the various ConstantExpr::get*Ty methods existed to work with issues around
[llvm/stm8.git] / examples / Kaleidoscope / Chapter6 / toy.cpp
blobc5576992c3547e416a03af9f49ebef088092a731
1 #include "llvm/DerivedTypes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/ExecutionEngine/JIT.h"
4 #include "llvm/LLVMContext.h"
5 #include "llvm/Module.h"
6 #include "llvm/PassManager.h"
7 #include "llvm/Analysis/Verifier.h"
8 #include "llvm/Analysis/Passes.h"
9 #include "llvm/Target/TargetData.h"
10 #include "llvm/Target/TargetSelect.h"
11 #include "llvm/Transforms/Scalar.h"
12 #include "llvm/Support/IRBuilder.h"
13 #include <cstdio>
14 #include <string>
15 #include <map>
16 #include <vector>
17 using namespace llvm;
19 //===----------------------------------------------------------------------===//
20 // Lexer
21 //===----------------------------------------------------------------------===//
23 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
24 // of these for known things.
25 enum Token {
26 tok_eof = -1,
28 // commands
29 tok_def = -2, tok_extern = -3,
31 // primary
32 tok_identifier = -4, tok_number = -5,
34 // control
35 tok_if = -6, tok_then = -7, tok_else = -8,
36 tok_for = -9, tok_in = -10,
38 // operators
39 tok_binary = -11, tok_unary = -12
42 static std::string IdentifierStr; // Filled in if tok_identifier
43 static double NumVal; // Filled in if tok_number
45 /// gettok - Return the next token from standard input.
46 static int gettok() {
47 static int LastChar = ' ';
49 // Skip any whitespace.
50 while (isspace(LastChar))
51 LastChar = getchar();
53 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
54 IdentifierStr = LastChar;
55 while (isalnum((LastChar = getchar())))
56 IdentifierStr += LastChar;
58 if (IdentifierStr == "def") return tok_def;
59 if (IdentifierStr == "extern") return tok_extern;
60 if (IdentifierStr == "if") return tok_if;
61 if (IdentifierStr == "then") return tok_then;
62 if (IdentifierStr == "else") return tok_else;
63 if (IdentifierStr == "for") return tok_for;
64 if (IdentifierStr == "in") return tok_in;
65 if (IdentifierStr == "binary") return tok_binary;
66 if (IdentifierStr == "unary") return tok_unary;
67 return tok_identifier;
70 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
71 std::string NumStr;
72 do {
73 NumStr += LastChar;
74 LastChar = getchar();
75 } while (isdigit(LastChar) || LastChar == '.');
77 NumVal = strtod(NumStr.c_str(), 0);
78 return tok_number;
81 if (LastChar == '#') {
82 // Comment until end of line.
83 do LastChar = getchar();
84 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
86 if (LastChar != EOF)
87 return gettok();
90 // Check for end of file. Don't eat the EOF.
91 if (LastChar == EOF)
92 return tok_eof;
94 // Otherwise, just return the character as its ascii value.
95 int ThisChar = LastChar;
96 LastChar = getchar();
97 return ThisChar;
100 //===----------------------------------------------------------------------===//
101 // Abstract Syntax Tree (aka Parse Tree)
102 //===----------------------------------------------------------------------===//
104 /// ExprAST - Base class for all expression nodes.
105 class ExprAST {
106 public:
107 virtual ~ExprAST() {}
108 virtual Value *Codegen() = 0;
111 /// NumberExprAST - Expression class for numeric literals like "1.0".
112 class NumberExprAST : public ExprAST {
113 double Val;
114 public:
115 NumberExprAST(double val) : Val(val) {}
116 virtual Value *Codegen();
119 /// VariableExprAST - Expression class for referencing a variable, like "a".
120 class VariableExprAST : public ExprAST {
121 std::string Name;
122 public:
123 VariableExprAST(const std::string &name) : Name(name) {}
124 virtual Value *Codegen();
127 /// UnaryExprAST - Expression class for a unary operator.
128 class UnaryExprAST : public ExprAST {
129 char Opcode;
130 ExprAST *Operand;
131 public:
132 UnaryExprAST(char opcode, ExprAST *operand)
133 : Opcode(opcode), Operand(operand) {}
134 virtual Value *Codegen();
137 /// BinaryExprAST - Expression class for a binary operator.
138 class BinaryExprAST : public ExprAST {
139 char Op;
140 ExprAST *LHS, *RHS;
141 public:
142 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
143 : Op(op), LHS(lhs), RHS(rhs) {}
144 virtual Value *Codegen();
147 /// CallExprAST - Expression class for function calls.
148 class CallExprAST : public ExprAST {
149 std::string Callee;
150 std::vector<ExprAST*> Args;
151 public:
152 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
153 : Callee(callee), Args(args) {}
154 virtual Value *Codegen();
157 /// IfExprAST - Expression class for if/then/else.
158 class IfExprAST : public ExprAST {
159 ExprAST *Cond, *Then, *Else;
160 public:
161 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
162 : Cond(cond), Then(then), Else(_else) {}
163 virtual Value *Codegen();
166 /// ForExprAST - Expression class for for/in.
167 class ForExprAST : public ExprAST {
168 std::string VarName;
169 ExprAST *Start, *End, *Step, *Body;
170 public:
171 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
172 ExprAST *step, ExprAST *body)
173 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
174 virtual Value *Codegen();
177 /// PrototypeAST - This class represents the "prototype" for a function,
178 /// which captures its name, and its argument names (thus implicitly the number
179 /// of arguments the function takes), as well as if it is an operator.
180 class PrototypeAST {
181 std::string Name;
182 std::vector<std::string> Args;
183 bool isOperator;
184 unsigned Precedence; // Precedence if a binary op.
185 public:
186 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
187 bool isoperator = false, unsigned prec = 0)
188 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
190 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
191 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
193 char getOperatorName() const {
194 assert(isUnaryOp() || isBinaryOp());
195 return Name[Name.size()-1];
198 unsigned getBinaryPrecedence() const { return Precedence; }
200 Function *Codegen();
203 /// FunctionAST - This class represents a function definition itself.
204 class FunctionAST {
205 PrototypeAST *Proto;
206 ExprAST *Body;
207 public:
208 FunctionAST(PrototypeAST *proto, ExprAST *body)
209 : Proto(proto), Body(body) {}
211 Function *Codegen();
214 //===----------------------------------------------------------------------===//
215 // Parser
216 //===----------------------------------------------------------------------===//
218 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
219 /// token the parser is looking at. getNextToken reads another token from the
220 /// lexer and updates CurTok with its results.
221 static int CurTok;
222 static int getNextToken() {
223 return CurTok = gettok();
226 /// BinopPrecedence - This holds the precedence for each binary operator that is
227 /// defined.
228 static std::map<char, int> BinopPrecedence;
230 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
231 static int GetTokPrecedence() {
232 if (!isascii(CurTok))
233 return -1;
235 // Make sure it's a declared binop.
236 int TokPrec = BinopPrecedence[CurTok];
237 if (TokPrec <= 0) return -1;
238 return TokPrec;
241 /// Error* - These are little helper functions for error handling.
242 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
243 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
244 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
246 static ExprAST *ParseExpression();
248 /// identifierexpr
249 /// ::= identifier
250 /// ::= identifier '(' expression* ')'
251 static ExprAST *ParseIdentifierExpr() {
252 std::string IdName = IdentifierStr;
254 getNextToken(); // eat identifier.
256 if (CurTok != '(') // Simple variable ref.
257 return new VariableExprAST(IdName);
259 // Call.
260 getNextToken(); // eat (
261 std::vector<ExprAST*> Args;
262 if (CurTok != ')') {
263 while (1) {
264 ExprAST *Arg = ParseExpression();
265 if (!Arg) return 0;
266 Args.push_back(Arg);
268 if (CurTok == ')') break;
270 if (CurTok != ',')
271 return Error("Expected ')' or ',' in argument list");
272 getNextToken();
276 // Eat the ')'.
277 getNextToken();
279 return new CallExprAST(IdName, Args);
282 /// numberexpr ::= number
283 static ExprAST *ParseNumberExpr() {
284 ExprAST *Result = new NumberExprAST(NumVal);
285 getNextToken(); // consume the number
286 return Result;
289 /// parenexpr ::= '(' expression ')'
290 static ExprAST *ParseParenExpr() {
291 getNextToken(); // eat (.
292 ExprAST *V = ParseExpression();
293 if (!V) return 0;
295 if (CurTok != ')')
296 return Error("expected ')'");
297 getNextToken(); // eat ).
298 return V;
301 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
302 static ExprAST *ParseIfExpr() {
303 getNextToken(); // eat the if.
305 // condition.
306 ExprAST *Cond = ParseExpression();
307 if (!Cond) return 0;
309 if (CurTok != tok_then)
310 return Error("expected then");
311 getNextToken(); // eat the then
313 ExprAST *Then = ParseExpression();
314 if (Then == 0) return 0;
316 if (CurTok != tok_else)
317 return Error("expected else");
319 getNextToken();
321 ExprAST *Else = ParseExpression();
322 if (!Else) return 0;
324 return new IfExprAST(Cond, Then, Else);
327 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
328 static ExprAST *ParseForExpr() {
329 getNextToken(); // eat the for.
331 if (CurTok != tok_identifier)
332 return Error("expected identifier after for");
334 std::string IdName = IdentifierStr;
335 getNextToken(); // eat identifier.
337 if (CurTok != '=')
338 return Error("expected '=' after for");
339 getNextToken(); // eat '='.
342 ExprAST *Start = ParseExpression();
343 if (Start == 0) return 0;
344 if (CurTok != ',')
345 return Error("expected ',' after for start value");
346 getNextToken();
348 ExprAST *End = ParseExpression();
349 if (End == 0) return 0;
351 // The step value is optional.
352 ExprAST *Step = 0;
353 if (CurTok == ',') {
354 getNextToken();
355 Step = ParseExpression();
356 if (Step == 0) return 0;
359 if (CurTok != tok_in)
360 return Error("expected 'in' after for");
361 getNextToken(); // eat 'in'.
363 ExprAST *Body = ParseExpression();
364 if (Body == 0) return 0;
366 return new ForExprAST(IdName, Start, End, Step, Body);
369 /// primary
370 /// ::= identifierexpr
371 /// ::= numberexpr
372 /// ::= parenexpr
373 /// ::= ifexpr
374 /// ::= forexpr
375 static ExprAST *ParsePrimary() {
376 switch (CurTok) {
377 default: return Error("unknown token when expecting an expression");
378 case tok_identifier: return ParseIdentifierExpr();
379 case tok_number: return ParseNumberExpr();
380 case '(': return ParseParenExpr();
381 case tok_if: return ParseIfExpr();
382 case tok_for: return ParseForExpr();
386 /// unary
387 /// ::= primary
388 /// ::= '!' unary
389 static ExprAST *ParseUnary() {
390 // If the current token is not an operator, it must be a primary expr.
391 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
392 return ParsePrimary();
394 // If this is a unary operator, read it.
395 int Opc = CurTok;
396 getNextToken();
397 if (ExprAST *Operand = ParseUnary())
398 return new UnaryExprAST(Opc, Operand);
399 return 0;
402 /// binoprhs
403 /// ::= ('+' unary)*
404 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
405 // If this is a binop, find its precedence.
406 while (1) {
407 int TokPrec = GetTokPrecedence();
409 // If this is a binop that binds at least as tightly as the current binop,
410 // consume it, otherwise we are done.
411 if (TokPrec < ExprPrec)
412 return LHS;
414 // Okay, we know this is a binop.
415 int BinOp = CurTok;
416 getNextToken(); // eat binop
418 // Parse the unary expression after the binary operator.
419 ExprAST *RHS = ParseUnary();
420 if (!RHS) return 0;
422 // If BinOp binds less tightly with RHS than the operator after RHS, let
423 // the pending operator take RHS as its LHS.
424 int NextPrec = GetTokPrecedence();
425 if (TokPrec < NextPrec) {
426 RHS = ParseBinOpRHS(TokPrec+1, RHS);
427 if (RHS == 0) return 0;
430 // Merge LHS/RHS.
431 LHS = new BinaryExprAST(BinOp, LHS, RHS);
435 /// expression
436 /// ::= unary binoprhs
438 static ExprAST *ParseExpression() {
439 ExprAST *LHS = ParseUnary();
440 if (!LHS) return 0;
442 return ParseBinOpRHS(0, LHS);
445 /// prototype
446 /// ::= id '(' id* ')'
447 /// ::= binary LETTER number? (id, id)
448 /// ::= unary LETTER (id)
449 static PrototypeAST *ParsePrototype() {
450 std::string FnName;
452 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
453 unsigned BinaryPrecedence = 30;
455 switch (CurTok) {
456 default:
457 return ErrorP("Expected function name in prototype");
458 case tok_identifier:
459 FnName = IdentifierStr;
460 Kind = 0;
461 getNextToken();
462 break;
463 case tok_unary:
464 getNextToken();
465 if (!isascii(CurTok))
466 return ErrorP("Expected unary operator");
467 FnName = "unary";
468 FnName += (char)CurTok;
469 Kind = 1;
470 getNextToken();
471 break;
472 case tok_binary:
473 getNextToken();
474 if (!isascii(CurTok))
475 return ErrorP("Expected binary operator");
476 FnName = "binary";
477 FnName += (char)CurTok;
478 Kind = 2;
479 getNextToken();
481 // Read the precedence if present.
482 if (CurTok == tok_number) {
483 if (NumVal < 1 || NumVal > 100)
484 return ErrorP("Invalid precedecnce: must be 1..100");
485 BinaryPrecedence = (unsigned)NumVal;
486 getNextToken();
488 break;
491 if (CurTok != '(')
492 return ErrorP("Expected '(' in prototype");
494 std::vector<std::string> ArgNames;
495 while (getNextToken() == tok_identifier)
496 ArgNames.push_back(IdentifierStr);
497 if (CurTok != ')')
498 return ErrorP("Expected ')' in prototype");
500 // success.
501 getNextToken(); // eat ')'.
503 // Verify right number of names for operator.
504 if (Kind && ArgNames.size() != Kind)
505 return ErrorP("Invalid number of operands for operator");
507 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
510 /// definition ::= 'def' prototype expression
511 static FunctionAST *ParseDefinition() {
512 getNextToken(); // eat def.
513 PrototypeAST *Proto = ParsePrototype();
514 if (Proto == 0) return 0;
516 if (ExprAST *E = ParseExpression())
517 return new FunctionAST(Proto, E);
518 return 0;
521 /// toplevelexpr ::= expression
522 static FunctionAST *ParseTopLevelExpr() {
523 if (ExprAST *E = ParseExpression()) {
524 // Make an anonymous proto.
525 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
526 return new FunctionAST(Proto, E);
528 return 0;
531 /// external ::= 'extern' prototype
532 static PrototypeAST *ParseExtern() {
533 getNextToken(); // eat extern.
534 return ParsePrototype();
537 //===----------------------------------------------------------------------===//
538 // Code Generation
539 //===----------------------------------------------------------------------===//
541 static Module *TheModule;
542 static IRBuilder<> Builder(getGlobalContext());
543 static std::map<std::string, Value*> NamedValues;
544 static FunctionPassManager *TheFPM;
546 Value *ErrorV(const char *Str) { Error(Str); return 0; }
548 Value *NumberExprAST::Codegen() {
549 return ConstantFP::get(getGlobalContext(), APFloat(Val));
552 Value *VariableExprAST::Codegen() {
553 // Look this variable up in the function.
554 Value *V = NamedValues[Name];
555 return V ? V : ErrorV("Unknown variable name");
558 Value *UnaryExprAST::Codegen() {
559 Value *OperandV = Operand->Codegen();
560 if (OperandV == 0) return 0;
562 Function *F = TheModule->getFunction(std::string("unary")+Opcode);
563 if (F == 0)
564 return ErrorV("Unknown unary operator");
566 return Builder.CreateCall(F, OperandV, "unop");
569 Value *BinaryExprAST::Codegen() {
570 Value *L = LHS->Codegen();
571 Value *R = RHS->Codegen();
572 if (L == 0 || R == 0) return 0;
574 switch (Op) {
575 case '+': return Builder.CreateFAdd(L, R, "addtmp");
576 case '-': return Builder.CreateFSub(L, R, "subtmp");
577 case '*': return Builder.CreateFMul(L, R, "multmp");
578 case '<':
579 L = Builder.CreateFCmpULT(L, R, "cmptmp");
580 // Convert bool 0/1 to double 0.0 or 1.0
581 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
582 "booltmp");
583 default: break;
586 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
587 // a call to it.
588 Function *F = TheModule->getFunction(std::string("binary")+Op);
589 assert(F && "binary operator not found!");
591 Value *Ops[] = { L, R };
592 return Builder.CreateCall(F, Ops, Ops+2, "binop");
595 Value *CallExprAST::Codegen() {
596 // Look up the name in the global module table.
597 Function *CalleeF = TheModule->getFunction(Callee);
598 if (CalleeF == 0)
599 return ErrorV("Unknown function referenced");
601 // If argument mismatch error.
602 if (CalleeF->arg_size() != Args.size())
603 return ErrorV("Incorrect # arguments passed");
605 std::vector<Value*> ArgsV;
606 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
607 ArgsV.push_back(Args[i]->Codegen());
608 if (ArgsV.back() == 0) return 0;
611 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
614 Value *IfExprAST::Codegen() {
615 Value *CondV = Cond->Codegen();
616 if (CondV == 0) return 0;
618 // Convert condition to a bool by comparing equal to 0.0.
619 CondV = Builder.CreateFCmpONE(CondV,
620 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
621 "ifcond");
623 Function *TheFunction = Builder.GetInsertBlock()->getParent();
625 // Create blocks for the then and else cases. Insert the 'then' block at the
626 // end of the function.
627 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
628 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
629 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
631 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
633 // Emit then value.
634 Builder.SetInsertPoint(ThenBB);
636 Value *ThenV = Then->Codegen();
637 if (ThenV == 0) return 0;
639 Builder.CreateBr(MergeBB);
640 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
641 ThenBB = Builder.GetInsertBlock();
643 // Emit else block.
644 TheFunction->getBasicBlockList().push_back(ElseBB);
645 Builder.SetInsertPoint(ElseBB);
647 Value *ElseV = Else->Codegen();
648 if (ElseV == 0) return 0;
650 Builder.CreateBr(MergeBB);
651 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
652 ElseBB = Builder.GetInsertBlock();
654 // Emit merge block.
655 TheFunction->getBasicBlockList().push_back(MergeBB);
656 Builder.SetInsertPoint(MergeBB);
657 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
658 "iftmp");
660 PN->addIncoming(ThenV, ThenBB);
661 PN->addIncoming(ElseV, ElseBB);
662 return PN;
665 Value *ForExprAST::Codegen() {
666 // Output this as:
667 // ...
668 // start = startexpr
669 // goto loop
670 // loop:
671 // variable = phi [start, loopheader], [nextvariable, loopend]
672 // ...
673 // bodyexpr
674 // ...
675 // loopend:
676 // step = stepexpr
677 // nextvariable = variable + step
678 // endcond = endexpr
679 // br endcond, loop, endloop
680 // outloop:
682 // Emit the start code first, without 'variable' in scope.
683 Value *StartVal = Start->Codegen();
684 if (StartVal == 0) return 0;
686 // Make the new basic block for the loop header, inserting after current
687 // block.
688 Function *TheFunction = Builder.GetInsertBlock()->getParent();
689 BasicBlock *PreheaderBB = Builder.GetInsertBlock();
690 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
692 // Insert an explicit fall through from the current block to the LoopBB.
693 Builder.CreateBr(LoopBB);
695 // Start insertion in LoopBB.
696 Builder.SetInsertPoint(LoopBB);
698 // Start the PHI node with an entry for Start.
699 PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
700 Variable->addIncoming(StartVal, PreheaderBB);
702 // Within the loop, the variable is defined equal to the PHI node. If it
703 // shadows an existing variable, we have to restore it, so save it now.
704 Value *OldVal = NamedValues[VarName];
705 NamedValues[VarName] = Variable;
707 // Emit the body of the loop. This, like any other expr, can change the
708 // current BB. Note that we ignore the value computed by the body, but don't
709 // allow an error.
710 if (Body->Codegen() == 0)
711 return 0;
713 // Emit the step value.
714 Value *StepVal;
715 if (Step) {
716 StepVal = Step->Codegen();
717 if (StepVal == 0) return 0;
718 } else {
719 // If not specified, use 1.0.
720 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
723 Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
725 // Compute the end condition.
726 Value *EndCond = End->Codegen();
727 if (EndCond == 0) return EndCond;
729 // Convert condition to a bool by comparing equal to 0.0.
730 EndCond = Builder.CreateFCmpONE(EndCond,
731 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
732 "loopcond");
734 // Create the "after loop" block and insert it.
735 BasicBlock *LoopEndBB = Builder.GetInsertBlock();
736 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
738 // Insert the conditional branch into the end of LoopEndBB.
739 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
741 // Any new code will be inserted in AfterBB.
742 Builder.SetInsertPoint(AfterBB);
744 // Add a new entry to the PHI node for the backedge.
745 Variable->addIncoming(NextVar, LoopEndBB);
747 // Restore the unshadowed variable.
748 if (OldVal)
749 NamedValues[VarName] = OldVal;
750 else
751 NamedValues.erase(VarName);
754 // for expr always returns 0.0.
755 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
758 Function *PrototypeAST::Codegen() {
759 // Make the function type: double(double,double) etc.
760 std::vector<const Type*> Doubles(Args.size(),
761 Type::getDoubleTy(getGlobalContext()));
762 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
763 Doubles, false);
765 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
767 // If F conflicted, there was already something named 'Name'. If it has a
768 // body, don't allow redefinition or reextern.
769 if (F->getName() != Name) {
770 // Delete the one we just made and get the existing one.
771 F->eraseFromParent();
772 F = TheModule->getFunction(Name);
774 // If F already has a body, reject this.
775 if (!F->empty()) {
776 ErrorF("redefinition of function");
777 return 0;
780 // If F took a different number of args, reject.
781 if (F->arg_size() != Args.size()) {
782 ErrorF("redefinition of function with different # args");
783 return 0;
787 // Set names for all arguments.
788 unsigned Idx = 0;
789 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
790 ++AI, ++Idx) {
791 AI->setName(Args[Idx]);
793 // Add arguments to variable symbol table.
794 NamedValues[Args[Idx]] = AI;
797 return F;
800 Function *FunctionAST::Codegen() {
801 NamedValues.clear();
803 Function *TheFunction = Proto->Codegen();
804 if (TheFunction == 0)
805 return 0;
807 // If this is an operator, install it.
808 if (Proto->isBinaryOp())
809 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
811 // Create a new basic block to start insertion into.
812 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
813 Builder.SetInsertPoint(BB);
815 if (Value *RetVal = Body->Codegen()) {
816 // Finish off the function.
817 Builder.CreateRet(RetVal);
819 // Validate the generated code, checking for consistency.
820 verifyFunction(*TheFunction);
822 // Optimize the function.
823 TheFPM->run(*TheFunction);
825 return TheFunction;
828 // Error reading body, remove function.
829 TheFunction->eraseFromParent();
831 if (Proto->isBinaryOp())
832 BinopPrecedence.erase(Proto->getOperatorName());
833 return 0;
836 //===----------------------------------------------------------------------===//
837 // Top-Level parsing and JIT Driver
838 //===----------------------------------------------------------------------===//
840 static ExecutionEngine *TheExecutionEngine;
842 static void HandleDefinition() {
843 if (FunctionAST *F = ParseDefinition()) {
844 if (Function *LF = F->Codegen()) {
845 fprintf(stderr, "Read function definition:");
846 LF->dump();
848 } else {
849 // Skip token for error recovery.
850 getNextToken();
854 static void HandleExtern() {
855 if (PrototypeAST *P = ParseExtern()) {
856 if (Function *F = P->Codegen()) {
857 fprintf(stderr, "Read extern: ");
858 F->dump();
860 } else {
861 // Skip token for error recovery.
862 getNextToken();
866 static void HandleTopLevelExpression() {
867 // Evaluate a top-level expression into an anonymous function.
868 if (FunctionAST *F = ParseTopLevelExpr()) {
869 if (Function *LF = F->Codegen()) {
870 // JIT the function, returning a function pointer.
871 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
873 // Cast it to the right type (takes no arguments, returns a double) so we
874 // can call it as a native function.
875 double (*FP)() = (double (*)())(intptr_t)FPtr;
876 fprintf(stderr, "Evaluated to %f\n", FP());
878 } else {
879 // Skip token for error recovery.
880 getNextToken();
884 /// top ::= definition | external | expression | ';'
885 static void MainLoop() {
886 while (1) {
887 fprintf(stderr, "ready> ");
888 switch (CurTok) {
889 case tok_eof: return;
890 case ';': getNextToken(); break; // ignore top-level semicolons.
891 case tok_def: HandleDefinition(); break;
892 case tok_extern: HandleExtern(); break;
893 default: HandleTopLevelExpression(); break;
898 //===----------------------------------------------------------------------===//
899 // "Library" functions that can be "extern'd" from user code.
900 //===----------------------------------------------------------------------===//
902 /// putchard - putchar that takes a double and returns 0.
903 extern "C"
904 double putchard(double X) {
905 putchar((char)X);
906 return 0;
909 /// printd - printf that takes a double prints it as "%f\n", returning 0.
910 extern "C"
911 double printd(double X) {
912 printf("%f\n", X);
913 return 0;
916 //===----------------------------------------------------------------------===//
917 // Main driver code.
918 //===----------------------------------------------------------------------===//
920 int main() {
921 InitializeNativeTarget();
922 LLVMContext &Context = getGlobalContext();
924 // Install standard binary operators.
925 // 1 is lowest precedence.
926 BinopPrecedence['<'] = 10;
927 BinopPrecedence['+'] = 20;
928 BinopPrecedence['-'] = 20;
929 BinopPrecedence['*'] = 40; // highest.
931 // Prime the first token.
932 fprintf(stderr, "ready> ");
933 getNextToken();
935 // Make the module, which holds all the code.
936 TheModule = new Module("my cool jit", Context);
938 // Create the JIT. This takes ownership of the module.
939 std::string ErrStr;
940 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
941 if (!TheExecutionEngine) {
942 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
943 exit(1);
946 FunctionPassManager OurFPM(TheModule);
948 // Set up the optimizer pipeline. Start with registering info about how the
949 // target lays out data structures.
950 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
951 // Provide basic AliasAnalysis support for GVN.
952 OurFPM.add(createBasicAliasAnalysisPass());
953 // Do simple "peephole" optimizations and bit-twiddling optzns.
954 OurFPM.add(createInstructionCombiningPass());
955 // Reassociate expressions.
956 OurFPM.add(createReassociatePass());
957 // Eliminate Common SubExpressions.
958 OurFPM.add(createGVNPass());
959 // Simplify the control flow graph (deleting unreachable blocks, etc).
960 OurFPM.add(createCFGSimplificationPass());
962 OurFPM.doInitialization();
964 // Set the global so the code gen can use this.
965 TheFPM = &OurFPM;
967 // Run the main "interpreter loop" now.
968 MainLoop();
970 TheFPM = 0;
972 // Print out all of the generated code.
973 TheModule->dump();
975 return 0;