3985 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3986 </pre>
3988 <h5>Overview:</h5>
3989 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3990 its two operands. The <tt>xor</tt> is used to implement the "one's
3991 complement" operation, which is the "~" operator in C.</p>
3993 <h5>Arguments:</h5>
3994 <p>The two arguments to the '<tt>xor</tt>' instruction must be
3995 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3996 values. Both arguments must have identical types.</p>
3998 <h5>Semantics:</h5>
3999 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
4001 <table border="1" cellspacing="0" cellpadding="4">
4002 <tbody>
4003 <tr>
4004 <td>In0</td>
4005 <td>In1</td>
4006 <td>Out</td>
4007 </tr>
4008 <tr>
4009 <td>0</td>
4010 <td>0</td>
4011 <td>0</td>
4012 </tr>
4013 <tr>
4014 <td>0</td>
4015 <td>1</td>
4016 <td>1</td>
4017 </tr>
4018 <tr>
4019 <td>1</td>
4020 <td>0</td>
4021 <td>1</td>
4022 </tr>
4023 <tr>
4024 <td>1</td>
4025 <td>1</td>
4026 <td>0</td>
4027 </tr>
4028 </tbody>
4029 </table>
4031 <h5>Example:</h5>
4032 <pre>
4033 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
4034 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
4035 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
4036 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
4037 </pre>
4039 </div>
4041 </div>
4043 <!-- ======================================================================= -->
4044 <h3>
4045 <a name="vectorops">Vector Operations</a>
4046 </h3>
4048 <div>
4050 <p>LLVM supports several instructions to represent vector operations in a
4051 target-independent manner. These instructions cover the element-access and
4052 vector-specific operations needed to process vectors effectively. While LLVM
4053 does directly support these vector operations, many sophisticated algorithms
4054 will want to use target-specific intrinsics to take full advantage of a
4055 specific target.</p>
4057 <!-- _______________________________________________________________________ -->
4058 <h4>
4059 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
4060 </h4>
4062 <div>
4064 <h5>Syntax:</h5>
4065 <pre>
4066 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
4067 </pre>
4069 <h5>Overview:</h5>
4070 <p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4071 from a vector at a specified index.</p>
4074 <h5>Arguments:</h5>
4075 <p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4076 of <a href="#t_vector">vector</a> type. The second operand is an index
4077 indicating the position from which to extract the element. The index may be
4078 a variable.</p>
4080 <h5>Semantics:</h5>
4081 <p>The result is a scalar of the same type as the element type of
4082 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4083 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4084 results are undefined.</p>
4086 <h5>Example:</h5>
4087 <pre>
4088 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
4089 </pre>
4091 </div>
4093 <!-- _______________________________________________________________________ -->
4094 <h4>
4095 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
4096 </h4>
4098 <div>
4100 <h5>Syntax:</h5>
4101 <pre>
4102 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
4103 </pre>
4105 <h5>Overview:</h5>
4106 <p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4107 vector at a specified index.</p>
4109 <h5>Arguments:</h5>
4110 <p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4111 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4112 whose type must equal the element type of the first operand. The third
4113 operand is an index indicating the position at which to insert the value.
4114 The index may be a variable.</p>
4116 <h5>Semantics:</h5>
4117 <p>The result is a vector of the same type as <tt>val</tt>. Its element values
4118 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4119 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4120 results are undefined.</p>
4122 <h5>Example:</h5>
4123 <pre>
4124 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
4125 </pre>
4127 </div>
4129 <!-- _______________________________________________________________________ -->
4130 <h4>
4131 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
4132 </h4>
4134 <div>
4136 <h5>Syntax:</h5>
4137 <pre>
4138 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
4139 </pre>
4141 <h5>Overview:</h5>
4142 <p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4143 from two input vectors, returning a vector with the same element type as the
4144 input and length that is the same as the shuffle mask.</p>
4146 <h5>Arguments:</h5>
4147 <p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4148 with types that match each other. The third argument is a shuffle mask whose
4149 element type is always 'i32'. The result of the instruction is a vector
4150 whose length is the same as the shuffle mask and whose element type is the
4151 same as the element type of the first two operands.</p>
4153 <p>The shuffle mask operand is required to be a constant vector with either
4154 constant integer or undef values.</p>
4156 <h5>Semantics:</h5>
4157 <p>The elements of the two input vectors are numbered from left to right across
4158 both of the vectors. The shuffle mask operand specifies, for each element of
4159 the result vector, which element of the two input vectors the result element
4160 gets. The element selector may be undef (meaning "don't care") and the
4161 second operand may be undef if performing a shuffle from only one vector.</p>
4163 <h5>Example:</h5>
4164 <pre>
4165 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
4166 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
4167 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
4168 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
4169 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
4170 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
4171 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
4172 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
4173 </pre>
4175 </div>
4177 </div>
4179 <!-- ======================================================================= -->
4180 <h3>
4181 <a name="aggregateops">Aggregate Operations</a>
4182 </h3>
4184 <div>
4186 <p>LLVM supports several instructions for working with
4187 <a href="#t_aggregate">aggregate</a> values.</p>
4189 <!-- _______________________________________________________________________ -->
4190 <h4>
4191 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
4192 </h4>
4194 <div>
4196 <h5>Syntax:</h5>
4197 <pre>
4198 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4199 </pre>
4201 <h5>Overview:</h5>
4202 <p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4203 from an <a href="#t_aggregate">aggregate</a> value.</p>
4205 <h5>Arguments:</h5>
4206 <p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
4207 of <a href="#t_struct">struct</a> or
4208 <a href="#t_array">array</a> type. The operands are constant indices to
4209 specify which value to extract in a similar manner as indices in a
4210 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
4211 <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4212 <ul>
4213 <li>Since the value being indexed is not a pointer, the first index is
4214 omitted and assumed to be zero.</li>
4215 <li>At least one index must be specified.</li>
4216 <li>Not only struct indices but also array indices must be in
4217 bounds.</li>
4218 </ul>
4220 <h5>Semantics:</h5>
4221 <p>The result is the value at the position in the aggregate specified by the
4222 index operands.</p>
4224 <h5>Example:</h5>
4225 <pre>
4226 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
4227 </pre>
4229 </div>
4231 <!-- _______________________________________________________________________ -->
4232 <h4>
4233 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
4234 </h4>
4236 <div>
4238 <h5>Syntax:</h5>
4239 <pre>
4240 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, <idx>}* <i>; yields &lt;aggregate type&gt;</i>
4241 </pre>
4243 <h5>Overview:</h5>
4244 <p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4245 in an <a href="#t_aggregate">aggregate</a> value.</p>
4247 <h5>Arguments:</h5>
4248 <p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
4249 of <a href="#t_struct">struct</a> or
4250 <a href="#t_array">array</a> type. The second operand is a first-class
4251 value to insert. The following operands are constant indices indicating
4252 the position at which to insert the value in a similar manner as indices in a
4253 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction. The
4254 value to insert must have the same type as the value identified by the
4255 indices.</p>
4257 <h5>Semantics:</h5>
4258 <p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4259 that of <tt>val</tt> except that the value at the position specified by the
4260 indices is that of <tt>elt</tt>.</p>
4262 <h5>Example:</h5>
4263 <pre>
4264 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4265 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
4266 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 <i>; yields {i32 1, float %val}</i>
4267 </pre>
4269 </div>
4271 </div>
4273 <!-- ======================================================================= -->
4274 <h3>
4275 <a name="memoryops">Memory Access and Addressing Operations</a>
4276 </h3>
4278 <div>
4280 <p>A key design point of an SSA-based representation is how it represents
4281 memory. In LLVM, no memory locations are in SSA form, which makes things
4282 very simple. This section describes how to read, write, and allocate
4283 memory in LLVM.</p>
4285 <!-- _______________________________________________________________________ -->
4286 <h4>
4287 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
4288 </h4>
4290 <div>
4292 <h5>Syntax:</h5>
4293 <pre>
4294 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
4295 </pre>
4297 <h5>Overview:</h5>
4298 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
4299 currently executing function, to be automatically released when this function
4300 returns to its caller. The object is always allocated in the generic address
4301 space (address space zero).</p>
4303 <h5>Arguments:</h5>
4304 <p>The '<tt>alloca</tt>' instruction
4305 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4306 runtime stack, returning a pointer of the appropriate type to the program.
4307 If "NumElements" is specified, it is the number of elements allocated,
4308 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4309 specified, the value result of the allocation is guaranteed to be aligned to
4310 at least that boundary. If not specified, or if zero, the target can choose
4311 to align the allocation on any convenient boundary compatible with the
4312 type.</p>
4314 <p>'<tt>type</tt>' may be any sized type.</p>
4316 <h5>Semantics:</h5>
4317 <p>Memory is allocated; a pointer is returned. The operation is undefined if
4318 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4319 memory is automatically released when the function returns. The
4320 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4321 variables that must have an address available. When the function returns
4322 (either with the <tt><a href="#i_ret">ret</a></tt>
4323 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4324 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
4326 <h5>Example:</h5>
4327 <pre>
4328 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4329 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4330 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4331 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
4332 </pre>
4334 </div>
4336 <!-- _______________________________________________________________________ -->
4337 <h4>
4338 <a name="i_load">'<tt>load</tt>' Instruction</a>
4339 </h4>
4341 <div>
4343 <h5>Syntax:</h5>
4344 <pre>
4345 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4346 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4347 !&lt;index&gt; = !{ i32 1 }
4348 </pre>
4350 <h5>Overview:</h5>
4351 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
4353 <h5>Arguments:</h5>
4354 <p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4355 from which to load. The pointer must point to
4356 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4357 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
4358 number or order of execution of this <tt>load</tt> with other <a
4359 href="#volatile">volatile operations</a>.</p>
4361 <p>The optional constant <tt>align</tt> argument specifies the alignment of the
4362 operation (that is, the alignment of the memory address). A value of 0 or an
4363 omitted <tt>align</tt> argument means that the operation has the preferential
4364 alignment for the target. It is the responsibility of the code emitter to
4365 ensure that the alignment information is correct. Overestimating the
4366 alignment results in undefined behavior. Underestimating the alignment may
4367 produce less efficient code. An alignment of 1 is always safe.</p>
4369 <p>The optional <tt>!nontemporal</tt> metadata must reference a single
4370 metatadata name &lt;index&gt; corresponding to a metadata node with
4371 one <tt>i32</tt> entry of value 1. The existence of
4372 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4373 and code generator that this load is not expected to be reused in the cache.
4374 The code generator may select special instructions to save cache bandwidth,
4375 such as the <tt>MOVNT</tt> instruction on x86.</p>
4377 <h5>Semantics:</h5>
4378 <p>The location of memory pointed to is loaded. If the value being loaded is of
4379 scalar type then the number of bytes read does not exceed the minimum number
4380 of bytes needed to hold all bits of the type. For example, loading an
4381 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4382 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4383 is undefined if the value was not originally written using a store of the
4384 same type.</p>
4386 <h5>Examples:</h5>
4387 <pre>
4388 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4389 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
4390 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
4391 </pre>
4393 </div>
4395 <!-- _______________________________________________________________________ -->
4396 <h4>
4397 <a name="i_store">'<tt>store</tt>' Instruction</a>
4398 </h4>
4400 <div>
4402 <h5>Syntax:</h5>
4403 <pre>
4404 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4405 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4406 </pre>
4408 <h5>Overview:</h5>
4409 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
4411 <h5>Arguments:</h5>
4412 <p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4413 and an address at which to store it. The type of the
4414 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4415 the <a href="#t_firstclass">first class</a> type of the
4416 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
4417 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
4418 order of execution of this <tt>store</tt> with other <a
4419 href="#volatile">volatile operations</a>.</p>
4421 <p>The optional constant "align" argument specifies the alignment of the
4422 operation (that is, the alignment of the memory address). A value of 0 or an
4423 omitted "align" argument means that the operation has the preferential
4424 alignment for the target. It is the responsibility of the code emitter to
4425 ensure that the alignment information is correct. Overestimating the
4426 alignment results in an undefined behavior. Underestimating the alignment may
4427 produce less efficient code. An alignment of 1 is always safe.</p>
4429 <p>The optional !nontemporal metadata must reference a single metatadata
4430 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
4431 value 1. The existence of the !nontemporal metatadata on the
4432 instruction tells the optimizer and code generator that this load is
4433 not expected to be reused in the cache. The code generator may
4434 select special instructions to save cache bandwidth, such as the
4435 MOVNT instruction on x86.</p>
4438 <h5>Semantics:</h5>
4439 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4440 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4441 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4442 does not exceed the minimum number of bytes needed to hold all bits of the
4443 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4444 writing a value of a type like <tt>i20</tt> with a size that is not an
4445 integral number of bytes, it is unspecified what happens to the extra bits
4446 that do not belong to the type, but they will typically be overwritten.</p>
4448 <h5>Example:</h5>
4449 <pre>
4450 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4451 store i32 3, i32* %ptr <i>; yields {void}</i>
4452 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
4453 </pre>
4455 </div>
4457 <!-- _______________________________________________________________________ -->
4458 <h4>
4459 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
4460 </h4>
4462 <div>
4464 <h5>Syntax:</h5>
4465 <pre>
4466 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
4467 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
4468 </pre>
4470 <h5>Overview:</h5>
4471 <p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
4472 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
4473 It performs address calculation only and does not access memory.</p>
4475 <h5>Arguments:</h5>
4476 <p>The first argument is always a pointer, and forms the basis of the
4477 calculation. The remaining arguments are indices that indicate which of the
4478 elements of the aggregate object are indexed. The interpretation of each
4479 index is dependent on the type being indexed into. The first index always
4480 indexes the pointer value given as the first argument, the second index
4481 indexes a value of the type pointed to (not necessarily the value directly
4482 pointed to, since the first index can be non-zero), etc. The first type
4483 indexed into must be a pointer value, subsequent types can be arrays,
4484 vectors, and structs. Note that subsequent types being indexed into
4485 can never be pointers, since that would require loading the pointer before
4486 continuing calculation.</p>
4488 <p>The type of each index argument depends on the type it is indexing into.
4489 When indexing into a (optionally packed) structure, only <tt>i32</tt>
4490 integer <b>constants</b> are allowed. When indexing into an array, pointer
4491 or vector, integers of any width are allowed, and they are not required to be
4492 constant.</p>
4494 <p>For example, let's consider a C code fragment and how it gets compiled to
4495 LLVM:</p>
4497 <pre class="doc_code">
4498 struct RT {
4499 char A;
4500 int B[10][20];
4501 char C;
4503 struct ST {
4504 int X;
4505 double Y;
4506 struct RT Z;
4509 int *foo(struct ST *s) {
4510 return &amp;s[1].Z.B[5][13];
4512 </pre>
4514 <p>The LLVM code generated by the GCC frontend is:</p>
4516 <pre class="doc_code">
4517 %RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
4518 %ST = <a href="#namedtypes">type</a> { i32, double, %RT }
4520 define i32* @foo(%ST* %s) {
4521 entry:
4522 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4523 ret i32* %reg
4525 </pre>
4527 <h5>Semantics:</h5>
4528 <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
4529 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4530 }</tt>' type, a structure. The second index indexes into the third element
4531 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4532 i8 }</tt>' type, another structure. The third index indexes into the second
4533 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4534 array. The two dimensions of the array are subscripted into, yielding an
4535 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
4536 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
4538 <p>Note that it is perfectly legal to index partially through a structure,
4539 returning a pointer to an inner element. Because of this, the LLVM code for
4540 the given testcase is equivalent to:</p>
4542 <pre>
4543 define i32* @foo(%ST* %s) {
4544 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
4545 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
4546 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
4547 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
4548 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
4549 ret i32* %t5
4551 </pre>
4553 <p>If the <tt>inbounds</tt> keyword is present, the result value of the
4554 <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
4555 base pointer is not an <i>in bounds</i> address of an allocated object,
4556 or if any of the addresses that would be formed by successive addition of
4557 the offsets implied by the indices to the base address with infinitely
4558 precise arithmetic are not an <i>in bounds</i> address of that allocated
4559 object. The <i>in bounds</i> addresses for an allocated object are all
4560 the addresses that point into the object, plus the address one byte past
4561 the end.</p>
4563 <p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4564 the base address with silently-wrapping two's complement arithmetic, and
4565 the result value of the <tt>getelementptr</tt> may be outside the object
4566 pointed to by the base pointer. The result value may not necessarily be
4567 used to access memory though, even if it happens to point into allocated
4568 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4569 section for more information.</p>
4571 <p>The getelementptr instruction is often confusing. For some more insight into
4572 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
4574 <h5>Example:</h5>
4575 <pre>
4576 <i>; yields [12 x i8]*:aptr</i>
4577 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4578 <i>; yields i8*:vptr</i>
4579 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
4580 <i>; yields i8*:eptr</i>
4581 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4582 <i>; yields i32*:iptr</i>
4583 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4584 </pre>
4586 </div>
4588 </div>
4590 <!-- ======================================================================= -->
4591 <h3>
4592 <a name="convertops">Conversion Operations</a>
4593 </h3>
4595 <div>
4597 <p>The instructions in this category are the conversion instructions (casting)
4598 which all take a single operand and a type. They perform various bit
4599 conversions on the operand.</p>
4601 <!-- _______________________________________________________________________ -->
4602 <h4>
4603 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4604 </h4>
4606 <div>
4608 <h5>Syntax:</h5>
4609 <pre>
4610 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4611 </pre>
4613 <h5>Overview:</h5>
4614 <p>The '<tt>trunc</tt>' instruction truncates its operand to the
4615 type <tt>ty2</tt>.</p>
4617 <h5>Arguments:</h5>
4618 <p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
4619 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4620 of the same number of integers.
4621 The bit size of the <tt>value</tt> must be larger than
4622 the bit size of the destination type, <tt>ty2</tt>.
4623 Equal sized types are not allowed.</p>
4625 <h5>Semantics:</h5>
4626 <p>The '<tt>trunc</tt>' instruction truncates the high order bits
4627 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4628 source size must be larger than the destination size, <tt>trunc</tt> cannot
4629 be a <i>no-op cast</i>. It will always truncate bits.</p>
4631 <h5>Example:</h5>
4632 <pre>
4633 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
4634 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
4635 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
4636 %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
4637 </pre>
4639 </div>
4641 <!-- _______________________________________________________________________ -->
4642 <h4>
4643 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4644 </h4>
4646 <div>
4648 <h5>Syntax:</h5>
4649 <pre>
4650 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4651 </pre>
4653 <h5>Overview:</h5>
4654 <p>The '<tt>zext</tt>' instruction zero extends its operand to type
4655 <tt>ty2</tt>.</p>
4658 <h5>Arguments:</h5>
4659 <p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
4660 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4661 of the same number of integers.
4662 The bit size of the <tt>value</tt> must be smaller than
4663 the bit size of the destination type,
4664 <tt>ty2</tt>.</p>
4666 <h5>Semantics:</h5>
4667 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
4668 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
4670 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
4672 <h5>Example:</h5>
4673 <pre>
4674 %X = zext i32 257 to i64 <i>; yields i64:257</i>
4675 %Y = zext i1 true to i32 <i>; yields i32:1</i>
4676 %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
4677 </pre>
4679 </div>
4681 <!-- _______________________________________________________________________ -->
4682 <h4>
4683 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4684 </h4>
4686 <div>
4688 <h5>Syntax:</h5>
4689 <pre>
4690 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4691 </pre>
4693 <h5>Overview:</h5>
4694 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4696 <h5>Arguments:</h5>
4697 <p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
4698 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4699 of the same number of integers.
4700 The bit size of the <tt>value</tt> must be smaller than
4701 the bit size of the destination type,
4702 <tt>ty2</tt>.</p>
4704 <h5>Semantics:</h5>
4705 <p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4706 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4707 of the type <tt>ty2</tt>.</p>
4709 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
4711 <h5>Example:</h5>
4712 <pre>
4713 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
4714 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
4715 %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
4716 </pre>
4718 </div>
4720 <!-- _______________________________________________________________________ -->
4721 <h4>
4722 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4723 </h4>
4725 <div>
4727 <h5>Syntax:</h5>
4728 <pre>
4729 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4730 </pre>
4732 <h5>Overview:</h5>
4733 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
4734 <tt>ty2</tt>.</p>
4736 <h5>Arguments:</h5>
4737 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
4738 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4739 to cast it to. The size of <tt>value</tt> must be larger than the size of
4740 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4741 <i>no-op cast</i>.</p>
4743 <h5>Semantics:</h5>
4744 <p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4745 <a href="#t_floating">floating point</a> type to a smaller
4746 <a href="#t_floating">floating point</a> type. If the value cannot fit
4747 within the destination type, <tt>ty2</tt>, then the results are
4748 undefined.</p>
4750 <h5>Example:</h5>
4751 <pre>
4752 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4753 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4754 </pre>
4756 </div>
4758 <!-- _______________________________________________________________________ -->
4759 <h4>
4760 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4761 </h4>
4763 <div>
4765 <h5>Syntax:</h5>
4766 <pre>
4767 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4768 </pre>
4770 <h5>Overview:</h5>
4771 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
4772 floating point value.</p>
4774 <h5>Arguments:</h5>
4775 <p>The '<tt>fpext</tt>' instruction takes a
4776 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4777 a <a href="#t_floating">floating point</a> type to cast it to. The source
4778 type must be smaller than the destination type.</p>
4780 <h5>Semantics:</h5>
4781 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
4782 <a href="#t_floating">floating point</a> type to a larger
4783 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4784 used to make a <i>no-op cast</i> because it always changes bits. Use
4785 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
4787 <h5>Example:</h5>
4788 <pre>
4789 %X = fpext float 3.125 to double <i>; yields double:3.125000e+00</i>
4790 %Y = fpext double %X to fp128 <i>; yields fp128:0xL00000000000000004000900000000000</i>
4791 </pre>
4793 </div>
4795 <!-- _______________________________________________________________________ -->
4796 <h4>
4797 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
4798 </h4>
4800 <div>
4802 <h5>Syntax:</h5>
4803 <pre>
4804 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4805 </pre>
4807 <h5>Overview:</h5>
4808 <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
4809 unsigned integer equivalent of type <tt>ty2</tt>.</p>
4811 <h5>Arguments:</h5>
4812 <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4813 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4814 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4815 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4816 vector integer type with the same number of elements as <tt>ty</tt></p>
4818 <h5>Semantics:</h5>
4819 <p>The '<tt>fptoui</tt>' instruction converts its
4820 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4821 towards zero) unsigned integer value. If the value cannot fit
4822 in <tt>ty2</tt>, the results are undefined.</p>
4824 <h5>Example:</h5>
4825 <pre>
4826 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
4827 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
4828 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
4829 </pre>
4831 </div>
4833 <!-- _______________________________________________________________________ -->
4834 <h4>
4835 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
4836 </h4>
4838 <div>
4840 <h5>Syntax:</h5>
4841 <pre>
4842 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4843 </pre>
4845 <h5>Overview:</h5>
4846 <p>The '<tt>fptosi</tt>' instruction converts
4847 <a href="#t_floating">floating point</a> <tt>value</tt> to
4848 type <tt>ty2</tt>.</p>
4850 <h5>Arguments:</h5>
4851 <p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4852 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4853 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4854 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4855 vector integer type with the same number of elements as <tt>ty</tt></p>
4857 <h5>Semantics:</h5>
4858 <p>The '<tt>fptosi</tt>' instruction converts its
4859 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4860 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4861 the results are undefined.</p>
4863 <h5>Example:</h5>
4864 <pre>
4865 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
4866 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
4867 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
4868 </pre>
4870 </div>
4872 <!-- _______________________________________________________________________ -->
4873 <h4>
4874 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
4875 </h4>
4877 <div>
4879 <h5>Syntax:</h5>
4880 <pre>
4881 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4882 </pre>
4884 <h5>Overview:</h5>
4885 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
4886 integer and converts that value to the <tt>ty2</tt> type.</p>
4888 <h5>Arguments:</h5>
4889 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4890 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4891 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4892 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4893 floating point type with the same number of elements as <tt>ty</tt></p>
4895 <h5>Semantics:</h5>
4896 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
4897 integer quantity and converts it to the corresponding floating point
4898 value. If the value cannot fit in the floating point value, the results are
4899 undefined.</p>
4901 <h5>Example:</h5>
4902 <pre>
4903 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
4904 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
4905 </pre>
4907 </div>
4909 <!-- _______________________________________________________________________ -->
4910 <h4>
4911 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
4912 </h4>
4914 <div>
4916 <h5>Syntax:</h5>
4917 <pre>
4918 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4919 </pre>
4921 <h5>Overview:</h5>
4922 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4923 and converts that value to the <tt>ty2</tt> type.</p>
4925 <h5>Arguments:</h5>
4926 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4927 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4928 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4929 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4930 floating point type with the same number of elements as <tt>ty</tt></p>
4932 <h5>Semantics:</h5>
4933 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4934 quantity and converts it to the corresponding floating point value. If the
4935 value cannot fit in the floating point value, the results are undefined.</p>
4937 <h5>Example:</h5>
4938 <pre>
4939 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
4940 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
4941 </pre>
4943 </div>
4945 <!-- _______________________________________________________________________ -->
4946 <h4>
4947 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4948 </h4>
4950 <div>
4952 <h5>Syntax:</h5>
4953 <pre>
4954 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4955 </pre>
4957 <h5>Overview:</h5>
4958 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4959 the integer type <tt>ty2</tt>.</p>
4961 <h5>Arguments:</h5>
4962 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4963 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4964 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
4966 <h5>Semantics:</h5>
4967 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4968 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4969 truncating or zero extending that value to the size of the integer type. If
4970 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4971 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4972 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4973 change.</p>
4975 <h5>Example:</h5>
4976 <pre>
4977 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4978 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
4979 </pre>
4981 </div>
4983 <!-- _______________________________________________________________________ -->
4984 <h4>
4985 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4986 </h4>
4988 <div>
4990 <h5>Syntax:</h5>
4991 <pre>
4992 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4993 </pre>
4995 <h5>Overview:</h5>
4996 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4997 pointer type, <tt>ty2</tt>.</p>
4999 <h5>Arguments:</h5>
5000 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
5001 value to cast, and a type to cast it to, which must be a
5002 <a href="#t_pointer">pointer</a> type.</p>
5004 <h5>Semantics:</h5>
5005 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
5006 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
5007 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
5008 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
5009 than the size of a pointer then a zero extension is done. If they are the
5010 same size, nothing is done (<i>no-op cast</i>).</p>
5012 <h5>Example:</h5>
5013 <pre>
5014 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
5015 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
5016 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
5017 </pre>
5019 </div>
5021 <!-- _______________________________________________________________________ -->
5022 <h4>
5023 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
5024 </h4>
5026 <div>
5028 <h5>Syntax:</h5>
5029 <pre>
5030 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5031 </pre>
5033 <h5>Overview:</h5>
5034 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
5035 <tt>ty2</tt> without changing any bits.</p>
5037 <h5>Arguments:</h5>
5038 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
5039 non-aggregate first class value, and a type to cast it to, which must also be
5040 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
5041 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5042 identical. If the source type is a pointer, the destination type must also be
5043 a pointer. This instruction supports bitwise conversion of vectors to
5044 integers and to vectors of other types (as long as they have the same
5045 size).</p>
5047 <h5>Semantics:</h5>
5048 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
5049 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5050 this conversion. The conversion is done as if the <tt>value</tt> had been
5051 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
5052 be converted to other pointer types with this instruction. To convert
5053 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5054 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
5056 <h5>Example:</h5>
5057 <pre>
5058 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
5059 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
5060 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
5061 </pre>
5063 </div>
5065 </div>
5067 <!-- ======================================================================= -->
5068 <h3>
5069 <a name="otherops">Other Operations</a>
5070 </h3>
5072 <div>
5074 <p>The instructions in this category are the "miscellaneous" instructions, which
5075 defy better classification.</p>
5077 <!-- _______________________________________________________________________ -->
5078 <h4>
5079 <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5080 </h4>
5082 <div>
5084 <h5>Syntax:</h5>
5085 <pre>
5086 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
5087 </pre>
5089 <h5>Overview:</h5>
5090 <p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
5091 boolean values based on comparison of its two integer, integer vector, or
5092 pointer operands.</p>
5094 <h5>Arguments:</h5>
5095 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
5096 the condition code indicating the kind of comparison to perform. It is not a
5097 value, just a keyword. The possible condition code are:</p>
5099 <ol>
5100 <li><tt>eq</tt>: equal</li>
5101 <li><tt>ne</tt>: not equal </li>
5102 <li><tt>ugt</tt>: unsigned greater than</li>
5103 <li><tt>uge</tt>: unsigned greater or equal</li>
5104 <li><tt>ult</tt>: unsigned less than</li>
5105 <li><tt>ule</tt>: unsigned less or equal</li>
5106 <li><tt>sgt</tt>: signed greater than</li>
5107 <li><tt>sge</tt>: signed greater or equal</li>
5108 <li><tt>slt</tt>: signed less than</li>
5109 <li><tt>sle</tt>: signed less or equal</li>
5110 </ol>
5112 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
5113 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5114 typed. They must also be identical types.</p>
5116 <h5>Semantics:</h5>
5117 <p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5118 condition code given as <tt>cond</tt>. The comparison performed always yields
5119 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
5120 result, as follows:</p>
5122 <ol>
5123 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
5124 <tt>false</tt> otherwise. No sign interpretation is necessary or
5125 performed.</li>
5127 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
5128 <tt>false</tt> otherwise. No sign interpretation is necessary or
5129 performed.</li>
5131 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
5132 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5134 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
5135 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5136 to <tt>op2</tt>.</li>
5138 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
5139 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5141 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
5142 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5144 <li><tt>sgt</tt>: interprets the operands as signed values and yields
5145 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5147 <li><tt>sge</tt>: interprets the operands as signed values and yields
5148 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5149 to <tt>op2</tt>.</li>
5151 <li><tt>slt</tt>: interprets the operands as signed values and yields
5152 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5154 <li><tt>sle</tt>: interprets the operands as signed values and yields
5155 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5156 </ol>
5158 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
5159 values are compared as if they were integers.</p>
5161 <p>If the operands are integer vectors, then they are compared element by
5162 element. The result is an <tt>i1</tt> vector with the same number of elements
5163 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
5165 <h5>Example:</h5>
5166 <pre>
5167 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
5168 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
5169 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
5170 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
5171 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
5172 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
5173 </pre>
5175 <p>Note that the code generator does not yet support vector types with
5176 the <tt>icmp</tt> instruction.</p>
5178 </div>
5180 <!-- _______________________________________________________________________ -->
5181 <h4>
5182 <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5183 </h4>
5185 <div>
5187 <h5>Syntax:</h5>
5188 <pre>
5189 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
5190 </pre>
5192 <h5>Overview:</h5>
5193 <p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5194 values based on comparison of its operands.</p>
5196 <p>If the operands are floating point scalars, then the result type is a boolean
5197 (<a href="#t_integer"><tt>i1</tt></a>).</p>
5199 <p>If the operands are floating point vectors, then the result type is a vector
5200 of boolean with the same number of elements as the operands being
5201 compared.</p>
5203 <h5>Arguments:</h5>
5204 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
5205 the condition code indicating the kind of comparison to perform. It is not a
5206 value, just a keyword. The possible condition code are:</p>
5208 <ol>
5209 <li><tt>false</tt>: no comparison, always returns false</li>
5210 <li><tt>oeq</tt>: ordered and equal</li>
5211 <li><tt>ogt</tt>: ordered and greater than </li>
5212 <li><tt>oge</tt>: ordered and greater than or equal</li>
5213 <li><tt>olt</tt>: ordered and less than </li>
5214 <li><tt>ole</tt>: ordered and less than or equal</li>
5215 <li><tt>one</tt>: ordered and not equal</li>
5216 <li><tt>ord</tt>: ordered (no nans)</li>
5217 <li><tt>ueq</tt>: unordered or equal</li>
5218 <li><tt>ugt</tt>: unordered or greater than </li>
5219 <li><tt>uge</tt>: unordered or greater than or equal</li>
5220 <li><tt>ult</tt>: unordered or less than </li>
5221 <li><tt>ule</tt>: unordered or less than or equal</li>
5222 <li><tt>une</tt>: unordered or not equal</li>
5223 <li><tt>uno</tt>: unordered (either nans)</li>
5224 <li><tt>true</tt>: no comparison, always returns true</li>
5225 </ol>
5227 <p><i>Ordered</i> means that neither operand is a QNAN while
5228 <i>unordered</i> means that either operand may be a QNAN.</p>
5230 <p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5231 a <a href="#t_floating">floating point</a> type or
5232 a <a href="#t_vector">vector</a> of floating point type. They must have
5233 identical types.</p>
5235 <h5>Semantics:</h5>
5236 <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
5237 according to the condition code given as <tt>cond</tt>. If the operands are
5238 vectors, then the vectors are compared element by element. Each comparison
5239 performed always yields an <a href="#t_integer">i1</a> result, as
5240 follows:</p>
5242 <ol>
5243 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
5245 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5246 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5248 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5249 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5251 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5252 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5254 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5255 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5257 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5258 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5260 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5261 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5263 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
5265 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
5266 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5268 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
5269 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5271 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
5272 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5274 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
5275 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5277 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
5278 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5280 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
5281 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5283 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
5285 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5286 </ol>
5288 <h5>Example:</h5>
5289 <pre>
5290 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
5291 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5292 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5293 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
5294 </pre>
5296 <p>Note that the code generator does not yet support vector types with
5297 the <tt>fcmp</tt> instruction.</p>
5299 </div>
5301 <!-- _______________________________________________________________________ -->
5302 <h4>
5303 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
5304 </h4>
5306 <div>
5308 <h5>Syntax:</h5>
5309 <pre>
5310 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5311 </pre>
5313 <h5>Overview:</h5>
5314 <p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5315 SSA graph representing the function.</p>
5317 <h5>Arguments:</h5>
5318 <p>The type of the incoming values is specified with the first type field. After
5319 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5320 one pair for each predecessor basic block of the current block. Only values
5321 of <a href="#t_firstclass">first class</a> type may be used as the value
5322 arguments to the PHI node. Only labels may be used as the label
5323 arguments.</p>
5325 <p>There must be no non-phi instructions between the start of a basic block and
5326 the PHI instructions: i.e. PHI instructions must be first in a basic
5327 block.</p>
5329 <p>For the purposes of the SSA form, the use of each incoming value is deemed to
5330 occur on the edge from the corresponding predecessor block to the current
5331 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5332 value on the same edge).</p>
5334 <h5>Semantics:</h5>
5335 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
5336 specified by the pair corresponding to the predecessor basic block that
5337 executed just prior to the current block.</p>
5339 <h5>Example:</h5>
5340 <pre>
5341 Loop: ; Infinite loop that counts from 0 on up...
5342 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5343 %nextindvar = add i32 %indvar, 1
5344 br label %Loop
5345 </pre>
5347 </div>
5349 <!-- _______________________________________________________________________ -->
5350 <h4>
5351 <a name="i_select">'<tt>select</tt>' Instruction</a>
5352 </h4>
5354 <div>
5356 <h5>Syntax:</h5>
5357 <pre>
5358 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5360 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
5361 </pre>
5363 <h5>Overview:</h5>
5364 <p>The '<tt>select</tt>' instruction is used to choose one value based on a
5365 condition, without branching.</p>
5368 <h5>Arguments:</h5>
5369 <p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5370 values indicating the condition, and two values of the
5371 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5372 vectors and the condition is a scalar, then entire vectors are selected, not
5373 individual elements.</p>
5375 <h5>Semantics:</h5>
5376 <p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5377 first value argument; otherwise, it returns the second value argument.</p>
5379 <p>If the condition is a vector of i1, then the value arguments must be vectors
5380 of the same size, and the selection is done element by element.</p>
5382 <h5>Example:</h5>
5383 <pre>
5384 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
5385 </pre>
5387 <p>Note that the code generator does not yet support conditions
5388 with vector type.</p>
5390 </div>
5392 <!-- _______________________________________________________________________ -->
5393 <h4>
5394 <a name="i_call">'<tt>call</tt>' Instruction</a>
5395 </h4>
5397 <div>
5399 <h5>Syntax:</h5>
5400 <pre>
5401 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
5402 </pre>
5404 <h5>Overview:</h5>
5405 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
5407 <h5>Arguments:</h5>
5408 <p>This instruction requires several arguments:</p>
5410 <ol>
5411 <li>The optional "tail" marker indicates that the callee function does not
5412 access any allocas or varargs in the caller. Note that calls may be
5413 marked "tail" even if they do not occur before
5414 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5415 present, the function call is eligible for tail call optimization,
5416 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
5417 optimized into a jump</a>. The code generator may optimize calls marked
5418 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
5419 sibling call optimization</a> when the caller and callee have
5420 matching signatures, or 2) forced tail call optimization when the
5421 following extra requirements are met:
5422 <ul>
5423 <li>Caller and callee both have the calling
5424 convention <tt>fastcc</tt>.</li>
5425 <li>The call is in tail position (ret immediately follows call and ret
5426 uses value of call or is void).</li>
5427 <li>Option <tt>-tailcallopt</tt> is enabled,
5428 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
5429 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5430 constraints are met.</a></li>
5431 </ul>
5432 </li>
5434 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5435 convention</a> the call should use. If none is specified, the call
5436 defaults to using C calling conventions. The calling convention of the
5437 call must match the calling convention of the target function, or else the
5438 behavior is undefined.</li>
5440 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5441 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5442 '<tt>inreg</tt>' attributes are valid here.</li>
5444 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5445 type of the return value. Functions that return no value are marked
5446 <tt><a href="#t_void">void</a></tt>.</li>
5448 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5449 being invoked. The argument types must match the types implied by this
5450 signature. This type can be omitted if the function is not varargs and if
5451 the function type does not return a pointer to a function.</li>
5453 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5454 be invoked. In most cases, this is a direct function invocation, but
5455 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5456 to function value.</li>
5458 <li>'<tt>function args</tt>': argument list whose types match the function
5459 signature argument types and parameter attributes. All arguments must be
5460 of <a href="#t_firstclass">first class</a> type. If the function
5461 signature indicates the function accepts a variable number of arguments,
5462 the extra arguments can be specified.</li>
5464 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5465 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5466 '<tt>readnone</tt>' attributes are valid here.</li>
5467 </ol>
5469 <h5>Semantics:</h5>
5470 <p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5471 a specified function, with its incoming arguments bound to the specified
5472 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5473 function, control flow continues with the instruction after the function
5474 call, and the return value of the function is bound to the result
5475 argument.</p>
5477 <h5>Example:</h5>
5478 <pre>
5479 %retval = call i32 @test(i32 %argc)
5480 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
5481 %X = tail call i32 @foo() <i>; yields i32</i>
5482 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5483 call void %foo(i8 97 signext)
5485 %struct.A = type { i32, i8 }
5486 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
5487 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5488 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
5489 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
5490 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
5491 </pre>
5493 <p>llvm treats calls to some functions with names and arguments that match the
5494 standard C99 library as being the C99 library functions, and may perform
5495 optimizations or generate code for them under that assumption. This is
5496 something we'd like to change in the future to provide better support for
5497 freestanding environments and non-C-based languages.</p>
5499 </div>
5501 <!-- _______________________________________________________________________ -->
5502 <h4>
5503 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
5504 </h4>
5506 <div>
5508 <h5>Syntax:</h5>
5509 <pre>
5510 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
5511 </pre>
5513 <h5>Overview:</h5>
5514 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
5515 the "variable argument" area of a function call. It is used to implement the
5516 <tt>va_arg</tt> macro in C.</p>
5518 <h5>Arguments:</h5>
5519 <p>This instruction takes a <tt>va_list*</tt> value and the type of the
5520 argument. It returns a value of the specified argument type and increments
5521 the <tt>va_list</tt> to point to the next argument. The actual type
5522 of <tt>va_list</tt> is target specific.</p>
5524 <h5>Semantics:</h5>
5525 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5526 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5527 to the next argument. For more information, see the variable argument
5528 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
5530 <p>It is legal for this instruction to be called in a function which does not
5531 take a variable number of arguments, for example, the <tt>vfprintf</tt>
5532 function.</p>
5534 <p><tt>va_arg</tt> is an LLVM instruction instead of
5535 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5536 argument.</p>
5538 <h5>Example:</h5>
5539 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5541 <p>Note that the code generator does not yet fully support va_arg on many
5542 targets. Also, it does not currently support va_arg with aggregate types on
5543 any target.</p>
5545 </div>
5547 </div>
5549 </div>
5551 <!-- *********************************************************************** -->
5552 <h2><a name="intrinsics">Intrinsic Functions</a></h2>
5553 <!-- *********************************************************************** -->
5555 <div>
5557 <p>LLVM supports the notion of an "intrinsic function". These functions have
5558 well known names and semantics and are required to follow certain
5559 restrictions. Overall, these intrinsics represent an extension mechanism for
5560 the LLVM language that does not require changing all of the transformations
5561 in LLVM when adding to the language (or the bitcode reader/writer, the
5562 parser, etc...).</p>
5564 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
5565 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5566 begin with this prefix. Intrinsic functions must always be external
5567 functions: you cannot define the body of intrinsic functions. Intrinsic
5568 functions may only be used in call or invoke instructions: it is illegal to
5569 take the address of an intrinsic function. Additionally, because intrinsic
5570 functions are part of the LLVM language, it is required if any are added that
5571 they be documented here.</p>
5573 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5574 family of functions that perform the same operation but on different data
5575 types. Because LLVM can represent over 8 million different integer types,
5576 overloading is used commonly to allow an intrinsic function to operate on any
5577 integer type. One or more of the argument types or the result type can be
5578 overloaded to accept any integer type. Argument types may also be defined as
5579 exactly matching a previous argument's type or the result type. This allows
5580 an intrinsic function which accepts multiple arguments, but needs all of them
5581 to be of the same type, to only be overloaded with respect to a single
5582 argument or the result.</p>
5584 <p>Overloaded intrinsics will have the names of its overloaded argument types
5585 encoded into its function name, each preceded by a period. Only those types
5586 which are overloaded result in a name suffix. Arguments whose type is matched
5587 against another type do not. For example, the <tt>llvm.ctpop</tt> function
5588 can take an integer of any width and returns an integer of exactly the same
5589 integer width. This leads to a family of functions such as
5590 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5591 %val)</tt>. Only one type, the return type, is overloaded, and only one type
5592 suffix is required. Because the argument's type is matched against the return
5593 type, it does not require its own name suffix.</p>
5595 <p>To learn how to add an intrinsic function, please see the
5596 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
5598 <!-- ======================================================================= -->
5599 <h3>
5600 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
5601 </h3>
5603 <div>
5605 <p>Variable argument support is defined in LLVM with
5606 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5607 intrinsic functions. These functions are related to the similarly named
5608 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
5610 <p>All of these functions operate on arguments that use a target-specific value
5611 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5612 not define what this type is, so all transformations should be prepared to
5613 handle these functions regardless of the type used.</p>
5615 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
5616 instruction and the variable argument handling intrinsic functions are
5617 used.</p>
5619 <pre class="doc_code">
5620 define i32 @test(i32 %X, ...) {
5621 ; Initialize variable argument processing
5622 %ap = alloca i8*
5623 %ap2 = bitcast i8** %ap to i8*
5624 call void @llvm.va_start(i8* %ap2)
5626 ; Read a single integer argument
5627 %tmp = va_arg i8** %ap, i32
5629 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5630 %aq = alloca i8*
5631 %aq2 = bitcast i8** %aq to i8*
5632 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5633 call void @llvm.va_end(i8* %aq2)
5635 ; Stop processing of arguments.
5636 call void @llvm.va_end(i8* %ap2)
5637 ret i32 %tmp
5640 declare void @llvm.va_start(i8*)
5641 declare void @llvm.va_copy(i8*, i8*)
5642 declare void @llvm.va_end(i8*)
5643 </pre>
5645 <!-- _______________________________________________________________________ -->
5646 <h4>
5647 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
5648 </h4>
5651 <div>
5653 <h5>Syntax:</h5>
5654 <pre>
5655 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5656 </pre>
5658 <h5>Overview:</h5>
5659 <p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5660 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
5662 <h5>Arguments:</h5>
5663 <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
5665 <h5>Semantics:</h5>
5666 <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
5667 macro available in C. In a target-dependent way, it initializes
5668 the <tt>va_list</tt> element to which the argument points, so that the next
5669 call to <tt>va_arg</tt> will produce the first variable argument passed to
5670 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5671 need to know the last argument of the function as the compiler can figure
5672 that out.</p>
5674 </div>
5676 <!-- _______________________________________________________________________ -->
5677 <h4>
5678 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
5679 </h4>
5681 <div>
5683 <h5>Syntax:</h5>
5684 <pre>
5685 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5686 </pre>
5688 <h5>Overview:</h5>
5689 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
5690 which has been initialized previously
5691 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5692 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
5694 <h5>Arguments:</h5>
5695 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
5697 <h5>Semantics:</h5>
5698 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
5699 macro available in C. In a target-dependent way, it destroys
5700 the <tt>va_list</tt> element to which the argument points. Calls
5701 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5702 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5703 with calls to <tt>llvm.va_end</tt>.</p>
5705 </div>
5707 <!-- _______________________________________________________________________ -->
5708 <h4>
5709 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
5710 </h4>
5712 <div>
5714 <h5>Syntax:</h5>
5715 <pre>
5716 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
5717 </pre>
5719 <h5>Overview:</h5>
5720 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
5721 from the source argument list to the destination argument list.</p>
5723 <h5>Arguments:</h5>
5724 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
5725 The second argument is a pointer to a <tt>va_list</tt> element to copy
5726 from.</p>
5728 <h5>Semantics:</h5>
5729 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
5730 macro available in C. In a target-dependent way, it copies the
5731 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5732 element. This intrinsic is necessary because
5733 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5734 arbitrarily complex and require, for example, memory allocation.</p>
5736 </div>
5738 </div>
5740 <!-- ======================================================================= -->
5741 <h3>
5742 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5743 </h3>
5745 <div>
5747 <p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
5748 Collection</a> (GC) requires the implementation and generation of these
5749 intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5750 roots on the stack</a>, as well as garbage collector implementations that
5751 require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5752 barriers. Front-ends for type-safe garbage collected languages should generate
5753 these intrinsics to make use of the LLVM garbage collectors. For more details,
5754 see <a href="GarbageCollection.html">Accurate Garbage Collection with
5755 LLVM</a>.</p>
5757 <p>The garbage collection intrinsics only operate on objects in the generic
5758 address space (address space zero).</p>
5760 <!-- _______________________________________________________________________ -->
5761 <h4>
5762 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
5763 </h4>
5765 <div>
5767 <h5>Syntax:</h5>
5768 <pre>
5769 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
5770 </pre>
5772 <h5>Overview:</h5>
5773 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
5774 the code generator, and allows some metadata to be associated with it.</p>
5776 <h5>Arguments:</h5>
5777 <p>The first argument specifies the address of a stack object that contains the
5778 root pointer. The second pointer (which must be either a constant or a
5779 global value address) contains the meta-data to be associated with the
5780 root.</p>
5782 <h5>Semantics:</h5>
5783 <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
5784 location. At compile-time, the code generator generates information to allow
5785 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5786 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5787 algorithm</a>.</p>
5789 </div>
5791 <!-- _______________________________________________________________________ -->
5792 <h4>
5793 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
5794 </h4>
5796 <div>
5798 <h5>Syntax:</h5>
5799 <pre>
5800 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
5801 </pre>
5803 <h5>Overview:</h5>
5804 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
5805 locations, allowing garbage collector implementations that require read
5806 barriers.</p>
5808 <h5>Arguments:</h5>
5809 <p>The second argument is the address to read from, which should be an address
5810 allocated from the garbage collector. The first object is a pointer to the
5811 start of the referenced object, if needed by the language runtime (otherwise
5812 null).</p>
5814 <h5>Semantics:</h5>
5815 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
5816 instruction, but may be replaced with substantially more complex code by the
5817 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5818 may only be used in a function which <a href="#gc">specifies a GC
5819 algorithm</a>.</p>
5821 </div>
5823 <!-- _______________________________________________________________________ -->
5824 <h4>
5825 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
5826 </h4>
5828 <div>
5830 <h5>Syntax:</h5>
5831 <pre>
5832 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
5833 </pre>
5835 <h5>Overview:</h5>
5836 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5837 locations, allowing garbage collector implementations that require write
5838 barriers (such as generational or reference counting collectors).</p>
5840 <h5>Arguments:</h5>
5841 <p>The first argument is the reference to store, the second is the start of the
5842 object to store it to, and the third is the address of the field of Obj to
5843 store to. If the runtime does not require a pointer to the object, Obj may
5844 be null.</p>
5846 <h5>Semantics:</h5>
5847 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5848 instruction, but may be replaced with substantially more complex code by the
5849 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5850 may only be used in a function which <a href="#gc">specifies a GC
5851 algorithm</a>.</p>
5853 </div>
5855 </div>
5857 <!-- ======================================================================= -->
5858 <h3>
5859 <a name="int_codegen">Code Generator Intrinsics</a>
5860 </h3>
5862 <div>
5864 <p>These intrinsics are provided by LLVM to expose special features that may
5865 only be implemented with code generator support.</p>
5867 <!-- _______________________________________________________________________ -->
5868 <h4>
5869 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
5870 </h4>
5872 <div>
5874 <h5>Syntax:</h5>
5875 <pre>
5876 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
5877 </pre>
5879 <h5>Overview:</h5>
5880 <p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5881 target-specific value indicating the return address of the current function
5882 or one of its callers.</p>
5884 <h5>Arguments:</h5>
5885 <p>The argument to this intrinsic indicates which function to return the address
5886 for. Zero indicates the calling function, one indicates its caller, etc.
5887 The argument is <b>required</b> to be a constant integer value.</p>
5889 <h5>Semantics:</h5>
5890 <p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5891 indicating the return address of the specified call frame, or zero if it
5892 cannot be identified. The value returned by this intrinsic is likely to be
5893 incorrect or 0 for arguments other than zero, so it should only be used for
5894 debugging purposes.</p>
5896 <p>Note that calling this intrinsic does not prevent function inlining or other
5897 aggressive transformations, so the value returned may not be that of the
5898 obvious source-language caller.</p>
5900 </div>
5902 <!-- _______________________________________________________________________ -->
5903 <h4>
5904 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
5905 </h4>
5907 <div>
5909 <h5>Syntax:</h5>
5910 <pre>
5911 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
5912 </pre>
5914 <h5>Overview:</h5>
5915 <p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5916 target-specific frame pointer value for the specified stack frame.</p>
5918 <h5>Arguments:</h5>
5919 <p>The argument to this intrinsic indicates which function to return the frame
5920 pointer for. Zero indicates the calling function, one indicates its caller,
5921 etc. The argument is <b>required</b> to be a constant integer value.</p>
5923 <h5>Semantics:</h5>
5924 <p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5925 indicating the frame address of the specified call frame, or zero if it
5926 cannot be identified. The value returned by this intrinsic is likely to be
5927 incorrect or 0 for arguments other than zero, so it should only be used for
5928 debugging purposes.</p>
5930 <p>Note that calling this intrinsic does not prevent function inlining or other
5931 aggressive transformations, so the value returned may not be that of the
5932 obvious source-language caller.</p>
5934 </div>
5936 <!-- _______________________________________________________________________ -->
5937 <h4>
5938 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
5939 </h4>
5941 <div>
5943 <h5>Syntax:</h5>
5944 <pre>
5945 declare i8* @llvm.stacksave()
5946 </pre>
5948 <h5>Overview:</h5>
5949 <p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5950 of the function stack, for use
5951 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5952 useful for implementing language features like scoped automatic variable
5953 sized arrays in C99.</p>
5955 <h5>Semantics:</h5>
5956 <p>This intrinsic returns a opaque pointer value that can be passed
5957 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5958 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5959 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5960 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5961 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5962 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
5964 </div>
5966 <!-- _______________________________________________________________________ -->
5967 <h4>
5968 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
5969 </h4>
5971 <div>
5973 <h5>Syntax:</h5>
5974 <pre>
5975 declare void @llvm.stackrestore(i8* %ptr)
5976 </pre>
5978 <h5>Overview:</h5>
5979 <p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5980 the function stack to the state it was in when the
5981 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5982 executed. This is useful for implementing language features like scoped
5983 automatic variable sized arrays in C99.</p>
5985 <h5>Semantics:</h5>
5986 <p>See the description
5987 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
5989 </div>
5991 <!-- _______________________________________________________________________ -->
5992 <h4>
5993 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
5994 </h4>
5996 <div>
5998 <h5>Syntax:</h5>
5999 <pre>
6000 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
6001 </pre>
6003 <h5>Overview:</h5>
6004 <p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
6005 insert a prefetch instruction if supported; otherwise, it is a noop.
6006 Prefetches have no effect on the behavior of the program but can change its
6007 performance characteristics.</p>
6009 <h5>Arguments:</h5>
6010 <p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
6011 specifier determining if the fetch should be for a read (0) or write (1),
6012 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
6013 locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
6014 specifies whether the prefetch is performed on the data (1) or instruction (0)
6015 cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
6016 must be constant integers.</p>
6018 <h5>Semantics:</h5>
6019 <p>This intrinsic does not modify the behavior of the program. In particular,
6020 prefetches cannot trap and do not produce a value. On targets that support
6021 this intrinsic, the prefetch can provide hints to the processor cache for
6022 better performance.</p>
6024 </div>
6026 <!-- _______________________________________________________________________ -->
6027 <h4>
6028 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
6029 </h4>
6031 <div>
6033 <h5>Syntax:</h5>
6034 <pre>
6035 declare void @llvm.pcmarker(i32 &lt;id&gt;)
6036 </pre>
6038 <h5>Overview:</h5>
6039 <p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
6040 Counter (PC) in a region of code to simulators and other tools. The method
6041 is target specific, but it is expected that the marker will use exported
6042 symbols to transmit the PC of the marker. The marker makes no guarantees
6043 that it will remain with any specific instruction after optimizations. It is
6044 possible that the presence of a marker will inhibit optimizations. The
6045 intended use is to be inserted after optimizations to allow correlations of
6046 simulation runs.</p>
6048 <h5>Arguments:</h5>
6049 <p><tt>id</tt> is a numerical id identifying the marker.</p>
6051 <h5>Semantics:</h5>
6052 <p>This intrinsic does not modify the behavior of the program. Backends that do
6053 not support this intrinsic may ignore it.</p>
6055 </div>
6057 <!-- _______________________________________________________________________ -->
6058 <h4>
6059 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
6060 </h4>
6062 <div>
6064 <h5>Syntax:</h5>
6065 <pre>
6066 declare i64 @llvm.readcyclecounter()
6067 </pre>
6069 <h5>Overview:</h5>
6070 <p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
6071 counter register (or similar low latency, high accuracy clocks) on those
6072 targets that support it. On X86, it should map to RDTSC. On Alpha, it
6073 should map to RPCC. As the backing counters overflow quickly (on the order
6074 of 9 seconds on alpha), this should only be used for small timings.</p>
6076 <h5>Semantics:</h5>
6077 <p>When directly supported, reading the cycle counter should not modify any
6078 memory. Implementations are allowed to either return a application specific
6079 value or a system wide value. On backends without support, this is lowered
6080 to a constant 0.</p>
6082 </div>
6084 </div>
6086 <!-- ======================================================================= -->
6087 <h3>
6088 <a name="int_libc">Standard C Library Intrinsics</a>
6089 </h3>
6091 <div>
6093 <p>LLVM provides intrinsics for a few important standard C library functions.
6094 These intrinsics allow source-language front-ends to pass information about
6095 the alignment of the pointer arguments to the code generator, providing
6096 opportunity for more efficient code generation.</p>
6098 <!-- _______________________________________________________________________ -->
6099 <h4>
6100 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
6101 </h4>
6103 <div>
6105 <h5>Syntax:</h5>
6106 <p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
6107 integer bit width and for different address spaces. Not all targets support
6108 all bit widths however.</p>
6110 <pre>
6111 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6112 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6113 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6114 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6115 </pre>
6117 <h5>Overview:</h5>
6118 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6119 source location to the destination location.</p>
6121 <p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
6122 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6123 and the pointers can be in specified address spaces.</p>
6125 <h5>Arguments:</h5>
6127 <p>The first argument is a pointer to the destination, the second is a pointer
6128 to the source. The third argument is an integer argument specifying the
6129 number of bytes to copy, the fourth argument is the alignment of the
6130 source and destination locations, and the fifth is a boolean indicating a
6131 volatile access.</p>
6133 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
6134 then the caller guarantees that both the source and destination pointers are
6135 aligned to that boundary.</p>
6137 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6138 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
6139 The detailed access behavior is not very cleanly specified and it is unwise
6140 to depend on it.</p>
6142 <h5>Semantics:</h5>
6144 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6145 source location to the destination location, which are not allowed to
6146 overlap. It copies "len" bytes of memory over. If the argument is known to
6147 be aligned to some boundary, this can be specified as the fourth argument,
6148 otherwise it should be set to 0 or 1.</p>
6150 </div>
6152 <!-- _______________________________________________________________________ -->
6153 <h4>
6154 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
6155 </h4>
6157 <div>
6159 <h5>Syntax:</h5>
6160 <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
6161 width and for different address space. Not all targets support all bit
6162 widths however.</p>
6164 <pre>
6165 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6166 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6167 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6168 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6169 </pre>
6171 <h5>Overview:</h5>
6172 <p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
6173 source location to the destination location. It is similar to the
6174 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
6175 overlap.</p>
6177 <p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
6178 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6179 and the pointers can be in specified address spaces.</p>
6181 <h5>Arguments:</h5>
6183 <p>The first argument is a pointer to the destination, the second is a pointer
6184 to the source. The third argument is an integer argument specifying the
6185 number of bytes to copy, the fourth argument is the alignment of the
6186 source and destination locations, and the fifth is a boolean indicating a
6187 volatile access.</p>
6189 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
6190 then the caller guarantees that the source and destination pointers are
6191 aligned to that boundary.</p>
6193 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6194 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
6195 The detailed access behavior is not very cleanly specified and it is unwise
6196 to depend on it.</p>
6198 <h5>Semantics:</h5>
6200 <p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6201 source location to the destination location, which may overlap. It copies
6202 "len" bytes of memory over. If the argument is known to be aligned to some
6203 boundary, this can be specified as the fourth argument, otherwise it should
6204 be set to 0 or 1.</p>
6206 </div>
6208 <!-- _______________________________________________________________________ -->
6209 <h4>
6210 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
6211 </h4>
6213 <div>
6215 <h5>Syntax:</h5>
6216 <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
6217 width and for different address spaces. However, not all targets support all
6218 bit widths.</p>
6220 <pre>
6221 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
6222 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6223 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
6224 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6225 </pre>
6227 <h5>Overview:</h5>
6228 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6229 particular byte value.</p>
6231 <p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
6232 intrinsic does not return a value and takes extra alignment/volatile
6233 arguments. Also, the destination can be in an arbitrary address space.</p>
6235 <h5>Arguments:</h5>
6236 <p>The first argument is a pointer to the destination to fill, the second is the
6237 byte value with which to fill it, the third argument is an integer argument
6238 specifying the number of bytes to fill, and the fourth argument is the known
6239 alignment of the destination location.</p>
6241 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
6242 then the caller guarantees that the destination pointer is aligned to that
6243 boundary.</p>
6245 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6246 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
6247 The detailed access behavior is not very cleanly specified and it is unwise
6248 to depend on it.</p>
6250 <h5>Semantics:</h5>
6251 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6252 at the destination location. If the argument is known to be aligned to some
6253 boundary, this can be specified as the fourth argument, otherwise it should
6254 be set to 0 or 1.</p>
6256 </div>
6258 <!-- _______________________________________________________________________ -->
6259 <h4>
6260 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
6261 </h4>
6263 <div>
6265 <h5>Syntax:</h5>
6266 <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6267 floating point or vector of floating point type. Not all targets support all
6268 types however.</p>
6270 <pre>
6271 declare float @llvm.sqrt.f32(float %Val)
6272 declare double @llvm.sqrt.f64(double %Val)
6273 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6274 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6275 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6276 </pre>
6278 <h5>Overview:</h5>
6279 <p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6280 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6281 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6282 behavior for negative numbers other than -0.0 (which allows for better
6283 optimization, because there is no need to worry about errno being
6284 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
6286 <h5>Arguments:</h5>
6287 <p>The argument and return value are floating point numbers of the same
6288 type.</p>
6290 <h5>Semantics:</h5>
6291 <p>This function returns the sqrt of the specified operand if it is a
6292 nonnegative floating point number.</p>
6294 </div>
6296 <!-- _______________________________________________________________________ -->
6297 <h4>
6298 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
6299 </h4>
6301 <div>
6303 <h5>Syntax:</h5>
6304 <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6305 floating point or vector of floating point type. Not all targets support all
6306 types however.</p>
6308 <pre>
6309 declare float @llvm.powi.f32(float %Val, i32 %power)
6310 declare double @llvm.powi.f64(double %Val, i32 %power)
6311 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6312 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6313 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6314 </pre>
6316 <h5>Overview:</h5>
6317 <p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6318 specified (positive or negative) power. The order of evaluation of
6319 multiplications is not defined. When a vector of floating point type is
6320 used, the second argument remains a scalar integer value.</p>
6322 <h5>Arguments:</h5>
6323 <p>The second argument is an integer power, and the first is a value to raise to
6324 that power.</p>
6326 <h5>Semantics:</h5>
6327 <p>This function returns the first value raised to the second power with an
6328 unspecified sequence of rounding operations.</p>
6330 </div>
6332 <!-- _______________________________________________________________________ -->
6333 <h4>
6334 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
6335 </h4>
6337 <div>
6339 <h5>Syntax:</h5>
6340 <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6341 floating point or vector of floating point type. Not all targets support all
6342 types however.</p>
6344 <pre>
6345 declare float @llvm.sin.f32(float %Val)
6346 declare double @llvm.sin.f64(double %Val)
6347 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6348 declare fp128 @llvm.sin.f128(fp128 %Val)
6349 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6350 </pre>
6352 <h5>Overview:</h5>
6353 <p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
6355 <h5>Arguments:</h5>
6356 <p>The argument and return value are floating point numbers of the same
6357 type.</p>
6359 <h5>Semantics:</h5>
6360 <p>This function returns the sine of the specified operand, returning the same
6361 values as the libm <tt>sin</tt> functions would, and handles error conditions
6362 in the same way.</p>
6364 </div>
6366 <!-- _______________________________________________________________________ -->
6367 <h4>
6368 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
6369 </h4>
6371 <div>
6373 <h5>Syntax:</h5>
6374 <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
6375 floating point or vector of floating point type. Not all targets support all
6376 types however.</p>
6378 <pre>
6379 declare float @llvm.cos.f32(float %Val)
6380 declare double @llvm.cos.f64(double %Val)
6381 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6382 declare fp128 @llvm.cos.f128(fp128 %Val)
6383 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6384 </pre>
6386 <h5>Overview:</h5>
6387 <p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
6389 <h5>Arguments:</h5>
6390 <p>The argument and return value are floating point numbers of the same
6391 type.</p>
6393 <h5>Semantics:</h5>
6394 <p>This function returns the cosine of the specified operand, returning the same
6395 values as the libm <tt>cos</tt> functions would, and handles error conditions
6396 in the same way.</p>
6398 </div>
6400 <!-- _______________________________________________________________________ -->
6401 <h4>
6402 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
6403 </h4>
6405 <div>
6407 <h5>Syntax:</h5>
6408 <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
6409 floating point or vector of floating point type. Not all targets support all
6410 types however.</p>
6412 <pre>
6413 declare float @llvm.pow.f32(float %Val, float %Power)
6414 declare double @llvm.pow.f64(double %Val, double %Power)
6415 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6416 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6417 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6418 </pre>
6420 <h5>Overview:</h5>
6421 <p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
6422 specified (positive or negative) power.</p>
6424 <h5>Arguments:</h5>
6425 <p>The second argument is a floating point power, and the first is a value to
6426 raise to that power.</p>
6428 <h5>Semantics:</h5>
6429 <p>This function returns the first value raised to the second power, returning
6430 the same values as the libm <tt>pow</tt> functions would, and handles error
6431 conditions in the same way.</p>
6433 </div>
6435 </div>
6437 <!-- _______________________________________________________________________ -->
6438 <h4>
6439 <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
6440 </h4>
6442 <div>
6444 <h5>Syntax:</h5>
6445 <p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
6446 floating point or vector of floating point type. Not all targets support all
6447 types however.</p>
6449 <pre>
6450 declare float @llvm.exp.f32(float %Val)
6451 declare double @llvm.exp.f64(double %Val)
6452 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
6453 declare fp128 @llvm.exp.f128(fp128 %Val)
6454 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
6455 </pre>
6457 <h5>Overview:</h5>
6458 <p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
6460 <h5>Arguments:</h5>
6461 <p>The argument and return value are floating point numbers of the same
6462 type.</p>
6464 <h5>Semantics:</h5>
6465 <p>This function returns the same values as the libm <tt>exp</tt> functions
6466 would, and handles error conditions in the same way.</p>
6468 </div>
6470 <!-- _______________________________________________________________________ -->
6471 <h4>
6472 <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
6473 </h4>
6475 <div>
6477 <h5>Syntax:</h5>
6478 <p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
6479 floating point or vector of floating point type. Not all targets support all
6480 types however.</p>
6482 <pre>
6483 declare float @llvm.log.f32(float %Val)
6484 declare double @llvm.log.f64(double %Val)
6485 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
6486 declare fp128 @llvm.log.f128(fp128 %Val)
6487 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
6488 </pre>
6490 <h5>Overview:</h5>
6491 <p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
6493 <h5>Arguments:</h5>
6494 <p>The argument and return value are floating point numbers of the same
6495 type.</p>
6497 <h5>Semantics:</h5>
6498 <p>This function returns the same values as the libm <tt>log</tt> functions
6499 would, and handles error conditions in the same way.</p>
6501 <h4>
6502 <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
6503 </h4>
6505 <div>
6507 <h5>Syntax:</h5>
6508 <p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
6509 floating point or vector of floating point type. Not all targets support all
6510 types however.</p>
6512 <pre>
6513 declare float @llvm.fma.f32(float %a, float %b, float %c)
6514 declare double @llvm.fma.f64(double %a, double %b, double %c)
6515 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
6516 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
6517 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
6518 </pre>
6520 <h5>Overview:</h5>
6521 <p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
6522 operation.</p>
6524 <h5>Arguments:</h5>
6525 <p>The argument and return value are floating point numbers of the same
6526 type.</p>
6528 <h5>Semantics:</h5>
6529 <p>This function returns the same values as the libm <tt>fma</tt> functions
6530 would.</p>
6532 </div>
6534 <!-- ======================================================================= -->
6535 <h3>
6536 <a name="int_manip">Bit Manipulation Intrinsics</a>
6537 </h3>
6539 <div>
6541 <p>LLVM provides intrinsics for a few important bit manipulation operations.
6542 These allow efficient code generation for some algorithms.</p>
6544 <!-- _______________________________________________________________________ -->
6545 <h4>
6546 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
6547 </h4>
6549 <div>
6551 <h5>Syntax:</h5>
6552 <p>This is an overloaded intrinsic function. You can use bswap on any integer
6553 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
6555 <pre>
6556 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6557 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6558 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
6559 </pre>
6561 <h5>Overview:</h5>
6562 <p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6563 values with an even number of bytes (positive multiple of 16 bits). These
6564 are useful for performing operations on data that is not in the target's
6565 native byte order.</p>
6567 <h5>Semantics:</h5>
6568 <p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6569 and low byte of the input i16 swapped. Similarly,
6570 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6571 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6572 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6573 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6574 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6575 more, respectively).</p>
6577 </div>
6579 <!-- _______________________________________________________________________ -->
6580 <h4>
6581 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
6582 </h4>
6584 <div>
6586 <h5>Syntax:</h5>
6587 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
6588 width, or on any vector with integer elements. Not all targets support all
6589 bit widths or vector types, however.</p>
6591 <pre>
6592 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
6593 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
6594 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
6595 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6596 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
6597 declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
6598 </pre>
6600 <h5>Overview:</h5>
6601 <p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6602 in a value.</p>
6604 <h5>Arguments:</h5>
6605 <p>The only argument is the value to be counted. The argument may be of any
6606 integer type, or a vector with integer elements.
6607 The return type must match the argument type.</p>
6609 <h5>Semantics:</h5>
6610 <p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
6611 element of a vector.</p>
6613 </div>
6615 <!-- _______________________________________________________________________ -->
6616 <h4>
6617 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
6618 </h4>
6620 <div>
6622 <h5>Syntax:</h5>
6623 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6624 integer bit width, or any vector whose elements are integers. Not all
6625 targets support all bit widths or vector types, however.</p>
6627 <pre>
6628 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
6629 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
6630 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
6631 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6632 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
6633 declare &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src;gt)
6634 </pre>
6636 <h5>Overview:</h5>
6637 <p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6638 leading zeros in a variable.</p>
6640 <h5>Arguments:</h5>
6641 <p>The only argument is the value to be counted. The argument may be of any
6642 integer type, or any vector type with integer element type.
6643 The return type must match the argument type.</p>
6645 <h5>Semantics:</h5>
6646 <p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6647 zeros in a variable, or within each element of the vector if the operation
6648 is of vector type. If the src == 0 then the result is the size in bits of
6649 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
6651 </div>
6653 <!-- _______________________________________________________________________ -->
6654 <h4>
6655 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
6656 </h4>
6658 <div>
6660 <h5>Syntax:</h5>
6661 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6662 integer bit width, or any vector of integer elements. Not all targets
6663 support all bit widths or vector types, however.</p>
6665 <pre>
6666 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6667 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
6668 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
6669 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6670 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
6671 declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
6672 </pre>
6674 <h5>Overview:</h5>
6675 <p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6676 trailing zeros.</p>
6678 <h5>Arguments:</h5>
6679 <p>The only argument is the value to be counted. The argument may be of any
6680 integer type, or a vectory with integer element type.. The return type
6681 must match the argument type.</p>
6683 <h5>Semantics:</h5>
6684 <p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6685 zeros in a variable, or within each element of a vector.
6686 If the src == 0 then the result is the size in bits of
6687 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
6689 </div>
6691 </div>
6693 <!-- ======================================================================= -->
6694 <h3>
6695 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6696 </h3>
6698 <div>
6700 <p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
6702 <!-- _______________________________________________________________________ -->
6703 <h4>
6704 <a name="int_sadd_overflow">
6705 '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
6706 </a>
6707 </h4>
6709 <div>
6711 <h5>Syntax:</h5>
6712 <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
6713 on any integer bit width.</p>
6715 <pre>
6716 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6717 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6718 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6719 </pre>
6721 <h5>Overview:</h5>
6722 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6723 a signed addition of the two arguments, and indicate whether an overflow
6724 occurred during the signed summation.</p>
6726 <h5>Arguments:</h5>
6727 <p>The arguments (%a and %b) and the first element of the result structure may
6728 be of integer types of any bit width, but they must have the same bit
6729 width. The second element of the result structure must be of
6730 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6731 undergo signed addition.</p>
6733 <h5>Semantics:</h5>
6734 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6735 a signed addition of the two variables. They return a structure &mdash; the
6736 first element of which is the signed summation, and the second element of
6737 which is a bit specifying if the signed summation resulted in an
6738 overflow.</p>
6740 <h5>Examples:</h5>
6741 <pre>
6742 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6743 %sum = extractvalue {i32, i1} %res, 0
6744 %obit = extractvalue {i32, i1} %res, 1
6745 br i1 %obit, label %overflow, label %normal
6746 </pre>
6748 </div>
6750 <!-- _______________________________________________________________________ -->
6751 <h4>
6752 <a name="int_uadd_overflow">
6753 '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
6754 </a>
6755 </h4>
6757 <div>
6759 <h5>Syntax:</h5>
6760 <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
6761 on any integer bit width.</p>
6763 <pre>
6764 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6765 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6766 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6767 </pre>
6769 <h5>Overview:</h5>
6770 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6771 an unsigned addition of the two arguments, and indicate whether a carry
6772 occurred during the unsigned summation.</p>
6774 <h5>Arguments:</h5>
6775 <p>The arguments (%a and %b) and the first element of the result structure may
6776 be of integer types of any bit width, but they must have the same bit
6777 width. The second element of the result structure must be of
6778 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6779 undergo unsigned addition.</p>
6781 <h5>Semantics:</h5>
6782 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6783 an unsigned addition of the two arguments. They return a structure &mdash;
6784 the first element of which is the sum, and the second element of which is a
6785 bit specifying if the unsigned summation resulted in a carry.</p>
6787 <h5>Examples:</h5>
6788 <pre>
6789 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6790 %sum = extractvalue {i32, i1} %res, 0
6791 %obit = extractvalue {i32, i1} %res, 1
6792 br i1 %obit, label %carry, label %normal
6793 </pre>
6795 </div>
6797 <!-- _______________________________________________________________________ -->
6798 <h4>
6799 <a name="int_ssub_overflow">
6800 '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
6801 </a>
6802 </h4>
6804 <div>
6806 <h5>Syntax:</h5>
6807 <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
6808 on any integer bit width.</p>
6810 <pre>
6811 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6812 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6813 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6814 </pre>
6816 <h5>Overview:</h5>
6817 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6818 a signed subtraction of the two arguments, and indicate whether an overflow
6819 occurred during the signed subtraction.</p>
6821 <h5>Arguments:</h5>
6822 <p>The arguments (%a and %b) and the first element of the result structure may
6823 be of integer types of any bit width, but they must have the same bit
6824 width. The second element of the result structure must be of
6825 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6826 undergo signed subtraction.</p>
6828 <h5>Semantics:</h5>
6829 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6830 a signed subtraction of the two arguments. They return a structure &mdash;
6831 the first element of which is the subtraction, and the second element of
6832 which is a bit specifying if the signed subtraction resulted in an
6833 overflow.</p>
6835 <h5>Examples:</h5>
6836 <pre>
6837 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6838 %sum = extractvalue {i32, i1} %res, 0
6839 %obit = extractvalue {i32, i1} %res, 1
6840 br i1 %obit, label %overflow, label %normal
6841 </pre>
6843 </div>
6845 <!-- _______________________________________________________________________ -->
6846 <h4>
6847 <a name="int_usub_overflow">
6848 '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
6849 </a>
6850 </h4>
6852 <div>
6854 <h5>Syntax:</h5>
6855 <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
6856 on any integer bit width.</p>
6858 <pre>
6859 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6860 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6861 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6862 </pre>
6864 <h5>Overview:</h5>
6865 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6866 an unsigned subtraction of the two arguments, and indicate whether an
6867 overflow occurred during the unsigned subtraction.</p>
6869 <h5>Arguments:</h5>
6870 <p>The arguments (%a and %b) and the first element of the result structure may
6871 be of integer types of any bit width, but they must have the same bit
6872 width. The second element of the result structure must be of
6873 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6874 undergo unsigned subtraction.</p>
6876 <h5>Semantics:</h5>
6877 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6878 an unsigned subtraction of the two arguments. They return a structure &mdash;
6879 the first element of which is the subtraction, and the second element of
6880 which is a bit specifying if the unsigned subtraction resulted in an
6881 overflow.</p>
6883 <h5>Examples:</h5>
6884 <pre>
6885 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6886 %sum = extractvalue {i32, i1} %res, 0
6887 %obit = extractvalue {i32, i1} %res, 1
6888 br i1 %obit, label %overflow, label %normal
6889 </pre>
6891 </div>
6893 <!-- _______________________________________________________________________ -->
6894 <h4>
6895 <a name="int_smul_overflow">
6896 '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
6897 </a>
6898 </h4>
6900 <div>
6902 <h5>Syntax:</h5>
6903 <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
6904 on any integer bit width.</p>
6906 <pre>
6907 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6908 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6909 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6910 </pre>
6912 <h5>Overview:</h5>
6914 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6915 a signed multiplication of the two arguments, and indicate whether an
6916 overflow occurred during the signed multiplication.</p>
6918 <h5>Arguments:</h5>
6919 <p>The arguments (%a and %b) and the first element of the result structure may
6920 be of integer types of any bit width, but they must have the same bit
6921 width. The second element of the result structure must be of
6922 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6923 undergo signed multiplication.</p>
6925 <h5>Semantics:</h5>
6926 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6927 a signed multiplication of the two arguments. They return a structure &mdash;
6928 the first element of which is the multiplication, and the second element of
6929 which is a bit specifying if the signed multiplication resulted in an
6930 overflow.</p>
6932 <h5>Examples:</h5>
6933 <pre>
6934 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6935 %sum = extractvalue {i32, i1} %res, 0
6936 %obit = extractvalue {i32, i1} %res, 1
6937 br i1 %obit, label %overflow, label %normal
6938 </pre>
6940 </div>
6942 <!-- _______________________________________________________________________ -->
6943 <h4>
6944 <a name="int_umul_overflow">
6945 '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
6946 </a>
6947 </h4>
6949 <div>
6951 <h5>Syntax:</h5>
6952 <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6953 on any integer bit width.</p>
6955 <pre>
6956 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6957 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6958 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6959 </pre>
6961 <h5>Overview:</h5>
6962 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6963 a unsigned multiplication of the two arguments, and indicate whether an
6964 overflow occurred during the unsigned multiplication.</p>
6966 <h5>Arguments:</h5>
6967 <p>The arguments (%a and %b) and the first element of the result structure may
6968 be of integer types of any bit width, but they must have the same bit
6969 width. The second element of the result structure must be of
6970 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6971 undergo unsigned multiplication.</p>
6973 <h5>Semantics:</h5>
6974 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6975 an unsigned multiplication of the two arguments. They return a structure
6976 &mdash; the first element of which is the multiplication, and the second
6977 element of which is a bit specifying if the unsigned multiplication resulted
6978 in an overflow.</p>
6980 <h5>Examples:</h5>
6981 <pre>
6982 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6983 %sum = extractvalue {i32, i1} %res, 0
6984 %obit = extractvalue {i32, i1} %res, 1
6985 br i1 %obit, label %overflow, label %normal
6986 </pre>
6988 </div>
6990 </div>
6992 <!-- ======================================================================= -->
6993 <h3>
6994 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
6995 </h3>
6997 <div>
6999 <p>Half precision floating point is a storage-only format. This means that it is
7000 a dense encoding (in memory) but does not support computation in the
7001 format.</p>
7003 <p>This means that code must first load the half-precision floating point
7004 value as an i16, then convert it to float with <a
7005 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
7006 Computation can then be performed on the float value (including extending to
7007 double etc). To store the value back to memory, it is first converted to
7008 float if needed, then converted to i16 with
7009 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
7010 storing as an i16 value.</p>
7012 <!-- _______________________________________________________________________ -->
7013 <h4>
7014 <a name="int_convert_to_fp16">
7015 '<tt>llvm.convert.to.fp16</tt>' Intrinsic
7016 </a>
7017 </h4>
7019 <div>
7021 <h5>Syntax:</h5>
7022 <pre>
7023 declare i16 @llvm.convert.to.fp16(f32 %a)
7024 </pre>
7026 <h5>Overview:</h5>
7027 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7028 a conversion from single precision floating point format to half precision
7029 floating point format.</p>
7031 <h5>Arguments:</h5>
7032 <p>The intrinsic function contains single argument - the value to be
7033 converted.</p>
7035 <h5>Semantics:</h5>
7036 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7037 a conversion from single precision floating point format to half precision
7038 floating point format. The return value is an <tt>i16</tt> which
7039 contains the converted number.</p>
7041 <h5>Examples:</h5>
7042 <pre>
7043 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7044 store i16 %res, i16* @x, align 2
7045 </pre>
7047 </div>
7049 <!-- _______________________________________________________________________ -->
7050 <h4>
7051 <a name="int_convert_from_fp16">
7052 '<tt>llvm.convert.from.fp16</tt>' Intrinsic
7053 </a>
7054 </h4>
7056 <div>
7058 <h5>Syntax:</h5>
7059 <pre>
7060 declare f32 @llvm.convert.from.fp16(i16 %a)
7061 </pre>
7063 <h5>Overview:</h5>
7064 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
7065 a conversion from half precision floating point format to single precision
7066 floating point format.</p>
7068 <h5>Arguments:</h5>
7069 <p>The intrinsic function contains single argument - the value to be
7070 converted.</p>
7072 <h5>Semantics:</h5>
7073 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
7074 conversion from half single precision floating point format to single
7075 precision floating point format. The input half-float value is represented by
7076 an <tt>i16</tt> value.</p>
7078 <h5>Examples:</h5>
7079 <pre>
7080 %a = load i16* @x, align 2
7081 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7082 </pre>
7084 </div>
7086 </div>
7088 <!-- ======================================================================= -->
7089 <h3>
7090 <a name="int_debugger">Debugger Intrinsics</a>
7091 </h3>
7093 <div>
7095 <p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
7096 prefix), are described in
7097 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
7098 Level Debugging</a> document.</p>
7100 </div>
7102 <!-- ======================================================================= -->
7103 <h3>
7104 <a name="int_eh">Exception Handling Intrinsics</a>
7105 </h3>
7107 <div>
7109 <p>The LLVM exception handling intrinsics (which all start with
7110 <tt>llvm.eh.</tt> prefix), are described in
7111 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
7112 Handling</a> document.</p>
7114 </div>
7116 <!-- ======================================================================= -->
7117 <h3>
7118 <a name="int_trampoline">Trampoline Intrinsic</a>
7119 </h3>
7121 <div>
7123 <p>This intrinsic makes it possible to excise one parameter, marked with
7124 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
7125 The result is a callable
7126 function pointer lacking the nest parameter - the caller does not need to
7127 provide a value for it. Instead, the value to use is stored in advance in a
7128 "trampoline", a block of memory usually allocated on the stack, which also
7129 contains code to splice the nest value into the argument list. This is used
7130 to implement the GCC nested function address extension.</p>
7132 <p>For example, if the function is
7133 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
7134 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
7135 follows:</p>
7137 <pre class="doc_code">
7138 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7139 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
7140 %p = call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval)
7141 %fp = bitcast i8* %p to i32 (i32, i32)*
7142 </pre>
7144 <p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
7145 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
7147 <!-- _______________________________________________________________________ -->
7148 <h4>
7149 <a name="int_it">
7150 '<tt>llvm.init.trampoline</tt>' Intrinsic
7151 </a>
7152 </h4>
7154 <div>
7156 <h5>Syntax:</h5>
7157 <pre>
7158 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
7159 </pre>
7161 <h5>Overview:</h5>
7162 <p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
7163 function pointer suitable for executing it.</p>
7165 <h5>Arguments:</h5>
7166 <p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
7167 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
7168 sufficiently aligned block of memory; this memory is written to by the
7169 intrinsic. Note that the size and the alignment are target-specific - LLVM
7170 currently provides no portable way of determining them, so a front-end that
7171 generates this intrinsic needs to have some target-specific knowledge.
7172 The <tt>func</tt> argument must hold a function bitcast to
7173 an <tt>i8*</tt>.</p>
7175 <h5>Semantics:</h5>
7176 <p>The block of memory pointed to by <tt>tramp</tt> is filled with target
7177 dependent code, turning it into a function. A pointer to this function is
7178 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
7179 function pointer type</a> before being called. The new function's signature
7180 is the same as that of <tt>func</tt> with any arguments marked with
7181 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
7182 is allowed, and it must be of pointer type. Calling the new function is
7183 equivalent to calling <tt>func</tt> with the same argument list, but
7184 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
7185 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
7186 by <tt>tramp</tt> is modified, then the effect of any later call to the
7187 returned function pointer is undefined.</p>
7189 </div>
7191 </div>
7193 <!-- ======================================================================= -->
7194 <h3>
7195 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
7196 </h3>
7198 <div>
7200 <p>These intrinsic functions expand the "universal IR" of LLVM to represent
7201 hardware constructs for atomic operations and memory synchronization. This
7202 provides an interface to the hardware, not an interface to the programmer. It
7203 is aimed at a low enough level to allow any programming models or APIs
7204 (Application Programming Interfaces) which need atomic behaviors to map
7205 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
7206 hardware provides a "universal IR" for source languages, it also provides a
7207 starting point for developing a "universal" atomic operation and
7208 synchronization IR.</p>
7210 <p>These do <em>not</em> form an API such as high-level threading libraries,
7211 software transaction memory systems, atomic primitives, and intrinsic
7212 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
7213 application libraries. The hardware interface provided by LLVM should allow
7214 a clean implementation of all of these APIs and parallel programming models.
7215 No one model or paradigm should be selected above others unless the hardware
7216 itself ubiquitously does so.</p>
7218 <!-- _______________________________________________________________________ -->
7219 <h4>
7220 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
7221 </h4>
7223 <div>
7224 <h5>Syntax:</h5>
7225 <pre>
7226 declare void @llvm.memory.barrier(i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt;)
7227 </pre>
7229 <h5>Overview:</h5>
7230 <p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
7231 specific pairs of memory access types.</p>
7233 <h5>Arguments:</h5>
7234 <p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
7235 The first four arguments enables a specific barrier as listed below. The
7236 fifth argument specifies that the barrier applies to io or device or uncached
7237 memory.</p>
7239 <ul>
7240 <li><tt>ll</tt>: load-load barrier</li>
7241 <li><tt>ls</tt>: load-store barrier</li>
7242 <li><tt>sl</tt>: store-load barrier</li>
7243 <li><tt>ss</tt>: store-store barrier</li>
7244 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
7245 </ul>
7247 <h5>Semantics:</h5>
7248 <p>This intrinsic causes the system to enforce some ordering constraints upon
7249 the loads and stores of the program. This barrier does not
7250 indicate <em>when</em> any events will occur, it only enforces
7251 an <em>order</em> in which they occur. For any of the specified pairs of load
7252 and store operations (f.ex. load-load, or store-load), all of the first
7253 operations preceding the barrier will complete before any of the second
7254 operations succeeding the barrier begin. Specifically the semantics for each
7255 pairing is as follows:</p>
7257 <ul>
7258 <li><tt>ll</tt>: All loads before the barrier must complete before any load
7259 after the barrier begins.</li>
7260 <li><tt>ls</tt>: All loads before the barrier must complete before any
7261 store after the barrier begins.</li>
7262 <li><tt>ss</tt>: All stores before the barrier must complete before any
7263 store after the barrier begins.</li>
7264 <li><tt>sl</tt>: All stores before the barrier must complete before any
7265 load after the barrier begins.</li>
7266 </ul>
7268 <p>These semantics are applied with a logical "and" behavior when more than one
7269 is enabled in a single memory barrier intrinsic.</p>
7271 <p>Backends may implement stronger barriers than those requested when they do
7272 not support as fine grained a barrier as requested. Some architectures do
7273 not need all types of barriers and on such architectures, these become
7274 noops.</p>
7276 <h5>Example:</h5>
7277 <pre>
7278 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7279 %ptr = bitcast i8* %mallocP to i32*
7280 store i32 4, %ptr
7282 %result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
7283 call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false, i1 true)
7284 <i>; guarantee the above finishes</i>
7285 store i32 8, %ptr <i>; before this begins</i>
7286 </pre>
7288 </div>
7290 <!-- _______________________________________________________________________ -->
7291 <h4>
7292 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
7293 </h4>
7295 <div>
7297 <h5>Syntax:</h5>
7298 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
7299 any integer bit width and for different address spaces. Not all targets
7300 support all bit widths however.</p>
7302 <pre>
7303 declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt;)
7304 declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt;)
7305 declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt;)
7306 declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt;)
7307 </pre>
7309 <h5>Overview:</h5>
7310 <p>This loads a value in memory and compares it to a given value. If they are
7311 equal, it stores a new value into the memory.</p>
7313 <h5>Arguments:</h5>
7314 <p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
7315 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
7316 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
7317 this integer type. While any bit width integer may be used, targets may only
7318 lower representations they support in hardware.</p>
7320 <h5>Semantics:</h5>
7321 <p>This entire intrinsic must be executed atomically. It first loads the value
7322 in memory pointed to by <tt>ptr</tt> and compares it with the
7323 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
7324 memory. The loaded value is yielded in all cases. This provides the
7325 equivalent of an atomic compare-and-swap operation within the SSA
7326 framework.</p>
7328 <h5>Examples:</h5>
7329 <pre>
7330 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7331 %ptr = bitcast i8* %mallocP to i32*
7332 store i32 4, %ptr
7334 %val1 = add i32 4, 4
7335 %result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)
7336 <i>; yields {i32}:result1 = 4</i>
7337 %stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7338 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7340 %val2 = add i32 1, 1
7341 %result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)
7342 <i>; yields {i32}:result2 = 8</i>
7343 %stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
7345 %memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
7346 </pre>
7348 </div>
7350 <!-- _______________________________________________________________________ -->
7351 <h4>
7352 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
7353 </h4>
7355 <div>
7356 <h5>Syntax:</h5>
7358 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
7359 integer bit width. Not all targets support all bit widths however.</p>
7361 <pre>
7362 declare i8 @llvm.atomic.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;val&gt;)
7363 declare i16 @llvm.atomic.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;val&gt;)
7364 declare i32 @llvm.atomic.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;val&gt;)
7365 declare i64 @llvm.atomic.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;val&gt;)
7366 </pre>
7368 <h5>Overview:</h5>
7369 <p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
7370 the value from memory. It then stores the value in <tt>val</tt> in the memory
7371 at <tt>ptr</tt>.</p>
7373 <h5>Arguments:</h5>
7374 <p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
7375 the <tt>val</tt> argument and the result must be integers of the same bit
7376 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
7377 integer type. The targets may only lower integer representations they
7378 support.</p>
7380 <h5>Semantics:</h5>
7381 <p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
7382 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
7383 equivalent of an atomic swap operation within the SSA framework.</p>
7385 <h5>Examples:</h5>
7386 <pre>
7387 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7388 %ptr = bitcast i8* %mallocP to i32*
7389 store i32 4, %ptr
7391 %val1 = add i32 4, 4
7392 %result1 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
7393 <i>; yields {i32}:result1 = 4</i>
7394 %stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7395 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7397 %val2 = add i32 1, 1
7398 %result2 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
7399 <i>; yields {i32}:result2 = 8</i>
7401 %stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
7402 %memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
7403 </pre>
7405 </div>
7407 <!-- _______________________________________________________________________ -->
7408 <h4>
7409 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
7410 </h4>
7412 <div>
7414 <h5>Syntax:</h5>
7415 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
7416 any integer bit width. Not all targets support all bit widths however.</p>
7418 <pre>
7419 declare i8 @llvm.atomic.load.add.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7420 declare i16 @llvm.atomic.load.add.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7421 declare i32 @llvm.atomic.load.add.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7422 declare i64 @llvm.atomic.load.add.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7423 </pre>
7425 <h5>Overview:</h5>
7426 <p>This intrinsic adds <tt>delta</tt> to the value stored in memory
7427 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7429 <h5>Arguments:</h5>
7430 <p>The intrinsic takes two arguments, the first a pointer to an integer value
7431 and the second an integer value. The result is also an integer value. These
7432 integer types can have any bit width, but they must all have the same bit
7433 width. The targets may only lower integer representations they support.</p>
7435 <h5>Semantics:</h5>
7436 <p>This intrinsic does a series of operations atomically. It first loads the
7437 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
7438 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
7440 <h5>Examples:</h5>
7441 <pre>
7442 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7443 %ptr = bitcast i8* %mallocP to i32*
7444 store i32 4, %ptr
7445 %result1 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)
7446 <i>; yields {i32}:result1 = 4</i>
7447 %result2 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)
7448 <i>; yields {i32}:result2 = 8</i>
7449 %result3 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)
7450 <i>; yields {i32}:result3 = 10</i>
7451 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
7452 </pre>
7454 </div>
7456 <!-- _______________________________________________________________________ -->
7457 <h4>
7458 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
7459 </h4>
7461 <div>
7463 <h5>Syntax:</h5>
7464 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
7465 any integer bit width and for different address spaces. Not all targets
7466 support all bit widths however.</p>
7468 <pre>
7469 declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7470 declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7471 declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7472 declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7473 </pre>
7475 <h5>Overview:</h5>
7476 <p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
7477 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7479 <h5>Arguments:</h5>
7480 <p>The intrinsic takes two arguments, the first a pointer to an integer value
7481 and the second an integer value. The result is also an integer value. These
7482 integer types can have any bit width, but they must all have the same bit
7483 width. The targets may only lower integer representations they support.</p>
7485 <h5>Semantics:</h5>
7486 <p>This intrinsic does a series of operations atomically. It first loads the
7487 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
7488 result to <tt>ptr</tt>. It yields the original value stored
7489 at <tt>ptr</tt>.</p>
7491 <h5>Examples:</h5>
7492 <pre>
7493 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7494 %ptr = bitcast i8* %mallocP to i32*
7495 store i32 8, %ptr
7496 %result1 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)
7497 <i>; yields {i32}:result1 = 8</i>
7498 %result2 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)
7499 <i>; yields {i32}:result2 = 4</i>
7500 %result3 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)
7501 <i>; yields {i32}:result3 = 2</i>
7502 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
7503 </pre>
7505 </div>
7507 <!-- _______________________________________________________________________ -->
7508 <h4>
7509 <a name="int_atomic_load_and">
7510 '<tt>llvm.atomic.load.and.*</tt>' Intrinsic
7511 </a>
7512 <br>
7513 <a name="int_atomic_load_nand">
7514 '<tt>llvm.atomic.load.nand.*</tt>' Intrinsic
7515 </a>
7516 <br>
7517 <a name="int_atomic_load_or">
7518 '<tt>llvm.atomic.load.or.*</tt>' Intrinsic
7519 </a>
7520 <br>
7521 <a name="int_atomic_load_xor">
7522 '<tt>llvm.atomic.load.xor.*</tt>' Intrinsic
7523 </a>
7524 </h4>
7526 <div>
7528 <h5>Syntax:</h5>
7529 <p>These are overloaded intrinsics. You can
7530 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
7531 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
7532 bit width and for different address spaces. Not all targets support all bit
7533 widths however.</p>
7535 <pre>
7536 declare i8 @llvm.atomic.load.and.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7537 declare i16 @llvm.atomic.load.and.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7538 declare i32 @llvm.atomic.load.and.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7539 declare i64 @llvm.atomic.load.and.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7540 </pre>
7542 <pre>
7543 declare i8 @llvm.atomic.load.or.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7544 declare i16 @llvm.atomic.load.or.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7545 declare i32 @llvm.atomic.load.or.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7546 declare i64 @llvm.atomic.load.or.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7547 </pre>
7549 <pre>
7550 declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7551 declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7552 declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7553 declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7554 </pre>
7556 <pre>
7557 declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7558 declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7559 declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7560 declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7561 </pre>
7563 <h5>Overview:</h5>
7564 <p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
7565 the value stored in memory at <tt>ptr</tt>. It yields the original value
7566 at <tt>ptr</tt>.</p>
7568 <h5>Arguments:</h5>
7569 <p>These intrinsics take two arguments, the first a pointer to an integer value
7570 and the second an integer value. The result is also an integer value. These
7571 integer types can have any bit width, but they must all have the same bit
7572 width. The targets may only lower integer representations they support.</p>
7574 <h5>Semantics:</h5>
7575 <p>These intrinsics does a series of operations atomically. They first load the
7576 value stored at <tt>ptr</tt>. They then do the bitwise
7577 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
7578 original value stored at <tt>ptr</tt>.</p>
7580 <h5>Examples:</h5>
7581 <pre>
7582 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7583 %ptr = bitcast i8* %mallocP to i32*
7584 store i32 0x0F0F, %ptr
7585 %result0 = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)
7586 <i>; yields {i32}:result0 = 0x0F0F</i>
7587 %result1 = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)
7588 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
7589 %result2 = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)
7590 <i>; yields {i32}:result2 = 0xF0</i>
7591 %result3 = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)
7592 <i>; yields {i32}:result3 = FF</i>
7593 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
7594 </pre>
7596 </div>
7598 <!-- _______________________________________________________________________ -->
7599 <h4>
7600 <a name="int_atomic_load_max">
7601 '<tt>llvm.atomic.load.max.*</tt>' Intrinsic
7602 </a>
7603 <br>
7604 <a name="int_atomic_load_min">
7605 '<tt>llvm.atomic.load.min.*</tt>' Intrinsic
7606 </a>
7607 <br>
7608 <a name="int_atomic_load_umax">
7609 '<tt>llvm.atomic.load.umax.*</tt>' Intrinsic
7610 </a>
7611 <br>
7612 <a name="int_atomic_load_umin">
7613 '<tt>llvm.atomic.load.umin.*</tt>' Intrinsic
7614 </a>
7615 </h4>
7617 <div>
7619 <h5>Syntax:</h5>
7620 <p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
7621 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
7622 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
7623 address spaces. Not all targets support all bit widths however.</p>
7625 <pre>
7626 declare i8 @llvm.atomic.load.max.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7627 declare i16 @llvm.atomic.load.max.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7628 declare i32 @llvm.atomic.load.max.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7629 declare i64 @llvm.atomic.load.max.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7630 </pre>
7632 <pre>
7633 declare i8 @llvm.atomic.load.min.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7634 declare i16 @llvm.atomic.load.min.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7635 declare i32 @llvm.atomic.load.min.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7636 declare i64 @llvm.atomic.load.min.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7637 </pre>
7639 <pre>
7640 declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7641 declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7642 declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7643 declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7644 </pre>
7646 <pre>
7647 declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7648 declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7649 declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7650 declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7651 </pre>
7653 <h5>Overview:</h5>
7654 <p>These intrinsics takes the signed or unsigned minimum or maximum of
7655 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7656 original value at <tt>ptr</tt>.</p>
7658 <h5>Arguments:</h5>
7659 <p>These intrinsics take two arguments, the first a pointer to an integer value
7660 and the second an integer value. The result is also an integer value. These
7661 integer types can have any bit width, but they must all have the same bit
7662 width. The targets may only lower integer representations they support.</p>
7664 <h5>Semantics:</h5>
7665 <p>These intrinsics does a series of operations atomically. They first load the
7666 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
7667 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
7668 yield the original value stored at <tt>ptr</tt>.</p>
7670 <h5>Examples:</h5>
7671 <pre>
7672 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7673 %ptr = bitcast i8* %mallocP to i32*
7674 store i32 7, %ptr
7675 %result0 = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)
7676 <i>; yields {i32}:result0 = 7</i>
7677 %result1 = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)
7678 <i>; yields {i32}:result1 = -2</i>
7679 %result2 = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)
7680 <i>; yields {i32}:result2 = 8</i>
7681 %result3 = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)
7682 <i>; yields {i32}:result3 = 8</i>
7683 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7684 </pre>
7686 </div>
7688 </div>
7690 <!-- ======================================================================= -->
7691 <h3>
7692 <a name="int_memorymarkers">Memory Use Markers</a>
7693 </h3>
7695 <div>
7697 <p>This class of intrinsics exists to information about the lifetime of memory
7698 objects and ranges where variables are immutable.</p>
7700 <!-- _______________________________________________________________________ -->
7701 <h4>
7702 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
7703 </h4>
7705 <div>
7707 <h5>Syntax:</h5>
7708 <pre>
7709 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7710 </pre>
7712 <h5>Overview:</h5>
7713 <p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7714 object's lifetime.</p>
7716 <h5>Arguments:</h5>
7717 <p>The first argument is a constant integer representing the size of the
7718 object, or -1 if it is variable sized. The second argument is a pointer to
7719 the object.</p>
7721 <h5>Semantics:</h5>
7722 <p>This intrinsic indicates that before this point in the code, the value of the
7723 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7724 never be used and has an undefined value. A load from the pointer that
7725 precedes this intrinsic can be replaced with
7726 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7728 </div>
7730 <!-- _______________________________________________________________________ -->
7731 <h4>
7732 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
7733 </h4>
7735 <div>
7737 <h5>Syntax:</h5>
7738 <pre>
7739 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7740 </pre>
7742 <h5>Overview:</h5>
7743 <p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7744 object's lifetime.</p>
7746 <h5>Arguments:</h5>
7747 <p>The first argument is a constant integer representing the size of the
7748 object, or -1 if it is variable sized. The second argument is a pointer to
7749 the object.</p>
7751 <h5>Semantics:</h5>
7752 <p>This intrinsic indicates that after this point in the code, the value of the
7753 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7754 never be used and has an undefined value. Any stores into the memory object
7755 following this intrinsic may be removed as dead.
7757 </div>
7759 <!-- _______________________________________________________________________ -->
7760 <h4>
7761 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
7762 </h4>
7764 <div>
7766 <h5>Syntax:</h5>
7767 <pre>
7768 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7769 </pre>
7771 <h5>Overview:</h5>
7772 <p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7773 a memory object will not change.</p>
7775 <h5>Arguments:</h5>
7776 <p>The first argument is a constant integer representing the size of the
7777 object, or -1 if it is variable sized. The second argument is a pointer to
7778 the object.</p>
7780 <h5>Semantics:</h5>
7781 <p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7782 the return value, the referenced memory location is constant and
7783 unchanging.</p>
7785 </div>
7787 <!-- _______________________________________________________________________ -->
7788 <h4>
7789 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
7790 </h4>
7792 <div>
7794 <h5>Syntax:</h5>
7795 <pre>
7796 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7797 </pre>
7799 <h5>Overview:</h5>
7800 <p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7801 a memory object are mutable.</p>
7803 <h5>Arguments:</h5>
7804 <p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
7805 The second argument is a constant integer representing the size of the
7806 object, or -1 if it is variable sized and the third argument is a pointer
7807 to the object.</p>
7809 <h5>Semantics:</h5>
7810 <p>This intrinsic indicates that the memory is mutable again.</p>
7812 </div>
7814 </div>
7816 <!-- ======================================================================= -->
7817 <h3>
7818 <a name="int_general">General Intrinsics</a>
7819 </h3>
7821 <div>
7823 <p>This class of intrinsics is designed to be generic and has no specific
7824 purpose.</p>
7826 <!-- _______________________________________________________________________ -->
7827 <h4>
7828 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7829 </h4>
7831 <div>
7833 <h5>Syntax:</h5>
7834 <pre>
7835 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7836 </pre>
7838 <h5>Overview:</h5>
7839 <p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
7841 <h5>Arguments:</h5>
7842 <p>The first argument is a pointer to a value, the second is a pointer to a
7843 global string, the third is a pointer to a global string which is the source
7844 file name, and the last argument is the line number.</p>
7846 <h5>Semantics:</h5>
7847 <p>This intrinsic allows annotation of local variables with arbitrary strings.
7848 This can be useful for special purpose optimizations that want to look for
7849 these annotations. These have no other defined use, they are ignored by code
7850 generation and optimization.</p>
7852 </div>
7854 <!-- _______________________________________________________________________ -->
7855 <h4>
7856 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
7857 </h4>
7859 <div>
7861 <h5>Syntax:</h5>
7862 <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7863 any integer bit width.</p>
7865 <pre>
7866 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7867 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7868 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7869 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7870 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7871 </pre>
7873 <h5>Overview:</h5>
7874 <p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
7876 <h5>Arguments:</h5>
7877 <p>The first argument is an integer value (result of some expression), the
7878 second is a pointer to a global string, the third is a pointer to a global
7879 string which is the source file name, and the last argument is the line
7880 number. It returns the value of the first argument.</p>
7882 <h5>Semantics:</h5>
7883 <p>This intrinsic allows annotations to be put on arbitrary expressions with
7884 arbitrary strings. This can be useful for special purpose optimizations that
7885 want to look for these annotations. These have no other defined use, they
7886 are ignored by code generation and optimization.</p>
7888 </div>
7890 <!-- _______________________________________________________________________ -->
7891 <h4>
7892 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7893 </h4>
7895 <div>
7897 <h5>Syntax:</h5>
7898 <pre>
7899 declare void @llvm.trap()
7900 </pre>
7902 <h5>Overview:</h5>
7903 <p>The '<tt>llvm.trap</tt>' intrinsic.</p>
7905 <h5>Arguments:</h5>
7906 <p>None.</p>
7908 <h5>Semantics:</h5>
7909 <p>This intrinsics is lowered to the target dependent trap instruction. If the
7910 target does not have a trap instruction, this intrinsic will be lowered to
7911 the call of the <tt>abort()</tt> function.</p>
7913 </div>
7915 <!-- _______________________________________________________________________ -->
7916 <h4>
7917 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
7918 </h4>
7920 <div>
7922 <h5>Syntax:</h5>
7923 <pre>
7924 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
7925 </pre>
7927 <h5>Overview:</h5>
7928 <p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7929 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7930 ensure that it is placed on the stack before local variables.</p>
7932 <h5>Arguments:</h5>
7933 <p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7934 arguments. The first argument is the value loaded from the stack
7935 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7936 that has enough space to hold the value of the guard.</p>
7938 <h5>Semantics:</h5>
7939 <p>This intrinsic causes the prologue/epilogue inserter to force the position of
7940 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7941 stack. This is to ensure that if a local variable on the stack is
7942 overwritten, it will destroy the value of the guard. When the function exits,
7943 the guard on the stack is checked against the original guard. If they are
7944 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7945 function.</p>
7947 </div>
7949 <!-- _______________________________________________________________________ -->
7950 <h4>
7951 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
7952 </h4>
7954 <div>
7956 <h5>Syntax:</h5>
7957 <pre>
7958 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
7959 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
7960 </pre>
7962 <h5>Overview:</h5>
7963 <p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
7964 the optimizers to determine at compile time whether a) an operation (like
7965 memcpy) will overflow a buffer that corresponds to an object, or b) that a
7966 runtime check for overflow isn't necessary. An object in this context means
7967 an allocation of a specific class, structure, array, or other object.</p>
7969 <h5>Arguments:</h5>
7970 <p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
7971 argument is a pointer to or into the <tt>object</tt>. The second argument
7972 is a boolean 0 or 1. This argument determines whether you want the
7973 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
7974 1, variables are not allowed.</p>
7976 <h5>Semantics:</h5>
7977 <p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
7978 representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
7979 depending on the <tt>type</tt> argument, if the size cannot be determined at
7980 compile time.</p>
7982 </div>
7984 </div>
7986 </div>
7988 <!-- *********************************************************************** -->
7989 <hr>
7990 <address>
7991 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
7992 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
7993 <a href="http://validator.w3.org/check/referer"><img
7994 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
7996 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
7997 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
7998 Last modified: $Date$
7999 </address>
8001 </body>
8002 </html>