1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements inline cost analysis.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/InlineCost.h"
15 #include "llvm/Support/CallSite.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/ADT/SmallPtrSet.h"
22 /// callIsSmall - If a call is likely to lower to a single target instruction,
23 /// or is otherwise deemed small return true.
24 /// TODO: Perhaps calls like memcpy, strcpy, etc?
25 bool llvm::callIsSmall(const Function
*F
) {
28 if (F
->hasLocalLinkage()) return false;
30 if (!F
->hasName()) return false;
32 StringRef Name
= F
->getName();
34 // These will all likely lower to a single selection DAG node.
35 if (Name
== "copysign" || Name
== "copysignf" || Name
== "copysignl" ||
36 Name
== "fabs" || Name
== "fabsf" || Name
== "fabsl" ||
37 Name
== "sin" || Name
== "sinf" || Name
== "sinl" ||
38 Name
== "cos" || Name
== "cosf" || Name
== "cosl" ||
39 Name
== "sqrt" || Name
== "sqrtf" || Name
== "sqrtl" )
42 // These are all likely to be optimized into something smaller.
43 if (Name
== "pow" || Name
== "powf" || Name
== "powl" ||
44 Name
== "exp2" || Name
== "exp2l" || Name
== "exp2f" ||
45 Name
== "floor" || Name
== "floorf" || Name
== "ceil" ||
46 Name
== "round" || Name
== "ffs" || Name
== "ffsl" ||
47 Name
== "abs" || Name
== "labs" || Name
== "llabs")
53 /// analyzeBasicBlock - Fill in the current structure with information gleaned
54 /// from the specified block.
55 void CodeMetrics::analyzeBasicBlock(const BasicBlock
*BB
) {
57 unsigned NumInstsBeforeThisBB
= NumInsts
;
58 for (BasicBlock::const_iterator II
= BB
->begin(), E
= BB
->end();
60 if (isa
<PHINode
>(II
)) continue; // PHI nodes don't count.
62 // Special handling for calls.
63 if (isa
<CallInst
>(II
) || isa
<InvokeInst
>(II
)) {
64 if (isa
<DbgInfoIntrinsic
>(II
))
65 continue; // Debug intrinsics don't count as size.
67 ImmutableCallSite
CS(cast
<Instruction
>(II
));
69 if (const Function
*F
= CS
.getCalledFunction()) {
70 // If a function is both internal and has a single use, then it is
71 // extremely likely to get inlined in the future (it was probably
72 // exposed by an interleaved devirtualization pass).
73 if (F
->hasInternalLinkage() && F
->hasOneUse())
74 ++NumInlineCandidates
;
76 // If this call is to function itself, then the function is recursive.
77 // Inlining it into other functions is a bad idea, because this is
78 // basically just a form of loop peeling, and our metrics aren't useful
80 if (F
== BB
->getParent())
84 if (!isa
<IntrinsicInst
>(II
) && !callIsSmall(CS
.getCalledFunction())) {
85 // Each argument to a call takes on average one instruction to set up.
86 NumInsts
+= CS
.arg_size();
88 // We don't want inline asm to count as a call - that would prevent loop
89 // unrolling. The argument setup cost is still real, though.
90 if (!isa
<InlineAsm
>(CS
.getCalledValue()))
95 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(II
)) {
96 if (!AI
->isStaticAlloca())
97 this->usesDynamicAlloca
= true;
100 if (isa
<ExtractElementInst
>(II
) || II
->getType()->isVectorTy())
103 if (const CastInst
*CI
= dyn_cast
<CastInst
>(II
)) {
104 // Noop casts, including ptr <-> int, don't count.
105 if (CI
->isLosslessCast() || isa
<IntToPtrInst
>(CI
) ||
106 isa
<PtrToIntInst
>(CI
))
108 // Result of a cmp instruction is often extended (to be used by other
109 // cmp instructions, logical or return instructions). These are usually
110 // nop on most sane targets.
111 if (isa
<CmpInst
>(CI
->getOperand(0)))
113 } else if (const GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(II
)){
114 // If a GEP has all constant indices, it will probably be folded with
116 if (GEPI
->hasAllConstantIndices())
123 if (isa
<ReturnInst
>(BB
->getTerminator()))
126 // We never want to inline functions that contain an indirectbr. This is
127 // incorrect because all the blockaddress's (in static global initializers
128 // for example) would be referring to the original function, and this indirect
129 // jump would jump from the inlined copy of the function into the original
130 // function which is extremely undefined behavior.
131 if (isa
<IndirectBrInst
>(BB
->getTerminator()))
132 containsIndirectBr
= true;
134 // Remember NumInsts for this BB.
135 NumBBInsts
[BB
] = NumInsts
- NumInstsBeforeThisBB
;
138 // CountCodeReductionForConstant - Figure out an approximation for how many
139 // instructions will be constant folded if the specified value is constant.
141 unsigned CodeMetrics::CountCodeReductionForConstant(Value
*V
) {
142 unsigned Reduction
= 0;
143 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
;++UI
){
145 if (isa
<BranchInst
>(U
) || isa
<SwitchInst
>(U
)) {
146 // We will be able to eliminate all but one of the successors.
147 const TerminatorInst
&TI
= cast
<TerminatorInst
>(*U
);
148 const unsigned NumSucc
= TI
.getNumSuccessors();
150 for (unsigned I
= 0; I
!= NumSucc
; ++I
)
151 Instrs
+= NumBBInsts
[TI
.getSuccessor(I
)];
152 // We don't know which blocks will be eliminated, so use the average size.
153 Reduction
+= InlineConstants::InstrCost
*Instrs
*(NumSucc
-1)/NumSucc
;
155 // Figure out if this instruction will be removed due to simple constant
157 Instruction
&Inst
= cast
<Instruction
>(*U
);
159 // We can't constant propagate instructions which have effects or
162 // FIXME: It would be nice to capture the fact that a load from a
163 // pointer-to-constant-global is actually a *really* good thing to zap.
164 // Unfortunately, we don't know the pointer that may get propagated here,
165 // so we can't make this decision.
166 if (Inst
.mayReadFromMemory() || Inst
.mayHaveSideEffects() ||
167 isa
<AllocaInst
>(Inst
))
170 bool AllOperandsConstant
= true;
171 for (unsigned i
= 0, e
= Inst
.getNumOperands(); i
!= e
; ++i
)
172 if (!isa
<Constant
>(Inst
.getOperand(i
)) && Inst
.getOperand(i
) != V
) {
173 AllOperandsConstant
= false;
177 if (AllOperandsConstant
) {
178 // We will get to remove this instruction...
179 Reduction
+= InlineConstants::InstrCost
;
181 // And any other instructions that use it which become constants
183 Reduction
+= CountCodeReductionForConstant(&Inst
);
190 // CountCodeReductionForAlloca - Figure out an approximation of how much smaller
191 // the function will be if it is inlined into a context where an argument
192 // becomes an alloca.
194 unsigned CodeMetrics::CountCodeReductionForAlloca(Value
*V
) {
195 if (!V
->getType()->isPointerTy()) return 0; // Not a pointer
196 unsigned Reduction
= 0;
197 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
;++UI
){
198 Instruction
*I
= cast
<Instruction
>(*UI
);
199 if (isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
))
200 Reduction
+= InlineConstants::InstrCost
;
201 else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
202 // If the GEP has variable indices, we won't be able to do much with it.
203 if (GEP
->hasAllConstantIndices())
204 Reduction
+= CountCodeReductionForAlloca(GEP
);
205 } else if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(I
)) {
206 // Track pointer through bitcasts.
207 Reduction
+= CountCodeReductionForAlloca(BCI
);
209 // If there is some other strange instruction, we're not going to be able
210 // to do much if we inline this.
218 /// analyzeFunction - Fill in the current structure with information gleaned
219 /// from the specified function.
220 void CodeMetrics::analyzeFunction(Function
*F
) {
221 // If this function contains a call to setjmp or _setjmp, never inline
222 // it. This is a hack because we depend on the user marking their local
223 // variables as volatile if they are live across a setjmp call, and they
224 // probably won't do this in callers.
225 if (F
->callsFunctionThatReturnsTwice())
228 // Look at the size of the callee.
229 for (Function::const_iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
)
230 analyzeBasicBlock(&*BB
);
233 /// analyzeFunction - Fill in the current structure with information gleaned
234 /// from the specified function.
235 void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function
*F
) {
236 Metrics
.analyzeFunction(F
);
238 // A function with exactly one return has it removed during the inlining
239 // process (see InlineFunction), so don't count it.
240 // FIXME: This knowledge should really be encoded outside of FunctionInfo.
241 if (Metrics
.NumRets
==1)
244 // Check out all of the arguments to the function, figuring out how much
245 // code can be eliminated if one of the arguments is a constant.
246 ArgumentWeights
.reserve(F
->arg_size());
247 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end(); I
!= E
; ++I
)
248 ArgumentWeights
.push_back(ArgInfo(Metrics
.CountCodeReductionForConstant(I
),
249 Metrics
.CountCodeReductionForAlloca(I
)));
252 /// NeverInline - returns true if the function should never be inlined into
254 bool InlineCostAnalyzer::FunctionInfo::NeverInline() {
255 return (Metrics
.callsSetJmp
|| Metrics
.isRecursive
||
256 Metrics
.containsIndirectBr
);
258 // getSpecializationBonus - The heuristic used to determine the per-call
259 // performance boost for using a specialization of Callee with argument
260 // specializedArgNo replaced by a constant.
261 int InlineCostAnalyzer::getSpecializationBonus(Function
*Callee
,
262 SmallVectorImpl
<unsigned> &SpecializedArgNos
)
264 if (Callee
->mayBeOverridden())
268 // If this function uses the coldcc calling convention, prefer not to
270 if (Callee
->getCallingConv() == CallingConv::Cold
)
271 Bonus
-= InlineConstants::ColdccPenalty
;
273 // Get information about the callee.
274 FunctionInfo
*CalleeFI
= &CachedFunctionInfo
[Callee
];
276 // If we haven't calculated this information yet, do so now.
277 if (CalleeFI
->Metrics
.NumBlocks
== 0)
278 CalleeFI
->analyzeFunction(Callee
);
282 for (Function::arg_iterator I
= Callee
->arg_begin(), E
= Callee
->arg_end();
283 I
!= E
; ++I
, ++ArgNo
)
284 if (ArgNo
== SpecializedArgNos
[i
]) {
286 Bonus
+= CountBonusForConstant(I
);
289 // Calls usually take a long time, so they make the specialization gain
291 Bonus
-= CalleeFI
->Metrics
.NumCalls
* InlineConstants::CallPenalty
;
296 // ConstantFunctionBonus - Figure out how much of a bonus we can get for
297 // possibly devirtualizing a function. We'll subtract the size of the function
298 // we may wish to inline from the indirect call bonus providing a limit on
299 // growth. Leave an upper limit of 0 for the bonus - we don't want to penalize
300 // inlining because we decide we don't want to give a bonus for
302 int InlineCostAnalyzer::ConstantFunctionBonus(CallSite CS
, Constant
*C
) {
304 // This could just be NULL.
307 Function
*F
= dyn_cast
<Function
>(C
);
310 int Bonus
= InlineConstants::IndirectCallBonus
+ getInlineSize(CS
, F
);
311 return (Bonus
> 0) ? 0 : Bonus
;
314 // CountBonusForConstant - Figure out an approximation for how much per-call
315 // performance boost we can expect if the specified value is constant.
316 int InlineCostAnalyzer::CountBonusForConstant(Value
*V
, Constant
*C
) {
318 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
;++UI
){
320 if (CallInst
*CI
= dyn_cast
<CallInst
>(U
)) {
321 // Turning an indirect call into a direct call is a BIG win
322 if (CI
->getCalledValue() == V
)
323 Bonus
+= ConstantFunctionBonus(CallSite(CI
), C
);
324 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(U
)) {
325 // Turning an indirect call into a direct call is a BIG win
326 if (II
->getCalledValue() == V
)
327 Bonus
+= ConstantFunctionBonus(CallSite(II
), C
);
329 // FIXME: Eliminating conditional branches and switches should
330 // also yield a per-call performance boost.
332 // Figure out the bonuses that wll accrue due to simple constant
334 Instruction
&Inst
= cast
<Instruction
>(*U
);
336 // We can't constant propagate instructions which have effects or
339 // FIXME: It would be nice to capture the fact that a load from a
340 // pointer-to-constant-global is actually a *really* good thing to zap.
341 // Unfortunately, we don't know the pointer that may get propagated here,
342 // so we can't make this decision.
343 if (Inst
.mayReadFromMemory() || Inst
.mayHaveSideEffects() ||
344 isa
<AllocaInst
>(Inst
))
347 bool AllOperandsConstant
= true;
348 for (unsigned i
= 0, e
= Inst
.getNumOperands(); i
!= e
; ++i
)
349 if (!isa
<Constant
>(Inst
.getOperand(i
)) && Inst
.getOperand(i
) != V
) {
350 AllOperandsConstant
= false;
354 if (AllOperandsConstant
)
355 Bonus
+= CountBonusForConstant(&Inst
);
362 int InlineCostAnalyzer::getInlineSize(CallSite CS
, Function
*Callee
) {
363 // Get information about the callee.
364 FunctionInfo
*CalleeFI
= &CachedFunctionInfo
[Callee
];
366 // If we haven't calculated this information yet, do so now.
367 if (CalleeFI
->Metrics
.NumBlocks
== 0)
368 CalleeFI
->analyzeFunction(Callee
);
370 // InlineCost - This value measures how good of an inline candidate this call
371 // site is to inline. A lower inline cost make is more likely for the call to
372 // be inlined. This value may go negative.
376 // Compute any size reductions we can expect due to arguments being passed into
380 CallSite::arg_iterator I
= CS
.arg_begin();
381 for (Function::arg_iterator FI
= Callee
->arg_begin(), FE
= Callee
->arg_end();
382 FI
!= FE
; ++I
, ++FI
, ++ArgNo
) {
384 // If an alloca is passed in, inlining this function is likely to allow
385 // significant future optimization possibilities (like scalar promotion, and
386 // scalarization), so encourage the inlining of the function.
388 if (isa
<AllocaInst
>(I
))
389 InlineCost
-= CalleeFI
->ArgumentWeights
[ArgNo
].AllocaWeight
;
391 // If this is a constant being passed into the function, use the argument
392 // weights calculated for the callee to determine how much will be folded
393 // away with this information.
394 else if (isa
<Constant
>(I
))
395 InlineCost
-= CalleeFI
->ArgumentWeights
[ArgNo
].ConstantWeight
;
398 // Each argument passed in has a cost at both the caller and the callee
399 // sides. Measurements show that each argument costs about the same as an
401 InlineCost
-= (CS
.arg_size() * InlineConstants::InstrCost
);
403 // Now that we have considered all of the factors that make the call site more
404 // likely to be inlined, look at factors that make us not want to inline it.
406 // Calls usually take a long time, so they make the inlining gain smaller.
407 InlineCost
+= CalleeFI
->Metrics
.NumCalls
* InlineConstants::CallPenalty
;
409 // Look at the size of the callee. Each instruction counts as 5.
410 InlineCost
+= CalleeFI
->Metrics
.NumInsts
*InlineConstants::InstrCost
;
415 int InlineCostAnalyzer::getInlineBonuses(CallSite CS
, Function
*Callee
) {
416 // Get information about the callee.
417 FunctionInfo
*CalleeFI
= &CachedFunctionInfo
[Callee
];
419 // If we haven't calculated this information yet, do so now.
420 if (CalleeFI
->Metrics
.NumBlocks
== 0)
421 CalleeFI
->analyzeFunction(Callee
);
423 bool isDirectCall
= CS
.getCalledFunction() == Callee
;
424 Instruction
*TheCall
= CS
.getInstruction();
427 // If there is only one call of the function, and it has internal linkage,
428 // make it almost guaranteed to be inlined.
430 if (Callee
->hasLocalLinkage() && Callee
->hasOneUse() && isDirectCall
)
431 Bonus
+= InlineConstants::LastCallToStaticBonus
;
433 // If the instruction after the call, or if the normal destination of the
434 // invoke is an unreachable instruction, the function is noreturn. As such,
435 // there is little point in inlining this.
436 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TheCall
)) {
437 if (isa
<UnreachableInst
>(II
->getNormalDest()->begin()))
438 Bonus
+= InlineConstants::NoreturnPenalty
;
439 } else if (isa
<UnreachableInst
>(++BasicBlock::iterator(TheCall
)))
440 Bonus
+= InlineConstants::NoreturnPenalty
;
442 // If this function uses the coldcc calling convention, prefer not to inline
444 if (Callee
->getCallingConv() == CallingConv::Cold
)
445 Bonus
+= InlineConstants::ColdccPenalty
;
447 // Add to the inline quality for properties that make the call valuable to
448 // inline. This includes factors that indicate that the result of inlining
449 // the function will be optimizable. Currently this just looks at arguments
450 // passed into the function.
452 CallSite::arg_iterator I
= CS
.arg_begin();
453 for (Function::arg_iterator FI
= Callee
->arg_begin(), FE
= Callee
->arg_end();
455 // Compute any constant bonus due to inlining we want to give here.
456 if (isa
<Constant
>(I
))
457 Bonus
+= CountBonusForConstant(FI
, cast
<Constant
>(I
));
462 // getInlineCost - The heuristic used to determine if we should inline the
463 // function call or not.
465 InlineCost
InlineCostAnalyzer::getInlineCost(CallSite CS
,
466 SmallPtrSet
<const Function
*, 16> &NeverInline
) {
467 return getInlineCost(CS
, CS
.getCalledFunction(), NeverInline
);
470 InlineCost
InlineCostAnalyzer::getInlineCost(CallSite CS
,
472 SmallPtrSet
<const Function
*, 16> &NeverInline
) {
473 Instruction
*TheCall
= CS
.getInstruction();
474 Function
*Caller
= TheCall
->getParent()->getParent();
476 // Don't inline functions which can be redefined at link-time to mean
477 // something else. Don't inline functions marked noinline or call sites
479 if (Callee
->mayBeOverridden() ||
480 Callee
->hasFnAttr(Attribute::NoInline
) || NeverInline
.count(Callee
) ||
482 return llvm::InlineCost::getNever();
484 // Get information about the callee.
485 FunctionInfo
*CalleeFI
= &CachedFunctionInfo
[Callee
];
487 // If we haven't calculated this information yet, do so now.
488 if (CalleeFI
->Metrics
.NumBlocks
== 0)
489 CalleeFI
->analyzeFunction(Callee
);
491 // If we should never inline this, return a huge cost.
492 if (CalleeFI
->NeverInline())
493 return InlineCost::getNever();
495 // FIXME: It would be nice to kill off CalleeFI->NeverInline. Then we
496 // could move this up and avoid computing the FunctionInfo for
497 // things we are going to just return always inline for. This
498 // requires handling setjmp somewhere else, however.
499 if (!Callee
->isDeclaration() && Callee
->hasFnAttr(Attribute::AlwaysInline
))
500 return InlineCost::getAlways();
502 if (CalleeFI
->Metrics
.usesDynamicAlloca
) {
503 // Get information about the caller.
504 FunctionInfo
&CallerFI
= CachedFunctionInfo
[Caller
];
506 // If we haven't calculated this information yet, do so now.
507 if (CallerFI
.Metrics
.NumBlocks
== 0) {
508 CallerFI
.analyzeFunction(Caller
);
510 // Recompute the CalleeFI pointer, getting Caller could have invalidated
512 CalleeFI
= &CachedFunctionInfo
[Callee
];
515 // Don't inline a callee with dynamic alloca into a caller without them.
516 // Functions containing dynamic alloca's are inefficient in various ways;
517 // don't create more inefficiency.
518 if (!CallerFI
.Metrics
.usesDynamicAlloca
)
519 return InlineCost::getNever();
522 // InlineCost - This value measures how good of an inline candidate this call
523 // site is to inline. A lower inline cost make is more likely for the call to
524 // be inlined. This value may go negative due to the fact that bonuses
525 // are negative numbers.
527 int InlineCost
= getInlineSize(CS
, Callee
) + getInlineBonuses(CS
, Callee
);
528 return llvm::InlineCost::get(InlineCost
);
531 // getSpecializationCost - The heuristic used to determine the code-size
532 // impact of creating a specialized version of Callee with argument
533 // SpecializedArgNo replaced by a constant.
534 InlineCost
InlineCostAnalyzer::getSpecializationCost(Function
*Callee
,
535 SmallVectorImpl
<unsigned> &SpecializedArgNos
)
537 // Don't specialize functions which can be redefined at link-time to mean
539 if (Callee
->mayBeOverridden())
540 return llvm::InlineCost::getNever();
542 // Get information about the callee.
543 FunctionInfo
*CalleeFI
= &CachedFunctionInfo
[Callee
];
545 // If we haven't calculated this information yet, do so now.
546 if (CalleeFI
->Metrics
.NumBlocks
== 0)
547 CalleeFI
->analyzeFunction(Callee
);
551 // Look at the original size of the callee. Each instruction counts as 5.
552 Cost
+= CalleeFI
->Metrics
.NumInsts
* InlineConstants::InstrCost
;
554 // Offset that with the amount of code that can be constant-folded
555 // away with the given arguments replaced by constants.
556 for (SmallVectorImpl
<unsigned>::iterator an
= SpecializedArgNos
.begin(),
557 ae
= SpecializedArgNos
.end(); an
!= ae
; ++an
)
558 Cost
-= CalleeFI
->ArgumentWeights
[*an
].ConstantWeight
;
560 return llvm::InlineCost::get(Cost
);
563 // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
564 // higher threshold to determine if the function call should be inlined.
565 float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS
) {
566 Function
*Callee
= CS
.getCalledFunction();
568 // Get information about the callee.
569 FunctionInfo
&CalleeFI
= CachedFunctionInfo
[Callee
];
571 // If we haven't calculated this information yet, do so now.
572 if (CalleeFI
.Metrics
.NumBlocks
== 0)
573 CalleeFI
.analyzeFunction(Callee
);
576 // Single BB functions are often written to be inlined.
577 if (CalleeFI
.Metrics
.NumBlocks
== 1)
580 // Be more aggressive if the function contains a good chunk (if it mades up
581 // at least 10% of the instructions) of vector instructions.
582 if (CalleeFI
.Metrics
.NumVectorInsts
> CalleeFI
.Metrics
.NumInsts
/2)
584 else if (CalleeFI
.Metrics
.NumVectorInsts
> CalleeFI
.Metrics
.NumInsts
/10)
589 /// growCachedCostInfo - update the cached cost info for Caller after Callee has
592 InlineCostAnalyzer::growCachedCostInfo(Function
*Caller
, Function
*Callee
) {
593 CodeMetrics
&CallerMetrics
= CachedFunctionInfo
[Caller
].Metrics
;
595 // For small functions we prefer to recalculate the cost for better accuracy.
596 if (CallerMetrics
.NumBlocks
< 10 && CallerMetrics
.NumInsts
< 1000) {
597 resetCachedCostInfo(Caller
);
601 // For large functions, we can save a lot of computation time by skipping
603 if (CallerMetrics
.NumCalls
> 0)
604 --CallerMetrics
.NumCalls
;
606 if (Callee
== 0) return;
608 CodeMetrics
&CalleeMetrics
= CachedFunctionInfo
[Callee
].Metrics
;
610 // If we don't have metrics for the callee, don't recalculate them just to
611 // update an approximation in the caller. Instead, just recalculate the
612 // caller info from scratch.
613 if (CalleeMetrics
.NumBlocks
== 0) {
614 resetCachedCostInfo(Caller
);
618 // Since CalleeMetrics were already calculated, we know that the CallerMetrics
619 // reference isn't invalidated: both were in the DenseMap.
620 CallerMetrics
.usesDynamicAlloca
|= CalleeMetrics
.usesDynamicAlloca
;
622 // FIXME: If any of these three are true for the callee, the callee was
623 // not inlined into the caller, so I think they're redundant here.
624 CallerMetrics
.callsSetJmp
|= CalleeMetrics
.callsSetJmp
;
625 CallerMetrics
.isRecursive
|= CalleeMetrics
.isRecursive
;
626 CallerMetrics
.containsIndirectBr
|= CalleeMetrics
.containsIndirectBr
;
628 CallerMetrics
.NumInsts
+= CalleeMetrics
.NumInsts
;
629 CallerMetrics
.NumBlocks
+= CalleeMetrics
.NumBlocks
;
630 CallerMetrics
.NumCalls
+= CalleeMetrics
.NumCalls
;
631 CallerMetrics
.NumVectorInsts
+= CalleeMetrics
.NumVectorInsts
;
632 CallerMetrics
.NumRets
+= CalleeMetrics
.NumRets
;
634 // analyzeBasicBlock counts each function argument as an inst.
635 if (CallerMetrics
.NumInsts
>= Callee
->arg_size())
636 CallerMetrics
.NumInsts
-= Callee
->arg_size();
638 CallerMetrics
.NumInsts
= 0;
640 // We are not updating the argument weights. We have already determined that
641 // Caller is a fairly large function, so we accept the loss of precision.
644 /// clear - empty the cache of inline costs
645 void InlineCostAnalyzer::clear() {
646 CachedFunctionInfo
.clear();